
Modern simulation utilities for genetic
analysis
Sarah S. Ji1, Christopher A. German1, Kenneth Lange2,3, Janet S. Sinsheimer1,2,3, Hua Zhou1, Jin Zhou4 and
Eric M. Sobel2,3*   

Abstract 

Background:  Statistical geneticists employ simulation to estimate the power of
proposed studies, test new analysis tools, and evaluate properties of causal models.
Although there are existing trait simulators, there is ample room for modernization.
For example, most phenotype simulators are limited to Gaussian traits or traits trans-
formable to normality, while ignoring qualitative traits and realistic, non-normal trait
distributions. Also, modern computer languages, such as Julia, that accommodate
parallelization and cloud-based computing are now mainstream but rarely used in
older applications. To meet the challenges of contemporary big studies, it is important
for geneticists to adopt new computational tools.

Results:  We present TraitSimulation, an open-source Julia package that makes
it trivial to quickly simulate phenotypes under a variety of genetic architectures. This
package is integrated into our OpenMendel suite for easy downstream analyses. Julia
was purpose-built for scientific programming and provides tremendous speed and
memory efficiency, easy access to multi-CPU and GPU hardware, and to distributed
and cloud-based parallelization. TraitSimulation is designed to encourage flex-
ible trait simulation, including via the standard devices of applied statistics, generalized
linear models (GLMs) and generalized linear mixed models (GLMMs). TraitSimu-
lation also accommodates many study designs: unrelateds, sibships, pedigrees, or
a mixture of all three. (Of course, for data with pedigrees or cryptic relationships, the
simulation process must include the genetic dependencies among the individuals.) We
consider an assortment of trait models and study designs to illustrate integrated simu-
lation and analysis pipelines. Step-by-step instructions for these analyses are available
in our electronic Jupyter notebooks on Github. These interactive notebooks are ideal
for reproducible research.

Conclusion:  The TraitSimulation package has three main advantages. (1) It
leverages the computational efficiency and ease of use of Julia to provide extremely
fast, straightforward simulation of even the most complex genetic models, includ-
ing GLMs and GLMMs. (2) It can be operated entirely within, but is not limited to, the
integrated analysis pipeline of OpenMendel. And finally (3), by allowing a wider range
of more realistic phenotype models, TraitSimulation brings power calculations
and diagnostic tools closer to what investigators might see in real-world analyses.

Keywords:  Trait simulation, Realistic genetic models, Power, Statistical genetics

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies
to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Ji et al. BMC Bioinformatics (2021) 22:228
https://doi.org/10.1186/s12859-021-04086-8

*Correspondence:
esobel@ucla.edu
3 Department of Human
Genetics, University
of California, Los
Angeles 90095, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-1718-0031
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04086-8&domain=pdf

Page 2 of 13Ji et al. BMC Bioinformatics (2021) 22:228

Background
Modern genome-wide association studies (GWAS) confront researchers with new
computational and analytic challenges. Genetic data sets are becoming bigger and
more varied. (See for example the UK Biobank [1, 2].) The size and variety of mod-
ern data sets require proper handling to ensure a quality analysis. Before mounting a
study, genetic epidemiologists almost invariably evaluate the adequacy of their study
design. If they propose a frequentist analysis, they seek to determine beforehand its
power, type 1 error rates, accuracy and precision of estimates, coverage, and robust-
ness to model misspecification. Given the near impossibility of deriving these results
mathematically, they must resort to simulation. The whole process is time consuming
and error prone due to the abundance of data and the small expected effect sizes. A
single misstep can lead to false optimism or false pessimism. Since genetic studies are
expensive to mount and carry important public health consequences, it is imperative
that simulation studies be done realistically, accurately, and quickly.

There are a variety of existing phenotype simulators, each with its unique virtues
and implementation. Three prominent examples are [3–5]. Some simulators suffer
from computational limitations and bottlenecks imposed by their high-level program-
ming language. Some simulators also require users to format, save, and then pass the
simulated trait results to a separate analysis program or programs, usually written in
low-level languages. Users who rely solely on these “assembly line” pipelines shoulder
the growing responsibility of staying up-to-date with each program in the pipeline as
it adapts to new advances in computer language, hardware, or analysis specification.

