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Summary. Modern technologies are producing a wealth of data with complex structures. For
instance, in two-dimensional digital imaging, flow cytometry and electroencephalography, matrix-
type covariates frequently arise when measurements are obtained for each combination of two
underlying variables. To address scientific questions arising from those data, new regression
methods that take matrices as covariates are needed, and sparsity or other forms of regulariza-
tion are crucial owing to the ultrahigh dimensionality and complex structure of the matrix data.
The popular lasso and related regularization methods hinge on the sparsity of the true signal in
terms of the number of its non-zero coefficients. However, for the matrix data, the true signal is
often of, or can be well approximated by, a low rank structure. As such, the sparsity is frequently
in the form of low rank of the matrix parameters, which may seriously violate the assumption
of the classical lasso. We propose a class of regularized matrix regression methods based on
spectral regularization. A highly efficient and scalable estimation algorithm is developed, and
a degrees-of-freedom formula is derived to facilitate model selection along the regularization
path. Superior performance of the method proposed is demonstrated on both synthetic and real
examples.

Keywords: Electroencephalography; Multi-dimensional array; Nesterov method; Nuclear
norm; Spectral regularization; Tensor regression

1. Introduction

Modern scientific applications are frequently producing data sets where the sampling unit is
not in the form of a vector but instead a matrix. Examples include two-dimensional digital
imaging data, which record the quantized brightness value of a colour at rows and columns
of pixels, and flow cytometric data, which contain the fluorescence intensity of multiple cells
at multiple channels. Our motivating example is a study of an electroencephalography data set
of alcoholism. The study consists of 122 subjects with two groups, an alcoholic group and
a normal control group, and each subject was exposed to a stimulus. Voltage values were
measured from 64 channels of electrodes placed on the subject’s scalp for 256 time points,
so each sampling unit is a 256× 64 matrix. It is of scientific interest to study the associa-
tion between alcoholism and the pattern of voltage over times and channels. The generalized
linear model (GLM) (McCullagh and Nelder, 1983) offers a useful tool for that purpose,
where the response Y is the binary indicator of alcoholic or control, and the predictors in-
clude the matrix-valued electroencephalography data X and possible covariate vector Z such
as age and gender. However, the classical GLM deals with a vector of covariates, and the
presence of matrix-type covariates poses fresh challenges to statistical analysis. First, naively
turning a matrix into a vector results in an exceedingly large dimensionality; for instance, for the
electroencephalography data, the dimension is p= 256× 64= 16384, whereas the sample size
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is only n= 122. Second, vectorization destroys the wealth of structural information that is
inherently possessed in the matrix data; for example it is commonly expected that the volt-
age values of the adjacent time points and channels are highly correlated. Given the ultrahigh
dimensionality and the complex structure, regularization becomes crucial for the analysis of
such data. In this paper, we propose a novel regularization solution for regression with matrix
covariates, which efficiently tackles the ultrahigh dimensionality while preserving the matrix
structure.

A wide variety of regularization methods have been developed in recent years. Among them,
penalization has been playing a powerful role in stabilizing the estimates, improving the risk
property and increasing the generalization power in classical regressions. Popular penalization
techniques include the lasso (Tibshirani, 1996; Donoho and Johnstone, 1994), smoothly clipped
absolute deviation (SCAD) (Fan and Li, 2001), the fused lasso (Tibshirani et al., 2005), the
elastic net (Zou and Hastie, 2005) and many others. For regressions with matrix covariates, a
direct approach is first to vectorize the covariates and then to apply the classical penalization
techniques. Regularization helps to alleviate the problem that the dimensionality far exceeds the
sample size. However, this is unsatisfactory, since it fails to incorporate the matrix structural
information. More importantly, the solution is based on a fundamental assumption that the
true underlying signal is sparse in terms of the l0-norm of the regression parameters. In matrix
regressions, however, often the true signal is of, or can be well approximated by, a low rank
structure. As such, sparsity is in terms of the rank of the matrix parameters, which is intrinsically
different from sparsity in the number of non-zero entries.

To see how such a difference affects signal estimation in matrix regressions, we consider the
following illustrative example. We generated a normal response Y with mean μ=γTZ+〈B, X〉,
and variance 1. Z∈R5 denotes a usual vector of covariates with standard normal entries, and γ=
.1, : : : , 1/T. X∈R64×64 denotes the matrix covariates, of which all entries are standard normal,
and B is the coefficient matrix of the same size. B is binary, with the true signal region, which is
a cross shape in our example, equal to 1 and the rest 0. The inner product between two matrices
is defined as 〈B, X〉= tr.BTX/=〈vec.B/, vec.X/〉, where vec.·/ is the vectorization operator that
stacks the columns of a matrix into a vector. We sampled n= 500 instances {.yi, xi, zi/, i=
1, : : : , 500}, and the goal is to identify B through a regression of yi on .xi, zi/. We note that our
problem differs from the usual edge detection or object recognition in imaging processing (Qiu,
2005, 2007). In our set-up, all elements of the image X follow the same distribution. The signal
region is defined through the coefficient image B and needs to be inferred from the association
between Y and X after adjusting for Z. We also note that the total number of entries in B is
4096=642, and the number of non-zero entries is 240 (about 5:8%). We applied two approaches.
The first is the lasso to the vectorized X, i.e. we solve the optimization problem

min
B

1
2

n∑
i=1

.yi−γTzi−〈B, xi〉/2+λ‖vec.B/‖1,

where ‖vec.B/‖1 is the l1-norm of the vectorized B, and λ is the regularization parameter.
Fig. 1(e) displays the Bayesian information criterion BIC along the lasso solution path, which
suggests a model with the maximum number of predictors (500) that is allowed given the sample
size. The parameter estimate under this model is shown Fig. 1(c), which appears far away from
the truth. The second solution that we consider is penalizing the nuclear norm of B, i.e. we
solve

min
B

1
2

n∑
i=1

.yi−γTzi−〈B, xi〉/2+λ‖B‖Å,
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Fig. 1. Comparison of the nuclear-norm-regularized estimation with the classical lasso (the matrix covariate
is 64�64, and the sample size is 500): (a) true signal, (b) nuclear-norm-regularized estimate with minimal BIC;
(c) classical lasso estimate with minimal BIC; (d) BIC along solution paths for the nuclear norm regularization;
(e) BIC along solution paths for classical lasso regularization

where the nuclear norm ‖B‖Å=Σj σj.B/, and σj.B/s are the singular values of the matrix B. The
nuclear norm ‖B‖Å is a suitable measure of the ‘size’ of a matrix and is a convex relaxation of
rank.B/=‖σ.B/‖0. This is analogous to the l1-norm for a vector (Recht et al., 2010). Fig. 1(d)
displays BIC along the solution path of the nuclear norm penalized matrix regression, and
Fig. 1(b) shows the corresponding estimate with minimal BIC. It is clearly seen that the nuclear
norm estimate achieves a substantially better recovery than the lasso estimate. One might argue
that the fused lasso (Tibshirani et al., 2005) might give better recovery of such piecewise constant
signals. However, there are numerous low rank signals, e.g. .01: : : 01/T.10: : : 10/, which are
extremely non-smooth and would fail the fused lasso.

