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Tensor Regression with Applications in Neuroimaging
Data Analysis

Hua ZHOU, Lexin LI, and Hongtu ZHU

Classical regression methods treat covariates as a vector and estimate a corresponding vector of regression coefficients. Modern applications
in medical imaging generate covariates of more complex form such as multidimensional arrays (tensors). Traditional statistical and
computational methods are proving insufficient for analysis of these high-throughput data due to their ultrahigh dimensionality as well as
complex structure. In this article, we propose a new family of tensor regression models that efficiently exploit the special structure of tensor
covariates. Under this framework, ultrahigh dimensionality is reduced to a manageable level, resulting in efficient estimation and prediction.
A fast and highly scalable estimation algorithm is proposed for maximum likelihood estimation and its associated asymptotic properties are
studied. Effectiveness of the new methods is demonstrated on both synthetic and real MRI imaging data. Supplementary materials for this
article are available online.
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1. INTRODUCTION

Understanding the inner workings of human brains and their
connection with neuropsychiatric and neurodegenerative disor-
ders is one of the most intriguing scientific questions. Studies in
neuroscience are greatly facilitated by a variety of neuroimaging
technologies, including anatomical magnetic resonance imag-
ing (MRI), functional magnetic resonance imaging (fMRI),
electroencephalography (EEG), diffusion tensor imaging, and
positron emission tomography (PET), among others. The sheer
size and complexity of medical imaging data, however, pose un-
precedented challenge to classical statistical methods and have
received increasing interest in recent years (Lindquist 2008;
Lazar 2008; Martino et al. 2008; Friston 2009; Hinrichs et al.
2009; Ryali et al. 2010; Kang et al. 2012).

In the literature, there have been roughly three categories of
statistical methods for establishing association between brain
images and clinical traits. The first is the voxel-based methods,
which take each voxel as responses and clinical variables such
as age and gender as predictors. They generate a statistical para-
metric map of test statistics or p-values across all voxels (Wors-
ley et al. 2004; Lazar 2008). A major drawback is that all voxels
are treated as independent units and important spatially correla-
tion is ignored (Polzehl, Voss, and Tabelow 2010; Yue, Loh, and
Lindquist 2010; Li et al. 2011). The second type of solutions
adopts the functional data analysis approach. Reiss and Ogden
(2010) notably extended functional regression model to incor-
porate two-dimensional images as predictors. Generalizations
to three-dimensional and higher dimensional images, however,
are far from trivial and require substantial research. The third
category employs a two-stage strategy. These methods first carry
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out a dimension reduction step, often by principal component
analysis (PCA), and then fit a regression model based on the
top principal components (Caffo et al. 2010). This strategy is
intuitive and easy to implement. However, it is well known that
PCA is an unsupervised dimension reduction technique and the
extracted principal components can be irrelevant to the response.

In this article, we formulate a regression framework that
treats clinical outcome as response, and images, in the form of
multidimensional array, as covariates. Most classical regression
methods take vectors as covariates. Naively turning an image
array into a vector is evidently unsatisfactory. For instance,
typical anatomical MRI images of size 256-by-256-by-256
implicitly require 2563 = 16, 777, 216 regression parameters.
Both computability and theoretical guarantee of the classical
regression analysis are severely compromised by this ultrahigh
dimensionality. More seriously, vectorizing an array destroys
the inherent spatial structure of the image that possesses wealth
of information.

Our new regression method effectively exploits the array
structure in imaging data, and substantially reduces the dimen-
sionality, which in turn leads to efficient estimation and pre-
diction. The method works for general array-valued covariates
and/or any combination of them, and thus it is applicable to a va-
riety of imaging modalities, for example, EEG, MRI, and fMRI.
It is embedded in the generalized linear model (GLM) frame-
work, so it works for both continuous and discrete responses.
We develop a highly scalable algorithm for maximum likelihood
estimation (MLE), as well as statistical inferential tools. Regu-
larized tensor regression is also investigated to identify regions
of interest in brains that are relevant to a clinical response. This
region selection problem corresponds to variable selection in
the usual vector-valued regression.