Fortunately, more recent computer languages are better suited to accommodate
modern software engineering practices that protect users from common program-
ming mistakes. Languages devised before the advent of ubiquitous parallelization and
big data sets are struggling to stay relevant. On the other hand, most modern lan-
guages handle these opportunities with aplomb. Julia is a new, dynamic language that
is purpose-built for high-performance computing (HPC) and widely adopted by lead-
ing computational statisticians [6, 7].

In this article we introduce TraitSimulation, an open-source Julia-based pack-
age integrated into the OpenMendel software suite [8]. OpenMendel provides a
modern, comprehensive, and user-friendly pipeline for genetic analysis. TraitSim-
ulation’s strengths are the wide range of non-normal simulation models, the flex-
ibility to modify existing or add new simulation models, and the use of standard input
and output data formats, such as PLINK. Using standard input formats, the genetic
and covariate data used for trait simulation can be real or themselves simulated.
Using standard output formats makes the phenotype generated by TraitSimula-
tion compatible with a range of downstream analytical tools.

Although phenotype simulation can play a vital role in many downstream applica-
tions, including power analyses, phenotype generation itself is rarely the most time-
consuming step. Usually, most time is taken by the post-simulation analyses, which
may or may not be performed within our OpenMendel suite. For this reason we do
not focus here on speed benchmarking of the phenotype simulation itself. Rather, we
are interested in providing researchers with a tool for more flexible and perhaps more

Page 3 of 13Ji et al. BMC Bioinformatics (2021) 22:228 	

realistic phenotype simulation, while leveraging the modern language features of Julia
for efficiency and ease of programming.

To demonstrate how TraitSimulation may be used as an element in the Open-
Mendel toolkit, we present case studies that include application of our simulation soft-
ware under settings that require the wide range of possible phenotype models unique to
TraitSimulation. The unified nature of the OpenMendel environment makes it easy
to craft code for simulating traits conditional on real or simulated genetic and covariate
data for both unrelated individuals and multi-generational pedigrees. In common with
other OpenMendel packages, TraitSimulation conveniently embraces modern
computing architectures and encourages reliable and efficient programming practices.

In the sections below, we first explain the advantages of using Julia to develop the
OpenMendel project and demonstrate some of its key language features. We then pre-
sent OpenMendel’s efficient SNP data management tool SnpArrays. Finally, we outline
the trait simulation procedure with example data and results in various case studies that
critically employ the simulated phenotypes in downstream analyses. The realistic trait
simulation models used in these case studies are not all available in any other simula-
tion software that we are aware of. Users are not limited to the analysis options provided
in OpenMendel or Julia. After simulating the desired trait, they can call other analysis
program, including popular R, C++ or Python packages, while staying within the Julia
or Jupyter notebook environments. Alternatively, they can output the simulated traits to
files for more customizable downstream analyses.

Implementation
The Julia programming language provides an excellent computing environment for
genetic association studies. Among Julia’s many features is its just-in-time compiler that
allows the language to combine the speed and efficiencies of low-level languages such
as C or C++ with the ease-of-use and understandable syntax of high-level languages
such as R or Python. Julia’s speed is also enhanced by its automatic use of the tremen-
dous parallelization built into modern CPUs. For example, Julia includes automatic
instruction-level parallelism, vectorization (to carry out many mathematical operations
simultaneously), and multi-threading (to have whole sections of code run in parallel);
Julia even includes tools for distributed computing across massive computing clusters
[9–11]. To make coding easier and more efficient, Julia also has automatic type checking
(to ensure variable consistency) and multiple dispatch (in which a single function can be
used with different types and amounts of data as input and still have optimal efficiency).
In addition, Julia ships with a native package manager, which improves portability, ease
of deployment, and reproducibility. Julia also allows users to easily maneuver between
shared and distributed memory environments, including graphics processing units
(GPUs). Julia’s efficiency and versatility solves the long-standing two-language problem,
in which developers could quickly prototype software in higher-level languages such as
R or Python but then must rewrite their prototype code in lower-level languages such as
C or C++ to handle larger, real-world data sets. As genetic data evolves and grows, and
more resource-intensive tools are required to perform analyses, these design features
make Julia a compelling language for computational genetics.

