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ABSTRACT
We propose a novel linear discriminant analysis (LDA) approach for the classification of high-dimensional
matrix-valued data that commonly arises from imaging studies. Motivated by the equivalence of the
conventional LDA and the ordinary least squares, we consider an efficient nuclear norm penalized regression
that encourages a low-rank structure. Theoretical properties including a nonasymptotic risk bound and a
rank consistency result are established. Simulation studies and an application to electroencephalography
data show the superior performance of the proposed method over the existing approaches.
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1. Introduction

Modern technologies have generated a large number of datasets
that possess a matrix structure for classification purpose. For
example, in neuropsychiatric disease studies, it is often of inter-
est to evaluate the prediction accuracy of prognostic biomarkers
by relating two-dimensional imaging predictors, for example,
electroencephalography (EEG) and magnetoencephalography,
to clinical outcomes such as diagnostic status (Mu and Gage
2011). In this article, we focus on extending one of the most
commonly used classification methods, Fisher linear discrim-
inant analysis (LDA) to matrix-valued predictors. Progress has
been made in recent years on developing sparse LDA using �1-
regularization (Tibshirani 1996), including Shao et al. (2011),
Fan, Feng, and Tong (2012), and Mai, Zou, and Yuan (2012).
However, all these methods only deal with vector-valued covari-
ates; and it remains challenging to accommodate the matrix
structure. Naively transforming the matrix data into a high-
dimensional vector will result in unsatisfactory results for sev-
eral reasons. First, vectorization destroys the structural informa-
tion within the matrix such as shapes and spatial correlations.
Second, turning a p × q matrix into a pq × 1 vector generates
unmanageably high dimensionality. For example, estimating the
population precision matrix for LDA can be troublesome if
pq � n. Third, �1-regularization does not necessarily work
well because the underlying two-dimensional signals are usually
approximately low-rank rather than �0-sparse.

Recently, there are some development of regression methods
for matrix data. Chen, Dong, and Chan (2013) invented an
adaptive nuclear norm penalization approach for low-rank
matrix approximation. Zhou and Li (2014) proposed a class
of regularized matrix regression methods based on spectral
regularization. Wang and Zhu (2017) developed a generalized
scalar-on-image regression model via total variation. Kong
et al. (2019) proposed a low-rank linear regression model
with high-dimensional matrix response and high-dimensional
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scalar covariates, while Hu, Kong, and Shen (2019) developed a
nonparametric matrix response regression model.

In this article, we propose a new matrix LDA approach by
building on the equivalence between the classical LDA and the
ordinary least squares. We formulate the binary classification
as a nuclear norm penalized least-squares problem, which effi-
ciently exploits the low-rank structure of the two-dimensional
discriminant direction matrix. The involved optimization
is amenable to the accelerated proximal gradient method.
Although our problem is formulated as a penalized regression
problem, a fundamental difference is that the covariates Xi
and the residuals εi are no longer independent in our case.
This requires extra effort for developing the risk bound and
rank consistency result. The risk bound is explicit in terms
of the rank of the image, image size, sample size, and the
eigenvalues of the covariance matrix for the image covariates.
This result also implies estimation consistency provided the
p × q image satisfies max(p, q) = o(n/ log3 n). Under stronger
conditions, we show that the rank of the coefficient matrix
can be consistently estimated as well. The proof is based on
exploiting the spectral norm of random matrices with mixture-
of-Gaussian components and extending the results in Bach
(2008) to allow diverging matrix dimensions. Finally, we prove
that our method enjoys classification error consistency.

It is worth noting that the 2D image classification problem
has been studied by Zhong and Suslick (2015), where they
proposed a penalized matrix discriminant analysis (PMDA)
method that projects the matrix coefficient into row space
and column space separately. Those two projections are then
estimated iteratively and integrated together for classification.
Compared with PMDA, we make the following contributions.
First, the rank of the PMDA is set as one because of the
separability assumption, while we allow the rank of the direction
matrix to take general positive integer values and the rank
can then be selected by a data driven procedure. Our rank
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assumption is more flexible in practice and hence often leads
to a lower misclassification error in the numerical studies.
Second, our method adopts a direct estimation approach by
solving a nuclear norm penalized regression problem, which
is computationally much faster compared with PMDA, where
the estimation involves an iterative procedure for calculating
the inverse of covariance matrices during each iteration. Third,
our method can handle the high-dimensional data when image
dimensions p and q are much larger than the sample size, which
is the case for many applications; while PMDA cannot handle
the case when p + q > n. Finally, we have provided theoretical
guarantee for our estimator when p and q diverge with n. In
particular, we have developed an nonasymptotic error bound
for the estimated LDA direction, as well as results on rank
consistency and classification error consistency. These results
are stronger compared with the root-n consistency of the LDA
direction in Zhong and Suslick (2015), where both p and q are
assumed to be fixed.

2. Method

We first define some useful notations. Let vec(·) be a vectoriza-
tion operator, which stacks the entries of a matrix into a column
vector. The inner product between two matrices of same size is
defined as 〈M, N〉 = tr(MTN) = 〈vec(M), vec(N)〉.