The contributions of this article are two-fold. First, from a
brain imaging analysis point of view, our proposal timely re-
sponds to a number of growing needs of neuroimaging analy-
sis. In the review article, Lindquist (2008) noted the increasing
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trends and demands of using brain images for disease diagnosis
and prediction, for characterization of subjective human experi-
ence, and for understanding association between brain regions
and cognitive outcomes. Our tensor regression framework of-
fers a systematic solution to this family of problems. Moreover,
the framework warrants potential solutions to address questions
such as multimodality imaging analysis, multiphenotype anal-
ysis, and imaging genetics (Friston 2009; Casey et al. 2010),
all of which largely remain as open challenges. Second, from a
statistical methodology point of view, our proposal develops a
general statistical framework for regression with array covari-
ates. A large number of models and extensions, for example,
quasi-likelihood models (McCullagh and Nelder 1983) are po-
tential outcomes within this framework. It can also be viewed
as a logic extension from the classical vector-valued covariate
regression to functional covariate regression and then to array-
valued covariate regression.

The rest of the article is organized as follows. Section 2 be-
gins with a review of matrix/array properties, and then develops
the tensor regression models. Section 3 presents an efficient al-
gorithm for MLE. Section 4 provides theoretical results such as
identifiability, consistency, and asymptotic normality. Section
5 discusses regularization including region selection. Section 6
presents numerical results. Section 7 concludes with a discus-
sion of future extensions. Technical proofs are delegated to the
supplementary material.

2. MODEL

2.1 Preliminaries

Multidimensional array, also called tensor, plays a central
role in our approach and we start with a brief summary of
notation and a few results for matrix/array operations. Extensive
references can be found in the survey article (Kolda and Bader
2009). In this article, we use the terms multidimensional array
and tensor interchangeably.

Given two matrices A = [a1 . . . an] ∈ IRm×n and B =
[b1 . . . bq] ∈ IRp×q, the Kronecker product is the mp-by-nq ma-
trix A ⊗ B = [ a1 ⊗ B a1 ⊗ B . . . an ⊗ B ]. If A and B have
the same number of columns n = q, then the Khatri-Rao prod-
uct (Rao and Mitra 1971) is defined as the mp-by-n columnwise
Kronecker product A $ B = [ a1 ⊗ b1 a2 ⊗ b2 . . . an ⊗ bn ].
If n = q = 1, then A $ B = A ⊗ B. Some useful operations
transform a tensor into a matrix/vector. The vec(B) operator
stacks the entries of a D-dimensional tensor B ∈ IRp1×···×pD

into a column vector. Specifically, an entry bi1...iD maps to the
jth entry of vec B, in which j = 1 +

∑D
d=1(id − 1)

∏d−1
d ′=1 pd ′ .

For instance, when D = 2, the matrix entry xi1i2 maps to po-
sition j = 1 + i1 − 1 + (i2 − 1)p1 = i1 + (i2 − 1)p1, which is
consistent with the more familiar vec operation on a ma-
trix. The mode-d matricization, B(d), maps a tensor B into a
pd ×

∏
d ′ '=d pd ′ matrix such that the (i1, . . . , iD) element of the

array B maps to the (id , j ) element of the matrix B(d), where j =
1 +

∑
d ′ '=d (id ′ − 1)

∏
d ′′<d ′,d ′′ '=d pd ′′ . With d = 1, we observe

that vec B is the same as vectorizing the mode-1 matricization
B(1). The mode-(d, d ′) matricization B(dd ′) ∈ IRpdpd′ ×

