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a b s t r a c t

Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This sug-
gests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this
strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing
differential (difference between death rates of cancer stem cells and normal stem cells) that must exist
for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov
chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells
and normal stem cells. Application of extreme value theory from mathematical statistics yields an accu-
rate asymptotic distribution and corresponding moments for both extinction times. We compare these
distributions for the two cell populations as a function of the killing rates. Perhaps a more telling com-
parison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Con-
ditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the
asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier
transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact
of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem
cells and imperils the proposed therapy. We approach the complication of quiescence via multitype
branching process models and stochastic simulation. Improvements to the s-leaping method of stochas-
tic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target
quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models dem-
onstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathemat-
ical, and computational perspectives.

! 2011 Elsevier Inc. All rights reserved.

1. Introduction

Cancer cells with stem cell-like properties represent a novel tar-
get of therapy that may revolutionize the treatment of cancer.
Mathematical models sharpen our understanding of how cancer
stem cell populations evolve and suggest optimal strategies to at-
tack them. Because they undergo repeated divisions, stem cells
accumulate mutations over time. Cells derived from stem cells
start down differentiation pathways that involve a limited number
of cell divisions. Once they reach the end of their pathways, differ-
entiated cells no longer accumulate the mutations caused by faulty
DNA replication during cell division. Thus, many oncologists con-
tend that only cells with stem cell-like properties can drive cancer

[2,4,5,13,17,21,41,46,49,51,52,54,55,57,59,64–66,68,71]. Because
normal stem cells are vital for the maintenance and repair of tis-
sues [58], safe eradication of cancer stem cells requires selectively
targeting cancer stem cells while sparing normal stem cells. In the
current paper we explore in depth this hypothetical strategy and
discuss its implications for the design of the next generation of
cancer therapeutics. In a related paper we apply and extend some
of these results to address current challenges facing medical oncol-
ogists in targeting leukemic stem cells [61].

There are controversies about what is meant by a cancer stem
cell. Some of the properties we describe may hold for some malig-
nant progenitor cells. Some authors use the term stem-like cell and
tumor initiating cell when referring to cells with the above proper-
ties. We use the term stem cell in this article in that sense.

Our point of departure is the stochastic theory of linear birth–
death processes. This is well trod ground mathematically
[18,28,31,39,40,42,45], but the current problems raise novel issues
not encountered in the standard treatments. For instance, how can
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one approximate the distribution of the extinction time for either
population of stem cells? This brings in extreme-value theory from
statistics, eigenfunction expansions, and the finite Fourier transform.
We particularly fixate on three related questions: (a) What is the kill-
ing differential (difference between death rates of cancer stem cells
and normal stem cells) that makes our hypothetical therapy viable?
(b) What is the distribution of the number of normal stem cells at the
random time of extinction of the cancer stem cells? (c) What impli-
cations does the phenomenon of quiescence have for the proposed
therapy? To answer questions (a) and (b), we condition one birth–
death process on the random extinction time of the other birth–
death process. To answer question (c), we turn to multi-type branch-
ing processes, with stem cells of either kind divided into active and
quiescent types. Because some of our answers are approximate, it
helps to look at the same problem from multiple perspectives. This
leads us to introduce the subject of stochastic simulation by s-leap-
ing [60]. Except for numerically unstable eigenfunction expansions,
the different techniques discussed here reinforce one another and in-
crease our confidence in the basic model.

Before presenting an overview of the rest of the paper, let us
comment on the relevance of stochastic models in general and
birth–death processes in particular. In a nutshell, stochastic mod-
els are ideal for studying stem cell dynamics because key events
of interest, such as extinction of a population of stem cells, are
probabilistic in nature. Stem cells occupy well defined niches in
the body, and it is not too hard to imagine the stem cell clans
behaving independently, at least in the short run. Thus, linear
birth–death processes appear to offer a good vehicle for modeling
[18,28,31,39,40,42,45].

In the next section, we provide a brief overview of stem cell
biology. In Section 3 we start with the distribution of the extinction
time for a subcritical birth–death process starting with a single
cell. This classical result is inadequate for our purposes because
we typically start with many cells and must track all clans issuing
from them. Using extreme-value theory, we find an accurate
asymptotic distribution for the time at which all clans go extinct.
This result allows us to compare probability densities for the
extinction times of two coexisting populations of stem cells: nor-
mal stem cells and cancer stem cells, dying at different rates under
therapy. Convergence in distribution does not imply convergence
of moments, so in Section 3.2 we verify convergence of the mean
and variance of the extinction times to the mean and variance of
the asymptotic distribution.

In Section 3.3, we study the number of normal stem cells NH

remaining at the random time all cancer stem cells go extinct.
We derive the mean and variance for NH by conditioning on the
extinction time of cancer stem cells. These quantities are heavily
dependent on the selectivity of a therapy. We also compute the full

distribution of NH using eigenvalue expansions and the finite Fou-
rier transform. In Section 3.5 we discuss the quiescent (resting)
state of the stem cell, and its impact on cancer stem cell dynamics
under therapies that selectively eliminate actively dividing cells.
Quiescence requires new models and a different set of numerical
tools. We particularly focus on simulation and s-leaping in Sec-
tion 4. Our discussion summarizes all findings and comments on
the role of mathematical modeling in cancer therapy.

2. Biological background

Let us begin by describing some biological features of stem cells
that shape our birth–death process models. Two of the principal
distinguishing features of stem cells are self-renewal and potency
[48]. Self-renewal refers to the ability of a cell to indefinitely repro-
duce copies of itself at the same level of differentiation. In asym-
metric cell division, a stem cell produces an identical daughter
cell and a second more differentiated daughter cell. A stem cell
can also divide symmetrically, generating two copies of itself in
self-renewing symmetric division, or generating two partially dif-
ferentiated daughter cells in differentiative symmetric division.
Fig. 1 depicts the three modes of cell division.

Potency is the capacity of a stem cell to replenish all of the
highly specialized cells of a tissue. For instance, hematopoietic
stem cells can give rise to a closely related family of cells that cir-
culate in the blood. Fig. 2 illustrates the ability of the hematopoi-
etic stem cell to generate multipotent progenitors, which then
begin the process of differentiation, either into the myeloid lineage
or the lymphoid lineage. The cells of the myeloid lineage carry oxy-
gen to tissues (erythrocytes), help with clot formation (platelets),
and fight acute infection (granulocytes), while the cells of the lym-
phoid lineage populate the immune system (B and T lymphocytes).
It is noteworthy that progenitor cells do have the ability to self-re-
new, but only for a limited time. Only stem cells have the capacity
for indefinite self-renewal. (see Fig. 3)

Additional important features of stem cells include slow self-re-
newal and quiescence; these allow stem cells to maintain a long
life span [48]. Different kinds of stem cells spend varying percent-
ages of time in an actively dividing state and a quiescent (resting)
state. For example, embryonic stem cells spend about 90% of the
time in an actively dividing state, whereas hematopoietic stem
cells are quiescent approximately 75% of the time [11]. Stem cells
can enter the state of quiescence and later re-awaken.