Consider a binary classification problem, where X is a two-
dimensional image covariate with dimension p×q and G = 1, 2
denotes the class labels. The LDA assumes that vec(X) | G =
g ∼ N(μg , �), pr(G = 1) = π1, and pr(G = 2) = π2. Suppose
we have n subjects with n1 subjects belonging to class 1 and n2 =
n−n1 subjects to class 2. It is well known that LDA is connected
to the linear regression with the class labels as responses (Duda,
Hart, and Stork 2012; Mika 2002). When pq < n, the classical
LDA is equivalent to solving

(β̂ols
0 , B̂ols) = arg min

β0,B

n∑
i=1

(
yi − β0 − 〈Xi, B〉

)2
, (1)

where Xi is the image covariate from subject i, B is the coefficient
matrix for the image covariate and it represents the direction
of the linear discriminant classifier, β0 is the intercept, and
the response yi = −n/n1 if subject i is in class 1, and yi =
n/n2 if subject i is in class 2. Although this connection gives
the exact LDA direction when pq < n, it has two potential
drawbacks. First, when pq > n, the equivalence between Fisher
LDA and (1) is lost because of the non-uniqueness of solution.
Second, the formulation (1) does not incorporate the 2D image
structure when estimating the direction because 〈Xi, B〉 =
〈vec(Xi), vec(B)〉. These motivate us to consider a penalized
version of (1) as follows

(β̂0, B̂) = arg min
β0,B

1
2n

n∑
i=1

(
yi − β0 − 〈Xi, B〉

)2 + ωn‖B‖∗,

(2)

where the nuclear norm ‖B‖∗ = ∑
j σj(B) and σj(B)s are the

singular values of the matrix B. The nuclear norm ‖B‖∗ plays
an important role because it imposes a low rank structure in the
estimated direction B̂. An alternative choice is to add a Lasso

type penalty, that is, ωn‖B‖1,1 = ωn
∑p

j=1
∑q

k=1 |bjk|, where
bjk is the jkth element of B. However, the Lasso type penalty
can only identify at most n nonzero components, and for most
cases in imaging studies, the signal is usually not that sparse.
More importantly, the Lasso type of penalty ignores the matrix
structure because it is equivalent to vectorizing the array and
applying sparse LDA. Once B̂ from (2) is obtained, a naive
classification rule will assign the ith subject to class 2 if 〈Xi, B̂〉+
β̂0 > 0. However, it can be shown that the intercept β̂0 obtained
from (2) is not optimal. Instead, we use the optimal intercept β̃0
that minimizes the training error after obtaining B̂. Mai, Zou,
and Yuan (2012) showed that the intercept of LDA actually has
a closed form. Their derivations can be easily applied to our case.
In particular, if (μ̂2 − μ̂1)

Tvec(B̂) > 0, then

β̃0 = −(μ̂1 + μ̂2)
Tvec(B̂)/2

+ vec(B̂)T�̂vec(B̂){(μ̂2 − μ̂1)
Tvec(B̂)}−1 log(n2/n1),

(3)

where μ̂g is the sample mean for subjects in class g and �̂ is
the estimated covariance matrix. If (μ̂2 − μ̂1)

Tvec(B̂) < 0, we
can plug −B̂ into (3) to obtain the optimal intercept β̃0. The
optimal classification rule is to assign the ith subject to class 2 if
〈Xi, B̂〉 + β̃0 > 0.

For any fixed ωn, the optimization problem in (2) can be
solved using the accelerated proximal gradient method (Nes-
terov 1983; Beck and Teboulle 2009). Zhou and Li (2014) studied
the algorithm for the nuclear norm regularized matrix regres-
sion. As we know, nuclear norm is not differentiable. Fortu-
nately, its subderivative ∂‖.‖∗ exists. Therefore (2) has local
minima (β̂0, B̂) if and only if 0 ∈ − 1

n
∑n

i=1 Xiεi + ωn∂‖B̂‖∗.
Thanks to the convexity of nuclear norm, the local minima
is global as well. Based on these facts, singular value thresh-
olding method for nuclear norm regularization was deployed
for building blocks of Nesterov’s method. Compared with the
classical gradient decent method with convergence of O(t−1),
where t denotes the number of iteration, Nesterov’s accelerated
gradient decent method achieves convergence rate of O(t−2).
It differs from traditional algorithms by utilizing the estimators
from previous two iterations to generate the next estimator. For
computational algorithm, we use the matrix_sparsereg
function in the Matlab TensorReg Toolbox (https://hua-zhou.
github.io/TensorReg/) for solving nuclear norm penalized matrix
regression. It implements an optimal Nesterov acceleration of
the proximal gradient algorithm. Actually, one contribution of
our article is to link matrix LDA to regularized matrix regression
so that the computational machinery developed for the latter
can be applied to matrix LDA problems. For tuning of the ωn, we
adopt the bic derived by Zhou and Li (2014) under the nuclear
norm regularized matrix regression framework.

3. Theory

In this section we discuss the theoretical properties of the pro-
posed regularization estimator. Denote the residuals εi = yi −
β0 − 〈Xi, B〉 and the true coefficient matrix by B0. By the
equivalence between LDA direction and least squares, we know
vec(B0) can be written as c�−1(μ2 − μ1) for some positive
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constant c. Consider the singular value decomposition B0 =
U0Diag(S0)VT

0 with U0 ∈ Rp×r and V0 ∈ Rq×r . Let U0⊥ ∈
Rp×(p−r) and V0⊥ ∈ Rq×(q−r) be (arbitrary) orthogonal com-
plements of U0 and V0, respectively. We make the following
assumptions.

(A1) We assume that the second-order moment of the covari-
ate X, E(vec(X)vec(X)T), denoted by �xx, satisfies λl ≤
λmin(�xx) ≤ λmax(�xx) ≤ λu, where λmin(�xx) and
λmax(�xx) are the smallest and largest eigenvalues of �xx,
respectively, and λl, λu are some positive constants.

(A2) Let r = rank(B0) be the unknown rank of the true
coefficient matrix B0. Define � ∈ R(p−r)×(q−r) as

vec(�) = {(V0⊥ ⊗ U0⊥)T�−1(V0⊥ ⊗ U0⊥)}−1

× {(V0⊥ ⊗ U0⊥)T�−1(V0 ⊗ U0)vec(I)}.

We assume its spectral norm ‖�‖2 < 1.
(A3) Assume the quantities ωn, {min(p, q)}1/2n−1/2ω−1

n ,
min(p, q)n−1/2, ωnp1/2q1/2 min(p, q) tend to 0 as n → ∞.

(A4) There exists a positive constant Cμ such that ‖μ2−μ1‖2 ≤
Cμ(

√p + √q).