Page 4 of 13Ji et al. BMC Bioinformatics (2021) 22:228

SNP data

Our Julia-based package SnpArrays [12] is a versatile interface to SNP data for all of
our OpenMendel modules, and potentially for other packages. Users can specify SNPs
of interest by name, position, minor allele frequency (MAF), or other filtering criterion
provided by SnpArrays. A remarkable feature is that after reading in compressed SNP
data files, SnpArrays keeps all of the genotype data compressed during its computa-
tions, such as estimation of genetic relationship matrices (GRMs) and principal com-
ponents (PCs). This feature reduces RAM requirements by orders of magnitude while
maintaining extremely fast performance. This is all possible because Julia allows for
operations such as matrix-matrix multiplication to be defined on BitArrays, which are
arrays where each element is one or two bits. This permits real analysis of biobank-scale
data on commodity-level computers, which was accomplished with our software in [13].

Trait simulation

Our new TraitSimulation program provides the broad range of underlying mod-
els listed in Table 1, including ordered multinomial models, generalized linear models
(GLMs), and generalized linear mixed models (GLMM). TraitSimulation allows
users to easily modify the models in Table 1 to fit their needs or to create entirely new
simulation models. Table 2, whose variables are defined below, conveys the basic syn-
tax for model construction and running the simulation under that model. This flexibility
allows users to relax strict distributional assumptions imposed by many existing pack-
ages and simulate traits that do not conform to normality restrictions. Greater fidelity to
trait distributions is bound to improve analysis results. Users interested in studying the

Table 1  Simulation models included in TraitSimulation 

Simulation model Relatedness data Typical application

(1) Generalized linear models – Exponential-family traits

(2) Case/control models – Disease status traits

(3) Proportional hazards/odds models – Ordinal traits

(4) Variance component models GRM Correlated normal traits

(5) Generalized linear mixed models GRM Correlated non-normal traits

Table 2  Syntax for model construction and for the simulate function (see text for variable
definitions)

Simulation model in Table 1 Model construction syntax

(1) Model = GLMTrait(X ,β , dist, link)

Model = GLMTrait(X ,β ,G, γ , dist, link)

(2, 3) Model = OrderedMultinomialTrait(X ,β , θ , link)

(4) Model = VCMTrait(X ,β , vc)

Model = VCMTrait(formula, df, vc)

Model = VCMTrait(X ,β ,G, γ ,�, V)

(5) Model = GLMMTrait(X ,β , vc , dist, link)

 Simulation model in Table 1 simulate Function syntax

(1, 3, 4, 5) simulate(model)

(2) simulate(model, Logistic = true, cutoff = 2)

Page 5 of 13Ji et al. BMC Bioinformatics (2021) 22:228 	

robustness of their model can assess the effects of model misspecification by simulating
the trait data under the hypothesized model and then analyzing the data under different
models. An explicit example of the use of our software for this purpose can be seen in
[13] where they found a decrease in power when analyzing ordered multinomial pheno-
types under a linear or logistic regression model.

To run our TraitSimulation package the typical five steps are:

1	 Load the required packages: SnpArrays and TraitSimulation.
2	 Read in PLINK data files via SnpArrays and estimate the GRM, if applicable.
3	 Construct the simulation model, including relevant parameters such as the genetic

and non-genetic predictors, the variance components, etc.
4	 Call the simulation routine to sample from the constructed model.
5	 Output the simulated phenotypes to a file or pass them to other analyses.

The following Julia code snippet is an example of commands used to perform the above
steps for model (4) in Table 1, based on genotype data in an existing compressed file.
Prospective users may interact with a comprehensive online tutorial with step-by-step
instructions and sample code at [14].

Page 6 of 13Ji et al. BMC Bioinformatics (2021) 22:228

Here X is the matrix of predictors and B is the corresponding matrix of regression coef-
ficients. The @vc macro provides a convenient way to specify the variance components of
the model. �A is the additive genetic covariance matrix, �E is the environmental covariance
matrix, ⊗ denotes a Kronecker product and In is the n× n identity matrix.

Table 2 uses the same variables definitions as the above code. For each model in Table 2
the simulation procedure is also similar to the above code. Julia implements multiple dis-
patch that allows our simulate function to run the appropriate simulation routine even
when we specify dramatically different models.

More details on running TraitSimulation under various settings, and additional
step-by-step instructions for model specification, can be found in our interactive Jupyter
notebooks at [14]. TraitSimulation provides users with a variety of different ways to
specify the simulation model of choice. The following alternative commands to specify the
genetic model may be more convenient.

