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Abstract

Motivation: In a genome-wide association study, analyzing multiple correlated traits simultaneously is potentially
superior to analyzing the traits one by one. Standard methods for multivariate genome-wide association study oper-
ate marker-by-marker and are computationally intensive.

Results: We present a sparsity constrained regression algorithm for multivariate genome-wide association study
based on iterative hard thresholding and implement it in a convenient Julia package MendelIHT.jl. In simulation
studies with up to 100 quantitative traits, iterative hard thresholding exhibits similar true positive rates, smaller false
positive rates, and faster execution times than GEMMA’s linear mixed models and mv-PLINK’s canonical correlation
analysis. On UK Biobank data with 470 228 variants, MendelIHT completed a three-trait joint analysis (n ¼ 185 656) in
20 h and an 18-trait joint analysis (n ¼ 104 264) in 53 h with an 80 GB memory footprint. In short, MendelIHT enables
geneticists to fit a single regression model that simultaneously considers the effect of all SNPs and dozens of traits.

Availability and implementation: Software, documentation, and scripts to reproduce our results are available from
https://github.com/OpenMendel/MendelIHT.jl.

1 Introduction

Current statistical methods for genome-wide association studies
(GWAS) can be broadly categorized as single variant or multi-variant in
their genomic predictors. Multi-variant sparse models ignore polygenic
background and assume that only a small number of single-nucleotide
polymorphisms (SNPs) are truly causal for a given trait. Model fitting is
typically accomplished via regression with penalties, such as the least
absolute shrinkage and selection operator (LASSO) (Wu et al. 2009,
Zhou et al. 2010b, 2011, Alexander and Lange 2011, Qian et al. 2020),
minimax concave penalty (Zhang 2010, Breheny and Huang 2011), it-
erative hard thresholding (IHT) (Keys et al. 2017, Chu et al. 2020), or
Bayesian analogues (Guan and Stephens 2011). Linear mixed models
(LMMs) dominate the single-variant space. LMMs control for polygen-
ic background while focusing on the effect of a single SNP. LMMs are
implemented in the contemporary programs GEMMA (Zhou and
Stephens 2012), BOLT (Loh et al. 2018), GCTA (Yang et al. 2011,
Jiang et al. 2019), and SAIGE (Zhou et al. 2018). The virtues of the
various methods vary depending on the genetic architecture of a trait.
No method is judged uniformly superior (Galesloot et al. 2014).

Although there is no consensus on the best modeling framework
for single-trait GWAS, there is considerable support for analyzing
multiple correlated traits jointly rather than separately (Galesloot
et al. 2014, Porter and O’Reilly 2017, Turchin and Stephens 2019).
When practical, joint analysis (i) incorporates extra information on
cross-trait covariances, (ii) distinguishes between pleiotropic and in-
dependent SNPs, (iii) reduces the burden of multiple testing, and (iv)
ultimately increases statistical power. Surprisingly, simulation stud-
ies suggest these advantages hold even if only one of multiple traits
is associated with a SNP or if the correlation among traits is weak
(Galesloot et al. 2014). These advantages motivate this article and
our search for an efficient method for analyzing multivariate traits.

Existing methods for multivariate-trait GWAS build on the poly-
genic model or treat SNPs one by one. For instance, GEMMA
(Zhou and Stephens 2014) implements multivariate linear mixed
models (mvLMM), mv-PLINK (Ferreira and Purcell 2009) imple-
ments canonical correlation analysis (CCA), and MultiPhen
(O’Reilly et al. 2012) and Scopa (Mägi et al. 2017) invert regression
so that the genotypes at a single SNP become the trait and observed
traits become predictors. Due to their single-variant nature, these
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methods cannot distinguish whether a SNP exhibits a true effect on
the trait or a secondary association mediated by linkage disequilib-
rium (LD). As a result, many correlated SNPs near the causal one are
also selected. This inflates the false positive (FP) rate unless one
applies fine-mapping strategies (Spain and Barrett 2015) in down-
stream analysis to distill the true signal. Joint regression methods like
IHT and LASSO are less susceptible to finding SNPs with only sec-
ondary association because all SNPs are considered simultaneously.