Condition (A1) requires bounded eigenvalues for the covari-
ance matrix of the vectored covariate, which is standard in the
literature. Condition (A2) is similar with the strict consistency
condition in Bach (2008). It is needed to establish rank consis-
tency. This condition extends the classical strong irrepresentable
condition in Zhao and Yu (2006), which is commonly used for
proving model selection consistency of Lasso. The major differ-
ence between our Assumption (A2) and the similar assumption
in Bach (2008) is that the number of parameters is fixed in Bach
(2008) while in our case the number is diverging with n. There-
fore we will need to assume that the regularization parameter ωn
decays slower than the one in Bach (2008). Condition (A3) puts
more requirement on the order of p, q, and wn in order to obtain
consistent rank estimation in addition to consistent coefficient
estimation. This is expected since rank estimation consistency
is usually not implied by parameter estimation consistency.
Condition (A4) can be viewed as a sparsity assumption on B0.
Recall the solution (the slope) to classical LDA problem with
vector covariates depends on the term μ2−μ1. This assumption
essentially implies that there are at most O(max(p, q)) number
of O(1) elements in the true coefficient matrix B0 given the rank
of B0 is fixed.

Next, we briefly review two important concepts, namely
decomposable regularizer and strong convex loss function,
proposed by Negahban et al. (2012) and highlight their
connection to the risk bound property for our estimator.

Definition 1. A regularizer R(·) is decomposable with respect to
a given pair of subspaces (M, N) where M ⊆ N⊥ if

R(u + v) = R(u) + R(v) for all u ∈ M, v ∈ N.

In our setting, R(·) is the nuclear norm. Considering a matrix
B ∈ Rp×q to be estimated, we observe that nuclear norm is
decomposable given a pair of subspaces

M(U, V) := {B ∈ Rp×q | row(B) ⊆ V, col(B) ⊆ U},
N(U, V) := {B ∈ Rp×q | row(B) ⊆ V⊥, col(B) ⊆ U⊥},

where U, V represent B’s left and right singular vectors. For any
pair of matrices B1 ∈ M and B2 ∈ N, the inner product of
B1, B2 is 0 due to their mutually orthogonal rows and columns.
Hence, we conclude R(B1 + B2) = R(B1) + R(B2). Since we
assume the true parameter has a low-rank structure, we expect
the regularized estimator to have a large value of projection on
M(U, V) and a relatively small-valued projection on N(U, V).

When the loss function L(β̂0, B̂ωn) defined as 1
2n

∑n
i=1

(
yi −

β̂0 − 〈Xi, B̂ωn〉
)2

is close to L(β0, B0), it is insufficient to claim
B̂ωn − B0 is small if the loss function L is relatively flat. This is
why the strong convexity condition is required.

Definition 2. For a given loss function L and norm ‖.‖, we say L
is strong convex with curvature kL and tolerance function τL if

δL(�, B0) ≥ kL‖�‖2 − τ 2
L (B0), for any δ ∈ C(M, N; B0),

where C(M, N; B0) := {� ∈ Rp×q | R(�N) ≤ 3R(�N⊥) +
4R(B0N)}.

Now we are ready to state the main result on the risk bound
for our estimate. The proof is provided in Appendix B.

Theorem 1. Suppose that (A1) and (A4) hold. Let B̂ be the
solution to (2). If

ωn ≥ 12(log n)3/2(Cμ + λ
1/2
u )(

√p + √q + √
log n)√

n
,

then with probability of at least 1−Cn−1 for some constant C >

0,

‖B̂ − B0‖2
F + |β̂ − β∗

0 |2 ≤ 9
ω2

n
λl

r,

where β∗
0 = β0 − π−1

2 {c − 1 + (π2 − π2
2 )(DT�−1D)} and c is

some positive constant.

Theorem 1 gives a nonasymptotic risk bound for the
proposed estimators. In other words, the results hold for any
positive ωn satisfying the conditions there. However, in order
to ensure the consistency of the proposed estimators, we will
need the risk bound to go to 0, which requires ωn → 0 and
max(p, q) = o

(
n/(r log3 n)

)
. If the rank of B0 is fixed, then

both p and q can diverge with n at the order of o(n/ log3 n) and
their product pq > n. This result is compatible with Theorem 1
in Raskutti and Yuan (2015). Note that the estimated intercept
β̂ converges to β∗

0 , which deviates from the truth β0. This is
expected because the solution to OLS is only equivalent with
LDA’s solution in terms of the slope B, not on β0. More precisely,
for OLS, by taking the derivative of squared loss function with
respect to β0 and set it to 0, we essentially require E(ε) = 0.
However, this does not hold in our case. Instead we need to
shift the residual ε by d to balance off the bias in the cross-
product term E(εX). The proof of the theorem uses Gaussian
comparison inequality which allows us to deal with vec(X)

following a general Gaussian distribution instead of standard
Gaussian distribution given that the largest singular value of
�xx is bounded. Based on this connection, we further use
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concentration property of spectral norm of Gaussian random
matrices.

Next we show that B̂ is rank-consistent under stronger con-
ditions.

Theorem 2. Suppose that (A1)–(A4) hold. Then the estimate B̂
is rank-consistent, that is, P(rank(B̂) = rank(B0)) → 1 as n →
∞.

Similar to Lasso, estimation consistency does not guarantee
correct rank estimation for matrix regularization. In fact, the
assumptions here are stronger than those in Theorem 1. For
example, Theorem 1 allows p + q = o(n/ log3 n) while The-
orem 2 requires max(p, q) = o

(
n1/3 log−3/2 n

)
if min(p, q) =

O(1). The proof is based on the arguments in Bach (2008) with
modifications to allow diverging p and q.

Remark 1. Although nuclear norm penalized least squares is
used to estimate the classification direction, there is a fun-
damental difference between our theorems and the theoret-
ical results derived for nuclear norm penalized least-squares
regression (Bach 2008; Negahban et al. 2012). The previous
work assumes that the data obey a linear regression model with
covariates-independent additive noise, which is not true in our
case. In particular, the covariates Xi and the residuals εi are no
longer independent in our problem, which brings additional
challenges in developing theoretical results.