3. Stem cell extinction times under therapy

In our simplified model of therapy, there are two populations of
stem cells, normal stem cells and cancer stem cells. These coexisting

Nomenclature

CSC cancer stem cell
HSC hematopoietic stem cell
NH number of healthy stem cells at random time of extinc-

tion of cancer stem cells
Mn time at which n clans of stem cells go extinct

Greek symbols
b birth rate per stem cell
d death rate per stem cell
/ rate of quiescence per actively dividing stem cell
a rate of awakening per quiescent stem cell
m death rate per quiescent stem cell
bC birth rate per cancer stem cell

dC death rate per cancer stem cell
bH birth rate per healthy stem cell
dH death rate per healthy stem cell
/C rate of quiescence per actively dividing cancer stem cell
aC rate of awakening per quiescent stem cancer cell
mC death rate per quiescent stem cancer stem cell
/H rate of quiescence per actively dividing healthy stem

cell
aH rate of awakening per quiescent healthy stem cell
mH death rate per quiescent healthy stem cell
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Fig. 1. Self-renewal capacity of stem cells.

Fig. 2. Multipotency of hematopoietic stem cells. Adapted from [7].

Fig. 3. Selective destruction of cancer stem cells under targeted therapy.
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populations do not interact. The cancer stem cells originate by a se-
quence of mutations from the normal stem cells. We take the exis-
tence of cancer stem cells as given and ignore repeated transitions
to the cancer state. We model each population as a linear birth–
death process Xt in continuous time t with constant birth rate b
and constant death rate d per particle. The process Xt counts the
number of particles at time t.

Birth–death processes have been the subject of extensive study
for many decades [18,28,31,39,40,42,45]. Some classic results that
are useful to us are the mean and variance of the number of parti-
cles at time t starting with n particles at time 0 by time t

EðXtÞ ¼ neðb$dÞt; ð1Þ

VarðXtÞ ¼ VarðX0Þe2ðb$dÞt þ EðX0Þ
ðbþ dÞ
ðb$ dÞ

½e2ðb$dÞt $ eðb$dÞt '; ð2Þ

and the probability of extinction of a population starting with a sin-
gle particle at time 0:

FðtÞ ¼ d$ deðb$dÞt

d$ beðb$dÞt : ð3Þ

The major theme of this paper is the comparison of the times until
extinction of the two stem cell populations. We now apply and re-
fine the elementary results described above.

3.1. Extinction times with multiple clans

Suppose we start with n stem cells at time 0. If Ti denotes the
time of extinction of the clan emanating from stem cell i, then
we are interested in the time Mn = maxiTi at which all n clans go ex-
tinct. Assuming that each clan behaves independently as a linear
birth–death process with parameters b and d, the distribution of
Mn is

PrðMn 6 tÞ ¼ FðtÞn;

where F(t) is given by Eq. (3). Fortunately, we can apply the asymp-
totic theory of extreme order statistics [20,36] to understand the
distribution of Mn. The standard case of the theory says that there
are two sequences of constants an and bn such that

lim
n!1

Pr
Mn $ an

bn
6 t

! "
¼ lim

n!1
PrðMn 6 an þ bntÞ ¼ e$e$t ð4Þ

for all t. The extreme value (Gumbel) distribution exp($e$t) has
mean c and variance p2/6, where c ( 0.57722 is the Euler–Masche-
roni constant. The moment generating function of the extreme
value distribution can be written for argument h as
Z 1

$1
ehxe$xe$e$x

dx ¼ Cð1$ hÞ ð5Þ

in terms of Euler’s gamma function. It is plausible that

EðMnÞ ( an þ cbn; VarðMnÞ (
b2

np2

6
;

and we will prove this later.
The key to finding the sequences an and bn is to identify a func-

tion R(t) such that

lim
t!1

1$ F½t þ xRðtÞ'
1$ FðtÞ

¼ e$x ð6Þ

for all x. (See Theorem 14 of [20].) Once we have R(t) in hand, we
determine an and bn via the equations 1$ FðanÞ ¼ 1

n and bn = R(an).
In the current situation, R(t) is the constant (d $ b)$1. The equation

1
n
¼ 1$ FðanÞ ¼ 1$ d$ deðb$dÞan

d$ beðb$dÞan
¼ d$ b

deðd$bÞan $ b

entails

nðd$ bÞ þ b
d

¼ eðd$bÞan ;

which in turn implies

an ¼
1

d$ b
ln nþ ln

d$ bþ b
n

d

 !" #
: ð7Þ

It follows that EðMnÞ grows at the slow rate lnn and VarðMnÞ tends
to the constant p2/[6(d $ b)2].

These conclusions are all predicated on satisfaction of condition
(6). In view of Eq. (3), we have

lim
t!1

1$ F½t þ xRðtÞ'
1$ FðtÞ

¼ lim
t!1

1$ deðd$bÞtþx$d
deðd$bÞtþx$b

1$ deðd$bÞt$d
deðd$bÞt$b

¼ lim
t!1

deðd$bÞt $ b
deðd$bÞtþx $ b

¼ e$x:

This proves condition (6) and validates all of the conclusions drawn
from it.

We can also solve for the time t that renders the extinction
probability F(t)n equal to a given number p > 0. Since

lim
n!1

1$ p1
n

1
n

¼ $ d
dx
ðpxÞjx¼0 ¼ $ ln p;

we have

ln nð1$ p
1
nÞ

h i
( lnð$ ln pÞ:

In view of the identity (3), the solution of the equation p = F(t)n

therefore satisfies

t ¼ $ 1
d$ b

ln
d$ dp1=n

d$ bp1=n

! "

¼ 1
d$ b

ln d$ bp
1
n

# $
$ ln dþ ln n$ ln nð1$ p

1
nÞ

h in o

( an $
1

d$ b
lnð$ ln pÞ: ð8Þ

This is precisely the approximation the extreme value theory
entails.

As an illustration of our results, consider an advanced form of leu-
kemia. We now have separate birth rates, death rates, and initial
numbers of stem cells, which we subscript by the index H for healthy
and C for cancerous, corresponding to the normal hematopoietic stem
cell (HSC) and cancer stem cell (CSC) populations. Total initial hema-
topoietic stem cell population size (22,000) is based on numbers
extrapolated from murine and feline data [1]. Because recent
evidence suggests that HSCs divide approximately once every 42
weeks [1], we accordingly chose our birth ratesbH = bC = 0.02 week$1.

The size of the CSC compartment can be highly variable across
individuals and within an individual over time. For more aggres-
sive malignancies, such as melanoma, higher proportions of cell
functionally defined as CSCs are observed [56]. We begin with a
large ratio of cancer stem cells to healthy stem cells to model an
advanced phase of disease.

Birth rates of CSCs, bC, may vary for different tumors and may, in
fact, vary over the course of disease [6,38]. In our models, we use
the birth rate of normal hematopoietic stem cells [1] as a starting
point. We make the assumption that birth rates are identical for
healthy stem cells and leukemic stem cells. Although this assump-
tion may not be realistic, we emphasize that our results are more
dependent on the difference between birth and death rates than
on the rates themselves.