More generally, in this paper, we propose a family of regularized regression models with
matrix covariates based on spectral regularization. Our contributions are multifold. First, we
employ a spectral regularization formulation within the GLM framework. The resulting model
works for a variety of penalization functions, including the lasso, elastic net, SCAD and many
others, as well as different types of response variables, including normal, binary and count
outcomes. Second, we develop a highly efficient and scalable algorithm for model estimation
with explicit, non-asymptotic convergence rate. Such a highly scalable algorithm is critical for
analysing large-scale and ultrahigh dimensional matrix data. Third, we derive the effective
degrees of freedom of selected models, which are crucial for tuning the regularization parameter.
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This can be viewed as an extension of the degrees-of-freedom development from the classical
lasso model (Zou et al., 2007) and the group lasso model (Yuan and Lin, 2006) to the generalized
linear matrix model. However, our proposal is not simply another variant of the lasso and like
techniques. We aim at matrix regression problems, which are important in imaging and other
scientific applications but have received relatively little attention.

Our proposal is related to but also distinct from some recent developments involving matrix
data. The first is a recent proposal of a family of GLMs with matrix or tensor (multi-dimensional
array) covariates (Zhou et al., 2013). The basic idea is to impose a particular low rank structure
on B and then to introduce a sparse penalty on the coefficients of B. That solution fits the model
at a fixed rank of the matrix or tensor regression parameters and thus corresponds to the hard
thresholding in the classical vector covariate case. In contrast, our solution does not fix the rank
and is a soft thresholding procedure. Moreover, even when using a convex penalty function
such as the lasso penalty, the approach of Zhou et al. (2013) involves a challenging non-convex
optimization task, whereas the solution in this paper remains a convex problem. We also note
that Hung and Wang (2013) considered matrix logistic regression, which is a special case of
Zhou et al. (2013), and Caffo et al. (2010) combined principal components analysis with logistic
regression for array predictors. But no-one has investigated sparsity regularization. The second
related work is the line of research in matrix completion, where nuclear-norm-type regularization
has been widely employed (Candès and Recht, 2009; Mazumder et al., 2010; Cai et al., 2010).
However, the two approaches are different in that the matrix completion problem aims to recover
a low rank matrix when only a small portion of its entries are observed, whereas our approach
concerns regressions with matrix covariates. The third line of work concerns decompositions of
array data (Crainiceanu et al., 2011; Allen et al., 2011). The key difference is that they focused on
principal-components-type decomposition for matrix data and the approach is unsupervised,
whereas our proposal works on regression and is thus supervised.

The rest of the paper is organized as follows. We formulate the spectral regularization for
matrix regression in Section 2 and develop a highly scalable algorithm for the associated
optimization in Section 3. We derive the degrees-of-freedom formula in Section 4 and investi-
gate the numerical performance of the proposed method in Section 5. We conclude the paper
with a discussion of potential future research in Section 6. All technical proofs are delegated to
Appendix A.

2. Spectral regularization

We start with some notation. For any matrix B∈Rp1×p2 , σ.B/= .σ1.B/, : : : , σq.B//, q=min{p1,
p2}, denotes the vector of singular values of B arranged in decreasing order, i.e. σ1.B/�σ2.B/�
: : :�σr.B/>σr+1.B/=: : :=σq.B/=0, where r= rank.B/. For any scalar function f , ∇f is the
column gradient vector and d2f is the Hessian matrix. Let Y denote the response variable,
Z∈Rp0 the vector covariate, X ∈Rp1×p2 the two-dimensional matrix covariate and .y, x, z/

their sample instances.
We consider the GLM set-up, where Y belongs to an exponential family with probability mass

function or density

p.y|x, z/= exp
{

yθ−b.θ/

a.φ/
+ c.y, φ/

}
:

Here θ is the natural parameter and φ> 0 is a dispersion parameter. a.φ/ usually has the form
a.φ/=φw−1, where w is a prespecified weight. The first conditional moment is E.Y |X, Z/=μ=
b′.θ/, and μ is of the form
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q.μ/=γTZ+〈B, X〉, .1/

where q is a known link function, γ ∈Rp0 , and B∈Rp1×p2 . For simplicity, we drop the vector
covariate Z and its associated parameter γ in subsequent development. However, the results
can be readily extended to incorporate Z and γ. Also, we consider only GLMs with a univariate
response. Extensions to more complex models such as quasi-likelihood models and multivariate
responses are straightforward.

We consider the spectral regularization problem

min
B

h.B/= l.B/+J.B/, .2/

where l.B/ is a loss function; for the GLM, we use the negative log-likelihood as the loss.
J.B/=f ◦σ.B/, where f : Rq→R is a function of the singular values of B. The least squares
loss combined with f.w/= λΣq

j=1|wj| corresponds to the special case of the nuclear norm
regularization problem that was considered in Section 1. In general, for sparsity of the spectrum,
f takes the general form

f.w/=
q∑

j=1
Pη.|wj|, λ/,

where P is a scalar penalty function, η is the parameter indexing the penalty family and λ is the
tuning constant. We list some commonly used penalty functions below.

(a) Power family (Frank and Friedman, 1993):

Pη.|w|, λ/=λ|w|η, η∈ .0, 2]:

Two important special cases of this family are the lasso penalty when η=1 (Tibshirani,
1996; Chen et al., 2001) and the ridge penalty when η=2 (Hoerl and Kennard, 1970).

(b) The elastic net (Zou and Hastie, 2005):

Pη.|w|, λ/=λ{.η−1/w2=2+ .2−η/|w|}, η∈ [1, 2]:

Varying η from 1 to 2 bridges the lasso to the ridge penalty.
(c) The log-penalty (Candès et al., 2008; Armagan et al., 2013)

Pη.|w|, λ/=λ ln.η+|w|/, η > 0:

(d) SCAD (Fan and Li, 2001), in which the penalty is defined via its partial derivative:

@

@|w|Pη.|w|, λ/=λ

{
1{|w|�λ}+

.ηλ−|w|/+
.η−1/λ

1{|w|>λ}
}

, η > 2:

Integration shows that SCAD is a natural quadratic spline with knots at λ and ηλ

Pη.|w|, λ/=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ|w| |w|<λ,

λ2+ ηλ.|w|−λ/

η−1
− w2−λ2

2.η−1/
|w| ∈ [λ, ηλ],

λ2.η+1/

2
|w|>ηλ.

For small signals |w|<λ, it acts as a lasso; for large signals |w|>ηλ, the penalty flattens
and leads to the unbiasedness of the regularized estimate.

(e) The MC+-penalty (Zhang, 2010), which is similar to SCAD and is defined by the partial
derivative

@

@|w|Pη.|w|, λ/=λ

(
1− |w|

λη

)
+

:
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Integration shows that the penalty function

Pη.|w|, λ/=
(

λ|w|− w2

2η

)
1{|w|<λη}+

λ2η

2
1{|w|�λη}, η > 0,

is quadratic on [0, λη] and flattens beyond λη. Varying η from 0 to ∞ bridges hard
thresholding (l0-regression) to lasso (l1-) shrinkage.