Next we state a classification error consistency result. To be
consistent with the notation in the classification literature, for
subject i, we use Yi ∈ {−1, 1} to denote its true label, f̂n(Xi) as
the classified label for which f̂n is the classification rule obtained
by solving (2), and l(Yi, f (Xi)) = I{Yi �= sign(f (Xi))} as the 0–1
loss function. Define the risk of f̂n as R(f̂n) = EXl(Y , f̂n(X)) and
the Bayes risk as R∗ = inf f R(f ). In addition, we assume that the
true label Yi given Xi is determined by the linear classification
rule with coefficients β∗

0 and B0. Then the following theorem
shows that the proposed classifier achieves the Bayes optimal
risk under certain conditions. The proof, given in Appendix B, is
based on the general results in Zhang (2004), where the author
studied the optimal Bayes error rate using a classifier obtained
by minimizing a convex upper bound of the classification error
function.

Theorem 3. Assume the same conditions for Theorem 1 hold
and ωn → 0. Then R(f̂n) → R∗ as n → ∞.

4. Numerical Results

4.1. Simulation

We conduct simulation studies to evaluate the numerical perfor-
mance of our proposed method. We compare its performance
with that of a few alternatives: “Lasso LDA,” which adopts a
naive Lasso penalty in LDA without taking into account matrix
structure, the regularized matrix logistic regression (Zhou and
Li 2014) using nuclear norm and Lasso penalties, denoted
by “Logistic Nuclear” and “Logistic Lasso,” and the PMDA
approach proposed by Zhong and Suslick (2015). We generate

n ∈ {100, 200, 500} samples from two classes with weights
(π1, π2) ∈ {(0.5, 0.5), (0.75, 0.25)}. For each class, we generate
predictors from a bivariate normal distribution with means μg ,
g = 1, 2, and covariance �. We set μ1 = 0 and μ2 = �vec(B0).
The covariance matrix � has a 2D autoregressive structure:
cov(xi1,j1 , xi2,j2) = 0.5|i1−i2|+|j1−j2| for 1 ≤ i1 ≤ p and
1 ≤ j1 ≤ q. The true signal B0 is generated based on a 64-by-
64 image. We consider three settings: a cross, a triangle and a
butterfly. These pictures are shown in Figure 1(a). In particular,
the white color denotes value 0 and black denotes 0.05. We
apply each fitted model to an independent test dataset of size
1000 and summarize the misclassification rates based on 1000
Monte Carlo replications. The results are contained in Table 1.

The results show that our method performs much better
than “Lasso LDA” and “Logistic Lasso” under all scenarios.
This is expected because these two methods ignore the matrix
structure. For “Logistic Nuclear,” it has similar misclassification
rates with our method for balanced data, but does not perform
as good as ours for unbalanced data. We have also plotted the
estimates using nuclear norm and �1-norm from one randomly
selected Monte Carlo replicate in Figure 1(b,c). It can be seen
that the proposed nuclear norm regularization is much better
than �1-regularization in recovering the matrix signal in dif-
ferent shapes. By comparing the recovery of different shapes in
Column (b) in Figure 1, we find that our method works better
for cross than for triangle and butterfly. This is expected since
triangle and butterfly do not have the low-rank structure.

We also compare the performance of our method with that of
PMDA proposed by Zhong and Suslick (2015). In Table 1, it can
be seen that our proposed method has a lower misclassification
rate under all scenarios. This is because we allow flexible values
of the rank for the linear discriminant direction B, while in
Zhong and Suslick (2015), their assumption is equivalent to
assuming B is of rank 1. In particular, using their notation, for
binary case, their direction B = β1ξ

T, where β1 ∈ R
p and

ξ ∈ R
q. Since the true ranks of B in our simulation studies are

all of rank greater than 1, it is not surprising that our method
outperforms PMDA. Moreover, PMDA does not apply to the
case where n < p + q, that is, the sample size is far smaller than
the summation of image dimensions. Therefore, their method
does not apply to one of our simulation settings (n, p, q) =
(100, 64, 64) and we mark their results using ∗ in Table 1. We
also compare the computation time between PMDA and our
method. In simulation, when n = 200 and true signal is a cross,
given a fixed regularization parameter, the system running time
of PMDA is around 1.5 min whereas the system running time
of our method is no more than 13 s. Here, system running time
is measured on a Macbook Pro laptop with a 2.9 GHz Intel
Core i5. This is because PMDA essentially solves least-square
problems with L1 penalty in each iteration when setting ω1 = 0
in Algorithm 2 in Zhong and Suslick (2015). Our method is
based on the Nesterov optimal gradient method which avoids
computing inverse of covariance matrix and hence has a faster
convergence rate.

4.2. Real Data Application

We apply our method to an EEG dataset, which is available at
https://archive.ics.uci.edu/ml/datasets/EEG+Database. The data

https://archive.ics.uci.edu/ml/datasets/EEG+Database
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)c()b()a(
Figure 1. The figures for cross image: (a) original signal; (b) our nuclear regularization estimate; and (c) �1-regularized estimate.

were collected by the Neurodynamics Laboratory to study the
EEG correlates of genetic predisposition to alcoholism. It con-
tained measurements from 64 electrodes placed on each sub-
ject’s scalps sampled at 256 Hz (3.9-msec epoch) for 1 second.
Each subject was exposed to three stimuli: a single stimulus,
two matched stimuli, two unmatched stimuli. Among the 122
subjects in the study, 77 were alcoholic individuals and 45 were
controls. More details about the study can be found in Zhang
et al. (1995). In statistics literature, EEG data have been analyzed
using different models, for example, Gao et al. (2019a) consid-
ered an unsupervised approach for clustering EEG data, Gao
et al. (2019b) and Gao et al. (2018) considered an evolutionary
state-space model and graphical model for better understanding
brain connectivity, respectively. However, these methods are not
directly applicable for classification purpose here.