Our death rates (dH and dC) reflect the range of rates and selec-
tivities that might occur under a wide group of therapeutic agents.
As new therapies targeting stem cells emerge, new death rates will
be observed. Unfortunately, we do not have an estimate of killing
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rates of either healthy stem cells or cancer stem cells under ther-
apy. These have not been observed. However, we do have an esti-
mate of the normal death rate of healthy stem cells without
therapy !0.002 per cell per day [14,50]. This death rate was esti-
mated for hematopoietic stem cells based on response to imatinib,
which probably does not target leukemic stem cells. We hypothe-
size that the death rate of both CSCs and HSCs will be higher under
therapy that is designed to target cancer stem cells, and our chosen
death rate parameters reflect this assumption. Examples of thera-
pies that have been shown to be effective in selectively targeting
cancer stem cells in chronic leukemia include parthenolide in
chronic myelogenous leukemia [37]. Antigen expression patterns,
and hence susceptibility to therapy, may vary from patient to pa-
tient [19,37].

Suppose for the sake of argument, we start with nH = 4,400 and
nC = 17,600 and take dH = 0.08 week"1 and dC = 0.59 week"1. Our
asymptotic results allow us to examine the probability densities
of the extinction times of both CSCs and HSCs. The top panel of
Fig. 4 shows that the asymptotic probability density of the extinc-
tion time of CSCs has a narrow spike around 18 weeks, whereas
that of HSCs has a narrow spike around 139 weeks. We observe
good agreement between results obtained using the Gumbel
approximation (dotted lines) and exact results (solid lines) ob-
tained by differentiating the distribution function. There is very lit-
tle overlap between the two extinction-time densities. This
suggests that for the given parameter values, most likely the CSCs
would be eradicated long before the HSCs become extinct. The
appearance of these probability density curves confirms a wide
therapeutic window of opportunity. However, when we take the
death rates dH = 0.31 week"1 and dC = 0.59 week"1, the densities
displayed in the bottom panel of Fig. 4) dangerously overlap.

The weak lnn dependence of the sequence an on n suggests the
possibility of safely eradicating CSCs even when they sharply out-
number HSCs. In this regard, it is helpful to define the selectivity r
of a therapy as the ratio

r ¼ dC " bC

dH " bH

of the differences between death and birth rates for CSCs versus
HSCs. For safe eradication one needs r to be substantially greater
than lnnC/lnnH.

Passing back and forth between the formulas (3) and (9) allows
us to plot the extinction probability for the HSCs at the time when
the extinction probability for the CSCs reaches a predetermined
level p. The survival probability of the HSC population increases
fairly quickly as the difference between dH and dC grows. For

example, take dH = 0.08 week"1 and bC = bH = 0.02 week"1. To be
80% certain that at least one ordinary stem cell remains when we
are 99.9% certain no CSC remains, dC must be 0.15 week"1 or larger,
corresponding to s P 2.2.

3.2. Convergence of extinction time moments

The convergence in distribution displayed in Eq. (4) does not
necessarily entail convergence of moments. We address this deli-
cate question first for means. Our point of departure is the right-
tail integral

EðMnÞ ¼
Z 1

0
PrðMn > tÞdt ¼

Z 1

0
1" d" deðb"dÞt

d" beðb"dÞt

! "n
( )

dt

for the mean of Mn. To gain insight into how this integral depends
on n, we make the change of variables

s ¼ d" deðb"dÞt

d" beðb"dÞt ; t ¼ " 1
ðd" bÞ

ln
d" ds
d" bs

: ð9Þ

The change of variables implies the change in differentials

dt ¼ 1
ðd" bÞð1" sÞ

" b
ðd" bÞðd" bsÞ

! "
ds ð10Þ

and the range of integration (0,1) for s. Since

1" sn

1" s
¼ ð1þ sþ ' ' ' þ sn"1Þ;

it follows that

EðMnÞ ¼
Z 1

0
ð1" snÞ 1

ðd" bÞð1" sÞ
" b
ðd" bÞðd" bsÞ

! "
ds

¼
1

d" b
1þ

1
2
þ ' ' ' þ

1
n

! "
"
Z 1

0

ð1" snÞb
ðd" bÞðd" bsÞds

¼ 1
d" b

½ln nþ c) þ 1
d" b

ln
d" b

d

# $
þ O

1
n

# $
; ð11Þ

where c enters the picture through the well-known expansion

Hn ¼ ln nþ cþ 1
2n
þ O

1
n2

# $

of the harmonic sum Hn ¼ 1þ 1
2þ ' ' ' þ

1
n [27], and

b
d" b

Z 1

0

sn

d" bs
ds ¼ O

1
n

# $

by virtue of the boundedness of 1/(d " bs) on [0,1]. Our formula for
EðMnÞ confirms the limit
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lim
n!1

E
Mn ! an

bn

! "
¼ c:

We now validate a similar limit for the variance of the extinc-
tion times. Expressing the second moment as an integral of the
right-tail probability and taking into account Eqs. (9) and (10)
produce

E M2
n

# $
¼ 2

Z 1

0
tPrðMn > tÞdt ¼ ! 2

ðd! bÞ2

Z 1

0
ln

1! s
1! b

d s

 !
ð1! snÞ

% 1
ð1! sÞ

! b
ðd! bsÞ

% &
ds: ð12Þ

We will attack the integral (12) in piecemeal fashion. For instance,

Z 1

0
ð1! snÞ lnð1! sÞ

1! s
ds ¼

Z 1

0
lnð1! sÞ

Xn!1

k¼0

skds

¼ !
Z 1

0

X1

j¼1

sj

j

Xn!1

k¼0

skds

¼ !
X1

j¼1

Xn!1

k¼0

1
jðjþ kþ 1Þ

¼ !
X1

j¼1

Xn!1

k¼0

1
j
! 1

jþ kþ 1

! "
1

kþ 1

¼ !
Xn!1

k¼0

1
kþ 1

1þ 1
2
þ ' ' ' þ 1

kþ 1

! "

¼ !
Xn

k¼1

Hk

k
:

Fortunately, the two further helpful identities

Xn

k¼1

Hk

k
¼ 1

2

Xn

k¼1

1
k2 þ H2

n

 !
;
X1

k¼1

1
k2 ¼

p2

6

are true [27]. It follows that

Z 1

0
ð1! snÞ lnð1! sÞ

1! s
ds ¼ !1

2
p2

6
þ ðln nþ cÞ2

% &
þ O

ln n
n

! "
:

Another piece of the integral (12) is amenable to the fundamen-
tal theorem of calculus; namely,

b
Z 1

0

lnð1! b
d sÞ

d! bs
ds ¼ !1

2
ln 1! b

d
s

! "% &2
'''''

1

0

¼ !1
2

ln 1! b
d

! "% &2

:

The integral

Z 1

0
bsn ln 1! b

d s
( )

d! bs
ds ¼ O

1
n

! "

because (d ! bs)!1 and ln (d ! bs) are bounded on [0,1]. Likewise,

Z 1

0
bsn lnð1! sÞ

d! bs
ds ¼ O

ln n
n

! "

because
Z 1

0
sn lnð1! sÞds ¼ !