In this alternative specification, the regression coefficients in B are provided as a 2-ele-
ment vector of formulas, one for each trait. The matrix of predictors is specified as a
DataFrame with column names coordinated with those appearing in the formulas.

Another model specification mechanism provides greater flexibility for users who wish
to include many SNPs without having to convert the model genotypes from the com-
pressed SnpArray. Here, the genetic and non-genetic predictors (G, X) and the corre-
sponding regression coefficients (γ ,B) are provided separately.

Users with many variance components may choose not to use the

macro and instead provide a list of the variance components and variance/covariance
matrices:

Page 7 of 13Ji et al. BMC Bioinformatics (2021) 22:228 	

Results
In the two case studies we present below, all the generative models for trait simulation
that we employ, univariate and bivariate variance components models and an ordinal
multinomial model, could not currently have been built into any other trait simulation
package we know. As we describe in the case studies, these are clearly the correct models
for simulation given the respective data sets. Thus, TraitSimulation’s flexible model
specification permits analyses that would not otherwise be available. Step-by-step, inter-
active Jupyter notebooks that walk the user through these case studies are available at
[14]. Here, we begin by describing the statistics behind these power analysis studies and
how TraitSimulation fits into the software pipeline in concert with other Open-
Mendel modules (see Fig. 1).

Statistical power

For a trait Y with predictor matrix X and genotype vector Gs , we now illustrate how to
estimate the power to detect an associated SNP with effect size γ at the pre-specified sig-
nificance level α . Specifically, we set α = 5× 10−8 and test the hypothesis

in our two subsequent case studies. The user also needs to specify the number of simu-
lation replicates. In the examples presented in this article, we commence by simulating
1000 replicates of an n-vector of phenotypes Y with the specified SNP effect size γ . For
each simulated trait vector, we perform a likelihood ratio test of the above hypothesis
test and reject the null when the p-value falls below α . The power for the model is esti-
mated as the proportion of the 1000 tests rejecting the null.

Case study 1: power analysis for an ordinal disease

When modeling complex diseases where a binary phenotype for disease status is sub-
optimal, an ordered multinomial model is a powerful alternative. Our group recently
demonstrated the application of an ordinal multinomial model to assess markers for
association to diabetes and hypertension in the UK Biobank data [13]. Ordinal pheno-
types were simulated and then fit using one of three analyses models, linear regression,
logistic regression and ordered multinomial regression, to assess effects of model mis-
specification and show increased power under the ordered multinomial model. For the
current case study, we determine the power to detect a SNP that influences an ordered
categorical phenotype representing the stages of disease progression in the UK Biobank
data with n = 185,565 subjects after data cleaning. Specifically, consider a trait y that
takes ordered discrete values at one of J = 4 levels:

H0 : γ = 0 versus HA : γ �= 0

Page 8 of 13Ji et al. BMC Bioinformatics (2021) 22:228

Under the GLM framework, the cumulative probabilities αij = Pr(yi ≤ j) are linked to
the linear predictors via the logit link g(αij) = η = log

(
αij

1−αij

)
 . The link itself is deter-

mined by the formula

where the intercept parameters θ1 ≤ · · · ≤ θJ−1 enforce the order between the categories
and β reflects the effects of the linear predictors under the proportional hazards model.
The effect sizes can be interpreted as the expected change of the response variable on an
ordered log-odds scale for each unit increase in the predictor. Figure 2 shows the result-
ing power curves for three SNPs with varying MAF.

Case study 2: power analysis for multivariate continuous traits

In this case study we carry out heritability estimation on simulated data with two var-
iance components, one for the additive genetic variance and one for the environmen-
tal variance. TraitSimulation allows users to simulate multiple traits and more
than two variance components by changing a few pertinent commands. For multi-
variate traits, two theoretical covariance matrices must be substituted for the additive
genetic and environmental variances. Here we demonstrate how power calculations
for the mixed model scale on a subset of n = 20,000 individuals from the same UK
Biobank data used in Case Study 1. For both the univariate model ( d = 1 ) and mul-
tivariate ( d > 1 ) mixed effect model (listed as model type (4) in Table 1), we invoke
SnpArrays to estimate the kinship matrix �̂GRM via the standard GRM formula

(1) undiagnosed < (2)mild < (3)moderate < (4) severe .

g(αij) = θj − (XT
i β + γGs), j = 1, . . . , J − 1,

�̂GRMij =
1

2S

S∑

k=1

(Gik − 2pk)(Gjk − 2pk)

2pk(1− pk)
.