In our data analysis, for each subject, we use the average of all
120 runs for each subject under single-stimulus condition and
use that as the covariate xi, which is a 256 × 64 matrix. The
classification label is alcoholic or not. We randomly divide the
dataset into training set of 81 subjects and test set of 41 subjects
for 100 times, and each time fit the model on the training set and
apply it on the test set to obtain the average mis-classification
rate and its standard error. The results for different methods
are summarized in Table 2. It can be seen that the proposed
method has a significant lower mis-classification rate compared
with other methods, which agrees with the simulation findings
for the unbalanced data. PMDA does not work here since p+q >

n ((n, p, q) = (122, 256, 64)). We also check the fitted signal
matrix and it agrees well with the one obtained by Zhou and
Li (2014).
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Table 1. Simulation results: misclassification rates (%) and associated standard errors obtained from our method, Lasso LDA, Logistic Nuclear (L-Nuclear), Logistic Lasso
(L-Lasso), and PMDA based on 1000 Monte Carlo replications.

Shape n (π1, π2) Ours Lasso LDA L-Nuclear L-Lasso PMDA

Cross 100 (0.5,0.5) 3.65(0.02) 17.81(0.07) 3.70(0.02) 19.51(0.07) *
100 (0.75,0.25) 3.32(0.02) 14.89(0.05) 6.62(0.04) 18.84(0.04) *
200 (0.5,0.5) 3.22(0.02) 11.69(0.05) 3.26(0.02) 13.39(0.05) 26.93(0.05)
200 (0.75,0.25) 2.87(0.02) 9.89(0.04) 4.14(0.03) 16.27(0.04) 19.58(0.08)
500 (0.5,0.5) 3.09(0.02) 6.97(0.03) 3.11(0.02) 8.19(0.04) 25.17(0.04)
500 (0.75,0.25) 2.62(0.02) 5.81(0.03) 3.59(0.02) 14.91(0.03) 12.05(0.04)

Triangle 100 (0.5,0.5) 3.12(0.02) 15.73(0.06) 3.11(0.02) 17.70(0.07) *
100 (0.75,0.25) 2.66(0.02) 13.72(0.05) 6.10(0.04) 17.19(0.04) *
200 (0.5,0.5) 2.85(0.02) 9.90(0.04) 2.81(0.02) 11.81(0.04) 30.17(0.08)
200 (0.75,0.25) 2.43(0.02) 8.72(0.03) 3.62(0.02) 13.40(0.04) 24.63(0.10)
500 (0.5,0.5) 2.67(0.02) 5.67(0.03) 2.73(0.02) 6.96(0.03) 25.92(0.04)
500 (0.75,0.25) 2.29(0.01) 4.89(0.02) 2.74(0.02) 9.97(0.03) 14.69(0.05)

Butterfly 100 (0.5,0.5) 3.86(0.02) 17.10(0.06) 4.16(0.02) 18.82(0.07) *
100 (0.75,0.25) 3.47(0.02) 14.79(0.05) 7.14(0.04) 17.78(0.04) *
200 (0.5,0.5) 3.67(0.02) 11.00(0.04) 3.78(0.02) 12.66(0.05) 29.79(0.07)
200 (0.75,0.25) 3.26(0.02) 9.80(0.04) 4.50(0.02) 13.93(0.04) 23.83(0.09)
500 (0.5,0.5) 3.56(0.02) 6.50(0.03) 3.52(0.02) 7.70(0.03) 25.77(0.04)
500 (0.75,0.25) 3.02(0.02) 5.74(0.03) 3.51(0.02) 10.49(0.03) 14.66(0.05)

Table 2. EEG data analysis: misclassification rates (%) and associated standard
errors.

Our method Lasso LDA Logistic Nuclear Logistic Lasso PMDA

22.20(0.53) 24.12(0.70) 24.44(0.80) 26.24(0.91) *

In terms of computational efficiency, we measured the com-
putation time among Lasso LDA, Logistic Nuclear, Logistic
Lasso, and our method based on one evaluation of the data,
that is, partitioning the data into training and test sets, fitting
the model on the training set and applying it on the test set.
The running time for Lasso LDA, Logistic Nuclear, Logistic
Lasso, and our method is 0.67, 1.79, 1.27, and 1.87 s, respectively.
The system running time is measured in Matlab R2015b on a
Macbook Pro laptop with a 2.9 GHz Intel Core i5.

5. Discussion

In the literature, total variation (TV) regularization has also
been commonly used for modeling image data in addition to
the proposed nuclear norm regularization. Their focuses are
slightly different—the former is on structured sparse pattern
and the later is on low-rank pattern. The main reason that
we choose to focus on the nuclear norm regularization in this
article is because we have found that low rankness is a more
reasonable assumption than sparseness assumption in our real
data application. In particular, the mis-classification errors of
our method are lower than the sparse method (LASSO) in
our real data analysis. The TV regularization is an interesting
direction to explore as it requires new computational algorithms
and theories; and thus we leave this for the future research.

In this article, we only consider the situation where all the
image measurements are taking at the same scale, that is, the
dimension of the image covariates p and q are equal for every
study subject. We believe this is the case for most applica-
tions. For the special cases when image dimensions vary across

subjects, our method may still be applicable by first resizing the
image to the same scale. It will be of future interest to develop
flexible statistical methods to handle image data that can be of
different sizes in general.
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Appendix A. Primary Lemmas and Propositions

We start with some useful lemmas in this section. The proof of main
theorems are given in Appendix B.

We first restate a singular value thresholding formula in Cai, Can-
dès, and Shen (2010). This result is extremely useful when computing
optimal solution of (A.2), by which the important block of Nestorov’s
algorithm was formed. The proof is based on showing that 0 is one of
subgradients of (A.1) at B̂.