Z 1

0

X1

j¼1

1
j

snþjds ¼ !
X1

j¼1

1
jðnþ jþ 1Þ

¼ O
ln n

n

! "
:

Two other parts of the integral partially cancel. The first part
amounts to

!
Z 1

0
ln 1! b

d
s

! "
1! sn

1! s
ds ¼

Z 1

0

X1

j¼1

b
d

! "j sj

j

Xn!1

k¼0

skds

¼
X1

j¼1

b
d

! "j 1
j

Xn!1

k¼0

1
jþ kþ 1

¼
X1

j¼1

b
d

! "j 1
j
ðHnþj ! HjÞ:

The second part is

!
Z 1

0
b lnð1! sÞ 1

d! bs
ds ¼ b

d

Z 1

0

X1

k¼1

sk

k

X1

j¼0

b
d

! "j

sjds

¼
X1

j¼1

b
d

! "jX1

k¼1

1
kðjþ kÞ

¼
X1

j¼1

b
d

! "j 1
j

X1

k¼1

1
k
! 1

jþ k

! "

¼
X1

j¼1

b
d

! "j 1
j

Hj:

The sum of these two parts is

X1

j¼1

b
d

! "j 1
j

Hnþj ¼
X1

j¼1

b
d

! "j 1
j

lnðnþ jÞ þ cþ O
1
n

! "% &

¼
X1

j¼1

b
d

! "j 1
j

ln
nþ j

n

! "
þ
X1

j¼1

b
d

! "j 1
j
ðln nþ cÞ

þ O
1
n

! "

¼
X1

j¼1

b
d

! "j 1
j

ln 1þ j
n

! "
! ðln nþ cÞ ln 1! b

d

! "

þ O
1
n

! "

Because ln (1 + x) 6 x for x > 0, it follows that

X1

j¼1

b
d

! "j 1
j

ln 1þ j
n

! "
6 1

n

X1

j¼1

b
d

! "j

¼ O
1
n

! "
:

Putting together the various parts of the integral (12) and mul-
tiplying by ! 2

ðd!bÞ2
give

E M2
n

# $
¼ 1
ðd! bÞ2

p2

6
þ ln nþ cþ ln

d! b
d

! "% &2
( )

þ O
ln n

n

! "
:

In view of the asymptotic expression (11) for the mean, we have

Var
Mn ! an

bn

! "
¼ p2

6
þ O

ln n
n

! "
;

which implies the convergence of the variance of b!1
n ðMn ! anÞ to

the variance of the Gumbel distribution.

3.3. How many HSCs remain when CSCs go extinct?

The single most important measure of success in therapy is the
count of HSCs when the cancer stem cells go extinct. This is a dif-
ficult issue to attack mathematically because one must take a
snapshot of the HSC population at a random stopping time. Let
NH be the number of HSCs at the random time DC when the cancer
stem cells are eradicated. This notation is consistent with the
convention in this section of subscripting all quantities by either
H and C to indicate the HSC population and the CSC population,
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respectively. To make progress, we make the simplifying assump-
tion that the random variable

MnC ! anC

bnC

conforms exactly to the extreme value distribution. To recover the
mean and variance of NH, we condition on DC in the formulas

EðNHÞ ¼ E½EðNHjDCÞ&; ð13Þ
VarðNHÞ ¼ E½VarðNHjDCÞ& þVar½EðNHjDCÞ&: ð14Þ

Consider first the mean of NH. According to Eq. (1), we have

EðNHjDCÞ ¼ nHeðbH!dHÞDC :

Thus, Eq. (13) shows that evaluation of EðNHÞ boils down to evalu-
ation of the moment generating function of DC. In view of Eq. (5),
DC has moment generating function

EðehMnC Þ ¼ eanC hC 1! hbnC

! "
: ð15Þ

A brief calculation now gives

EðNHÞ ¼ nHC 1þ dH ! bH

dC ! bC

# $
nCðdC ! bCÞ þ bC

dC

% &!dH!bH
dC!bC

:

To calculate the variance of NH from the decomposition (14), we
note that Eq. (2) implies

VarðNHjDCÞ ¼ nH
ðbH þ dHÞ
ðbH ! dHÞ

e2ðbH!dHÞDC ! eðbH!dHÞDC
' (

:

Invoking the generating function (15) therefore yields

E½VarðNHjDCÞ& ¼nH
ðbHþdHÞ
ðbH!dHÞ

C 1þ2
dH!bH

dC!bC

# $

( nCðdC !bCÞþbC

dC

% &!2dH!bH
dC!bC
!nH

ðbHþdHÞ
ðbH!dHÞ

C 1þdH!bH

dC!bC

# $

( nCðdC !bCÞþbC

dC

% &!dH!bH
dC!bC

: ð16Þ

We handle the second term on the right of Eq. (14) by first not-
ing that E½EðNHjDCÞ& ¼ EðNHÞ. We combine this with

E½EðNHjDCÞ2& ¼ n2
HE½e2ðbH!dHÞDC Þ&

¼ n2
HC 1þ 2

dH ! bH

dC ! bC

# $
nCðdC ! bCÞ þ bC

dC

% &!2dH!bH
dC!bC

to get

Var½EðNHjDCÞ& ¼ n2
HC 1þ 2

dH ! bH

dC ! bC

# $
nCðdC ! bCÞ þ bC

dC

% &!2dH!bH
dC!bC

! n2
HC 1þ dH ! bH

dC ! bC

# $2 nCðdC ! bCÞ þ bC

dC

% &!2dH!bH
dC!bC

:

ð17Þ

Eqs. (14), (16), and (17) fully determine VarðNHÞ.
Let us define the killing efficiency j of a therapy as the ratio of

the death rate to birth rate of CSCs, j = dC/bC. We can then formu-
late the mean number of HSCs present at the time when all the
CSCs are eradicated as a function of the selectivity r of a therapy
and the killing efficiency, according to the formula

EðNHÞ ) nHCð1þ r!1Þ nCð1! j!1Þ þ j!1' (!1
r: ð18Þ

The variance can also be formulated as a function of j and r. Fig. 5
plots the average EðNHÞ as a function of r and j. A higher selectivity
entails a higher average number of HSCs at the time of eradication
of the CSCs. For example, starting with nH = 4,400 and nC = 17,600,
with a killing efficiency j = 25, and a selectivity r = 10 or greater,

we expect 1,581 HSCs to survive. It is noteworthy that the selectiv-
ity required to ensure that, on average, 1,000 HSCs remain at the
time of CSC extinction (r = 10) is much higher than the selectivity
required to be 80% sure that at least one HSC survives (r = 2.2). Val-
ues of the average EðNHÞ are heavily dominated by r. Examination
of Eq. (18) reveals that j is less important in determining the aver-
age EðNHÞ. In contrast, j does play a large role in determining the
average time to eradication of the CSCs. For instance with r held
constant at 10, the extinction time is approximately 4 years when
j = 3 and 18 weeks when j = 25. The corresponding values for
EðNHÞ are 1,640 and 1,581.

3.4. Eigenfunction expansions and finite Fourier transforms

Previous sections have dealt with means and variances. Finding
the full distribution of the number of HSCs at the time of extinction
of the CSCs requires new techniques. We explored two possibili-
ties, eigenfunction expansions [39,35] and Fourier analysis
[32,44,45]. Despite their elegance, eigenfunction expansions turn
out to be far less reliable than approximations based on the finite
Fourier transform. Indeed, the eigenfunction approximation to
the distribution of NH suffers serious roundoff errors when NH is
supported on a large number of points. The terms in the series
are large and tend to alternate in sign. Fourier analysis offers a
more numerically stable method of computing the distribution of
NH. The Fourier approach applies generically to any probability
generating function PðsÞ ¼

P1
j¼0pjsj [32,44]. To extract the coeffi-

cients of P(s), extend it to the boundary of the unit circle in the
complex plane via the equation Pðe2pitÞ ¼

P1
j¼0pje2pijt , where

i ¼
ffiffiffiffiffiffiffi
!1
p

. This creates a periodic function in t whose kth Fourier
coefficient pk can be recovered via the finite Riemann sum

pk ¼
Z 1

0
Pðe2pitÞe!2piktdt ) 1

m

Xm!1

j¼0

Pðe2pij=mÞe!2pikj=m:

In practice, one evaluates this finite Fourier transform via the fast
Fourier transform algorithm for some large power m of 2. For suffi-
ciently large m, all of the coefficients p0, . . . ,pm!1 can be computed
accurately. Accuracy can be checked by comparing the numerically
computed mean and variance of P(s) with its theoretical mean and
variance.