We also comment that, besides these sparsity penalties, other forms of regularization can
be useful, depending on the scientific question of interest. For instance, the choice f.w/=
λΣq−1

j=1|wj −wj+1|=λ.w1−wr/ produces the regularization for the ‘spiked’ matrix model, i.e.
matrices with clustered eigenvalues or singular values (Johnstone, 2001).

Convexity eases the study of convergence properties in many optimization problems. We first
state the necessary and sufficient condition for the convexity of the regularizer J . Its proof
follows from the theory of the spectral function (Borwein and Lewis, 2006).

Lemma 1. The functional J.B/=f ◦σ.B/ is convex and lower semicontinuous if and only if
f is convex and lower semicontinuous. Furthermore, for a convex f , the subdifferential of J

at B, which admits singular value decomposition U diag.b/VT, is

@J.B/= @.f ◦σ/.B/=U diag{@f.b/}VT:

Here ‘diag’ denotes a diagonal matrix. Lemma 1 immediately leads to the optimality condition
when both loss and regularizer are convex.

Theorem 1. When both the loss l and f are convex, all local minima of the regularized pro-
gramme (2) are global minima and are unique if l is strictly convex. A matrix B=U diag.b/VT

is a global minimum if and only if

0p1×p2 ∈∇l.B/+U diag{@f.b/}VT:

When either the loss l or f is non-convex, the regularized objective function (2) may be
non-convex and lacks an easy-to-check optimality condition.

3. Estimation algorithm

We utilize the powerful Nesterov optimal gradient method (Nesterov, 1983, 2004; Beck and
Teboulle, 2009a) for minimizing the non-smooth and possibly non-convex objective function
(2). We first state a matrix thresholding formula for spectral regularization, which forms the
building blocks of the Nesterov algorithm.

Proposition 1. For a given matrix A with singular value decomposition A=U diag.a/VT, the
optimal solution to

min
B

1
2‖B−A‖2F+f ◦σ.B/

shares the same singular vectors as A and its ordered singular values are the solution to

min
b

1
2‖b−a‖22+f.b/:

Here A and B denote two generic matrices, with a and b as their singular values accordingly. An
immediate consequence of proposition 1 is the following well-known singular value thresholding
formula for nuclear norm regularization (Cai et al., 2010).
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Corollary 1. For a given matrix A with singular value decomposition A=U diag.a/VT, the
optimal solution to

min
B

1
2‖B−A‖2F+λ‖B‖Å

shares the same singular vectors as A and its singular values are bi= .ai−λ/+.

Given this matrix thresholding formula, we are ready to present the Nesterov algorithm for
minimizing problem (2). The Nesterov method has attracted increasing attention in recent years
owing to its efficiency in solving regularization problems (Beck and Teboulle, 2009a). It resem-
bles the classical gradient descent algorithm in that only the first-order gradients of the objective
function are utilized to produce the next algorithmic iterate from the current search point and
as such is simple to implement. It differs from the gradient descent algorithm by extrapolating
the previous two algorithmic iterates to generate the next search point. This extrapolation step
incurs trivial computational cost but improves the convergence rate dramatically. It has been
shown to be optimal among a wide class of convex smooth optimization problems (Nemirovski,
1994; Nesterov, 2004).

We summarize our Nesterov method for solving spectral regularization problem (2) in algo-
rithm 1 (Table 1). Each iteration consists of three stages:

(a) predict a search point S by a linear extrapolation from the previous two iterates (step 3
of algorithm 1),

(b) perform gradient descent from the search point S possibly with an Armijo-type line search
(steps 4–10) and

(c) force the descent property of the next iterate (steps 11–15).

In step (a), α.t/ is a scalar sequence that plays a critical role in the extrapolation. We update this
sequence as in the original Nesterov method (step 16 of algorithm 1), whereas other sequences,

Table 1. Algorithm 1: Nesterov method for spectral regularized matrix
regression (2)

Step Description Comment

1 Initialize B.0/=B.1/, α.0/=0, α.1/=1, δ > 0
2 Repeat

3 S.t/←B.t/+ α.t−1/−1
α.t/

.B.t/−B.t−1// Extrapolation

4 Repeat Line search
5 Atemp←S.t/− δ∇l.S.t//
6 Compute singular value decomposition

Atemp=U diag.a/VT

7 b←arg minx.2δ/−1‖x−a‖22+f.x/

8 Btemp←U diag.b/VT

9 δ← δ=2
10 Until h.Btemp/�g.Btemp |S.t/, δ/ Force descent
11 If h.Btemp/� .Bt / then
12 B.t+1/←Btemp
13 Otherwise
14 B.t+1/←B.t/

15 End
16 α.t+1/← [1+√{1+ .2α.t//2}]=2 Update α
17 Until objective value converges
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for instance α.t/= .t−1/=.t+2/, can also be used. In stage (b), the gradient descent is based on
the first-order approximation to the loss function at the current search point S.t/,

g.B|S.t/, δ/= l.S.t//+〈∇l.S.t//, B−S.t/〉+ 1
2δ
‖B−S.t/‖2F+J.B/

= 1
2δ
‖B−{S.t/− δ∇l.S.t//}‖2F+J.B/+ c.t/,

where the constant δ is determined during the line search and the constant c.t/ collects terms
that are irrelevant to the optimization. The ‘ridge’ term .2δ/−1‖B−S.t/‖2F acts as a trust region
and shrinks the next iterate towards S.t/. If the loss function l∈ C1,1, which denotes the class
of functions that are convex and continuously differentiable and the gradient satisfies ‖∇l.u/−
∇l.v/‖� L.l/‖u− v‖ with a known gradient Lipschitz constant L.l/ for all u and v, then δ
is fixed at L.l/−1. In practice, the gradient Lipschitz constant is often unknown. Then δ is
updated dynamically to capture the unknown L.l/ by using the classical Armijo line search
rule (Nocedal and Wright, 2006; Lange, 2004). Solution to the surrogate function g.B|S.t/, δ/ is
given by proposition 1. Singular value decomposition is performed on the intermediate matrix
Atemp=S.t/− δ∇l.S.t//. The next iterate B.t+1/ shares the same singular vectors as A and its
singular values b.t+1/ are determined by minimizing .2δ/−1‖b−a‖22+f.b/, where a=σ.Atemp/.
For a nuclear norm regularization f.w/=λΣj|wi|, the solution is given by soft thresholding the
singular values b

.t+1/
i = .ai−λδ/+. In this special case, only the top singular values or vectors

need to be retrieved. The Lanczos method (Golub and Van Loan, 1996) is extremely efficient for
this purpose. For a linear regularization function f.w/=λ‖Dw‖1 where D has full column rank,
reparameterization c=Db turns the problem into minc.1=2δ/‖.DTD/−1DTc− a‖22 + λ‖c‖1,
which is a standard lasso problem with many efficient solvers available. When D does not have
a full column rank, we append extra rows such that the expanded matrix, which is denoted by
D̃, has full column rank and then solve the above lasso problem with D̃ and only part of c
penalized.