Proposition 1. For any ω ≥ 0 and a given matrix B0 ∈ Rp×q with
singular value decomposition Udiag(s)VT, the minimizer B̂ of

1
2
‖B − B0‖2

F + ω‖B‖∗ (A.1)

has the same singular vectors as B0 with singular values (si − ω)+.

Next we state a lemma on the risk bound. This result can be
viewed as an analog of Theorem 1 in Negahban et al. (2012) under our
situation.
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Lemma 1. Suppose that (A1) and (A2) hold, and ωn ≥ 2‖ 1
n

∑n
i=1

εiXi‖2. Then any optimal solution B̂ to

(β̂0, B̂) = arg min
β0,B

1
2n

n∑
i=1

(
yi − β0 − 〈Xi, B〉

)2 + ωn‖B‖∗ (A.2)

satisfies the bound

‖B̂ − B0‖2
F ≤ 9

ω2
n

λl
r.

Proof. We apply Theorem 1 in Negahban et al. (2012) to our situation.
Observe that the nuclear norm is decomposable, and the squared error
loss satisfies τL(B0) = 0 in that article. Moreover, the dual normR∗ to
the nuclear norm is simply the spectral norm. The curvature constant
κL in the restricted strong convexity (RSC) condition can be chosen
as λ

1/2
l because the squared error loss is used and the Hessian matrix

E{vec(X)vec(X)T} = �xx ≥ λlI. For a subspace M that contains
matrices of the rank at most r, its subspace compatibility constant
satisfies

ψ(M) = sup
U∈M\{0}

‖U‖∗
‖U‖F

= sup
U∈M\{0}

∑r
i=1 σi(U)

(
∑r

i=1 σi(U)2)1/2 ≤ √
r,

where the last inequality follows by Cauchy–Schwarz inequality. Hence,
subspace compatibility constant under the low-rank assumption (A2)
is bounded by

√
r.

Next we state a few commonly used lemmas regarding the con-
centration property and tail probability inequalities of Gaussian and
sub-Gaussian random variable (matrices). Their proofs can be found
in standard textbooks, for example, Wainwright (2019).

Lemma 2. (Hoeffding bound) Suppose that the variables Xi, i =
1, 2, . . . , n are independent and Xi has mean μi and sub-Gaussian
parameter �i. Then for all t ≥ 0, we have

P

( n∑
i=1

(Xi − μi) ≥ t

)
≤ exp(− t2

2
∑n

i=1 �2
i
).

Lemma 3. Assume X1, . . . , Xn ∈ R
p×q are iid random matrices.

Suppose that ‖X1‖2 ≤ M almost surely, then with probability greater
than 1 − δ,

∥∥∥∥∥ 1
n

n∑
i=1

Xi − EX1

∥∥∥∥∥
2

≤ 6M√
n

(√
log min(p, q) + √

log(1/δ)
)

.

Lemma 4. Let A be an p × q matrix whose entries are independent
standard normal random variables. Denote smin(A) and smax(A) as
smallest singular value and largest singular value of A, respectively.
Assume p ≥ q without loss of generality. Then

√
p − √q ≤ Esmin(A) ≤ Esmax(A) ≤ √

p + √q.

Lemma 5. Let Y ∼ N(0, Id×d) be a d-dimensional Gaussian random
variable. Then for any function F: Rd → R with Lipschitz constant L,
that is, |F(x) − F(y)| ≤ L‖x − y‖ for all x, y ∈ Rd, we have

P {|F(Y) − E(F(Y))| ≥ t} ≤ 2 exp(− t2

2L2 ),

for any t > 0.

Lemma 6. (Anderson’s comparison inequality (Anderson 1955)) Let
X and Y be zero-mean Gaussian random vectors with covariance �X
and �Y, respectively. If �X − �Y is positive semi-definite then for any
convex symmetric set C,

P(X ∈ C) ≤ P(Y ∈ C).

The following lemma is very useful in establishing rank estimation
consistency.

Lemma 7. Assume (A1) and (A2) hold. Let B̂ be a global minimizer of
(A.2). If n1/2ωn tends to +∞ and ωn tends to zero, then ω−1

n (B̂ − B0)
converges in probability to the unique global minimizer � of

min
�∈Rp×q

1
2

vec(�)T�vec(�) + tr{UT
0�V0} + ‖UT

0⊥�V0⊥‖∗.

Moreover, B̂ = B0+ωn�+Op
(
ωn min(p, q)n−1/2+min(p, q)n−1/2+

ω2
n min(p, q)1/2n−1/2).

Proof. We can write B̂ = B0 + ωn�̂, where �̂ is the global minimum
of

Vn(�) = 1
2

vec(�)T�̂xxvec(�) − ω−1
n tr�T�̂Xε + ω−1

n

× (‖B0 + ωn�‖∗ − ‖B0‖∗),

where �̂xx = n−1 ∑n
i=1 vec(Xi)vec(Xi)T and �̂Xε = n−1 ∑n

i=1
εivec(Xi). Then vec(�)T�̂xxvec(�)/2 − vec(�)T�xxvec(�)/2 con-
verges to vec(�)TE(�̂xx − �xx)vec(�)/2 with probability of 1. Note
that E‖�̂xx − �‖2

F = O(n−1). Denote vec(�)i as ai and (�̂xx − �)ij
as bij. Then we have

1
2
|vec(�)TE(�̂xx − �)vec(�)| ≤

pq∑
i,j=1

|aiajE(bji)|

≤
( pq∑

i,j=1
a2

i a2
j

pq∑
i,j=1

E(b2
ij)

) 1
2

=
pq∑

i=1
a2

i E(

pq∑
i,j=1

b2
ij)

1
2

=
pq∑

i=1
a2

i E‖�̂xx − �xx‖F

= ‖�‖2
FO(n−1/2)

= O
(

min(p, q)‖�‖2
2n−1/2).