To apply the Fourier method to find the distribution of NH, let
GH(s, t) and GC(s, t) be the probability generating functions of the
number of HSCs and CSCs at the fixed time t. Thus, the generating
function of the number of normal stem cells at the random time
when cancer stem cells are eradicated is given by
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Fig. 5. Dependence of EðNHÞ on selectivity r and killing efficiency j of a therapy.
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GNH ðsÞ ¼
Z 1

0
GHðs; tÞ

@

@t
GCð0; tÞdt;

which can be numerically evaluated for any s, including s on the
boundary of the unit circle. With this generating function at our dis-
posal, we can retrieve the distribution of NH by the fast Fourier
transform as just explained.

Fig. 6 shows the distribution of normal cells at the random time
when cancer stem cells become extinct calculated by fast Fourier
transform. The numerical means and variances from this distribu-
tion match those implied by formulas (13) and (14). The large spike
at zero is caused by the amount of times the healthy population
reaches extinction. Figs. 7 and 8 display the distributions of normal
stem cells at fixed and random times under two typical parameter
settings. As expected the distribution at a fixed time of CSC extinc-
tion is less variable than that generated with a random time. For
the parameters chosen in Fig. 7, there appears to be an adequate
number of HSCs at the time of CSC extinction, suggesting a safe
therapy. By contrast, when we increase the death rate of HSCs
(Fig. 8), we see that there is some chance that the HSCs will be
wiped out by the time all CSCs have been eradicated.

3.5. Therapy in the presence of quiescence

In the reversible state of quiescence, a stem cell does not divide.
Here we consider therapies that target actively dividing stem cells
and largely spare quiescent stem cells. In this case, we predict that
the active cancer stem cell population will be eradicated first and
leave behind a quiescent cancer stem cell population, which on
awakening causes recurrence of the cancer. We now present a
model that validates this intuition. The model therefore highlights
the danger in targeting only active cancer stem cells. For the sake
of simplicity, we ignore the slow flow of active stem cells into
the resting state of quiescence. We will repair this defect in Section
3.6.

Let m be the death rate per quiescent cancer stem cell, a be rate
of awakening of a quiescent cancer stem cell, and G(t) be the prob-
ability that a quiescent cancer stem cell and all of its descendants
have gone extinct by time t. As in the previous model, b and d are
the birth and death rates, respectively, per cell for the actively
dividing cancer stem cells. We begin by deriving an expression
for G(t). Considering the short time interval (0,s), it is clear that

Gðt þ sÞ ¼ ½1& ðaþ mÞs'GðtÞ þ msþ asFðtÞ þ oðsÞ;

where F(t) is the extinction probability by time t starting with a sin-
gle active stem cell. Sending s to 0 leads to the differential equation

d
dt

GðtÞ ¼ &ðaþ mÞGðtÞ þ mþ aFðtÞ:

with solution

GðtÞ ¼ m
aþ m 1& e&ðaþmÞt! "

þ ae&ðaþmÞt
Z t

0
eðaþmÞsFðsÞds:

Given the identity

ae&ðaþmÞt
Z t

0
eðaþmÞsds ¼ ae&ðaþmÞt

aþ m eðaþmÞt & 1
! "

¼ a
aþ m 1& e&ðaþmÞt! "

;

it follows that

GðtÞ ¼ 1& e&ðaþmÞt þ ae&ðaþmÞt
Z t

0
eðaþmÞs½FðsÞ & 1'ds: ð19Þ

In view of Eq. (3), we have

1& FðtÞ ¼
ðd& bÞeðb&dÞt

d& beðb&dÞt :

Substituting this in Eq. (19) produces

1& GðtÞ ¼ e&ðaþmÞt þ ae&ðaþmÞt
Z t

0
eðaþmÞs½1& FðsÞ'ds

¼ e&ðaþmÞt 1þ a
Z t

0
eðaþmÞs ðd& bÞeðb&dÞs

d& beðb&dÞs ds
# $

:

Further progress can be made by exploiting the expansion

1
1& b

d eðb&dÞs
¼
X1

k¼0

b
d

% &k

ekðb&dÞs

in the integral

Z t

0
eðaþmÞs ðd& bÞeðb&dÞs

d& beðb&dÞs ds ¼ ðd& bÞ
d

Z t

0

X1

k¼0

b
d

% &k

e½aþmþðkþ1Þðb&dÞ'sds

¼ ðd& bÞ
d

X1

k¼0

b
d

% &k e½aþmþðkþ1Þðb&dÞ't & 1
aþ mþ ðkþ 1Þðb& dÞ

:

In conclusion, we find that

1& GðtÞ ¼ e&ðaþmÞt 1& aðd& bÞ
d

X1

k¼0

b
d

% &k 1
aþ mþ ðkþ 1Þðb& dÞ

"

þ aðd& bÞ
d

X1

k¼0

b
d

% &k e½aþmþðkþ1Þðb&dÞ't

aþ mþ ðkþ 1Þðb& dÞ

#

: ð20Þ
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Fig. 6. The distribution of normal stem cells when cancer stem cells are eradicated based on the finite Fourier transform. The parameter setting is nH = 4,400,
bH = 0.024 week&1, dH = 0.03 week&1, nC = 17,600, bC = 0.024 week&1, and dC = 0.036 week&1.
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The explicit expression (20) allows us to determine the fate of a
population of m cancer stem cells in quiescence. Consistent with
our assumption that the killing rate d of active cancer stem cells
is much higher than the killing rate m of quiescent cancer stem
cells, we take a + m < b ! d. In this regime, formula (20) can be re-
placed by the approximations

1! GðtÞ ¼ e!ðaþmÞt ½1þ c þ oð1Þ'; ð21Þ

where c is the positive constant

c ¼ !aðd! bÞ
d

X1

k¼0

b
d

! "k 1
aþ mþ ðkþ 1Þðb! dÞ

:

Note that the error term o(1) in (21) tends to 0 exponentially fast as
t tends to 1.