For minimization of a smooth convex function l in C1,1, it is well known that the Nesterov
method is optimal with the convergence rate of order O.t−2/, where t indicates the iterate
number. In contrast, the gradient descent has a slower convergence rate of O.t−1/. Our spectral
regularization problem (2) is non-smooth, but a similar non-asymptotic convergence result can
be established, which is summarized in theorem 2. Its proof has been omitted for brevity, and
readers are referred to Beck and Teboulle (2009a).

Theorem 2. Suppose that l is continuously differentiable with a gradient Lipschitz constant
L.l/. Let B.t/ be the iterates generated by the Nesterov method described in algorithm 1. Then
the objective value h.B.t// monotonically converges. Furthermore, if J is convex, then

h.B.t//−h.BÅ/� 4L.l/‖B.0/−BÅ‖2F
.t+1/2 .3/

for all t �0 and any minimum point BÅ.

We make two remarks here. The first regards the monotonicity of the objective function during
iterations. Because of the extrapolation step, the objective values of algorithmic iterates h.B.t//

are not guaranteed to be monotonically decreasing. When the loss l∈C1,1 and the regularizer J

is convex, convergence of the objective values is guaranteed with the explicit convergence rate
(3). Because of potential use of a non-convex J , we enforce monotonicity of algorithmic iterates
(rows 11–15 in algorithm 1), which is essential for the convergence of at least the objective
values. After each gradient descent step, if the new iterate fails to decrease the objective value,
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then the current iterate is the same as the previous iterate. In other words, the next gradient
descent is initiated from the previous iterate. Fortunately, the fast convergence rate (3) still
holds under the assumptions l∈ C1,1 and J is convex. See Beck and Teboulle (2009b) for the
argument.

The second remark is about a crude estimate of the Lipschitz constant L.l/ for the GLM loss
l. Each step halving in the line search part of algorithm 1 involves an expensive singular value
decomposition. Therefore even a rough initial estimate of L potentially cuts the computational
cost significantly. Recall that a twice differentiable function f is continuously differentiable with
a Lipschitz constant L if and only if vTd2f.u/v �L‖v‖22 for all v. The Fisher information matrix
of a GLM model with systematic part (1) is

I.B/=E{d2l.B/}=
n∑

i=1
ωi.vec.xi//.vec.xi//

T,

where ωi= {μ′i.ηi/=σi}2, ηi is the systematic part, μi is the mean and σ2
i is the variance cor-

responding to the ith observation. Then in light of the Cauchy–Schwartz inequality

vT I.B/v=∑
i

ωi.vT vec.xi//.vTvec.xi//
T �

∑
i

ωi‖vec.xi/‖22‖v‖22=‖v‖22
(∑

i

ωi‖xi‖2F
)

,

and thus an initial estimate of L is given by L≈Σiμ
′
i.ηi/

2=σ2
i ‖Xi‖2F. Note that this L provides an

upper bound to the smallest Lipschitz constant. Setting initial δ one or two orders of magnitude
larger than L−1 works well in practice.

4. Degrees of freedom

In this section, we address the problem of choosing the tuning parameter λ that yields the best
model along the regularization path according to certain criteria. Cross-validation is commonly
used for parameter tuning in practice. However, for large data, it may incur considerable compu-
tation burden. There are computationally attractive alternatives, such as the Akaike information
criterion AIC (Akaike, 1974) and BIC (Schwarz, 1978), which often yield performance that is
comparable with cross-validation in practice.

Consider a normal model under the GLM (1). For simplicity, we again drop the covariate
vector Z:

Y =〈X, B〉+ " .4/

where " is a normal error with mean 0 and variance υ2. Let yi denote the ith observation of Y and
ŷi.λ/ denote the estimated response under a given tuning parameter λ from the minimization
of problem (2). Then, for this normal model, AIC and BIC are defined by

AIC.λ/=
∑
i

{yi− ŷi.λ/}2

υ2 +2df.λ/,

BIC.λ/=
∑
i

{yi− ŷi.λ/}2

υ2 + ln.n/df.λ/:

In applications, the variance υ2 is often unknown but can be estimated from the fitted value
by least squares estimation. An essential element in the above model selection criteria is the
effective degrees of freedom df.λ/ of the selected model. Using Stein’s theory of unbiased risk
estimation (Stein, 1981), Efron (2004) showed that, under a differentiability condition on ŷ.λ/,
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df.λ/=E

[
tr
{

@ŷ.λ/

@y

}]
= 1

τ2

n∑
i=1

cov{ŷi.λ/, yi}

with expectation taken with respect to Y , y= .y1, : : : , yn/T and ŷ= .ŷ1.λ/, : : : , ŷn.λ//T. This
formulation has been productively used to derive the degrees-of-freedom estimate in least angle
regression (Efron et al., 2004), the lasso (Zou et al., 2007), group-penalized regression (Yuan
and Lin, 2006) and sign coherent group-penalized regression (Chiquet et al., 2012).

We derive a degrees-of-freedom estimate for the nuclear-norm-regularized estimate under a
normal model. For an orthonormal design, i.e. ΞTΞ= Ip1p2 with the matrix Ξ having rows
.vec .xi//

T, the estimate derived is unbiased for the true degrees of freedom. In practice, it yields
results that are comparable with cross-validation even for non-orthogonal designs.

Theorem 3. Assume that the data are generated from model (4) with vec.xi/ orthonormal.
Consider the nuclear-norm-regularized estimate

B̂λ=arg min
B

1
2

∑
i

.yi−〈Xi, B〉/2+λ‖B‖Å

with singular values σ.B̂λ/= .b1.λ/, : : : , bq.λ// where q=min{p1, p2}. Let B̂LS be the usual
least squares estimate and assume that it has distinct positive singular values σ1 >: : :>σq >0.
With the convention σi=0 for i > q, the following expression is an unbiased estimate of the
degrees of freedom of the regularized fit:

d̂f.λ/=
q∑

i=1
1{bi.λ/>0}

{
1+ ∑

1�j�p1, j �=i

σi.σi−λ/

σ2
i −σ2

j

+ ∑
1�j�p2,j �=i

σi.σi−λ/

σ2
i −σ2

j

}
:

This formula for the degrees of freedom is interesting in several respects. First it does not
involve any information on the singular vectors of the least squares estimate, but requires only
singular values. Second, d̂f.λ/ is continuous in λ, in contrast with the piecewise constant degrees-
of-freedom estimate for the classical lasso (Zou et al., 2007). Third, at any λ > 0, the effective
degrees of freedom are always dominated by the naive count of parameters r.λ/.p1+p2/− r2.λ/

in the regularized estimate B̂λ of rank r.λ/, as manifest from the straightforward inequalities

d̂f.λ/�
q∑

i=1
1{bi.λ/>0}

(
1+2

∑
r.λ/<j�q

σi

σi+σj
+ ∑

q<j�max{p1, p2}
σi

σi+0

)

�
q∑

i=1
1{bi.λ/>0}[1+2{q− r.λ/}+max{p1, p2}−q]

=
q∑

i=1
1{bi.λ/>0}{p1+p2+1−2r.λ/}� r.λ/.p1+p2/− r2.λ/:

This reflects the overwhelming shrinkage effect of the nuclear norm regularization over model
searching. At λ=0, B̂0= B̂LS almost surely has a full rank and the number of degrees of freedom
is q+ q.q− 1/+ q.p1+p2− 2q/=p1p2, which is exactly the number of parameters without
any regularization and reflects the effect of no shrinkage. Fig. 2 plots the effective degrees
of freedom d̂f.λ/ and the naive count r.λ/.p1 + p2/− r2.λ/ for a matrix parameter of size
64×64.