∏
d′′ '=d,d′ pd′′

is defined in a similar fashion (Kolda 2006). We also intro-
duce an operator that turns vectors into an array. Specifically,

an outer product, b1 ◦ b2 ◦ · · · ◦ bD , of D vectors bd ∈ IRpd is
a p1 × · · · × pD array with entries (b1 ◦ b2 ◦ · · · ◦ bD)i1···iD =∏D

d=1 bdid .
Tensor decomposition plays a central role in our proposed

tensor regression in Section 2.3. An array B ∈ IRp1×···×pD

admits a rank-R decomposition if

B =
R∑

r=1

β
(r)
1 ◦ · · · ◦ β

(r)
D , (1)

where β
(r)
d ∈ IRpd , d = 1, . . . , D, r = 1, . . . , R are all column

vectors, and B cannot be written as a sum of less than R
outer products. For convenience, the decomposition is often
represented by a shorthand, B = [[B1, . . . , BD]], where Bd =
[β (1)

d , . . . ,β
(R)
d ] ∈ IRpd×R (Kolda 2006; Kolda and Bader 2009).

The following well-known result relates the mode-d matriciza-
tion and the vec operator of an array to its rank-R decomposition.

Lemma 1. If a tensor B ∈ IRp1×···×pD admits a rank-R decom-
position (1), then

B(d) = Bd (BD $ · · · $ Bd+1 $ Bd−1 $ · · · $ B1)T and
vec B = (BD $ · · · $ B1)1R.

Throughout the article, we adopt the following notations.
Y is a univariate response variable, Z ∈ IRp0 denotes a p0-
dimensional vector of covariates, such as age and sex, and
X ∈ IRp1×···×pD is a D-dimensional array-valued predictor. For
instance, for MRI, D = 3, representing the three-dimensional
structure of an image, whereas for fMRI, D = 4, with an ad-
ditional time dimension. The lower-case triplets (yi, xi , zi),
i = 1, . . . , n denote the independent, observed sample instances
of (Y, X, Z).

2.2 Motivation and Basic Model

To motivate our model, we first start with a vector-valued X
and absorb Z into X . In the classical GLM (McCullagh and
Nelder 1983) setting, Y belongs to an exponential family with
probability mass function or density

p(y|θ,φ) = exp
{

yθ − b(θ )
a(φ)

+ c(y,φ)
}

, (2)

where θ and φ > 0 denote the natural and dispersion parameters.
The classical GLM relates a vector-valued X ∈ IRp to the mean
µ = E(Y |X) via g(µ) = η = α + βT X , where g(·) is a strictly
increasing link function, and η denotes the linear systematic part
with intercept α and the coefficient vector β ∈ IRp.

Next, for a matrix-valued covariate X ∈ IRp1×p2 (D = 2), it
is intuitive to consider a GLM model with the systematic part
given by

g(µ) = α + βT
1 Xβ2,

where β1 ∈ IRp1 and β2 ∈ IRp2 , respectively. The bilinear form
βT

1 Xβ2 is a natural extension of the linear term βT X in the
classical GLM with a vector covariate X . It is interesting to
note that, this bilinear form was first proposed by Li, Kim,
and Altman (2010) in the context of dimension reduction, and
then employed by Hung and Wang (2011) in the logistic regres-
sion with matrix-valued covariates (D = 2). Moreover, note that
βT

1 Xβ2 = (β2 ⊗ β1)Tvec(X).
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Now for a conventional vector-valued covariate Z and a gen-
eral array-valued X ∈ IRp1×···×pD , we propose a GLM with the
systematic part given by

g(µ) = α + γ T Z + (βD ⊗ · · · ⊗ β1)Tvec(X), (3)

where γ ∈ IRp0 and βd ∈ IRpd for d = 1, . . . , D. This is our
basic model for regression with array covariates. The key ad-
vantage of model (3) is that it dramatically reduces the dimen-
sionality of the tensor component, from the order of

∏
d pd

to the order of
∑

d pd . Take MRI imaging as an example, the
size of a typical image is 2563 = 16,777,216. If we simply
turn X into a vector and fit a GLM, this brutal force solution
is over 16 million-dimensional, and the computation is practi-
cally infeasible. In contrast, the multilinear model (3) is only
256 + 256 + 256 = 768-dimensional. The reduction in dimen-
sion, and consequently in computational cost, is substantial.

