
Computational Statistics and Data Analysis 55 (2011) 26–33

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

A fast procedure for calculating importance weights in
bootstrap sampling
Hua Zhou a,∗, Kenneth Lange b
a Department of Human Genetics, University of California, Los Angeles, CA 90095-1766, United States
b Departments of Biomathematics, Human Genetics, and Statistics, University of California, Los Angeles, CA 90095-1766, United States

a r t i c l e i n f o

Article history:
Received 6 June 2009
Received in revised form 21 April 2010
Accepted 21 April 2010
Available online 6 May 2010

Keywords:
Importance resampling
Bootstrap
Majorization
Quasi-Newton acceleration

a b s t r a c t

Importance sampling is an efficient strategy for reducing the variance of certain boot-
strap estimates. It has found wide applications in bootstrap quantile estimation, propor-
tional hazards regression, bootstrap confidence interval estimation, and other problems.
Although estimation of the optimal sampling weights is a special case of convex program-
ming, generic optimization methods are frustratingly slow on problems with large num-
bers of observations. For instance, interior point and adaptive barrier methods must cope
with forming, storing, and inverting the Hessian of the objective function. In this paper, we
present an efficient procedure for calculating the optimal importance weights and com-
pare its performance to standard optimization methods on a representative data set. The
procedure combines several potent ideas for large-scale optimization.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Because it involves Monte Carlo estimation, the nonparametric bootstrap is an obvious candidate for importance
sampling. To our knowledge, Johns (1988) and Davison (1988) first recognized the possibilities in the context of quantile
estimation. The general idea is to sample cases with nonuniform weights. If the weights are carefully tuned to a given
statistic, then importance sampling can dramatically reduce the variance of the bootstrap sample average estimating the
mean of the statistic (Hinkley and Shi, 1989). Bootstrap importance sampling has expanded beyond quantile estimation to
include proportional hazards regression, bootstrap confidence interval estimation, and many other applications (Do et al.,
2001; Hall, 1992; Johns, 1988; Hu and Su, 2008).
Although estimation of the optimal sampling weights is a constrained optimization problem that yields to standard

methods of convex programming, there is still room for improvement, particularly in problems with large numbers of
observations. Interior point and adaptive barrier methods incur heavy costs in forming, storing, and inverting the Hessian
of the objective function. In the current paper, we present an efficient procedure for calculating the optimal importance
weights and compare its performance to standard optimization methods on a representative data set. The procedure
combines several potent ideas for large-scale optimization. Briefly these include: (a) approximating the objective function
by a quadratic, (b)majorizing the quadratic by a simple quadratic surrogatewith parameters separated, (c) reparameterizing
the surrogate so its minimization reduces to finding the closest point to a simplex, (d) mapping the simplex solution back to
the original parameters, and (e) accelerating the entire scheme by a quasi-Newton improvement for finding the fixed point
of a smooth algorithmmap. The procedure sounds complicated, but each step is fast and straightforward to implement. On
a test example with 1664 observations, our accelerated algorithm surpasses the performance of current standard methods
for optimization.

∗ Corresponding author.
E-mail addresses: huazhou@ucla.edu (H. Zhou), klange@ucla.edu (K. Lange).

0167-9473/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2010.04.019

http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:huazhou@ucla.edu
mailto:klange@ucla.edu
http://dx.doi.org/10.1016/j.csda.2010.04.019

H. Zhou, K. Lange / Computational Statistics and Data Analysis 55 (2011) 26–33 27

Section 2 introduces the convex optimization problem defining the importance weights and derives our optimization
procedure. Section 3 reviews and generalizes the clever simplex projection algorithm of Michelot. Section 4 summarizes
our quasi-Newton acceleration; this scheme is specifically tailored to high-dimensional problems. Section 5 compares
our new procedure, both unaccelerated and accelerated, to the standard methods of convex optimization on our sample
problem. Finally, our discussion points readers to other applications of the design principles met here for high-dimensional
optimization.