To our knowledge, there are no sparse regression methods for
multivariate-trait GWAS. In this article, we extend IHT (Blumensath
and Davies 2009) to the multivariate setting and implement it in the
Julia (Bezanson et al. 2017) package MendelIHT.jl, part of the larger
OpenMendel statistical genetics ecosystem (Zhou et al. 2020). We have
previously demonstrated the virtues of IHT compared to LASSO regres-
sion, and single-SNP analysis for univariate GWAS (Keys et al. 2017,
Chu et al. 2020). Since IHT assumes sparsity and focuses on mean
effects, it is ill-suited to capture polygenic background as represented in
classic variance components models. In the sequel, we first describe our
generalization of IHT. Then, we study the performance of IHT on simu-
lated traits given real genotypes. These simulations explore the impact
of varying the sparsity level k and the number of traits r. To demon-
strate the potential of IHT on real large-scale genomic data, we also
apply it to three hypertension-related traits and 18 metabolomic traits
from the UK Biobank. Our simulation experiments and real data studies
showcase IHT’s speed, low FP rate, and scalability to large numbers of
traits. Our concluding discussion summarizes our main findings, limita-
tions of IHT, and questions worthy of future research.

2 Materials and methods

2.1 Model development
Consider multivariate linear regression with r quantitative traits and
p predictors. Up to a constant, the loglikelihood LðB;CÞ for n inde-
pendent subjects is

LðB;CÞ ¼ n

2
logðdet CÞ � 1

2
tr CðY� BXÞðY� BXÞT
h i

: (1)

The loglikelihood LðB;CÞ is a function of the r� p regression coeffi-
cients matrix B and the r� r unstructured precision (inverse covari-
ance) matrix C. In Equation (1), Y is the r� n matrix of traits
(responses), and X is the p� n design matrix (genotypes plus non-
genetic predictors). All predictors are treated as fixed effects.

IHT maximizes LðB;CÞ subject to the constraints that k or fewer
entries of B are non-zero and that C is symmetric and positive defin-
ite. The unknown parameter k is chosen via cross-validation.
Optimizing LðB;CÞ with respect to B for C fixed relies on three core
ideas. The first is gradient ascent. Elementary calculus tells us that
the gradient rBLðB;CÞ is the direction of steepest ascent of LðB;CÞ
at B for C fixed. IHT updates B in the steepest ascent direction by
the formula Bmþ1 ¼ Bm þ tmrBLðBm;CmÞ, where m is iteration
number, tm > 0 is an optimally chosen step length, and ðBm;CmÞ is
the current value of the pair ðB;CÞ. The gradient is derived in the on-
line supplementary material as the matrix

rBLðB;CÞ ¼ CðY� BXÞXT : (2)

The second core idea dictates how to choose the step length tm. This is
accomplished by expanding the function t 7!L½Bm þ tmrBLðBm;CmÞ�
in a second-order Taylor series around ðBm;CmÞ. In the online supple-
mentary material, we show that the optimal tm for this quadratic ap-
proximant is

tm ¼
jjCmjj2F

trðXTCT
mCmCmXÞ

; (3)

where Cm abbreviates the gradient rBLðBm;CmÞ. The third core idea
of IHT involves projecting the steepest ascent update Bmþ1 ¼
Bm þ tmrBLðBm;CmÞ to the sparsity set Sk ¼ fB : jjBjj0 � kg. The
projection operator PSk

ðBÞ sets to zero all but the largest k entries in
magnitude of B. This goal can be achieved efficiently by a partial sort

on the vectorized version vecðBmþ1Þ of Bmþ1. For all predictors to be
treated symmetrically in projection, they should be standardized to
have mean 0 and variance 1. Likewise, in cross-validation of k with
mean square error prediction, it is a good idea to standardize all traits.

To update the precision matrix C for B fixed, we take advantage
of the gradient

rCLðB;CÞ ¼
n

2
C�1 � 1

2
ðY� BXÞðY� BXÞT (4)

spelt out in the online supplementary material. At a stationary point
whererCLðB;CÞ ¼ 0r�r, the optimal C is

Cmþ1 ¼ 1
n ðY� BmXÞðY� BmXÞT
h i�1

: (5)

Equation (5) preserves the symmetry and positive semidefiniteness
of Cm. The required matrix inversion is straightforward unless the
number of traits r is exceptionally large. Our experiments suggest
solving for Cmþ1 exactly is superior to running full IHT jointly on
both B and C. Algorithm 1 displays our block ascent algorithm.