The extinction time for the last surviving clan issuing from the
m initial quiescent stem cells has distribution function
Gm(t) = G(t)m. The asymptotic theory of extreme order statistics
also applies to Gm(t). Once again we proceed by identifying a con-
stant R such that

lim
t!1

1! Gðt þ xRÞ
1! GðtÞ

¼ e!x

for all x. In light of the approximation (21), we have

1! Gðt þ xRÞ
1! GðtÞ

¼ e!ðaþmÞðtþxRÞ½1þ c þ oð1Þ'
e!ðaþmÞt ½1þ c þ oð1Þ'

¼ e!ðaþmÞxR½1þ oð1Þ'

and this ratio approaches e!x if and only if R = (a + m)!1. Therefore,
the previously cited extreme value theorem implies that

lim
m!1

Gmðam þ bmtÞ ¼ e!e!t

for sequences am and bm defined by

1
m
¼ 1! GðamÞ ¼ e!ðaþmÞam ½1þ c þ oð1Þ'

and bm = R = (a + m)!1. Ignoring the error term o(1), we deduce that

am ¼
1

aþ m ½ln mþ lnð1þ cÞ':

The bottom line of this analysis is that the mean time to extinc-
tion for the m quiescent cancer stem cells is approximately

1
aþ m ½ln mþ lnð1þ cÞ' þ c

aþ m : ð22Þ

On the other hand, the mean extinction time for the n active cancer
stem cells is
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Fig. 7. Distribution of HSCs when CSCs become extinct, assuming death rate of HSCs dH = 0.08 week!1. Initial clan sizes are nH = 4,400 and nC = 17,600, birth rates are
bH = bC = 0.024 week!1, and death rate of CSCs dC = 0.59 week!1. Top: Distribution at the (fixed) mean cancer extinction time 18 weeks. Bottom: Distribution at the (random)
cancer extinction time.
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Fig. 8. Distribution of HSCs when CSCs become extinct, assuming death rate of HSCs dH = 0.31 week!1. Initial clan sizes are nH = 4,400 and nC = 17,600, birth rates are
bH = bC = 0.024 week!1, and death rate of CSCs dC = 0.59 week!1. Top: Distribution at the (fixed) mean cancer extinction time 18 weeks. Bottom: Distribution at the (random)
cancer extinction time.
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1
d! b

ln nþ ln
d! bþ b

n

d

 !" #
þ c

d! b
: ð23Þ

Our assumption a + m < d ! b is equivalent to (d ! b)!1 < (a + m)!1.
Thus, unless n is much larger than m, the active cancer stem cells
go extinct before the quiescent cancer stem cells. This is the oppo-
site of what a viable therapy should achieve.

3.6. Distribution of HSCs in the presence of quiescence

Instead of ignoring flow into the quiescent state, one can incor-
porate it as part of a comprehensive branching process model [16].
We now briefly sketch this model. Consider a two-type branching
process with quiescent cells as type 1 particles and active cells as
type 2 particles. In addition to the notation of the previous section,
let / be the rate per cell of falling into quiescence. In a branching
process, a particle reproduces at the time of its death. Let fij be
the mean number of daughter particles of type j that a type i par-
ticle produces. Straightforward reasoning determines the repro-
duction matrix F = (fij) in our model as

F ¼
0 a

aþm
/

/þbþd
2b

/þbþd

 !

:

Other key ingredients are the death rates per particle. These can be
summarized by the vector w with components w1 = a + m and
w2 = / + b + d. These constructs determine a matrix M(t) whose typ-
ical entry mij(t) equals the mean number of particles of type j at
time t starting with a single particle of type i at time 0. Again stan-
dard arguments show that M(t) = etX, where X = [wi(fij ! 1{i = j})].
Similar but more complicated reasoning yield the variance–covari-
ance matrix of the particle counts starting from any initial configu-
ration of particles [16].

To capture the full distribution of particle counts at a future
time, it is convenient to introduce a bivariate generating function
Pi(t,z) for the joint particle counts at time t starting from a single
particle of type i at time 0. In our model, the backward differential
equations for these two generating functions amount to

@

@t
P1ðt; zÞ ¼ !ðaþ mÞP1ðt; zÞ þ mþ aP2ðt; zÞ

@

@t
P2ðt; zÞ ¼ !ð/þ bþ dÞP2ðt; zÞ þ dþ /P1ðt; zÞ þ bP2ðt; zÞ2

with initial condition Pi(0,z) = zi. The probability of extinction by
time t equals P1ðt;0Þn1 P2ðt;0Þn2 , where ni is the number of type i
particles at time 0. Although it is impossible to solve for P1(t,z)
and P2(t,z) analytically, it is certainly possible to solve for them
numerically for any fixed value of z. This suggests retrieving the
bivariate distributions via the 2D fast Fourier transform. In practice,
this procedure works well and gives means and variances closely
approximating the theoretical means and variances. Extension to
the kind of random times we have stressed is feasible. Fig. 9
displays some typical results, for the parameter choices: bH = bC =
0.024 week!1, dC = 0.59 week!1, dH = 0.08 week!1, mH = mC = 0.00024
week!1, /C = /H = 0.007 week!1, and aC = aH = 0.07 week!1. Here
we show the distribution of quiescent and active CSCs at the fixed
mean extinction time of active CSCs, as estimated from Eq. (23),
and the distribution of HSCs at the mean extinction time of quies-
cent CSCs, as estimated from Eq. (22). Finally, we show the distribu-
tion of HSCs at the random time of extinction of both quiescent and
active CSCs.

4. Stochastic simulation

Because branching process models resist full mathematical
analysis, progress depends on a variety of numerical tools.

Unfortunately, as model complexity increases, all known deter-
ministic numerical methods falter under the overwhelming com-
putational loads. At this point simulation becomes an attractive
alternative. Simulation has the further virtue of simplicity of
implementation. Even when better tools are available, simulation
promotes rapid testing of models and checking of approximate
solutions. For these reasons, we now describe our experience with
stochastic simulation in the stem cell model.

Recent advances in stochastic simulation are geared to the
study of continuous-time Markov chains with a finite number of
particle types, interacting via a finite number of reaction channels.
While the methods first described by Gillespie [23,24] were rooted
in applications to chemical reaction kinetics, particle-based
stochastic simulation models have broad applications in fields as
diverse as queuing theory, population dynamics, gene regulation,
and biochemical networks [33,67]. The stochastic simulation algo-
rithm (SSA) employs a wait and jump mechanism to simulate the
behavior of a chain. Because it simulates every reaction, SSA can
be annoyingly slow in models with large particle counts. The s-
leaping method [8,25] leaps over intermediate events by taking a
fixed time step of length s, chosen so that all reaction propensities
(intensities) are relatively constant during the leap interval. At the
end of the interval, each reaction channel fires a Poisson number of
times with mean determined by the product of its propensity and
s. The s-leaping method trades small losses in accuracy for much
larger time steps. Our recent step anticipation leaping (SAL) meth-
od [60] generalizes s-leaping by projecting linear and quadratic
changes in reaction propensities. This promotes better accuracy
without compromising speed. Here we employ the SAL method
to explore stem cell dynamics in both the presence and absence
of quiescence. The simulations substantiate our previous analytic
and numerical results.