Meanwhile,

|tr�T�̂Xε | ≤ (tr�T�)
1
2 (tr�̂T

Xε�̂Xε)
1
2

= ‖�‖FOp(n−1/2)

≤ min(p, q)
1
2 ‖�‖2Op(n− 1

2 ).

Therefore

Vn(�) = 1
2

vec(�)T�vec(�) + Op
(

min(p, q)n−1/2‖�‖2
2
)

+ Op
(

min(p, q)
1
2 ω−1

n n−1/2‖�‖2
) + tr(UT

0�V0)

+ ‖UT
0⊥�V0⊥‖∗ + Op

(
ωnp1/2q1/2 min(p, q)‖�‖2

2
)
.

= V(�) + Op
(

min(p, q)n−1/2‖�‖2
2
)

+ Op
(

min(p, q)
1
2 ω−1

n n−1/2‖�‖2
)

+ Op
(
ωnp1/2q1/2 min(p, q)‖�‖2

2
)
,
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where p1/2q1/2 in the last term comes from the Frobenius norm of any
matrix in Rp×q with bounded entries. Let sr be the rth largest singular
value of B0, for any M < sr/(2ωn),

E sup‖�‖2≤M|Vn(�) − V(�)|
= O

(
min(p, q)M2E‖�̂xx − �‖F

+ M min(p, q)
1
2 ω−1

n E(‖�̂Mε‖2)1/2 + ωnp1/2q1/2 min(p, q)M2)
= fO

(
min(p, q)M2n−1/2 + M min(p, q)

1
2 ω−1

n n−1/2

+ ωnp1/2q1/2 min(p, q)M2).

Obviously V(�) achieves its minimum in the bounded ball at �0 �= 0.
Hence, by Markov inequality the probability of the minimum of Vn(�)

lying strictly inside the ball ‖�‖2 < 2‖�0‖2 tends to one and is also
the unconstrained minimum.

The following two lemmas can be viewed as analogs of Proposition
3 and Lemma 11 in Bach (2008). W present them without the proof.

Lemma 8. Let B0 = U0Diag(S0)VT
0 be the singular value decomposi-

tion of B0. Then the unique global minimizer of

1
2

vec(�)T�vec(�) + trUT
0�V0 + ‖UT

0⊥�V0⊥‖∗

satisfies UT
0⊥�V0⊥ = 0 if and only if

∥∥∥∥{(V0⊥ ⊗ U0⊥)T�−1(V0⊥ ⊗ U0⊥)}−1

× {(V0⊥ ⊗ U0⊥)T�−1(V0 ⊗ U0)vec(I)}
∥∥∥∥

2
≤ 1.

Furthermore, when UT
0⊥�V0⊥ = 0, the solutions has these forms:

vec(�) = {(V0⊥ ⊗ U0⊥)T�(V0⊥ ⊗ U0⊥)}−1

× {(V0⊥ ⊗ U0⊥)T�(V0 ⊗ U0)vec(I)},

vec(�) = −�−1vec(U0VT
0 − U0⊥�VT

0⊥). (A.3)

Lemma 9. The matrix B with singular value decomposition B =
UDiag(S)VT( with strictly positive singular value s) is optimal for the
problem in (A.2) if and only if

�̂xxB − �̂Xy + ωnUVT + N = 0,

with UTN = 0, NV = 0 and ‖N‖2 ≤ ωn.

Appendix B. Proof of Theorems

Proof of Theorem 1. Throughout the proof, we use C to denote a uni-
versal positive constant where its value is not important for the theo-
retical purpose. In order to apply Lemma 1, we just need to evaluate
the term ‖n−1 ∑n

i=1 εiXi‖2 and then set the tuning parameter wn to
be greater than that quantity. Note that εi = Yi −〈Xi, B〉−β∗

0 . Let Xi =
π1X(1)

i + π2X(2)
i , where vec(X(g)

i )
i.i.d.∼ N(μg , �) and μg ∈ R

pq×1 for

g = 1, 2. Define Xi
i.i.d∼ X and εi

i.i.d∼ ε. Observe that

vec{E(εiXi)} = π1E
{(

− n
n1

− β∗
0 − 〈X(1), B0〉

)
vec(X(1))

}

+ π2E
{(

n
n2

− β∗
0 − 〈X(2), B0〉

)
vec(X(2))

}

= (μ2 − μ1) − (π1μ1 + π2μ2)β∗
0

− π1E{vec(X(1))vec(X(1))T}vec(B0)

− π2E{vec(X(2))vec(X(2))T}vec(B0)

= (μ2 − μ1) − (π1μ1 + π2μ2)β∗
0

− π1{μ1μ
T
1 + �}vec(B0) − π2{μ2μ

T
2 + �}vec(B0).

(B.1)

Now, to further simplify this result, we reparameterize the mean of two
normal populations such that μ1 = 0, and μ2 = D. Then recall by the
equivalence between LDA and least-squares solution, we have

vec(B) = c�−1D,

β0 = −(π1μ1 + π2μ2)
Tvec(B) = −π2cDT�−1D,

β∗
0 = β0 − d

for some positive constants c and d. Then (B.1) can be simplified into

D − π2Dβ∗
0 − π2{DDT}vec(B) − cD

= D − π2Dβ0 + π2DD − π2{DDT}vec(B) − cD

= D{1 + π2
2 cDT�−1D + π2d − π2cDT�−1D − c}

= 0,

given d is chosen as π−1
2 {c − 1 + (π2 − π2

2 )(DT�−1D)}.
Next we show that with high probability, ‖εX‖2 ≤ 2 log n(Cμ +

λ
1/2
u )(

√p + √q + √
log n). Since ε follows a mixture of two normal

distributions, ε is sub-gaussian with sub-Gaussian parameter denoted
by σ , which is a positive constant due to the bounded eigenvalue
condition in (A1). By Lemma 2, for sufficiently large n,

P(|ε| > 2 log n) ≤ P(|ε − E(ε)| > log n)

≤ 2 exp

(
− log2 n

2σ 2

)
≤ C exp(−2 log n) = C

n2 .