2.2 Linear algebra with compressed genotype matrices
We previously described how to manipulate PLINK files using the
OpenMendel module SnpArrays.jl (Zhou et al. 2020), which
supports linear algebra on compressed genotype matrices (Chu et al.
2020). We now outline several enhancements to our compressed lin-
ear algebra routines.

Compact genotype storage and fast reading. A binary PLINK
genotype (Purcell et al. 2007) stores each SNP genotype in two bits.
Thus, an n� p genotype matrix requires 2np bits of memory. For bit-
level storage Julia (Bezanson et al. 2017) supports the 8-bit un-
signed integer type (UInt8) that can represent four sample genotypes
simultaneously in a single 8-bit integer. Extracting sample genotypes
can be achieved via bitshift and bitwise and operations. Genotypes
are stored in little-endian fashion, with 0, 1, 2, and missing genotypes
mapped to the bit patterns 00, 10, 11, and 01, respectively. For in-
stance, if a locus has four sample genotypes 1, 0, 2, and missing, then
the corresponding UInt8 integer is 01110010 in binary representa-
tion. Finally, because the genotype matrix is memory-mapped, open-
ing a genotype file and accessing data are fast even for very large files.

Single instruction, multiple data (SIMD)-vectorized and tiled lin-

ear algebra. In IHT, the most computationally intensive operations are
the matrix-vector and matrix-matrix multiplications required in com-
puting gradients. To accelerate these operations, we employ SIMD vec-
torization and tiling. On machines with SIMD support, such as
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Advanced Vector Extensions, our linear algebra routine on compressed
genotypes is usually twice as fast as Basic Linear Algebra Subroutines
(BLAS) 2 (Lawson et al. 1979) calls with an uncompressed numeric
matrix and comparable in speed to BLAS 3 calls if B is tall or flat.
These benchmarks are available on GitHub https://github.com/
OpenMendel/SnpArrays.jl/blob/master/docs/SnpLinAlg.ipynb.

Computation of the matrix product C ¼ AB requires special care
when A is the binary PLINK-formatted genotype matrix and B and C

are numeric matrices. The idea is to partition these three matrices into
small blocks and exploit the representation Cij ¼

P
k AikBkj by com-

puting each tiled product AikBkj in parallel. Because entries of a small
matrix block are closer together in memory, this strategy improves
cache efficiency. The triple for loops needed for computing products
AikBkj are accelerated by invoking Julia’s LoopVectorization.jl
package, which performs automatic vectorization on machines with
SIMD support. Furthermore, this routine can be parallelized because
individual blocks can be multiplied and added independently.
Because multi-threading in Julia is composable, these parallel opera-
tions can be safely nested inside other multi-threading Julia functions,
such as IHT’s cross-validation routine.

2.3 Simulated data experiments
Our simulation studies are based on the Chromosome 1 genotype data
of the Northern Finland Birth Cohort (NFBC) (Sabatti et al. 2009).
The original NFBC1966 data contain 5402 subjects and 364 590
SNPs; 26 906 of the SNPs reside on Chromosome 1. After filtering for
subjects with at least 98% genotype success rate and SNPs with miss-
ing data <2%, we ended with 5340 subjects and 24 523 SNPs on
Chromosome 1. For r traits, traits are simulated according to the ma-
trix normal distribution (Dawid 1981, Yin and Li 2012, Furlotte and
Eskin 2015) as

Yr�n �MatrixNormalðBr�pXp�n; Rr�r; r2
gUn�n þ r2

e In�nÞ

using the OpenMendel module TraitSimulation.jl (Ji et al.
2021). Here, X is the Chromosome 1 NFBC p� n genotype matrix
with n subjects aligned along its columns. The matrix B contains the
true regression coefficients bij uniformly drawn from
f0:05; 0:1; . . . ;0:5g and randomly set to 0 so that ktrue entries bij sur-
vive. In standard mathematical notation, jjBjj0 ¼ ktrue. Note, the
effect-size set f0:05; 0:1; . . . ;0:5g is comparable to previous studies
(Chu et al. 2020). To capture pleiotropic effects, kplei SNPs are ran-
domly chosen to impact two traits. The remaining kindep causal
SNPs affect only one trait. Thus, ktrue ¼ 2kplei þ kindep. Note, it is
possible for two traits to share 0 pleiotropic SNPs. The row (trait)
covariance matrix R is simulated so that its maximum condition
number does not exceed 10. The column (sample) covariance matrix
equals r2

gUþ r2
e I, where U is the centered genetic relationship ma-

trix estimated by GEMMA (Zhou and Stephens 2014). We let r2
g ¼

0:1 and r2
e ¼ 0:9. Different combinations of r, ktrue, kindep; and kplei

are summarized in Table 1. Each combination is replicated 100
times. It is worth emphasizing that this generative model should
favor LMM analysis.