2. Optimization in importance resampling

In standard bootstrap resampling with n observations, each observation xi is resampled uniformly with probability n−1.
As just argued, it is often helpful to implement importance sampling by assigning different resampling probabilities pi to
the different observations (Davison, 1988; Do and Hall, 1991; Hesterberg, 1996). For instance, with univariate observations
(x1, . . . , xn), we may want to emphasize one of the tails of the empirical distribution. If we elect to resample nonuniformly
according to the multinomial distribution with proportions p = (p1, . . . , pn)t , then the change of measure equality

E[T (x∗)] = Ep

T (x∗)
(

n
m∗1 ···m

∗
n

) (1
n

)n
(

n
m∗1 ···m

∗
n

) n∏
i=1
p
m∗i
i

= Ep

[
T (x∗)

n∏
i=1

(npi)−m
∗
i

]
connects the uniform expectation and the importance expectation on the bootstrap resampling space. Here m∗i represents
the number of times sample point xi appears in x∗. Thuswe can approximate themeanE[T (x∗)] by taking a bootstrap average

1
B

B∑
b=1

T (x∗b)
n∏
i=1

(npi)
−m∗bi

with multinomial sampling relative to p. This Monte Carlo approximation has variance

1
B

{
Ep

[
T (x∗)2

n∏
i=1

(npi)
−2m∗bi

]
− E

[
T (x∗)

]2}
,

which achieves its minimum with respect to p when the theoretical second moment Ep
[
T (x∗)2

∏n
i=1(npi)

−2m∗bi
]
is

minimized.
Hall (1992) suggests approximately minimizing the second moment by taking a preliminary uniform bootstrap sample

of size B1. Based on the preliminary resample, we approximate Ep
[
T (x∗)2

∏n
i=1(npi)

−2m∗bi
]
by the Monte Carlo average

s(p) =
1
B1

B1∑
b=1

T (x∗b)
2
n∏
i=1

(npi)
−2m∗bi

n∏
i=1

(npi)
m∗bi

=
1
B1

B1∑
b=1

T (x∗b)
2
n∏
i=1

(npi)
−m∗bi .

The function s(p) serves as a surrogate forEp
[
T (x∗)2

∏n
i=1(npi)

−2m∗bi
]
. It is possible tominimize s(p)on the openunit simplex

by standard methods. Unfortunately, Newton’s method is hampered when the n is large by the necessity of evaluating,
storing, and inverting the Hessian matrix at each iteration. This dilemma prompted our quest for a more efficient algorithm
for minimizing s(p).
Consider the optimization problem

min
p
s(p) subject to

n∑
i=1

pi = 1, pi ≥ ε, 1 ≤ i ≤ n.

Here the lower bound ε > 0 is imposed so that sampling does not entirely neglect some observations. In practice we take
ε = n−2 or n−3. The gradient and second differential (Hessian) of s(p) are

∇s(p) = −
1
B1

B1∑
b=1

T (x∗b)
2
n∏
j=1

(npj)
−m∗bj

m∗b1
p1
...
m∗bn
pn

28 H. Zhou, K. Lange / Computational Statistics and Data Analysis 55 (2011) 26–33

and

d2s(p) =
1
B1

B1∑
b=1

T (x∗b)
2
n∏
j=1

(npj)
−m∗bj ×

m∗b1
p1
...
m∗bn
pn

(
m∗b1
p1
· · ·
m∗bn
pn

)
+

m∗b1
p21

. . .

m∗bn
p2n

 .
Because d2s(p) is positive definite, s(p) is strictly convex. Evaluation of the gradient andHessian requiresO(nB1) andO(n2B1)
operations, respectively.
Our first step in minimizing the objective function s(p) is to approximate it by a quadratic around the current iterate pk.

According to Taylor’s theorem, we have

s(p) ≈ s(pk)+∇s(pk)t(p− pk)+
1
2
(p− pk)td2s(pk)(p− pk)

= s(pk)−
1
B1

∑
b

cbvtb(p− p
k)+

1
2B1

(p− pk)t
∑
b

cb
(
vbv

t
b + Db

)
(p− pk)

= r(p | pk),

where cb = T (x∗b)
2∏n

j=1(npj)
−m∗bj and

vb =
(
m∗b1p

−1
1 , . . . ,m

∗

bnp
−1
n

)t
, Db = diag

(
m∗b1p

−2
1 , . . . ,m

∗

bnp
−2
n

)
.