In a continuous-time Markov chain with a finite number of par-
ticle types, let Xt be the particle count vector at time t, rj be the pro-
pensity of reaction j, and !j be the increment to Xt caused by the
firing of reaction j. The s-leaping method runs an independent
Poisson process for each reaction channel and sums the results
over short time intervals. In ordinary s-leaping, reaction channel
j will fire rjs times on average during (t, t + s). One therefore up-
dates the particle count vector Xt = x by the sum
Xtþs ¼ xþ

P
jNj!j, where Nj are independent Poisson variates with

means rjs. In SAL, we expand each propensity to first order, replac-
ing the constant intensity rj of ordinary s-leaping by the linear
intensity

rjðXtþsÞ & rjðXtÞ þ
d
dt

rjðXtÞs:

Under this approximation, reactions of type j occur according to an
inhomogeneous Poisson process during (t, t + s), and the mean num-
ber of reactions is

xjðt; t þ sÞ ¼
Z s

0
rjðXtÞ þ

d
dt

rjðXtÞs
! "

ds ¼ rjðXtÞsþ
d
dt

rjðXtÞ
1
2
s2:

This raises the question of how to calculate the derivative
d
dt rjðxÞ. The most natural route uses the chain rule

d
dt

rjðxÞ ¼
Xd

k¼1

@

@xk
rjðxÞ

d
dt

xk

and sets

d
dt

xk ¼
Xc

j¼1

rjðxÞ!j
k; ð24Þ

where !j
k is the increment to species k caused by reaction j. The

reaction rate Eq. (24) models the mean behavior of the system when
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particle counts are high and stochastic fluctuations can be ignored.
The following examples employ linear SAL. Quadratic extrapolation
is possible, but the improvements over linear extrapolation are
rather modest [60].

4.1. Empirical distribution of HSCs when CSCs go extinct

In our basic model without quiescence, there are 2 populations
of cells and 4 reaction channels. The Markov chain Xt has compo-
nent Xt1 counting the CSCs and component Xt2 counting the HSCs.
Table 1 lists the reaction channels, propensities, and reaction incre-
ments. Here !k

j indicates the change in species k under reaction j.
Any unspecified !k

j is assumed to be 0.
Stochastic simulation allows us to explore the distribution of

the number NH of HSCs at the random time of extinction of the
CSCs; we simply record the number of HSCs when the CSC count
reaches 0. Fig. 10 shows the distribution of NH over 10,000 SAL tri-
als for the two values dH = 0.08 week!1 and dH = 0.31 week!1. The
other reaction rates bC = bH = 0.024 week!1 and dC = 0.59 week!1

match our earlier choices.
These results highlight the dependence of NH on the selectiv-

ity r of therapy. In the top panel of Fig. 10, with selectivity
r = 10, there is very little chance that the population of HSCs
goes extinct before all CSCs are eradicated. By contrast, in the
bottom panel of Fig. 10, with selectivity r = 2, there is a good
chance that HSCs go extinct before CSC eradication. The random
variable NH has mean ± one standard deviation of 1,580 ± 198 for
r = 10 and 30.0 ± 17.1 for r = 2. These results agree well with
our analytic formulas and numerical results based on the finite
Fourier transform.

4.2. Simulations in the presence of quiescence

When we introduce quiescence into the model, we have 4 pop-
ulations of cells: active CSCs (type 1) and HSCs (type 2) and quies-
cent CSCs (type 3 or qCSC) and HSCs (type 4 or qHSC). Table 2 lists
the reactions, propensities, and increment vectors of the extended
model.

Because the deaths of quiescent cells, both qCSCs and qHSCs, are
rare events, we set mC = mH = 0.00024 week!1. To deduce the relative
rates of awakening and falling into quiescence, consider a simple 2-
state Markov chain ignoring birth and death and modeling only the
passage of a single stem cell back and forth between the active and
quiescent states. This chain is reversible, and the principle of de-
tailed balance identifies p = a/(/ + a) as the equilibrium fraction of
active stem cells. Based on observations in adult mice that approxi-
mately 75% of long-term self-renewing hematopoietic stem cells are
quiescent [11], and observations in patients with chronic myeloge-
nous leukemia that 8.7% of CD34 cells are in a quiescent state [34],
we take pH = 0.25 and pC = 0.9. While no data are available on rates
of activation and quiescence of stem cells, we start with activation
rates aH = aC = 0.07 week!1, and calculate the rates of quiescence
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Table 1
Simulation of CSCs and HSCs under therapy.

Reaction Propensity Increment vector

CSC birth bCx1 !1
1 ¼ þ1

CSC death dCx1 !2
1 ¼ !1

HSC birth bHx2 !3
2 ¼ þ1

HSC death dHx2 !4
2 ¼ !1
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/H = 0.21 week!1 and /C = 0.007 week!1 using the detailed balance
condition. Given a total stem cell population size of 22,000 [1], we
again start with a large proportion (80%) of CSCs: nH = 4,400 HSCs
and nC = 17,600 CSCs. Based on the above proportions of quiescent
and active HSCs and CSCs, the initial value X0 = x has components
x1 = 15,840, x2 = 1,100, x3 = 1,760, and x4 = 3,300.

We will consider two cases. The first assumes a slow backflow
to quiescence (/C = /H = 0.007 week!1). This scenario may be
more realistic as quiescence is most likely regulated by similar

mechanisms for both types of cells, and healthy stem cells might
be expected to spend more time in an active state during
malignancy. The second scenario is less likely and assumes that
the CSCs and HSCs have reached two different equilibrium distri-
butions. Here the backflow of quiescence is slow for CSCs
(/C = 0.007 week!1) and fast for HSCs (/H = 0.21 week!1). We use
our previous birth rates bH = bC = 0.024 week!1 and death rates
dC = 0.59 week!1 and dH = 0.08 week!1.

Following the trajectories of the 4 populations of stem cells over
time in Fig. 11, we see it takes a much longer time for the CSCs to go
extinct when quiescence is involved (t = 40 weeks). When the back-
flow to quiescence is much slower for CSCs (/C = 0.007 week!1;
/H = 0.21 week!1), there is still an adequate number of HSCs at
the time of extinction of the CSCs, approximately 590 (124 active
and 466 quiescent), though far fewer than if therapy were to target
quiescent CSCs. However, when backflow to quiescence is slow for
both CSCs and HSCs, /C = /H = 0.007 week!1, by the time all CSCs
are finally eradicated, there are only approximately 18 HSCs (13 ac-
tive and 5 quiescent). In the second scenario, quiescence serves as a
sanctuary for the HSCs. The first scenario agrees with the analytic
results of our modeling described in Section 3.5 and emphasizes
the need for therapy to target both active and quiescent CSCs. The
second scenario hints at greater subtlety and emphasizes the need
for accurate measurement of all parameters.
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Table 2
Simulation with quiescence and awakening.

Reaction Propensity Increment vector

CSC birth bCx1 !1
1 ¼ þ1

CSC death dCx1 !2
1 ¼ !1

CSC quiescence /Cx1 !3
1 ¼ !1; !3

3 ¼ þ1
qCSC awakening aCx3 !4

1 ¼ þ1; !4
3 ¼ !1

qCSC death mCx3 !5
3 ¼ !1

HSC birth bHx2 !6
2 ¼ þ1

HSC death dHx2 !7
2 ¼ !1

HSC quiescence /Hx2 !8
2 ¼ !1; !8

4 ¼ þ1
qHSC awakening aHx4 !9

2 ¼ þ1; !9
4 ¼ !1

qHSC death mHx4 !10
4 ¼ !1
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5. Conclusions

Cancer therapy based on eradicating CSCs is admittedly specu-
lative. However, given the toll of mortality and morbidity exacted
by cancer, this is a strategy worth considering in detail. Mathemat-
ical models can guide the rational design of drugs and treatments.
Of course, model predictions will have to be checked by animal
experiments and careful analysis of patient outcomes. Premature
trials with poor outcomes can sour the prospects of even a good
therapy. Our findings are cause for guarded optimism. We have
shown that the relative numbers of CSCs and HSCs at the time of
initiating therapy are less relevant than the selectivity of therapy.
Modeling stem cell population dynamics as a birth–death process
permits characterization of the extinction times for active and qui-
escent stem cells and calculation of the distribution of the number
of HSCs at the time of eradication of CSCs. We anticipate that com-
paring in vitro killing rates of CSCs and HSCs will be useful in
screening targeted therapies. How applicable the models will be
depends on underlying parameters such as absolute quantities of
stem cells, death rates of HSCs and CSCs, and relative rates of qui-
escence and awakening. These parameters will doubtless vary for
different tumor types and stem cell populations.