Finally, using PLINK (Purcell et al. 2007), we generated three
additional datasets by filtering out all SNPs whose pairwise correl-
ation exceeds 0.25, 0.5, and 0.75. This action resulted in 7594,
13 441, and 18 580 SNPs, respectively. These reduced sets of data
are used to study the effect of LD on power and FP rates in our sub-
sequent comparisons of the competing methods.

2.4 Method comparisons
In our simulation experiments, we compared multivariate IHT
(mIHT) to running multiple separate univariate IHT (uIHT) analyses
(Keys et al. 2017, Chu et al. 2020), CCA implemented in mv-PLINK
(Ferreira and Purcell 2009), and mvLMM implemented in GEMMA
(Zhou and Stephens 2014). The LMM software GEMMA is broadly
popular in genetic epidemiology. The software mv-PLINK is chosen
for its speed. A recent review (Galesloot et al. 2014) rates it as the
second fastest of the competing programs. The fastest method,

mvBIMBAM (Stephens 2013), is an older method published by the
authors of GEMMA, so it is not featured in this study.

In simulated data experiments, all programs were run within 16
cores of an Intel Xeon Gold 6140 2.30 GHz CPU with access to
32 GB of RAM. All experiments relied on version 1.4.2 of

MendelIHT and Julia v1.5.4. IHT’s sparsity level k is tuned by cross-
validation. The number of cross-validation paths is an important de-

terminant of both computation time and accuracy. Thus, for simu-
lated data, we employed an initial grid search involving 5-fold cross-
validation over the sparsity levels k 2 f5; 10; . . . ; 50g. This was fol-

lowed by 5-fold cross-validation for k 2 fkbest � 4; . . . ; kbest þ 4g.
This strategy first searches the space of potential values broadly, then,

zooms in on the most promising candidate sparsity level. GEMMA and
mv-PLINK were run under their default settings. For both programs,
we declared SNPs significant whose P-values were lower than .05 div-

ided by the number of SNPs tested. For GEMMA, we used the Wald test
statistic.

2.5 Quality control for UK Biobank
We conducted two separate MendelIHT.jl analyses on the second
release of the UK Biobank (Sudlow et al. 2015), containing

Table 1. Comparison of mIHT and multiple uIHT implemented in

MendelIHT, CAA implemented in mv-PLINK, and mvLMM imple-

mented in GEMMAa.

Time (s) Plei power Indep power FP

Set 1: (2 traits, ktrue ¼ 10; kindep ¼ 4; kplei ¼ 3)

mIHT 164:6669:3 0:9260:16 0:7660:2 3:766:4

uIHT 114:9648:6 0:9360:16 0:7260:2 1:463:7

CCA 152:6657:3 0:9660:14 0:7860:2 77:860:2

mvLMM 307:76121:4 0:9560:15 0:7660:2 42:8618:5

Set 2: (3 traits, ktrue ¼ 20; kindep ¼ 10; kplei ¼ 5)

mIHT 214:46100:1 0:9160:12 0:7560:14 5:766:0

uIHT 169:6681:9 0:8660:16 0:7260:16 2:462:5

CCA 226:86101:9 0:9560:09 0:7960:15 125:3655:3

mvLMM 449:96221:7 0:9360:1 0:7560:16 66:1622:8

Set 3: (5 traits, ktrue ¼ 30; kindep ¼ 16; kplei ¼ 7)

mIHT 227:9641:1 0:9360:09 0:7360:12 5:964:6

uIHT 213:8645:7 0:9060:11 0:6960:12 3:263:8

CCA 371:5634:0 0:9660:07 0:7560:11 173:2654:9

mvLMM 1135:36125:5 0:9460:09 0:7160:11 93:6622:7

Set 4: (10 traits, ktrue ¼ 10; kindep ¼ 4; kplei ¼ 3)