Our second step is to majorize the quadratic r(p | pk) by a quadratic with parameters separated. If we set u =
∑
b cbvb

andD =
∑
b cb(‖vb‖

2In+Db), then application of the Cauchy–Schwarz inequality ‖vb‖2‖w‖2 ≥ (vtbw)
2 yields the inequality

r(p | pk) ≤ s(pk)−
1
B1
[ut + (pk)tD]p+

1
2B1
ptDp+ ck = q(p | pk),

where ck is an irrelevant constant that does not depend on p. Because equality holds in this last inequality whenever p = pk,
the function q(p | pk) is said to majorize r(p | pk). The guiding principle of the MM algorithm (Hunter and Lange, 2004;
Lange, 2004) is thatminimizing q(p | pk) drives r(p | pk), and presumably s(p), downhill. Thus, we achieve a steady decrease
in s(p).
Our third step is to transformminimization of q(p | pk) into a problem of finding the closest point to a truncated simplex.

This step is effected by the reparameterization p∗ = D1/2p, where D1/2 is the matrix square root of D. Minimization of
q(p | pk) reduces to minimizing the squared distance

1
2
‖p∗ − (D−1/2u+ D1/2pk)‖2

subject to the constraints 1tD−1/2p∗ = 1 and p∗ ≥ εD1/21. Before we discuss how to project (D−1/2u + D1/2pk) onto this
truncated simplex, let us summarize our overall algorithm in pseudo-code.

Algorithm 1 Optimal Importance Weights
Initialize: p = (1n , . . . ,

1
n)

repeat
cb = T (x∗b)

2∏n
j=1(npj)

−m∗bj , b = 1, . . . , B1

vb =
(
m∗b1p

−1
1 , . . . ,m

∗

bnp
−1
n

)t
, b = 1, . . . , B1

Db = diag
(
m∗b1p

−2
1 , . . . ,m

∗

bnp
−2
n

)
, b = 1, . . . , B1

u =
∑
b cbvb

D =
∑
b cb

(
Db + ‖vb‖2In

)
project x = D−1/2u+ D1/2p onto

K = {y ∈ Rn :
∑
i

d−1/2i yi = 1, yi ≥ d
1/2
i ε}

p = D−1/2PK (x)
until convergence occurs

Several remarks are pertinent. (a) Projection onto the truncated simplex can be solved by a slight generalization of an
efficient algorithm of Michelot (1986). The details spelled out in the next section show that projection requires at most

H. Zhou, K. Lange / Computational Statistics and Data Analysis 55 (2011) 26–33 29

O(n2) operations and usually much fewer in practice. (b) Evaluation of u and D requires O(nB1) operations. These represent
potentially huge gains over Newton’s method if convergence occurs fast enough. Recall that Newton’s method needs O(nB1)
operations for evaluating the gradient, O(n2B1) operations for evaluating the Hessian matrix, and O(n3) for inverting the
Hessian matrix. (c) The boundary conditions and linear constraint are incorporated in the algorithm gracefully. (d) A side
effect of majorization is the loss of the superlinear convergence enjoyed by Newton’s method. We therefore accelerate
convergence by applying a general quasi-Newton scheme for fixed point problems. As discussed in Section 4, this scheme
requires little extra computation per iteration and only O(n) storage. It is particularly attractive for high-dimensional
problems. By contrast Newton’s method requires O(n2) storage for manipulating the Hessian matrix.

3. Michelot algorithm

Michelot (1986) derived an efficient algorithm for projecting a point onto the unit simplex inRn. This algorithmconverges
in at most n iterations and often much sooner. We consider a trivial generalization that maps a point x ∈ Rn to the closest
point PK (x) in the dilated and truncated simplex

K =

{
y ∈ Rn :

n∑
i=1

αiyi = c, yi ≥ εi, 1 ≤ i ≤ n

}
, (1)

where the αi and εi are strictly positive and together satisfy
∑
i αiεi ≤ c. The unit simplex is realized by taking c = 1 and

αi = 1 and εi = 0 for all i. The revised algorithm cycles through the following steps.