Finally we note that the degrees-of-freedom formula in theorem 3 is limiting as it requires the
least squares estimate B̂LS, which is not unique when n<p1p2. In this case we may use a ridge
estimate B̂ridge.τ / where
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Fig. 2. Degrees-of-freedom estimate ̂df.λ/ versus the number of parameters in the estimated model B̂λ
with a B̂LS 2 R64�64: �, df.λ/; C, r.λ/*.p1 Cp2/� r2.λ/

vec.B̂ridge.τ //= .ΞTΞ+ τIp1p2/−1ΞTy,

which always exists and is unique. Assume that B̂ridge.τ / admits a singular value decomposition
B̂ridge.τ /=U diag.σ/VT. The degrees-of-freedom formula

d̂f.τ /=
q∑

i=1
1{bi.τ />0}

[
1+ 1

1+ τ

∑
1�j�p1, j �=i

σi{.1+ τ /σi−λ}
σ2

i −σ2
j

+ 1
1+ τ

∑
1�j�p2,j �=i

σi{.1+ τ /σi−λ}
σ2

i −σ2
j

]
generalizes theorem 3 and is unbiased for the true degrees of freedom under the same assump-
tions as theorem 3.

5. Numerical examples

We have conducted extensive numerical studies with two aims: first, we investigate the empirical
performance of the proposed spectral regularized regression with matrix covariates and, second,
we compare with the corresponding classical regularization solutions. Four methods are under
comparison: a matrix regression with nuclear norm regularization (since it takes the form f.w/=
λΣq

j=1|wj| in the regularization problem (2), we call this solution the matrix lasso), a usual
vector regression after vectorizing the matrix covariate with a lasso penalty (the lasso), a matrix
regression with power spectral regularization (matrix power) and the corresponding vector
regression with a power penalty (power). For the power penalty, we fix the coefficient η=0:5.
Our goal here is not how best to tune η. Instead, we examine this penalty since it yields a
nearly unbiased estimate. Other non-convex penalties such as SCAD yield very similar results,
which are not reported here for brevity. We summarize our findings in three examples. First, we
elaborate on the illustrative example by examining some different geometric and natural shapes.
Second, we generate some synthetic data and compare different regularization solutions under
varying ranks and sparsity levels. Last, we revisit the motivating electroencephalography data
that were mentioned in Section 1.
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Fig. 3. Comparison of the matrix and vector version of regularized estimators: (a) true signal; (b) matrix
lasso estimate; (c) lasso estimate; (d) matrix power estimate; (e) power estimate

5.1. Example 1: two-dimensional shapes
We first elaborate on the illustrative example in Section 1, by employing the same model set-
up, but examining a variety of signal shapes. We present in Fig. 3 the true signal followed by
the estimates from the four aforementioned regularization methods, where the regularization
parameter λ is tuned by BIC. It is seen that the matrix versions of regularized estimators clearly
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outperform their vector version counterparts, for both lasso and power penalties. Comparing
the matrix lasso with matrix power, the two yield comparable results, whereas the former is
better for the high rank signals, and the latter is better for the low rank signals. This observation
is further verified in the next simulation example.

5.2. Example 2: synthetic data
We consider a class of synthetic signals to compare various regularization methods under differ-
ent ranks and sparsity levels. Specifically, we generate the matrix covariates X of size 64×64 and
the five-dimensional vector covariates Z, both of which consist of independent standard normal
entries. We set the sample size at n=500, whereas the number of parameters is 64×64+5=4101.
We set γ= .1, : : : , 1/T and generate the true array signal as B=B1BT

2 , where Bd ∈Rpd×R, d=1, 2.
R controls the rank of the signal generated. Moreover, each entry of B is 0 or 1, and the per-
centage of non-zero entries is controlled by a sparsity level constant s, i.e. each entry of Bd

is a Bernoulli distribution with probability of 1 equal to
√{1− .1− s/1=R}. We vary the rank

R=1, 5, 10, 20, and the level of (non-)sparsity s=0:01, 0:05, 0:1, 0:2, 0:5. (So s=0:05 means that
about 5% of entries of B are 1s and the rest are 0s.) We generate both a normal and a binomial
response Y with the systematic part as in equation (1), with identity link for the normal model,
and logistic link for the binomial model.

We evaluate the performance of each method from two aspects: parameter estimation and
prediction. For the former, we employ BIC for tuning and the root-mean-squared error as the
evaluation criterion. For the latter, we use independent validation data to tune the parameter
and testing data to evaluate the prediction error measured by the root-mean-square error of the
response for the normal case, and the misclassification error rate for the binomial model. We
report the prediction results in Tables 2 and 3. The estimation results show a similar qualitative
pattern and thus are not reported for brevity.

We make the following observations. First, the proposed matrix version of estimators almost
always outperform the corresponding vector version in terms of both parameter estimation and
prediction. Second, the regular version of regularized estimators perform better when the signal
is more sparse (a smaller s), whereas it is relatively insensitive to the rank R. In contrast, the
matrix version estimators proposed perform better when the rank is smaller and are insensitive
to the coefficient sparsity. These patterns agree with our expectations since the former penalizes
directly on the coefficient count, whereas the latter on the rank. Third, comparing the lasso and
power penalty, the two yield similar results, whereas the lasso usually performs better when the
rank is high, and the power is better at low ranks. Such patterns agree with what we observed in
example 1 and provide some useful guidelines when choosing a penalty given the data. Finally,
we comment on the run time. The run time of the matrix solution is longer than that of the
vector solution. But overall it is reasonably fast. For instance, for R=1, s=1% and the normal
response, the average run time for obtaining the solution path with 40 grid points of the matrix
lasso, lasso, the matrix power and power are 11.27, 2.90, 11.91 and 4.29 s respectively. For R=20,
s=50% and the binary response, the average run times of the four methods are 4.30, 0.40, 13.80
and 0.41 s respectively. We feel that this run time increase is fully justified by the pronounced
better performance. The run time of the lasso is similar to that of the power method for the
normal response and faster for the binary response, and it only varies slightly for different ranks
and levels of sparsity.

