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ABSTRACT
The collection of brain images from populations of subjects who
have been genotyped with genome-wide scans makes it feasible to
search for genetic effects on the brain. Even so, multivariate methods
are sorely needed that can search both images and the genome for re-
lationships, making use of the correlation structure of both datasets.
Here we investigate the use of sparse canonical correlation analysis
(CCA) to home in on sets of genetic variants that explain variance
in a set of images. We extend recent work on penalized matrix de-
composition to account for the correlations in both datasets. Such
methods show promise in imaging genetics as they exploit the nat-
ural covariance in the datasets. They also avoid an astronomically
heavy statistical correction for searching the whole genome and the
entire image for promising associations.

Index Terms— Diffusion tensor imaging, Genome wide associ-
ation, Canonical correlation analysis, sparsity, lasso

1. INTRODUCTION

The last few years have seen an unprecedented surge in data ac-
quisition in fields ranging from signal processing to biology and
medicine. This ability to acquire massive amounts of data has
opened the door to qualitatively different approaches to science as
well, often using high-dimensional datasets from more than one
modality. One example is the convergence of biomedical imaging
and genomics in the nascent field of imaging genetics [1]. The basic
idea is to identify genetic variants that can best capture and explain
phenotypic variations in brain function and structure. To be more
concrete, two sets of data are observed, p genotypes and q neu-
roimaging phenotypes, on n samples. Both p and q may be small or
large and there has been prior testing for effects in various scenarios.
In [2], Joyner et al. studied a dataset with small q, four brain size
measures, and small p, 11 single nucleotide polymorphisms (SNPs).
In [3], Potkin et al. considered small q, the mean BOLD signal
from fMRI, and large p, 317,503 SNPs. Filippini et al. explored the
combination of large q, 29,812 voxels, and small p, a single SNP
[4]. Finally, Stein et al. in [5] took on the most challenging scenario
of large q, 31,622 voxels, and large p, 448,293 SNPs. Thus, on the
same set of imaged subjects, high-dimensional genetic data is also
collected, e.g. hundreds of thousands of SNP genotypes. In some
cases, well defined regions of interest (ROIs) are already known,
but in other cases they are not. Similarly, in some cases, candidate
genes may or may not be available. In this scenario, one wishes to
simultaneously identify ROIs and a parsimonious set of genetic loci
that are associated with each other.

The last case in particular presents not only intriguing possibil-
ities but also computational and statistical challenges. Indeed, the

simplest strategy is to perform pq univariate regressions between all
possible voxels and SNPs [5] and adjust for multiple comparisons.
While such an approach is straightforward, it also completely ig-
nores the correlation structure among the SNPs and voxels. It also
lacks power, as an astronomical correction must be made for the
number of tests performed. Given the correlation structure a mul-
tivariate approach is called for. To address these shortcomings, in
this paper we present a sparse canonical correlation analysis (CCA)
method to identify joint signals in a pair of high-dimensional data
sets, namely diffusion tensor images (DTI) and SNP measurements.
The goal in classical CCA is to determine a coordinate system that
maximizes the cross-correlation between two data sets [6]. In other
words we seek the linear transformation of two data sets such that
the linear forms are maximally correlated. We anticipate, however,
that relatively few DTI voxels will contain signals that are correlated
with again relatively few SNPs. Despite the fact that both data live
in very high dimensional spaces, DTI voxels number in the tens of
thousands and SNPs number in the hundreds of thousands, the rele-
vant signal often resides in a low dimensional manifold. Indeed pe-
nalized methods such as the LASSO [7] have been very successful in
recovering meaningful parsimonious models from high dimensional
data. Building on this idea, Witten et al. introduced a penalized ma-
trix decomposition (PMD) on the sample cross-covariance matrix
in [8] aimed at introducing sparsity into the linear combinations. In
related work, Vounou et al. introduced sparse Reduced Rank Regres-
sion (sRRR) [9, 10] as another multivariate alternative. Indeed, the
PMD is a special case of the sRRR when relevant covariance matri-
ces are taken to be identity matrices. Nonetheless, despite having a
more general framework, the algorithms presented in [9, 10] make
the same simplifying assumptions made in PMD. We also note that
under the diagonal covariance assumption such decompositions are
equivalent to a partial least squares regression [11]. In this work we
extend the PMD model to account for correlation structure in both
data sets.

2. METHODS

2.1. Simulation Experiment

Suppose we have 100 subjects for whom 1,000 SNPs have been
typed, X ∈ R100×1,000, and on which a 100× 100 image has been
taken, Y ∈ R100×100×100 (here we introduce the ideas for a set of
2D images but they hold in any dimension without loss of general-
ity). Let Y ∈ R100×10,000 denote the matricization of Y along its
first mode. The data sets are generated as follows. Let β ∈ R1,000
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Fig. 1. Region of Interest (ROI) for a simulated example problem,
with a coherent signal in the image. Pixels that belong to the ROI
have value of 1. Pixels outside the ROI have value of 0.
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Fig. 2. An example of the observed image data: Z(1, :, :) which
corresponds to the observed image of the first subject.

be sparse with

βi =

{
2 i ∈ {192, 438, 623, 786, 780}
0 otherwise.

The images are also similarly sparse.

yij =

{∑
j′ xij′βj′ (i, j) ∈ R ⊂ {1, . . . , 100}2

0 otherwise,

where R denotes the ROI. The ROI for this problem is shown in
Figure 1. Finally, we do not observe Y but rather a noisy version of
it Z.

zijk = yijk + σεijk,

where εijk are i.i.d. standard normal and σ = 10. An example of
the observed image data for a subject is shown in Figure 2.