Algorithm2Michelot Algorithm: Project x ∈ Rn onto the truncated simplex K = {y ∈ Rn :
∑n
i=1 αiyi = c, yi ≥ εi for all i}

repeat
Project x onto the hyperplane H = {x :

∑
i αixi = c} via the map

PH(x) = x−
αtx− c
‖α‖2

α

For i = 1, . . . , n, if some xi < εi, then set xi = εi and eliminate xi from further consideration
until xi ≥ εi for all i

The Michelot algorithm stops after a finite number of iterations because every iteration reduces the dimension n by at
least 1. The first two steps of the algorithm are motivated by the following propositions, whose proofs are straightforward
generalizations of those of Michelot (1986). Full validation of the revised algorithm follows from his further arguments.

Proposition 3.1. Suppose C is a closed convex set wholly contained within an affine subspace V . Then the projection PC (x) onto
C and the projection PV (x) onto V satisfy PC (x) = PC ◦ PV (x).

Proof. See Michelot’s paper (Michelot, 1986). �

Proposition 3.2. Suppose x ∈ Rn satisfies
∑
i αixi = c, where αi > 0 for all i. If x

′
∈ Rn has coordinates x′i = max{xi, εi}, then

PK (x) = PK (x′) for the truncated simplex (1).

Proof. Consider minimizing the objective function y 7→ 1
2‖y − x‖

2 subject to the linear constraint
∑n
i=1 αiyi = c and

boundary conditions yi ≥ εi for every i. The Lagrangian function is

L(y, λ, µi) =
1
2
‖y− x‖2 + λ

(∑
i

αiyi − c

)
−

∑
i

µi(yi − εi).

Because this is a convex programming problem, the Karush–Kuhn–Tucker (KKT) optimality conditions are both necessary
and sufficient. These conditions can be stated as

yi − xi + λαi − µi = 0 (2)
(yi − εi)µi = 0 (3)
µi ≥ 0 (4)

for multipliers λ and µi. Multiplying both sides of equality (2) by αi and summing over i determines λ as the ratio

λ =

∑
i
µiαi∑
i
α2i
≥ 0.

If xi < εi, then condition (2) implies µi = yi − xi + λαi > 0. But condition (3) now compels the equality yi = εi. Therefore
we can replace xi by εi andµi by λαi and still maintain the KTT conditions at the point y. In other words, PK (x) = PK (x′). �

30 H. Zhou, K. Lange / Computational Statistics and Data Analysis 55 (2011) 26–33

4. A quasi-Newton acceleration scheme

In this section, we review a general quasi-Newton acceleration (Zhou et al., 2009) for fixed point problems. If F(x) is
an algorithm map, then the idea of the scheme is to approximate Newton’s method for finding a root of the equation
0 = x − F(x). Let G(x) now denote the difference G(x) = x − F(x). Because G(x) has the differential dG(x) = I − dF(x),
Newton’s method iterates according to

xk+1 = xn − dG(xk)−1G(xk) = xk − [I − dF(xk)]−1G(xk). (5)

If we can approximate dF(xk) by a low-rank matrix M , then we can replace I − dF(xk) by I − M and explicitly form the
inverse (I −M)−1.
Quasi-Newton methods operate by secant approximations. We generate one of these by taking two iterates of the

algorithm starting from the current point xk. When we are close to the optimal point x∞, we have the linear approximation

F ◦ F(xk)− F(xk) ≈ M[F(xk)− xk],

whereM = dF(x∞). If v is the vector F ◦ F(xk)− F(xk) and u is the vector F(xk)− xk, then the secant requirement isMu = v.
In fact, for the best results we require several secant approximations Mui = vi for i = 1, . . . , q. These can be generated at
the current iterate xk and the previous q− 1 iterates. The next proposition gives a sensible way of approximatingM .

Proposition 4.1. Let M = (mij) be a n × n matrix and ‖M‖2F =
∑
i
∑
jm
2
ij its squared Frobenius norm. Write the secant

constraints Mui = vi in the matrix form MU = V for U = (u1, . . . , uq) and V = (v1, . . . , vq). Provided U has full column rank
q, the minimum of the strictly convex function ‖M‖2F subject to the constraints is attained by the choice M = V (U

tU)−1U t .