mIHT 278:8653:0 0:9760:09 0:7460:20 2:262:0

uIHT 245:8634:8 0:9660:11 0:7060:23 3:166:4

CCA 985:1697:5 0:9960:06 0:7860:20 64:6630:5

mvLMM 8067:463900:8 0:9960:06 0:7460:18 41:8616:4

Set 5: (50 traits, ktrue ¼ 20; kindep ¼ 10; kplei ¼ 5)

mIHT 1892:26419:0 0:9360:12 0:7560:14 2:962:5

uIHT 1336:96310:2 0:9260:11 0:7260:12 7:665:9

CCA 26 589:16907:7(*) NA NA NA

mvLMM NA NA NA NA

Set 6: (100 traits, ktrue ¼ 30; kindep ¼ 16; kplei ¼ 7)

mIHT 3699:36410:4 0:9160:11 0:7160:11 2:862:1

uIHT 2353:86212:3 0:9260:11 0:760:1 10:764:3

CCA NA NA NA NA

mvLMM NA NA NA NA

aTraits were simulated consistent with the Chromosome 1 SNPs of the

NFBC1966 data. Plei power is power for pleiotopic SNPs, Indep power is

power for independent SNPs, and FP is the total number of FPs, which poten-

tially includes variants in high LD. Fig. 1 repeats the same simulation with

LD-pruning. Displayed numbers are mean 6 SDs. ktrue is the total number of

non-zero entries in B, kindep is the number of independent SNPs affecting only

one trait, and kplei is the number of pleiotropic SNPs affecting two traits.

These numbers satisfy ktrue ¼ 2� kplei þ kindep. Each simulation relied on 100

replicates. NA: >24 h. (*) Only two replicates contribute to timing.
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�500 000 subjects and �800 000 SNPs. Our first analysis deals with
three hypertension traits: average systolic blood pressure (SBP),
average diastolic blood pressure (DBP), and body mass index (BMI).
Our second analysis deals with 18 metabolomic quantitative traits
related to total lipidomics.

All traits were first log-transformed to minimize the impact of
skewness. Then each trait was standardized to mean 0 and variance
1, so that the traits were treated similarly in mean-squared error
(MSE) cross-validation. Following Chu et al. (2020), German et al.
(2020), and Ko et al. (2022a), we first filtered subjects exhibiting
sex discordance, high heterozygosity, or high SNP missingness. We
then excluded subjects of non-European ancestry and first and
second-degree relatives based on empirical kinship coefficients. For
three-trait hypertension analysis, we also excluded subjects on
hypertension medicine at baseline. Finally, we excluded subjects
with < 98% genotyping success rate and SNPs with < 99% geno-
typing success rate and imputed the remaining missing genotypes by
the corresponding sample-mean genotypes. Note that imputation
occurs in IHT on-the-fly.

The final dataset contains 470 228 SNPs and 185 656 subjects
for the three hypertension traits and 104 264 subjects for the metab-
olomics traits. Given these reduced data and ignoring the Biobank’s
precomputed principal components, we computed afresh the top 10
principal components of the genotype matrix via FlashPCA2
(Abraham et al. 2017) for the three-trait analysis and ProPCA
(Agrawal et al. 2020) for the 18-trait analysis. These principal com-
ponents serve as predictors to adjust for hidden ancestry. We also
designated sex, age, and age2 as non-genetic predictors.

3 Results

3.1 Simulation experiments
Table 1 summarizes the various experiments conducted on the simu-
lated data. For IHT, 5-fold cross-validation times are included.
mIHT is the fastest method across the board and the only one that
can analyze more than 50 traits. mIHT’s runtime increases roughly
linearly with the number of traits and, as demonstrated previously,
with sample size as well (Chu et al. 2020). All methods perform
similarly in recovering the pleiotropic and independent SNPs. uIHT
exhibits slightly worse true positive rate compared to multivariate
methods. Given the identically distributed effect sizes in our simula-
tions, all methods are better at finding pleiotropic SNPs than inde-
pendent SNPs.