Estimate
Kinship

Simulate
Genotypes

Simulate Phenotypes
under Genetic Model

Example Software Pipeline in OpenMendel

MendelGeneDropping.jl

TraitSimulation.jl

VarianceComponentModels.jl

OrdinalMultinomialModels.jl

Fit Genetic Models

MendelKinship.jlMendelKinshp.jl

 Construct Genetic Model

SnpArrays.jl
 INPUT
Genetic
Data

SnpArrays.jl

Power Analysis

Fig. 1  Open mendel pipeline example. TraitSimulation fits within a software pipeline to assess the
power of association analysis under the variance components model of Case Study 2

Page 9 of 13Ji et al. BMC Bioinformatics (2021) 22:228 	

Here i and j are two generic individuals, S is the number of typed SNPs in the data, pk is
the MAF of the kth SNP, and Gik ∈ {0, 1, 2} is the number of copies of the minor allele
at the kth SNP of individual i. Missing genotypes are simplistically imputed on the fly as
the most likely genotype given a SNP’s MAF. Finally, we make the common assumption
that the residual covariance between two relatives is well approximated via the additive
genetic variance times twice their kinship coefficient. The latter is taken as the corre-
sponding entry of the GRM matrix.

Our univariate and bivariate power calculation results under the variance compo-
nents model (VCM) framework appear in Fig. 3. (We used the Julia Plots package
to obtain all our graphs.) In the univariate model, β and γ represent the non-genetic
and genetic regression coefficients, respectively. We assigned 20 different values to
the effect size γ of the associated SNP or SNPs during phenotype simulation. At each
γ value, for each of 1000 replications, we tested for association using a likelihood
ratio test (LRT) with significance level α = 5× 10−8 . Symbolically, the univariate and
bivariate models are

Yn×1 = Xβ +Gsγ + g + ǫ;
g ∼ N (0, σA ×�)

ǫ ∼ N (0, σE × In)

vec(Yn×d) = vec(XB+GsŴ)+ g + ǫ;
g ∼ N (0,�A ⊗�)

ǫ ∼ N (0,�E ⊗ In)

Fig. 2  Case study 1: power under an ordinal multinomial model. This example shows the power to detect
a single causal SNP in UK Biobank data with four outcome categories for disease status. Using an ordinal
multinomial simulation model and the OpenMendel module for ordinal trait regression [13], we assume a
single SNP as a fixed effect and control for sex and standardized age. The figure compares analysis results for
three SNPs of varying MAF over 1000 simulation replicates each. For each SNP, the graph depicts the power
to detect that SNP at significance level α = 5× 10−8 . For each SNP, the effect size varies from 0 to 0.05 in
increments of 0.001. On the x-axis, we exponentiate effect sizes to covert to odds ratios. See the text for a
detailed description of the model

Page 10 of 13Ji et al. BMC Bioinformatics (2021) 22:228

Here σA and �A are the additive genetic variance and matrix, σE and �E are the envi-
ronmental variance and matrix, � is the kinship matrix, and In is the n× n identity
matrix. The multivariate trait model is presented in its vectorized form using the mul-
tivariate normal density, where B and Ŵ are the matrix of regression coefficients for the
non-genetic and genetic predictors, respectively. Kronecker products ⊗ are required as
explained in [15].

Benchmarks

Tables 3 and 4 record the median total runtimes in seconds over all 1000 replications
across k specified SNP predictors for a sample size of n people, for Case Studies 1 and
2, respectively, as reported by the Julia BenchmarkTools package. All computer runs
were performed on a standard 3.5 GHz Intel i9 CPU with 12 cores; they were run under
Linux but we find the operating system has no appreciable effect on runtimes. As men-
tioned above, these power calculation runtimes are dominated by the post-simulation
analyses. Thus, for variance component analyses, the runtimes scale linearly in k, but not
in n, as is usual for a variance components statistical analysis. Of course, overall runt-
imes are linear in the number of replications chosen to perform. However, since each
replication is an independent process and our programs can easily be distributed across
multiple machines, using even extremely large numbers of replications, for example, for
precise type 1 error estimation, is certainly feasible on a computational cluster or in the
cloud.