A critical question then is whether such a massive reduc-
tion in the number of parameters would limit the capac-
ity of model (3) to capture regions of interest with specific
shapes. The illustrative example in Figure 1 provides some
clues. In Figure 1, we present several two-dimensional images
B ∈ IR64×64 (shown in the first column), along with the esti-
mated images by model (3) (in the second column labeled by
TR(1)). Specifically, we simulated 1000 univariate responses yi

according to a normal model with mean µi = γ Tzi + 〈B, xi〉,
where γ = 15. The inner product between two arrays is defined
as 〈B, X〉 = 〈vecB, vecX〉 =

∑
i1,...,iD

βi1...iD xi1...iD . The coeffi-
cient array B is binary, with the true signal region equal to one
and the rest zero. The regular covariate zi and image covariate
xi are randomly generated with all elements being independent
standard normals. Our goal is to see if model (3) can identify
the true signal region in B using data (yi, zi , xi). Before exam-
ining the outcome, we make two remarks about this illustration.
First, our problem differs from the usual edge detection or ob-
ject recognition in imaging processing (Qiu 2005, 2007). In our
setup, all elements of the image X follow the same distribution.
The signal region is defined through the coefficient image B and
needs to be inferred from the association between Y and X after
adjusting for Z. Second, the classical GLM is difficult to apply
in this example if we simply treat vec(X) as a covariate vector,
since the sample size n = 1000 is much less than the number
of parameters p = 5 + 64 × 64 = 4, 101. Back to Figure 1, the
second column clearly demonstrates the ability of model (3) in
identifying the rectangular type region (parallel to the image
edges). On the other hand, since the parameter vector βd in
a rank-1 model is only able to capture the accumulative signal
along the dth dimension of the array variate X , it is unsurprising
that it does not perform well for signals that are far away from
“square,” such as “triangle,” “disk,” “T-shape,” and “butterfly.”
This motivates us to develop a more flexible tensor regression
model in the next section.

2.3 Tensor Regression Model

We start with an alternative view of the basic model (3), which
will lead to its generalization. Consider a D-dimensional array
variate X ∈ IRp1×···×pD , and a full coefficient array B of same
size that captures the effects of each array element. Then the

most flexible GLM suggests a linear systematic part

g(µ) = α + γ T Z + 〈B, X〉.

The issue with this model is that B has the same number of
parameters,

∏D
d=1 pd , as X , which is ultrahigh dimensional and

far exceeds the usual sample size. Then a natural idea is to ap-
proximate B with less parameters. If B admits a rank-1 decom-
position (1), that is, B = β1 ◦ β2 ◦ · · · ◦ βD , where βd ∈ IRpd ,
then by Lemma 1, we have

vec B = vec(β1 ◦ β2 ◦ · · · ◦ βD)
= βD $ · · · $ β1 = βD ⊗ · · · ⊗ β1.

In other words, model (3) is indeed a data-driven model with a
rank-1 approximation to the general signal array B. This obser-
vation motivates us to consider a more flexible tensor regression
model.

Specifically, we propose a family of rank-R generalized linear
tensor regression models, in which the systematic part of GLM
is of the form

g(µ) = α + γ T Z +
〈

R∑

r=1

β
(r)
1 ◦ β

(r)
2 ◦ · · · ◦ β

(r)
D , X

〉

= α + γ T Z + 〈(BD $ · · · $ B1)1R, vecX〉, (4)