In Table 1, the number of FPs for both univariate and mIHT are
much lower than competing methods. Presumably, many of the FPs
from mvLMM and CCA represent SNPs in significant LD with the
causal SNP. To study this phenomenon more closely, we repeated

simulations in Sets 1–4 with LD-pruning of SNPs based on pairwise
correlations (see Section 2 on how this is done prior to simulation).
Figure 1 displays the number of FPs based on three separate LD-
pruned datasets. Power comparison plots are available in the online
supplementary material. IHT is better at distilling the true signal
within these LD blocks, with or without LD-pruning, because IHT
considers the effect of all SNPs jointly. Also mvLMM is better at
controlling FPs than CCA, but mvLMM is slower, especially for
large numbers of traits. In summary, IHT offers better model selec-
tion than its competitors with better computational speed.

3.2 Three-trait UK Biobank analysis
With three hypertension traits, the UK Biobank analysis completed
in 20 h and 8 min on 36 cores of an Intel Xeon Gold 6140 2.30 GHz
CPU with access to 180 GB of RAM. As described in the methods
section, the featured traits are BMI, average SBP, and average DBP.
A first pass with 3-fold cross-validation across model sizes k 2
f100; 200; . . . ; 1000g showed that k ¼ 200 minimizes the MSE. A
second pass with 3-fold cross-validation across model sizes k 2
f110; 120; . . . ; 290g showed that k ¼ 190 minimizes the MSE. A
third 3-fold cross-validation pass across k 2 f181; 182; . . . ; 199g
identified k ¼ 197 as the best sparsity level. Given k ¼ 197, we ran
mIHT on the full data to estimate effect sizes, correlation among
traits, and proportion of phenotypic variance explained by the
genotypes.

IHT selected 13 pleiotropic SNPs and 171 independent SNPs.
Selected SNPs and non-genetic predictors appear in Supplementary
Tables S1–S5. To compare against previous studies, we used the R
package gwasrapidd (Magno and Maia 2020) to search the
NHGRI-EBI GWAS catalog (MacArthur et al. 2017) for previously
associated SNPs within 1 Mb of each IHT discovered SNP. After
matching, all 13 pleiotropic SNPs and 158 independent SNPs are ei-
ther previously associated or are within 1 Mb of a previously associ-
ated SNP. We discovered 3 new associations with SBP and 10 new
associations associated with DBP. Seven SNPs, rs2307111,
rs6902725, rs11977526, rs2071518, rs11222084, rs365990, and
rs77870048, are associated with two traits in opposite directions.

One can estimate the genotypic variance explained by the sparse
model as Varðb̂iXÞ=VarðyiÞ for each trait yi where b̂i 2 R

1�p is the
ith row of B. MendelIHT.jl outputs the values r2

BMI ¼ 0:033,
r2

SBP ¼ 0:143, and r2
DBP ¼ 0:048. Note these estimates do not in-

clude contributions from the intercept or non-genetic predictors.
The estimated correlations among traits are rBMI;SBP ¼ 0:197,
rBMI;DBP ¼ 0:286, and rSBP;DBP ¼ 0:738. As expected, all traits are
positively correlated, with a strong correlation between SBP and
DBP and a weak correlation between BMI and both SBP and DBP.

3.3 18-Trait UK Biobank analysis
A separate analysis of the 18 UK Biobank lipid traits finished in 53h on
32 cores of an AMD EPYC 7502P 2.5GHz CPU with access to 252 GB
of RAM. The peak RAM usage was 80.1 GB as measured by the seff
command available on slurm clusters. Our cross-validation search
started with an initial grid of k 2 f1000; 2000; . . . ;10 000g and eventu-
ally terminated with k ¼ 4678. The IHT run-time script with its detailed
cross-validation path is available in the online supplementary material.

mIHT found 218 independent and 699 pleiotropic SNPs for the
18 lipid traits. On average, a pleiotropic SNP is associated with 6.4
distinct lipid traits, suggesting that most significant SNPs for total
lipid level are highly pleiotropic. Figure 2 depicts estimated effect
sizes. The complete list of effect sizes as well as the estimated trait
covariance matrix can be downloaded from our software page. The
proportion of variance explained for each trait [roughly estimated as
Varðb̂iXÞ=VarðyiÞ] appears in the online supplementary material.