0.0000 0.0002 0.0004 0.0006 0.0008
0.00

0.25

0.50

0.75

1.00

Variance Component Model Power

Proportion of Variation Explained by SNP rs11240779 for Each Trait

Univariate VCM Trait
Bivariate VCM Trait
power = 80%, p- value threshold = 5*10^- 8

Fig. 3  Case study 2: power under univariate and bivariate variance components models. This example shows
the power to detect a single causal SNP using both univariate and bivariate variance components simulation
models and the OpenMendel module for variance components analysis [8]. For each anlysis, each line in
the graph depicts the power to detect a SNP with MAF = 0.23 using 1000 simulations at significance level
α = 5× 10−8 . The SNP effect size varies from 0 to 0.065 in increments of 0.002 in the center range (0.016–
0.032) and increments of 0.005 in the two end ranges. On the x-axis, we convert the SNP MAF and effect sizes
into the proportion of variation explained by the SNP. See the text for a detailed description of the model

Page 11 of 13Ji et al. BMC Bioinformatics (2021) 22:228 	

Conclusions
Genetic epidemiology and computational statistics are inexorably linked. The increasing
size and complexity of genetic data drive improvements in algorithm design, and statisti-
cal advances push new genetic analyses. To continue this progress, we have introduced
TraitSimulation, a software package that employs the Julia language to achieve
impressive computational efficiencies and easy coding for a broad range of trait simula-
tion models, including many unavailable in other simulation packages.

Simulation is a vital step in estimating the power of a proposed study to map genetic
influences. To obtain the best power estimates, one must exploit all available study
subjects (unrelated, sibships, parent-offspring pairs, and extended pedigrees), impute
realistic genotypes (based on ethnically correct MAF, linkage disequilibrium (LD), and
possibly recombination events), incorporate pertinent non-genetic predictors, and criti-
cally, simulate realistic trait values.

For example, if one is planning a family-based study and wanted to do a power analysis
before collecting any data, then one would start with a collection of pedigree structures,
including possibly singletons, that mimicked to the best of one’s knowledge the poten-
tial sample collection. At the founders of each pedigree one would want to simulate the
genetic data using ethnic-specific allelic frequencies based on the admixture of the target
population. The correct LD structure should also be maintained within these founder
genomes. One way to accomplish this is to find a real genotyping or sequencing study,
for example, the International Genome Sample Resource (IGSR) [16], that includes sub-
jects in the specified ethnicities, and use the real genomes of unrelated individuals as the
data for the founders of the pedigrees. Then use gene-dropping software, for example,
from the OpenMendel suite, and the real human recombination map to mimic recom-
bination events that would occur as genomes are passed from parent to child through
the pedigrees. The result will be simulated but realistic genetic data for all individuals in
all pedigrees, because the data reflects the appropriate allelic frequencies, LD patterns,

Table 3  For the ordered multinomial model, power calculation runtimes in seconds

A total of 1000 replications were performed for each combination (k, n) of the number of causal SNPs and the sample size.
This was repeated for several SNP effect sizes (see Fig. 2) and the median runtimes are recorded here

n = 185,565

k = 1 707.8

k = 20 14350.2

Table 4  For the univariate and bivariate variance components model, power calculation runtimes in
seconds

A total of 1000 replications were performed for each combination (k, n) of the number of causal SNPs and the sample size.
This was repeated for several SNP effect sizes (see Fig. 3) and the median runtimes are recorded here

n = 5,000 n = 10,000 n = 20,000

Univariate

 k = 1 72.4 202.7 815.4

 k = 20 1422.6 4122.1 16018.4

Bivariate

 k = 1 215.5 354.7 978.7

 k = 20 4207.8 7007.2 19644.8

Page 12 of 13Ji et al. BMC Bioinformatics (2021) 22:228

recombination map, and relationship structure. Our TraitSimulation package can
then use this data and whichever trait model you wish to study to repeatedly generate
trait values. Finally, each set of simulated data would be subject to the statistical analyses
that constitutes the power analysis.