5.3. Example 3: electroencephalography data analysis
We next analyse the motivating electroencephalography data. The data arise from a study to



476 H. Zhou and L. Li

Table 2. Prediction of a normal model†

Sparsity Method Results for the following ranks:
s (%)

R=1 R=5 R=10 R=20

1 Matrix lasso 1.71 (0.20) 4.60 (1.09) 5.53 (1.01) 5.87 (0.83)
Lasso 1.61 (0.98) 1.54 (0.49) 1.62 (0.76) 1.53 (0.23)
Matrix power 1.18 (0.04) 4.00 (1.16) 5.53 (1.05) 5.99 (0.87)
Power 1.24 (1.24) 1.13 (0.74) 1.17 (0.96) 1.07 (0.04)

5 Matrix lasso 2.28 (0.31) 11.03 (1.42) 12.84 (1.58) 13.75 (1.35)
Lasso 13.49 (2.92) 13.63 (2.12) 13.69 (2.05) 13.86 (1.61)
Matrix power 1.18 (0.04) 10.25 (1.48) 13.01 (1.59) 14.12 (1.41)
Power 14.71 (3.38) 14.88 (2.11) 14.93 (2.02) 15.11 (1.60)

10 Matrix lasso 2.54 (0.42) 16.10 (1.94) 18.59 (1.57) 19.81 (1.51)
Lasso 19.60 (2.66) 21.26 (2.49) 21.17 (2.05) 21.19 (1.74)
Matrix power 1.18 (0.05) 15.39 (2.16) 18.84 (1.59) 20.24 (1.60)
Power 21.14 (2.88) 22.80 (2.78) 22.71 (2.32) 22.55 (1.78)

20 Matrix lasso 3.19 (0.66) 22.72 (2.16) 26.78 (2.26) 28.87 (2.26)
Lasso 28.69 (3.02) 31.86 (3.22) 32.59 (3.18) 32.45 (2.77)
Matrix power 1.17 (0.04) 21.40 (2.31) 27.10 (2.17) 29.27 (2.19)
Power 30.88 (3.28) 34.35 (3.50) 35.01 (3.60) 35.00 (3.00)

50 Matrix lasso 4.57 (1.03) 35.65 (2.15) 45.13 (2.99) 50.92 (3.05)
Lasso 45.82 (2.75) 62.83 (4.90) 66.49 (5.52) 67.48 (4.44)
Matrix power 1.18 (0.05) 29.64 (2.08) 42.10 (2.38) 48.89 (2.95)
Power 49.80 (3.09) 68.07 (5.72) 71.63 (6.06) 72.73 (4.99)

†Reported are the mean and standard deviation (in parentheses) of the root-mean-squared
error for y out of 100 data replications. Values in italics denote the best method in each group.

examine electroencephalography correlates of genetic predisposition to alcoholism (http://
kdd.ics.uci.edu/datasets/eeg/eeg.data.html). They consist of 77 alcoholic in-
dividuals and 44 controls. For each subject, 64 electrodes were placed on the scalp that were
sampled at 256 Hz (3.9-ms epoch) for 1 s. The electrode positions were located at standard
sites (standard electrode position nomenclature; American Electroencephalographic Associa-
tion (1991)). In addition each subject performed 120 trials under three types of stimuli: a single
stimulus, two matched stimuli and two unmatched stimuli, and the electroencephalogram mea-
surements were collected for each trial. Detailed information about this data collection can
be found in Zhang et al. (1995). The same data set was also analysed in Li et al. (2010) and
Hung and Wang (2013). Following their practice, we focus on the average of all trials under the
single-stimulus condition for each subject. The resulting covariates xi are 256×64 matrices, and
the response yi is a binary variable indicating whether the ith subject is alcoholic (yi=1) or not
(yi=0).

Given that the true signal is rarely of an exact low rank structure and the experience from
simulations, we focus on comparing the matrix lasso and regular lasso in this data analysis. Eval-
uations are twofold: the plot of matrix coefficient estimates, and the accuracy of classification
for ‘future’ observations. First, we fit the full data, tuned on the basis of fivefold cross-validation,
and show the matrix coefficient estimates in Fig. 4. The matrix-regularized estimate suggests an
interesting outcome; for instance, the group of channels 20–30 shows similar time varying pat-
terns. In contrast, the vector version estimate yields no useful information. Given the potential
regions of interest, additional experiments are warranted for validation. Second, we evaluate the
cross-validation-based misclassification error to compare classification accuracy for future data,
i.e. we divide the full data into a training and a testing sample by using k-fold cross-validation.
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Table 3. Prediction of a binomial model†

Sparsity Method Results for the following ranks:
s (%)

R=1 R=5 R=10 R=20

1 Matrix lasso 0.23 (0.03) 0.34 (0.03) 0.36 (0.02) 0.37 (0.02)
Lasso 0.41 (0.04) 0.42 (0.04) 0.41 (0.04) 0.42 (0.03)
Matrix power 0.25 (0.03) 0.35 (0.03) 0.37 (0.03) 0.38 (0.03)
Power 0.76 (0.08) 0.76 (0.07) 0.78 (0.08) 0.77 (0.07)

5 Matrix lasso 0.20 (0.02) 0.36 (0.02) 0.39 (0.02) 0.41 (0.03)
Lasso 0.46 (0.02) 0.46 (0.03) 0.46 (0.03) 0.46 (0.02)
Matrix power 0.22 (0.03) 0.37 (0.02) 0.40 (0.02) 0.42 (0.03)
Power 0.85 (0.09) 0.85 (0.09) 0.82 (0.08) 0.85 (0.08)

10 Matrix lasso 0.19 (0.02) 0.36 (0.03) 0.40 (0.02) 0.40 (0.03)
Lasso 0.47 (0.02) 0.47 (0.02) 0.47 (0.02) 0.46 (0.02)
Matrix power 0.22 (0.03) 0.37 (0.03) 0.40 (0.02) 0.41 (0.02)
Power 0.86 (0.08) 0.87 (0.10) 0.86 (0.09) 0.87 (0.08)

20 Matrix lasso 0.19 (0.03) 0.34 (0.03) 0.38 (0.03) 0.40 (0.03)
Lasso 0.47 (0.02) 0.47 (0.03) 0.47 (0.03) 0.47 (0.02)
Matrix power 0.22 (0.03) 0.36 (0.02) 0.38 (0.03) 0.40 (0.02)
Power 0.89 (0.09) 0.87 (0.09) 0.86 (0.09) 0.86 (0.09)

50 Matrix lasso 0.19 (0.02) 0.28 (0.03) 0.31 (0.03) 0.34 (0.03)
Lasso 0.47 (0.02) 0.47 (0.03) 0.47 (0.02) 0.47 (0.02)
Matrix power 0.21 (0.02) 0.31 (0.03) 0.34 (0.03) 0.36 (0.02)
Power 0.87 (0.09) 0.86 (0.09) 0.87 (0.08) 0.87 (0.09)

†Reported are the mean and standard deviation (in parentheses) of the misclassifica-
tion error for y out of 100 data replications. Values in italics denote the best method
in each group.