Proof. See the Reference Zhou et al. (2009). �

To apply the proposition in our proposed quasi-Newton scheme, wemust invert thematrix I−V (U tU)−1U t . Fortunately,
the explicit inverse

[I − V (U tU)−1U t]−1 = I + V [U tU − U tV]−1U t

is a straightforward to check variant of the Sherman–Morrison formula. The q× qmatrix U tU − U tV is trivial to invert for
q small even when n is large. This result suggest replacing the Newton update (5) by the quasi-Newton update

xk+1 = xk − [I − V (U tU)−1U t]−1[xk − F(xk)]
= xk − [I + V (U tU − U tV)−1U t][xk − F(xk)]
= F(xk)− V (U tU − U tV)−1U t [xk − F(xk)].

The quasi-Newton method is clearly feasible for high-dimensional problems. It takes two ordinary iterates to generate a
secant condition and a corresponding quasi-Newton update. If a quasi-Newton update fails to send the objective function
in the right direction, then one can always revert to the second iterate F ◦ F(xk). For a given q, the obvious way to proceed
is to do q initial ordinary updates and form q − 1 secant pairs. At that point quasi-Newton updating can commence. After
each accelerated update, one should replace the earliest retained secant pair by the new secant pair. The whole scheme
is summarized in Algorithm 3. Note that the effort per iteration is relatively light: two ordinary iterates and some matrix
times vector multiplications. Most of the entries of U tU and U tV can be computed once and used over multiple iterations.
The scheme is also consistent with linear constraints. Thus, if the parameter space satisfies a linear constraintwtx = a for all
feasible x, then the quasi-Newton iterates also satisfy wtxk = a for all k. This claim follows from the equalities wtF(x) = a
andwtV = 0 in the above notation.
Earlier quasi-Newton accelerations (Jamshidian and Jennrich, 1997; Lange, 1995) focus on approximating the Hessian

of the objective function rather than the differential of the algorithm map. In our recent paper (Zhou et al., 2009),
we demonstrate that the current quasi-Newton acceleration significantly boosts the convergence rate of a variety of
optimization algorithms. We apply it in the next section to importance sampling.

5. Example

Our numerical example, borrowed from chapter 14 of the book (Moore and McCabe, 2005), contains a random sample
of n = 1664 repair times for Verizon’s telephone customers. It is evident from the histogram displayed in Fig. 1 that the
distribution of repair times has a long right tail and is far from normal. The median is 3.59 h, but the mean is 8.41 h, and
the maximum is 191.6 h. For purposes of illustration, we focus on the probability that the repair time of a Verizon customer
exceeds 100 h. The statistic of interest T (x) = 1

n

∑
i 1{xi>100} is strongly influenced by extreme repair times. To estimate

optimal importance weights, we took a preliminary bootstrap sample of size B1 = 1000 and executed our estimation pro-
cedure in MATLAB. We also performed three forms of interior point optimization in MATLAB’s Optimization Toolbox as part
of the fmincon function. The three standardmethods use the exact Hessian of the objective function, a BFGS quasi-Newton
approximation to it, and a limited-memory version (LBFGS) of the BFGS approximation. The LBFGS algorithm depends as

H. Zhou, K. Lange / Computational Statistics and Data Analysis 55 (2011) 26–33 31

Algorithm 3 Quasi-Newton Acceleration of an Algorithm Map F for Minimizing the Objective Function O
Initialize: x0, q
for i=1 to q+ 1 do
xi = F(xi−1)

end for
ui = xi − xi−1, vi = xi+1 − xi, i = 1, . . . , q
U = [u1 . . . uq], V = [v1 . . . vq]
xn = xq+1
repeat
x1 = F(xn)
if [O(x1)− O(xn] ≤ ε[|O(xn)| + 1] then
break

end if
x2 = F(x1)
update the oldest u in U by u = x1 − xn
update the oldest v in V by v = x2 − x1
xqn = x1 + V (U tU − U tV)−1U tu
if xqn falls outside the feasible region then
project xqn onto feasible region

end if
if the objective function satisfies O(xqn) < O(x2) then
xn+1 = xqn

else
xn+1 = x2

end if
until convergence occurs

Table 1
Comparison of algorithms for calculating importance weights for the Verizon repair time data set. There are n = 1664 observations and B1 = 1000
bootstrap replicates.