2.2. Sparse Canonical Correlation Analysis

Let X ∈ Rn×p denote the SNP data matrix and Y ∈ Rn×q de-
note the matrix of vectorized DTI fractional anisotropy (FA) scores.
Classical CCA solves the following optimization problem

max
a,b

aTXTYb

subject to the constraints aTXTXa = 1 and bTYTYb = 1.
The matrices XTY,XTX, and YTY are estimates of the cross-
covariance and covariance matrices respectively. PMD introduces
a LASSO penalty and assumes the covariance matrices are identity
matrices, i.e., PMD solves the optimization problem

max
a,b

aTXTYb− λa‖a‖1 − λb‖b‖1

subject to the constraints aTa ≤ 1 and bTb ≤ 1. Note that the
equality constraints have been relaxed to inequality constraints to
make the feasible sets convex. The parameters λa ≥ 0 and λb ≥ 0
tune the degree of sparsity in a and b. Since the objective function
is biconvex, namely it is convex in a with b fixed and vice versa,
PMD iteratively minimizes with respect to a holding b fixed, and
vice versa until convergence. The update for a is given by

â = argmin
a

1

2
‖XTYb− a‖22 + λ‖a‖1

a∗ =

{
â
‖â‖2

if ‖â‖2 > 0.
0 otherwise.

The update for b is similar. To weaken the identity covariance as-
sumption we minimize the same objective function but alter the con-
straints to aTΣ̃xa ≤ 1 and bTΣ̃yb ≤ 1, where Σ̃x and Σ̃y are
estimated covariance matrices. Again the problem is amenable to
block relaxation, namely iteratively minimizing with respect to a
holding b fixed and vice versa. Consider optimizing with respect to
a first. We can rewrite the problem as

maxaTXTYb− λ‖a‖1

subject aTΣ̃xa ≤ 1. A little convex calculus shows that the updates
are given by

â = argmin
a

1

2
‖Σ̃−1/2

x XTYb− Σ̃
1/2

x a‖22 + λ‖a‖1. (1)

and

a∗ =

{
â

‖Σ̃xâ‖2
if ‖Σ̃xâ‖2 > 0.

0 o.w.
(2)

Thus, the update occurs in two stages. We first solve a LASSO
penalized regression problem in (1) where the response variable is
Σ̃
−1/2

x XTYb and the design matrix is Σ̃
1/2

x . Then if the solution
of (1) is non-zero we normalize the solution so that ‖Σ̃xa∗‖2 = 1.
If the solution to (1) is zero, the final solution a∗ is zero. Note that if
we take Σ̃x and Σ̃y to be identity matrices, we recover the algorithm
employed in prior work [8, 9, 10].

We note that the choice of covariance estimator is critical. In-
deed the sample covariance is well recognized as a poor estimator of
the population covariance in the small n, large p regime considered
here. This problem even plagues the classical CCA problem as well
when p is close to n. This has been addressed by applying a ridge es-
timate of the covariance matrices, namely [12, 13]. Ledoit and Wolf
introduced a well-conditioned and consistent linear estimator of the
sample covariance in [14] and a considerably more complicated non-
linear one in [15]. Here we employ Ledoit and Wolf’s simple linear
estimator.

Σ̃x = λmxI + (1− λ)Sx,

where Sx is the sample covariance, mx is the average eigenvalue of
Sx, and λ ∈ [0, 1] is a convex mixing coefficient that shrinks the
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Fig. 3. With non-trivial covariance estimate: The unfolded vector b
that summarizes Y.
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Fig. 4. With non-trivial covariance estimate: The estimated sparse
vector a that summarizes X. The SNP loci annotated in red denote
the loci used to generate the data.

sample covariance towardsmxI as λ approaches 1. Ledoit and Wolf
derive a value for λ to ensure that Σ̃x is a consistent estimator of the
true covariance Σx.

We apply both PMD and our extension of it on the simulated data
described above. As a proof of concept - to see if we could recover
the generative sparse model - we hand picked the regularization pa-
rameters λa and λb to see if there was a pair of values for which we
could recover the true set of SNPs. In particular, we are interested in
how many relevant SNPs were missed when sufficient regularization
was applied to drop all irrelevant SNPs from the model. In practice,
we would choose the regularization parameters with either a mea-
sure of complexity such as the BIC or by a data driven method such
as cross-validation.

3. RESULTS

Figures 3 and 4 show the estimated canonical correlation vectors
b and a unfolded when the non-trivial covariance estimate is used.
We see that there is a regularization parameter that recovers the cor-
rect support. Figure 5 shows estimated a obtained via PMD using
hand picked regularization parameters. PMD selected the same set
of voxels and for space considerations, the results are not shown.
Nonetheless, interestingly, the selected SNPs are different. Choos-
ing a smaller λa will indeed include the missed SNP, but the cost is
that false positives will also be included.
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Fig. 5. PMD: The estimated sparse vector a that summarizes X. The
SNP loci annotated in red denote the loci used to generate the data.

4. DISCUSSION

In this paper we build on previous penalized multivariate methods
for finding sparse structure in pairs of related data sets by showing
how to incorporate correlation information. Our simulation exam-
ple shows that our method is capable of recovering true latent sparse
structure and that the solutions obtained when accounting for corre-
lation structure can differ from multivariate approaches that assume
identity covariances. Using non-trivial covariance estimates, how-
ever, makes the optimization problem harder. To that end we are
working on developing more efficient algorithms that can work with
non-trivial covariance matrices. Additionally, we are currently in-
vestigating our methods on real data.
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