Although all traits are related to total lipids, we observe many
associated genes containing distinct SNPs with opposite effects. Some
of these reversals are caused by negatively correlated traits. Others are
byproducts of IHT estimating the effect size of the alternate allele ra-
ther than that of the reference allele. Interestingly, SNP rs7679 has a
large negative effect for Very Large HDL but a large positive effect for
Small HDL, despite the fact that the two traits are positively

Figure 1 FP counts evaluated on LD-pruned genotypes reveal mIHT maintains low

FP counts even on datasets that are in increasing linkage equilibrium. The x-axis

corresponds to filtering the original NFBC chr1 genotypes at different pairwise cor-

relation cutoffs. A smaller value means more aggressive pruning.
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correlated. To verify this phenomenon, we conducted 18 univariate
regressions considering only rs7679 plus an intercept. The result con-
firmed that this SNP indeed affects the two traits in opposite direc-
tions. SNPs, such as rs7679, are interesting candidates for follow-up
studies.

4 Discussion

This article presents mIHT for analyzing multiple correlated traits. In
simulation studies, mIHT exhibits similar true positive rates, significantly
lower FP rates, and better overall speed than LMMs and CCA.
Computational time for mIHT increases roughly linearly with the num-
ber of traits. Since IHT is a multivariate regression method, the estimated
effect size for each SNP is explicitly conditioned on other SNPs and non-
genetic predictors. Analyzing three correlated UK Biobank traits with
�200 000 subjects and �500 000 SNPs took 20h on a single machine.
A separate 18-trait analysis with �100 000 subjects and �500 000
SNPs took 53h. IHT can output the correlation matrix and a rough esti-
mate of the proportion of variance explained for the component traits.
MendelIHT.jl also automatically handles various input formats (bin-
ary PLINK, BGEN, and VCF files) by calling the relevant OpenMendel
packages. If binary PLINK files are used, MendelIHT.jl avoids
decompressing genotypes to full numeric matrices.

MendelIHT.jl’s superior speed is partly algorithmic and part-
ly due to software/hardware optimization. Internally, each iteration
of mIHT requires a small r� r Cholesky factorization, where r is the
number of traits. Each iteration also requires a dense matrix–matrix
multiplication for computing gradients. For r � 100 featured in this
study, the factorization is trivial to compute. To speed up matrix
multiplication, we developed a parallelized, tiled, and SIMD-
vectorized kernel that directly operates on binary PLINK files. This
key innovation allows us to achieve performance near BLAS 3 calls
without decompressing genotypes to numeric matrices. Because this
kernel can be safely nested within IHT’s parallelized cross-
validation step, we believe MendelIHT.jl is capable of utilizing
hundreds of compute cores on a single machine.

IHT’s statistical and computational advantages come with limita-
tions. For instance, it does not deliver P-values and ignores hidden and
explicit relatedness. IHT can exploit principal components to adjust for
ancestry, but PCA alone is insufficient to account for small-scale family
structure (Price et al. 2010). To overcome this limitation, close relatives
can be excluded from a study. Additional simulations summarized in
Supplementary Table S7 also suggest that analyzing traits of vastly dif-
ferent polygenic heritability may lead to slightly inflated FP rates for
the less polygenic traits. Thus, researchers may need to exercise caution
when using mIHT for multiple traits when polygenic heritability differs

by more than an order of magnitude. Although our simulation studies
suggest the contrary, there is also the possibility that strong LD may
confuse IHT. Finally, it is unclear how IHT will respond to wrongly
imputed markers, extreme trait outliers, and the rare variants generated
by sequencing. In spite of these qualms, the evidence presented here is
persuasive about IHT’s potential for multivariate GWAS.

We will continue to explore improvements to IHT. Extension to
non-Gaussian traits is hindered by the lack of flexible multivariate
distributions with non-Gaussian margins. Cross-validation remains
computationally intensive in tuning the sparsity level k. Although
our vectorized linear algebra routine partially overcomes many of
the computational barriers, we feel that further gains are possible
through GPU computing (Zhou et al. 2010a, Ko et al. 2020, 2021,
2022b). In model selection, it may also be possible to control FDR
better with statistical knockoff strategies (Barber and Candès 2015,
Sesia et al. 2021), especially if traits of vastly varying polygenicity
are being considered. Given IHT’s advantages, we recommend it for
general use with the understanding that genetic epidemiologists re-
spect its limitations and complement its application with standard
univariate statistical analysis.
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