The model generality, ease of use, and speed of TraitSimulation, and indeed
OpenMendel as a whole, promote the agenda of modern epidemiology. TraitSimu-
lation’s wide range of generating models improves model realism and therefore power
estimation. This generality allows statistical analysis to escape the straitjacket of the
Gaussian assumption by allowing case/control and ordinal disease models, and more
profoundly, any GLM or GLMM structure. Our choice of the Julia computer language
makes it straightforward to code software and for users to adapt existing code to fit their
modeling needs. Julia enhances the speed, flexibility, and overall ease-of-use of Trait-
Simulation. Julia’s speed stems from its just-in-time compiler, thorough use of paral-
lelization, and its promotion of bit-wise linear algebra operations.
TraitSimulation is part of the OpenMendel family of Julia packages [8]. Open-

Mendel provides an integrated suite of genetic analysis tools that rely on the standard
data structure provided by SnpArrays. TraitSimulation can access other down-
stream analysis packages in estimating parameters and the power of new statistical
tests. However, such pipeline strategies introduce extra layers of complexity and ulti-
mately hamper analysis reproducibility. All of OpenMendel’s packages are fast, mem-
ory efficient, and user- and developer-friendly. The open-source nature of OpenMendel
encourages other statisticians to extend its code base. In adding TraitSimulation
to the OpenMendel family, we enable trait simulation within an integrated robust analy-
sis pipeline. In our view, OpenMendel represents a unique and unified state-of-the-art
environment for statistical genetics. We ask for your feedback and the help of the entire
genetics community in perfecting OpenMendel. It or something very similar will be nec-
essary as we face ever more massive and complex modern data sets.

Availability and requirements
Project name TraitSimulation

Project home page https://​github.​com/​OpenM​endel/​Trait​Simul​ation.​jl
Operating systems Linux, MacOS, Windows
Programming language Julia 1.0 or higher
Other requirements None
License MIT
Any restrictions to use by non-academics None

Abbreviations
CPU: Central processing unit; GLM: Generalized linear model; GLMM: Generalized linear mixed model; GPU: Graphics
processing unit; GRM: Genetic relationship matrix; GWAS: Genome-wide association study; HPC: High performance com-
puting; IGSR: International genome sample resource; LD: Linkage disequilibrium; LMM: Linear mixed model; LMM: Linear
mixed model; LRT: Likelihood ratio test; MAF: Minor allele frequency; PC: Principal component; RAM: Random access
memory; SNP: Single nucleotide polymorphism; UK: United Kingdom; VCM: Variance component model.

Acknowledgements
We thank the presenters from the 2020 Lange Symposium workshop held at UCLA on 2/22/2020. We also thank Benja-
min B. Chu, Seyoon Ko, and Alfonso Landeros for their advice on the many features of Julia, particularly those pertaining
to parallelization and GPU computing.

https://github.com/OpenMendel/TraitSimulation.jl

Page 13 of 13Ji et al. BMC Bioinformatics (2021) 22:228 	

Authors’ contributions
KL conceived the study. CAG prepared the data. SSJ wrote TraitSimulation, analyzed the data, and interpreted
the results. SSJ, JSS, and EMS wrote the manuscript. KL, JSS, EMS, JZ, and HZ contributed tools and materials. All authors
contributed to the final manuscript. All authors read and approved the final manuscript.

Funding
Research supported in part by NIH grants R01 GM053275 (KL,JSS,EMS,HZ), R01 HG006139 (KL,JSS,EMS,JZ,HZ), K01
DK106116 (JZ), R01 HG009120 (JSS) & T32 HG002536 (SSJ) and NSF grant DMS 1264153 (JSS). The funding agencies
played no role in the selection and design of the study, in the plan and coding of the software, in the choice and analy-
ses of the data, nor in the preparation and submission of the manuscript.

Availability of data and materials
The data used in the analysis examples in this manuscript are from the UK Biobank data repository and are publicly avail-
able, after approval by their review board, from [2]. We retrieved the data under Project IDs 48152 and 15678. Guidelines
on obtaining the data used in our analyses, and step by step commands to recapitulate the analyses are available at [14].

Declarations

 Ethics approval and consent to participate
Since all data used in this study were either simulated or anonymous, this is Not Applicable.

Consent for publication
Since all data used in this study were either simulated or anonymous, this is Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Biostatistics, University of California, Los Angeles 90095, USA. 2 Department of Computational Medicine,
University of California, Los Angeles 90095, USA. 3 Department of Human Genetics, University of California, Los Ange-
les 90095, USA. 4 Departments of Epidemiology and Biostatistics, University of Arizona, Tucson 85721, USA.