where Bd = [β(1)
d , . . . ,β

(R)
d ] ∈ IRpd×R, BD $ · · · $ B1 ∈

IR
∏

d pd×R is the Khatri-Rao product and 1R is the vector of
R ones. Equivalently, we assume that the tensor regression
parameter admits a rank-R decomposition B = [[B1, . . . , BD]].
When R = 1, it reduces to model (3). A few remarks on (4)
are in order. First, since our formulation only deals with the
linear predictor part of the model, it easily extends to the
quasi-likelihood models (McCullagh and Nelder 1983) where
more general mean-variance relation is assumed. Second,
for simplicity, we only discuss exponential family with a
univariate response. Extension to multivariate exponential
family, such as multinomial logit model, is straightforward.
Third, due to the GLM setup (2), we call (4) a generalized
linear tensor regression model. However, we should bear in
mind that the systematic component η is a polynomial rather
than linear in the parameters Bd . Finally, the rank-R tensor
decomposition (1) is called canonical decomposition or parallel
factors (CANDECOMP/PARAFAC, or CP) in psychometrics
(Kolda and Bader 2009). In that sense, model (4) can be viewed
as a supervised version of the classical CP decomposition for
multidimensional arrays.

The number of parameters in model (4) is p0 + R
∑

d pd ,
which is still substantially smaller than p0 +

∏
d pd . With such

a massive reduction in dimensionality, however, it provides a
reasonable approximation to many low-rank signals. Return-
ing to the previous illustration, in Figure 1, images TR(R) are
the recovered signals by the rank-R tensor regression (in third
and fourth columns). The “square” signal can be perfectly re-
covered by a rank-1 model, whereas rank-2 and -3 regressions
show signs of overfitting. The “T-shape” and “cross” signals
can be perfectly recovered by a rank-2 regression. “Triangle,”
“disk,” and “butterfly” shapes cannot be exactly recovered by
any low-rank approximations; however, a rank-3 tensor regres-
sion already yields a fairly informative recovery. Clearly, the
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Figure 1. True and recovered image signals by tensor regression. The matrix variate has size 64 × 64 with entries generated as independent
standard normals. The regression coefficient for each entry is either 0 (white) or 1 (black). The sample size is 1000. TR(R) means estimate from
the rank-R tensor regression.
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general tensor regression model (4) is able to capture signifi-
cantly more tensor signals than the basic model (3).

3. ESTIMATION

We pursue the ML route for parameter estimation in model
(4). Given n iid data {(yi, xi , zi), i = 1, . . . , n}, the log-
likelihood function for (2) is

'(α, γ , B1, . . . , BD) =
n∑

i=1

yiθi − b(θi)
a(φ)

+
n∑

i=1

c(yi,φ), (5)

where θi is related to regression parameters (α, γ , B1, . . . , BD)
through (4). We propose an efficient algorithm for maximizing
'(α, γ , B1, . . . , BD). A key observation is that although g(µ)
in (4) is not linear in (B1, . . . , BD) jointly, it is linear in Bd

individually. This suggests alternately updating (α, γ ) and Bd ,

Algorithm 1 Block relaxation algorithm for maximizing (5).

Initialize: (α(0), γ (0)) = argmaxα,γ '(α, γ , 0, . . . , 0), B(0)
d ∈

pd × R a random matrix for d = 1, . . . , D.
repeat

for d = 1, . . . , D do
B(t+1)

d = argmaxBd
'(α(t), γ (t), B(t+1)

1 , . . . , B(t+1)
d−1 , Bd ,

B(t)
d+1, . . . , B(t)

D )
end for
(α(t+1), γ (t+1)) = argmaxα,γ '(α, γ , B(t+1)

1 , . . . , B(t+1)
D )

until '(θ (t+1)) − '(θ (t)) < ε

d = 1, . . . , D, while keeping other components fixed. It yields
a so-called block relaxation algorithm (de Leeuw 1994; Lange
2010). An appealing feature of this algorithm is that at each iter-
ation, updating a block Bd is simply a classical GLM problem.
To see this, when updating Bd ∈ IRpd×R, we rewrite the array
inner product in (4) as

〈
R∑

r=1

β
(r)
1 ◦ β

(r)
2 ◦ · · · ◦ β

(r)
D , X

〉

= 〈Bd , X (d)(BD $ · · · $ Bd+1 $ Bd−1 $ · · · $ B1)〉.

Consequently, the problem turns into a traditional GLM regres-
sion with Rpd parameters, and the estimation procedure breaks
into a sequence of low-dimensional GLM optimizations and is
extremely easy to implement using ready statistical softwares
such as R, S+, SAS, and Matlab. The full estimation proce-
dure is summarized in Algorithm 1. For the Gaussian models,
it reduces to the alternating least-square procedure (de Leeuw,
Young, and Takane 1976).