We fit the training data, with another fivefold cross-validation to tune the shrinkage parameter.
We then apply the tuned model to the testing data and report the overall testing misclassification
error in Table 4. The results again show the superior performance of the matrix estimate com-
pared with the vector counterpart, whereas the chance estimate yields a 0.465 misclassification
rate. We also emphasize that a key advantage of our proposed approach is its ability to suggest
a useful model and potentially interesting regions rather than the classification accuracy per se.
This is different from black-box-type machine-learning-based imaging classifiers.

We briefly compare our analysis with those of Li et al. (2010) and Hung and Wang (2013) in
terms of classification accuracy, parameter tuning and preprocessing. We make the following
remarks. First, Li et al. (2010) reported a leave-one-out classification error rate of 0.205 but
did not report how the dimension reduction parameters were tuned. Hung and Wang (2013)
reported the best leave-one-out classification error rate of 0.139, whereas their tuning param-
eter was chosen so that the classification accuracy was maximized. We believe, however, that
the result could be overoptimistic, whereas a fair evaluation of prediction should have the
parameter tuning solely based on the training data. Second, both Li et al. (2010) and Hung
and Wang (2013) preprocessed the data by using a different version of matrix principal compo-
nents analysis for dimension reduction. Part of the reason was that their proposed numerical
methods cannot directly handle the 256× 64 size of the electroencephalography data. In con-
trast, our proposal is not limited by the matrix size and was directly applied to the original
data, given that the Nesterov algorithm is highly efficient and scalable. However, we agree that
such preprocessing could potentially improve the overall classification accuracy by removing
noisy irrelevant information. However, principal components analysis is known as unsupervised
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Fig. 4. Electroencephalography data matrix coefficient estimates: (a) matrix lasso estimate; (b) lasso
estimate

Table 4. Misclassification error rate for the electroencephalography
data

Method Leave-one- 5-fold 10-fold 20-fold
out rate rate rate rate

Matrix lasso 0.230 0.214 0.222 0.181
Lasso 0.246 0.287 0.271 0.264

dimension reduction, and it introduces another layer of tuning, including choosing the right
version of principal components analysis for matrices, and determining the optimal number of
principal components. Our goal of this data analysis has primarily been the comparison of the
regularized matrix regression estimators with the vector counterparts, so we have chosen not to
include any preprocessing.

6. Discussion

Motivated by modern scientific data arising in areas such as brain imaging, we study in this
paper the problem of regressions with matrix covariates. Regularization is bound to play a
crucial role in such regressions owing to the ultrahigh dimensionality and complex structure of
the matrix data. We have proposed a class of regularized matrix regression models by penalizing
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the spectrum of the matrix parameters. It is based on the observation that the matrix signals are
often of, or can be well approximated by, a low rank structure. Consequently, the new method
focuses on the sparsity in terms of the rank of the matrix parameters rather than the number
of non-zero entries and is intrinsically different from the classical lasso and related penalization
approaches.

In many applications, sparsity is sought in certain prespecified basis systems rather than the
original co-ordinates. Specifically, the systematic component takes the form

q.μ/=γTZ+〈B, ST
1 XS2〉,

where Sj ∈Rpj×qj contains qj basis vectors for j=1, 2. For two-dimensional images, overcom-
plete wavelet bases (qj >pj) are often used in both dimensions. For the electroencephalography
data that are channels by time points, a wavelet or Fourier basis can be applied to the time
dimension. It is of direct interest to seek a sparse low rank representation of the signal B in
the basis system by solving the regularized regression. In that sense, our proposed regularized
matrix regression can be considered as the matrix analogue of the classical basis pursuit problem
(Chen et al., 2001).

We have concentrated on problems with matrix covariates throughout this paper. In appli-
cations such as anatomical magnetic resonance imaging and functional magnetic resonance
imaging, the covariates are in the form of multi-dimensional arrays, i.e. tensors. It is natural
to extend the work here to regularized tensor regressions. However, the problem formulation
requires an appropriate norm for tensors that is analogous to the nuclear norm for matrices,
and the regularization and optimization involved are fundamentally different from the meth-
ods for matrices. We are currently pursuing this line of extension and will report the results
elsewhere.
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Appendix A

A.1. Proof of lemma 1
To show lemma 1, we first need a version of Fan–von Neuman inequality for singular values. See Marshall
et al. (2011) for a proof of this inequality.

Lemma 2 (Fan’s inequality). Let A∈Rp×q and B∈Rq×r be two matrices with ordered singular values
μ1 � : : :�μq and σ1 � : : :�σq. Then

tr.AB/�∑
i

μiσi:

The equality holds if and only if A and B are simultaneously diagonalizable, i.e. A=UDAVT and
B=UDBVT for some orthogonal matrices U and V and diagonal matrices DA and DB with entries
ordered from largest to smallest.

Recall that the Fenchel conjugate of a function f.x/ is defined as fÅ.y/= supy∈dom.f/ xTy−f.x/. By the
Fenchel–Moreau theorem (Borwein and Lewis (2006), theorem 4.2.1), f is convex and lower semicontinu-
ous if and only if f is Fenchel biconjugate f =fÅÅ. Therefore the first statement of lemma 1 follows from
the following result. Its proof follows Borwein and Lewis (2006), theorem 5.2.2, except replacing Fan’s
inequality for eigenvalues by the version for singular values (lemma 2).
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Lemma 3. Let f be a function of the ordered singular values and have Fenchel conjugate fÅ. Then
J.X/= .f ◦σ/.X/ has Fenchel conjugate JÅ.Y/=fÅ ◦σ.Y/.

Proof. By lemma 2,

.f ◦σ/Å.Y/= sup
X

[tr.XTY/−f{σ.X/}]� sup
X

[σ.X/T σ.Y/−f{σ.X/}]

� sup
x

{xTσ.Y/−f.x/}=fÅ{σ.Y/}:

In contrast, assume that Y has singular value decomposition U diag.y/VT. Then

fÅ ◦σ.Y/= sup
x

{σ.Y/Tx−f.x/}= sup
x

[tr{UTYV diag.x/}−f.x/]

= sup
x

[tr{YV diag.x/UT}−f ◦σ{U diag.x/VT}]

� sup
X

{tr.YXT/−f ◦σ.X/}= .f ◦σ/Å.Y/:

Therefore we have the identity fÅ ◦σ= .f ◦σ/Å. �
To compute the subdifferential @J.X/=@.f ◦σ/.X/ for a convex f . By lemma 3 and the Fenchel–Young

inequality (Borewein and Lewis (2006), proposition 3.3.4),

.f ◦σ/.X/+ .f ◦σ/Å.Y/=f ◦σ.X/+fÅ ◦σ.Y/�σ.X/Tσ.Y/� tr.XTY/:

Recall that, for a convex function f , f.x/+fÅ.y/=xTy if and only if y∈@f.x/. Therefore a matrix Y∈@J.X/
if and only if equality holds throughout in the above inequalities. Then, by lemma 2, Y∈@J.X/ if and only
if X and Y are simultaneously diagonalizable, X=U diag.x/VT and Y=U diag.y/VT, and y∈ @f.x/.