Algorithm Iters s(p∗) (×10−6) Time

Naive 11586 4.666920 2023.1764
q = 1 24 4.665277 11.7226
q = 2 19 4.665277 8.9670
q = 3 16 4.665277 7.1562
q = 4 16 4.665277 6.9169
q = 5 17 4.665276 7.0566
q = 6 17 4.665277 6.7434
q = 7 18 4.665277 6.8271
q = 8 19 4.665277 7.0829
q = 9 20 4.665277 7.2667
q = 10 21 4.665277 7.4299

Int-Pt (Hessian) 18 4.665276 1247.8343
Int-Pt (BFGS) 69 4.665276 149.7225
Int-Pt (LBFGS) Refer to Table 2

well on the number q of secant conditions selected. The active set and trust region methods also implemented in MAT-
LAB are ignored here. The first is noticeably slower than the interior point methods, and the second cannot handle equality
constraints and boundary conditions.
The exact Hessian method takes only 18 iterations but 1248 s to converge. In practice, 99% of the execution time is

spent on evaluating the Hessian matrix, which requires O(n2B1) operations per iteration, and 1% of the time is spent on
factoring the Hessian matrix, which requires O(n3) operations per iteration. This example illustrates the extreme speed of
MATLAB’s matrix operations. The interior point method with BFGS updates takes many more iterations but much less time
per iteration because it dispenseswith evaluating and factoring the Hessianmatrix. Part of the slow convergence of the BFGS
method may be attributed to the boundary conditions. In contrast, our algorithm takes O(nB1) operations per iteration and
converges quickly under acceleration. As shown in Table 1, the accelerated algorithmwith q ≥ 1 secant conditions is a clear
winner, giving massive improvements in execution time over the naïve MM algorithm and the Hessian and BFGS variants of
Newton’s method. Although our accelerated algorithm also beats the LBFGS algorithm for all choices of q, Table 2 shows that
the later algorithm is highly competitive on large-scale problems. All comparisons listed in the two tables involve stringent
stopping criteria, which are adjusted to give the same number of significant digits for the converged values of the objective
function. Running times are recorded in seconds.

32 H. Zhou, K. Lange / Computational Statistics and Data Analysis 55 (2011) 26–33

0 20 40 60 80 100 120 140 160 180 200

Repair Time

C
ou

nt
s

0

100

200

300

400

500

600

700

Fig. 1. Histogram of 1664 repair times for Verizon’s customers.

Table 2
Comparison of our quasi-Newton acceleration and the LBFGS methods on the Verizon data set.

q Quasi-Newton Int-Pt (LBFGS)
Iters s(p∗)(×10−6) Time Iters s(p∗)(×10−6) Time

1 21 4.66528164 11.3508 149 4.66527741 18.6839
2 17 4.66527843 8.5021 90 4.66527742 12.1505
3 15 4.66527728 7.0560 75 4.66527741 9.9297
4 15 4.66527699 6.6824 89 4.66527742 12.2690
5 16 4.66527679 7.1644 78 4.66527741 11.3548
6 16 4.66527712 7.3846 83 4.66527742 12.1189
7 17 4.66527710 6.3872 76 4.66527742 12.1928
8 18 4.66527704 6.9555 74 4.66527742 11.7458
9 19 4.66527699 6.8392 67 4.66527741 10.6362
10 20 4.66527703 7.0096 67 4.66527742 10.2277

6. Discussion

In summary, our procedure uses: (a) quadratic approximation of the objective function, (b) majorization by a second
quadratic with parameters separated, (c) the Michelot algorithm to project points onto a truncated simplex, and (d) accel-
eration by quasi-Newton approximation of the algorithm map. Each of these ideas has other applications.
Quadratic approximation lies at the heart of Newton’s method and its many spinoffs. Our outer-product majorization

balances separation of parameters against poor approximation of the Hessian. Separation of parameters is often the key to
solving high-dimensional problems. The loss of quadratic convergence is largely remedied by acceleration. This combination
of tactics also has potential in fitting generalized linear models (GLM). In this setting, Fisher’s scoring method uses the
expected information matrix