As the block relaxation algorithm monotonically increases
the objective function, it is numerically stable and the conver-
gence of objective values '(θ (t)) is guaranteed whenever '(θ )
is bounded from above. Therefore, the stopping rule of Algo-
rithm 1 is well defined. We denote the algorithmic map by M,
that is, M(θ (t)) = θ (t+1), with θ = (α, γ , B1, . . . , BD) collect-
ing all parameters. Convergence properties of Algorithm 1 are
summarized in Proposition 1.

Proposition 1. Assume (i) the log-likelihood function '(θ )
is continuous, coercive, that is, the set {θ : '(θ) ≥ '(θ (0))} is
compact, and bounded above, (ii) the objective function in each

block update of Algorithm 1 is strictly concave, and (iii) the set
of stationary points (modulo scaling and permutation indeter-
minacy) of '(θ) are isolated. We have the following results.

1. (Global convergence) The sequence θ (t) = (α(t), γ (t),

B(t)
1 , . . . , B(t)

D ) generated by Algorithm 1 converges to a
stationary point of '(θ).

2. (Local convergence) Let θ (∞) = (α(∞), γ (∞), B(∞)
1 , . . . ,

B(∞)
D ) be a strict local maximum of '(θ). The iterates

generated by Algorithm 1 are locally attracted to θ (∞) for
θ (0) sufficiently close to θ (∞).

We make a few quick remarks. First, although a stationary
point is not guaranteed to be even a local maximum (it can be a
saddle point), in practice the block relaxation algorithm almost
always converges to at least a local maximum. In general, the
algorithm should be run from multiple initializations to locate
an excellent local maximum, especially for higher rank models
with limited sample size. Second, '(θ ) is not required to be
jointly concave in θ . Only the concavity in the blocks of variables
is needed. This condition holds for all GLM with canonical link
such as linear model, logistic model, and Poisson log-linear
model.

The above algorithm assumes a known rank when estimat-
ing B. Estimating an appropriate rank for our tensor model (4)
is of practical importance. It can be formulated as a model
selection problem, and we adopt the usual model section
criterion, for example, Bayesian information criterion (BIC),
−2'(θ ) + log(n)pe, where pe is the effective number of pa-
rameters for model (4): pe = R(p1 + p2) − R2 for D = 2, and
pe = R(

∑
d pd − D + 1) for D > 2. Returning to the illustra-

tive example in Section 2.2, we fitted a rank-1, -2, and -3 tensor
models, respectively, to various signal shapes. The correspond-
ing BIC values are shown in Figure 1. The criterion is seen
correctly estimating the rank for square as 1, and the rank for T
and cross as 2. The true ranks for disk, triangle, and butterfly are
above 3, and their BIC values at rank 3 are smallest compared
to those at 1 and 2.

4. THEORY

We study the statistical properties of MLE for the tensor re-
gression model defined by (2) and (4). For simplicity, we omit
the intercept α and the covariate part γ T Z, though the conclu-
sions generalize to an arbitrary combination of covariates. In this
article, we adopt the usual asymptotic setup with a fixed number
of parameters p and a diverging sample size n, because this is
an important first step toward a comprehensive understanding
of the theoretical properties of the proposed model.

4.1 Score and Information

We first derive the score and information for the tensor re-
gression model, which are essential for statistical estimation and
inference. The following standard calculus notations are used.
For a scalar function f , ∇f is the (column) gradient vector,
df = [∇f ]T is the differential, and d2f is the Hessian matrix.
For a multivariate function g : IRp .→ IRq, Dg ∈ IRq×p denotes
the Jacobian matrix holding partial derivatives ∂gi/∂xj .
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We start from the Jacobian and Hessian of the systematic part
η ≡ g(µ) in (4). The proof is given in the Appendix.

Lemma 2.