Received: 15 July 2020 Accepted: 17 March 2021

References
	1.	 Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P,

Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R. UK Biobank: an open access resource for identify-
ing the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:1001779. https://​doi.​
org/​10.​1371/​journ​al.​pmed.​10017​79.

	2.	 UK Biobank: UK biobank data repository. https://​www.​ukbio​bank.​ac.​uk.
	3.	 Zhang Z, Li X, Ding X, Li J, Zhang Q. GPOPSIM: a simulation tool for whole-genome genetic data. BMC Genet.

2015;16:10. https://​doi.​org/​10.​1186/​s12863-​015-​0173-4.
	4.	 O’Reilly PF, Hoggart CJ, Pomyen Y, Calboli FCF, Elliott P, Jarvelin M-R, Coin LJM. MultiPhen: joint model of multiple

phenotypes can increase discovery in GWAS. PLoS ONE. 2012;7:34861. https://​doi.​org/​10.​1371/​journ​al.​pone.​00348​
61.

	5.	 Meyer HV, Birney E. PhenotypeSimulator: a comprehensive framework for simulating multi-trait, multi-locus geno-
type to phenotype relationships. Bioinformatics. 2018;34:2951–6. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty197.

	6.	 Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to numerical computing. SIAM Rev. 2017;59:65–
98. https://​doi.​org/​10.​1137/​14100​0671.

	7.	 Ko S, Zhou H, Zhou J, Won J-H. High-performance statistical computing in the computing environments of the
2020s (preprint). 2020. arxiv:​2001.​01916.

	8.	 Zhou H, Sinsheimer J, Bates D, Chu B, German C, Ji S, Keys K, Kim J, Ko S, Mosher G, Papp J, Sobel E, Zhai J, Zhou J,
Lange K. OPENMENDEL: a cooperative programming project for statistical genetics. Hum Genet. 2020;139:61–71.
https://​doi.​org/​10.​1007/​s00439-​019-​02001-z.

	9.	 JuliaComputing: Parallel computing. https://​julia​compu​ting.​com/​indus​tries/​paral​lel-​compu​ting.​html.
	10.	 JuliaComputing: multi-threading. https://​docs.​julia​lang.​org/​en/​v1/​base/​multi-​threa​ding.
	11.	 JuliaComputing: distributed computing. https://​docs.​julia​lang.​org/​en/​v1/​stdlib/​Distr​ibuted.
	12.	 Zhou H. SnpArrays.jl. https://​openm​endel.​github.​io/​SnpAr​rays.​jl/​stable/.
	13.	 German CA, Sinsheimer JS, Klimentidis YC, Zhou H, Zhou JJ. Ordered multinomial regression for genetic association

analysis of ordinal phenotypes at Biobank scale. Genet Epidemiol. 2020;44:248–60. https://​doi.​org/​10.​1002/​gepi.​
22276.

	14.	 SarahJi: TraiSimulation.jl. https://​openm​endel.​github.​io/​Trait​Simul​ation.​jl/​stable/.
	15.	 Lange K. Mathematical and statistical methods for genetic analysis. 2nd ed. New York: Springer; 2002.
	16.	 IGSR: international genome sample resource. https://​www.​inter​natio​nalge​nome.​org.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://www.ukbiobank.ac.uk
https://doi.org/10.1186/s12863-015-0173-4
https://doi.org/10.1371/journal.pone.0034861
https://doi.org/10.1371/journal.pone.0034861
https://doi.org/10.1093/bioinformatics/bty197
https://doi.org/10.1137/141000671
http://arxiv.org/abs/2001.01916
https://doi.org/10.1007/s00439-019-02001-z
https://juliacomputing.com/industries/parallel-computing.html
https://docs.julialang.org/en/v1/base/multi-threading
https://docs.julialang.org/en/v1/stdlib/Distributed
https://openmendel.github.io/SnpArrays.jl/stable/
https://doi.org/10.1002/gepi.22276
https://doi.org/10.1002/gepi.22276
https://openmendel.github.io/TraitSimulation.jl/stable/
https://www.internationalgenome.org

	Modern simulation utilities for genetic analysis
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Implementation
	SNP data
	Trait simulation

	Results
	Statistical power
	Case study 1: power analysis for an ordinal disease
	Case study 2: power analysis for multivariate continuous traits

	Benchmarks

	Conclusions
	Availability and requirements
	Acknowledgements
	References