A.2. Proof of proposition 1
The objective function is equal to 1

2‖B‖2
F− tr.BAT/+ 1

2‖A‖2
F+f ◦σ.B/: Suppose that the matrix B has

singular value decomposition B=P diag.b/QT. According to lemma 2,−tr.BAT/�−Σjbjaj with equality
if and only if P=U and Q=V. Neither the Frobenius norm ‖B‖2

F nor the regularization term f ◦σ.B/
depends on the orthogonal matrices P and Q. Therefore the optimal B has P=U and Q=V and its
singular values are the minimizer of ‖b−a‖2

2=2+f.b/.

A.3. Proof of theorem 3
The following standard calculus notation is used. For a scalar function f , ∇f is the (column) gradient
vector, df = [∇f ]T is the differential and d2f is the Hessian matrix. For a multivariate function g : Rp �→
Rq, Dg ∈Rq×p denotes the Jacobian matrix holding partial derivatives @gi=@xj . For a matrix function
h : Rm×n �→Rp×q, Dh∈Rpq×mn denotes the Jacobian matrix.

By the chain rule, the Jacobian of fitted values with respect to responses is

DŶ.Y/=DŶ.B̂λ/DB̂λ.B̂LS/DB̂LS.Y/:

Let Ξ= .vec.X1/: : :vec.Xn//T be the design matrix with vectorized matrix covariates. Then DŶ.B̂λ/=Ξ
and DB̂LS.Y/= .ΞTΞ/−1ΞT=ΞT. Therefore the degree of freedom of the fit is

tr{DŶ.Y/}= tr{ΞDB̂λ.B̂LS/ΞT}= tr{ΞTΞDB̂λ.B̂LS/}= tr{DB̂λ.B̂LS/}:

Denote the singular value decomposition of the usual least squares estimate B̂LS ∈Rp1×p2 by UΣVT=
Σq

i=1σiuivT
i where U∈Rp1×p1 , Σ∈Rp1×p2 , V∈Rp2×p2 and q=min{p1, p2}. Then the nuclear norm estimate

is B̂λ=UΣλV where Σλ has diagonal entries .σi−λ/+. Thus we have

tr{D B̂λ.B̂LS/}= tr
[

q∑
i=1

{DB̂λ.vi/Dvi.B̂LS/+DB̂λ.ui/Dui.B̂LS/+DB̂λ.σi/Dσi.B̂LS/}
]

::

We then tackle this piece by piece.

Lemma 4. Let σi > 0 be a singular value of B̂LS with multiplicity 1, left singular vector ui and right
singular vector vi. Then

tr{DB̂λ.vi/Dvi.B̂LS/}=1{σi>λ}
∑

1�j�p2,j �=i

σi.σi−λ/

σ2
i −σ2

j

, .5/



Regularized Matrix Regression 481

tr{DB̂λ.ui/Dui.B̂LS/}=1{σi>λ}
∑

1�j�p1,j �=i

σi.σi−λ/

σ2
i −σ2

j

: .6/

Proof. Since B̂LS=UΣVT, the eigenvectors of the symmetric matrix B̂T
LSB̂LS=VΣ2VT coincide with

the right singular vectors of B̂LS. Then, by the chain rule,

DB̂λ.vi/Dvi.B̂LS/=DB̂λ.vi/Dvi.B̂T
LSB̂LS/D.BT

LSB̂LS/.B̂LS/:

Now DB̂λ.vi/=.σi−λ/1{σi>λ}Ip2⊗ui. By the well-known formula for the differential of eigenvectors (Mag-
nus and Neudecker (1999), section 8.8), Dvi.B̂T

LSB̂LS/= vT
i ⊗ .σ2

i Ip2 − B̂T
LSB̂LS/+, where A+ is the Moore–

Penrose generalized inverse of a matrix A. The Jacobian of the symmetric product is D.BT
LSB̂LS/.B̂LS/=

.Ip2
2
+Kp2p2 /.Ip2 ⊗ B̂T

LS/, where Kp2p2 ∈Rp2
2×p2

2 is the commutation matrix (Magnus and Neudecker (1999),
section 3.7). Now, by cyclic permutation invariance of the trace function,

tr[.σi−λ/.Ip2 ⊗ui/{vT
i ⊗ .σ2

i Ip2 − B̂T
LSB̂LS/+}Ip2 .Ip2 ⊗ B̂T

LS/]
= .σi−λ/ tr{vT

i ⊗ .σ2
i Ip2 − B̂T

LSB̂LS/+B̂T
LSui}=σ.σi−λ/ tr.vT

i ⊗0p2 /=0

and, recalling that Kp21= Ip2 ,

tr[{.σi−λ/Ip2 ⊗ui}{vT
i ⊗ .σ2

i Ip2 − B̂T
LSB̂LS/+}Kp2p2 .Ip2 ⊗ B̂T

LS/]
= .σi−λ/ tr{.σ2

i Ip2 − B̂T
LSB̂LS/+⊗uivT

i B̂T
LS}

=σi.σi−λ/ tr.σ2
i Ip2 − B̂T

LSB̂LS/+ tr.uiuT
i /

= ∑
1�j�p2,j �=i

σi.σi−λ/

σ2
i −σ2

j

tr.vjvT
j /= ∑

1�j�p2,j �=i

σi.σi−λ/

σ2
i −σ2

j

:

Combining pieces, we have equation (5). By symmetry, we also have equation (6). �
Lemma 5. Let σi > 0 be a singular value of B̂LS with multiplicity 1. Then

tr{DB̂λ.σi/Dσi.B̂LS/}=1{σi>λ}:

Proof. Again we utilize the fact that σi is the positive square root of the eigenvalues λi of the symmetric
matrix B̂T

LSB̂LS. Then, by the chain rule,

DB̂λ.σi/Dσi.B̂LS/=DB̂λ.σi/Dσi.λi/Dλi.B̂T
LSB̂LS/D.B̂T

LSB̂LS/.B̂LS/:

Now combining DB̂λ.σi/=1{σi>λ}vi⊗ui, Dσi.λi/=1=2
√

λi=1=2σi, Dλi.B̂T
LSB̂LS/= vT

i ⊗ vT
i and

D.B̂T
LSB̂LS/.B̂LS/= .Ip2 +Kp2p2 /.Ip2 ⊗ B̂T

LS/

shows that

tr{DB̂λ.σi/Dσi.B̂LS/}=1{σi>λ}
1

2σi

tr{.vi⊗ui/.vT
i ⊗ vT

i /Ip2 .Ip2 ⊗ B̂T
LS/}

+1{σi>λ}
1

2σi

tr{.vi⊗ui/.vT
i ⊗ vT

i /Kp2p2 .Ip2 ⊗ B̂T
LS/}

=1{σi>λ}
1

2σi

tr.vivT
i ⊗uivT

i B̂T
LS/+1{σi>λ}

1
2σi

tr.vivT
i ⊗uivT

i B̂T
LS/

=1{σi>λ}
1
σi

tr.σivivT
i ⊗uiuT

i /=1{σi>λ}:

Finally, combining lemmas 4 and 5 yields the degrees of freedom in theorem 3.
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