J(β) =
n∑
i=1

1
σ 2i (β)

q′(xtiβ)
2xixti

rather than the observed information matrix. Here β is the parameter vector, q(·) is the inverse link function, xi is the
predictor vector for case i, yi the response for case i, andσ 2i (β) = Var(yi). Note that J(β) is again a sumof outer products. This
fact suggests a combination of majorization and acceleration on high-dimensional GLM problems. In many such problems,
it is prudent to also impose a ridge or lasso penalty. The ridge penalty preserves separation of parameters by a quadratic
surrogate. The lasso penalty also preserves separation of parameters, but not by a quadratic surrogate. Lasso penalized
maximum likelihood estimation is amenable to cyclic coordinate ascent because the lasso is linear on either side of 0.
Our recent work on penalized ordinary and logistic regression (Wu and Lange, 2008; Wu et al., 2009) illustrates some
of the possibilities. Finally, our paper (Zhou et al., 2009) amply illustrates the virtues of acceleration by quasi-Newton
approximation of an algorithm map.

References

Davison, A.C., 1988. Discussion of paper by D.V. Hinkley. J. Roy. Statist. Soc. Ser. B 50, 356–357.
Do, K.A., Wang, X., Broom, B.M., 2001. Importance bootstrap resampling for proportional hazards regression. Comm. Statist. Theory Methods 30 (10),
2173–2188.

Do, K.A., Hall, P., 1991. On importance resampling for the bootstrap. Biometrika 78 (1), 161–167.

H. Zhou, K. Lange / Computational Statistics and Data Analysis 55 (2011) 26–33 33

Hall, P., 1992. The Bootstrap and Edgeworth Expansion. Springer-Verlag, New York.
Hesterberg, T., 1996. Control variates and importance sampling for efficient bootstrap simulations. Statist. Comput. 6, 147–157.
Hinkley, D.V., Shi, S., 1989. Importance sampling and the nested bootstrap. Biometrika 76 (3), 435–446.
Hu, J., Su, Z., 2008. Bootstrap quantile estimation via importance resampling. Comput. Statist. Data Anal. 52 (12), 5136–5142.
Hunter, D.R., Lange, K.L., 2004. A tutorial on MM algorithms. Amer. Statist. 58, 30–37.
Jamshidian, M., Jennrich, R.I., 1997. Acceleration of the EM algorithm by using quasi-Newton methods. J. Roy. Statist. Soc. Ser. B 59 (3), 569–587.
Johns, M.V., 1988. Importance sampling for bootstrap confidence intervals. J. Amer. Statist. Assoc. 83 (403), 709–714.
Lange, K.L., 1995. A quasi-Newton acceleration of the EM algorithm. Statist. Sinica 5 (1), 1–18.
Lange, K.L., 2004. Optimization. Springer-Verlag, New York.
Michelot, C., 1986. A finite algorithm for finding the projection of a point onto the canonical simplex of Rn . J. Optim. Theory Appl. 50 (1), 195–200.
Moore, D.S., McCabe, G.P., 2005. Introduction to the Practice of Statistics. W.H. Freeman.
Wu, T.T., Lange, K.L., 2008. Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Stat. 2, 224–244.
Wu, T.T, Chen, Y.F., Hastie, T., Sobel, E.M., Lange, K.L., 2009. Genomewide association analysis by lasso penalized logistic regression. Bioinformatics 25,
714–721.

Zhou, H., Alexander, D., Lange, K.L., 2009. A quasi-Newton acceleration for high-dimensional optimization algorithms. Stat. Comput. doi:10.1007/s11222-
009-9166-3.

http://dx.doi.org/doi:10.1007/s11222-009-9166-3
http://dx.doi.org/doi:10.1007/s11222-009-9166-3
http://dx.doi.org/doi:10.1007/s11222-009-9166-3

	A fast procedure for calculating importance weights in bootstrap sampling
	Introduction
	Optimization in importance resampling
	Michelot algorithm
	A quasi-Newton acceleration scheme
	Example
	Discussion
	References