Then we know |ε| ≤ 2 log n with probability of at least 1 − Cn−2. For
‖X‖2, we first consider its centralized version, that is, X ∼ N(0, �).
Note that we can write the spectral norm of a matrix in the form of a
canonical Gaussian process,

‖N(0, �)‖2 = sup
A:‖A‖∗≤1

〈N(0, �), A〉.

This allows us to apply Gaussian comparison inequality (Slepian 1962).
Define Z ∈ R

p×q that satisfies vec(Z) ∼ N(0, I). Then by Lemma 6,
we have

P(‖N(0, �)‖2 > t1) = P
(

sup
A:‖A‖∗≤1

〈N(0, �), A〉 > t1
)

≤ P
(

sup
A:‖A‖∗≤1

〈Z, A〉 > t1λ
−1/2
u

)

= P(‖Z‖2 > t1λ
−1/2
u ) (B.2)

for any t1 > 0 because � ≤ λuI due to (A1). Apply Lemma 5 (or more
generally the Tracy-Widow law), we have

P(‖Z‖2 − E‖Z‖2 >
√

log n) ≤ C exp(−2 log n) = Cn−2

for some constant C > 0. Since E‖Z‖2 ≤ √p + √q, by Lemma 4, with
probability of at least 1 − Cn−2, ‖Z‖2 ≤ √p + √q + √

log n, which
leads to ‖N(0, �)‖2 ≤ λ

1/2
u (

√p + √q + √
log n) by (B.2). Therefore

with probability of at least 1 − Cn−2,

‖εX‖2 ≤ (2 log n)‖X‖2
≤ 2 log n(‖μ1‖2 + ‖N(0, �)‖2)
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≤ 2 log n
{

Cμ(
√

p + √q) + λ
1/2
u (

√
p + √q + √

log n)
}

≤ 2 log n(Cμ + λ
1/2
u )(

√
p + √q + √

log n)

using Condition (A4) and since we assume μ2 = 0 without loss of
generality.

Now we apply the standard matrix concentration inequality, (e.g.,
Lemma 3) with M = 2 log n(Cμ + λ

1/2
u )(

√p + √q + √
log n) and δ =

n−1. Note that P(‖Xiεi‖2 ≤ M, i = 1, . . . , n) = (1 − Cn−2)n ≥ 1 −
Cn−1 by Bernoulli’s inequality. Hence, we obtain that with probability
of at least 1 − Cn−1,∥∥∥∥∥ 1

n

n∑
i=1

Xiεi − E(εX)

∥∥∥∥∥
2

≤ 6M√
n

(√
log min(p, q) + √

log 1/δ
)

≤ 12(log n)3/2(Cμ + λ
1/2
u )(

√p + √q + √
log n)√

n
.

This completes the proof.

Proof of Theorem 2. By Lemma 7, we obtain B̂ = B0 +ωn�+op(ωn).
Since the rank is a lower semi-continuous function, the rank of B̂ is
larger than r with probability tending to one by the consistency result,
where r is the rank of B0. Suppose B̂ has singular value decomposition
USVT and Uc, Vc are singular vectors corresponding to U and V except
the r largest singular values. By Lemma 9, �̂xx(B̂ − B0) − �̂Xε and B̂
have simultaneous singular value decomposition. Therefore it suffices
to show ‖UT

c {�̂xx(B̂−B0)−�̂Xε}Vc‖2 < ωn with probability tending
to one. Note that

UT
c {�̂xx(B̂ − B0) − �̂Xε}Vc

= UT
c {ωn�̂xx� + op(ωn) − Op(n−1/2)}Vc

= ωnUT
c (��)Vc + op(ωn),

where �� is the matrix in Rp×q satisfying vec(��) = �vec(�).
Because of the regular consistency and a positive eigengap for B0, the
projection onto the first singular vectors of B̂ converges those of B0.
Hence, the projection on the orthogonal space is also consistent, which
means UcUT

c converges to U0⊥UT
0⊥ and VcVT

c converges to V0⊥VT
0⊥.

Then by Lemma 8, we have

‖UT
c {�̂xx(B̂ − B0) − �̂Xε}Vc‖2

= ‖UcUT
c {�̂xx(B̂ − B0) − �̂Xε}VcVT

c ‖2
= ωn‖U0⊥UT

0⊥(��)V0⊥VT
0⊥‖2 + op(ωn)

= ωn‖U0⊥UT
0⊥�{−�−1(U0V0

T − U0⊥�VT
0⊥)}

× V0⊥VT
0⊥‖2 + op(ωn)

= ωn‖U0⊥�VT
0⊥‖2 + op(ωn)

= ωn‖�‖2 + op(ωn),

where the third equality is due to (A.3). Since ‖�‖2 < 1, the last
expression is less than ωn with probability tending to one, which
completes the proof.

Proof of Theorem 3. Based on Corollary 3.1 of Zhang (2004), we have

R(f̂n) ≤ R∗ + 2c(ε1 + ε2)
1/s,

where Q is the squared error loss function defined by Q(f ) = EX{y −
f (X)2}, ε1 = inf f EX(2P(Y = 1 | X) − 1 − f (X))2, ε2 satisfies
Q(f̂n) ≤ inf f Q(f ) + ε2, and c and s can be chosen as c = 0.5 and
s = 2 as explained by the Example 3.1 (for least-squares loss function)

in that article. Now note that since f̂n is determined by the classification
coefficient B̂ and β̂0 that are both consistent based on Theorem 1.
Therefore, ε2 can be chosen arbitrarily close to 0. Also, as we assume
the true class label Y given X is determined by the linear classification
rule with β∗

0 and B0, then inf f EX{2P(Y = 1 | X) − 1 − f (X)}2 = 0.
Therefore, ε1 = 0. This concludes the proof.
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