Therapies proposed to target cancer stem cells operate via sev-
eral different molecular mechanisms (see Table 3). For leukemic
stem cells, there are small molecule targeted biologic therapies,
antibody-based and immune-mediated therapies, and stem cell
microenvironment targeted therapies [29,37,53,63]. DMAPT offers
an example of a small molecule potentially useful in therapy;
DMAPT is a parthenolide derivative that selectively eliminates leu-
kemic stem cells and spares normal hematopoietic stem cells. The
half maximal inhibitory concentration for normal stem cells under
DMAPT is 10 times higher than that for leukemic stem cells. Ther-
apies that inhibit the PI3K/PTEN/Akt pathway, which regulates
growth and apoptosis of stem cells, work more efficiently in leuke-
mic stem cells than in normal hematopoietic stem cells [30,69,70].
Dasatinib, a small molecule inhibitor of BCR-ABL, targets leukemic
stem, progenitor, and differentiated cells in chronic myelogenous
leukemia, but does not target the corresponding quiescent popula-
tions [12]. Antibody-based therapies inhibit the homing of the LSC
to its niche (anti-CD44), activate innate immunity by targeting IL-3
(anti-CD23), and inhibit intracellular signaling. Immune-mediated

cell killing is also being proposed as a mechanism to target leuke-
mic stem cells. CD47 is an antigen expressed on leukemic stem
cells which binds to a signal-regulatory protein on macrophages
and stops the ingestion of the leukemic stem cells by the macro-
phages [47]. An antibody to CD47 is being developed to block its
interaction with macrophages, facilitating activation of phago-
cytes. An important property of stem cells is niche-dependence
[48]. Stem cell niches, distributed throughout the body, serve to
regulate the total number of stem cells and whether or not stem
cells maintain an undifferentiated state. Therapies that target the
microenvironment are predicated on the assumptions that niche
regulation is aberrant in cancer and targeting niche regulation will
inhibit the abnormally activated pathways. It remains to be seen
whether niche targeting will be selective for cancer stem cells. Fu-
ture models should include simulation of stem cell-niche
interactions.

Other proposed cancer stem cell therapies work by inducing dif-
ferentiation. The tremendous potential for cure by combining dif-
ferentiating agents with chemotherapy has been demonstrated in
acute myelogenous leukemia with all-trans retinoic acid. In our
models we consider symmetric division leading to two differenti-
ated cells as a type of stem cell death.

We find that selectivity is an important determinant of the
safety of a proposed therapy. In contrast, killing efficiency is impor-
tant in determining the appropriate duration of therapy needed to
drive a cancer stem cell population extinct. Both of these measures
are heavily dependent on the difference between birth and death
rates of a stem cell population, rather than on the birth or death
rate alone. It is possible that the symmetric birth rate of cancer
stem cells is much higher than that of healthy hematopoietic stem
cells. For example, the regulation of asymmetric stem cell division
may be disturbed during the process of carcinogenesis [10].
Because our models focus on the importance of the difference be-
tween birth and death rates, we make the simplifying assumption
that the birth rates for the HSC and CSC populations are the same
and simply vary death rates. If the amount of time spent by CSCs in
self-renewing symmetric division were found to be substantially
higher than that for HSC, the death rate of CSCs under a proposed
therapy would need to be that much higher to obtain the same
selectivity.

Cancer modeling is becoming more of a preoccupation for ap-
plied mathematicians. The variety of approaches is impressive.
These range from continuum mechanics models of tumor growth
to reaction–diffusion models of tumor vascularization and optimi-
zation of radiation doses in radiation therapy [3,9,22,62]. Branch-
ing processes and continuous-time Markov chain models have
long provided quantitative insights into the dynamics of cancer ini-
tiation and proliferation [42,45]. Our stem cell models continue in
this tradition. In stem cell dynamics, the population of HSCs is crit-
ically small, and their chance elimination has devastating conse-
quences. This sober fact highlights the importance of tight
control over killing differentials. Stochastic models of drug resis-
tance of stem cells have also been explored [26,43,50]. Here mod-
eling mutation is crucial. Further research is surely merited on the
mutational pathways leading to cancer, the genetic instability of
cancer stem cells, the development of resistance mutations during
therapy, and the role of the stem cell niche in regulating stem cell
and progenitor expansion.

We predict that stochastic simulation methods will play an
increasing role in the development of more sophisticated cancer
models. Stochastic simulation is ideal for studying complex sys-
tems with multiple cellular species tied together by multiple reac-
tion channels. We have modeled sensitivity to therapy by varying
death rates. To capture the role of the stem cell niche, one could as-
sign CSCs that escape niche regulation higher birth rates or higher
rates of awakening from quiescence. We have omitted progenitor

Table 3
Proposed therapies targeting leukemic stem cells.

Type Example Mechanism

Small molecule therapies DMAPT induces differentiation and
apoptosis

MG-132 proteasome inhibitor
ABT-737 bcl-2 inhibitor, regulates

apoptosis
PI3K/PTEN/Akt regulates growth and

apoptosis
inhibitor
Dasatinib inhibitor of BCR-ABL

Antibody-based therapies Diphtheria-
toxin-IL-3

inhibit intracellular
signaling

fusion protein
anti-CXCR4 mediates SDF-1 interaction
anti-CD44 inhibit homing of LSC to its

niche
anti-CD23 activate innate immunity
anti-CD47 immune-mediated cell

killing

Therapies targeting the
microenvironment

c-secretase
inhibitor

inhibit self-renewal

PI3K inhibitor block prosurvival signaling
anti-VEGF
therapy

target hypoxic milieu
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cells and partially and fully differentiated cells from our models.
Adding all of the complications requires flexible modeling tools.
Multitype branching processes can take us only so far. As soon as
the different cell types begin to interact, the branching process par-
adigm breaks down. This should not mean the abandonment of
stochastic models, but it does put a premium on the development
of faster, more accurate, and more convenient implementations of
stochastic simulation. These urgent needs and the burgeoning of
systems biology as a whole will drive the field of stochastic
simulation.

In conclusion, mathematical modeling and the development of
rational stem cell therapy will go hand in hand. The current stem
cell models give us hope that attacking CSCs can cure cancer. To
be successful, targeted therapies must be tuned to spare HSCs
and eradicate quiescent as well as active CSCs. This second
criterion rules out drugs that solely attack dividing cells. Only
stochastic models can capture the extinction and small numbers
phenomena connected with stem cells. These models will ulti-
mately provide the same extraordinary insight into cancer therapy
responses and resistance that they have in HIV treatment [15]. If
we are fortunate, models of the two diseases will cross fertilize
each other for years to come.
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