1. The gradient ∇η(B1, . . . , BD) ∈ IRR
∑D

d=1 pd is

∇η(B1, . . . , BD) = [ J1 J2 . . . JD]T(vecX),

where Jd ∈ IR
∏D

d=1 pd×pdR is the Jacobian

Jd = DB(Bd ) = $d [(BD $ · · · $ Bd+1 $ Bd−1

$ · · · $ B1) ⊗ Ipd
] (6)

and $d is the (
∏D

d=1 pd )-by-(
∏D

d=1 pd ) permutation ma-
trix that reorders vecB(d) to obtain vecB, that is, vecB =
$d vecB(d).

2. The Hessian d2η(B1, . . . , BD) ∈ IRR
∑D

d=1 pd×R
∑D

d=1 pd has
entries

h(id ,r),(id′ ,r ′) = 1{r=r ′,d '=d ′}
∑

jd=id ,jd′=id′

xj1,...,jD

∏

d ′′ '=d,d ′

β
(r)
jd′′ ,

and can be partitioned in D2 blocks as




0 ∗ ∗ ∗
H21 0 ∗ ∗

...
...

. . . ∗
HD1 HD2 · · · 0




.

The block Hdd ′ ∈ IRpdR×pd′ R has pdpd ′R nonzero elements
that can be retrieved from the matrix X (dd ′)(BD $ · · · $
Bd+1 $ Bd−1 $ · · · $ Bd ′+1 $ Bd ′−1 $ · · · $ B1),
where X (dd ′) is the mode-(d, d ′) matricization of X .

Remark 1. The Hessian d2η is highly sparse and structured.
An entry in d2η(B1, . . . , BD) is nonzero only if it belongs to
different directions d but the same outer product r.

Let '(B1, . . . , BD|y, x) = ln p(y|x, B1, . . . , BD) be the
log-density. Next result derives the score function, Hessian, and
Fisher information of the tensor regression model.

Proposition 2. Consider the tensor regression model defined
by (2) and (4).

1. The score function (or score vector) is

∇'(B1, . . . , BD) = (y − µ)µ′(η)
σ 2

[ J1 . . . JD]T(vecX)

(7)

with Jd , d = 1, . . . , D, defined by (6).
2. The Hessian of the log-density ' is

H (B1, . . . , BD) = − [µ′(η)]2

σ 2
([ J1 . . . JD]TvecX)

× ([ J1 . . . JD]TvecX)T

+ (y − µ)θ ′′(η)
σ 2

([ J1 . . . JD]TvecX)

× ([ J1 . . . JD]TvecX)T

+ (y − µ)θ ′(η)
σ 2

d2η(B1, . . . , BD),

(8)

with d2η defined in Lemma 2.

3. The Fisher information matrix is

I(B1, . . . , BD)=E[−H (B1, . . . , BD)]
=var[∇'(B1, . . . , BD)d'(B1, . . . , BD)]

= [µ′(η)]2

σ 2
[ J1 . . . JD]T(vecX)(vecX)T

× [ J1 . . . JD]. (9)

Remark 2. For canonical link, θ = η, θ ′(η) = 1, θ ′′(η) = 0,
and the second term of Hessian vanishes. For the classical GLM
with linear systematic part (D = 1), d2η(B1, . . . , BD) is zero
and thus the third term of Hessian vanishes. For the classical
GLM (D = 1) with canonical link, both the second and third
terms of the Hessian vanish and thus the Hessian is nonstochas-
tic, coinciding with the information matrix.

4.2 Identifiability

Before studying asymptotic property, we need to deal with the
identifiability issue. The parameterization in the tensor model
is nonidentifiable due to two complications. Consider a rank-
R decomposition of an array, B = [[B1, . . . , BD]]. The first
complication is the indeterminacy of B due to scaling and
permutation:

1. Scaling: B = [[B1%1, . . . , BD%D]] for any diagonal ma-
trices %d = diag(λd1, . . . , λdR), d = 1, . . . , D, such that∏

d λdr = 1 for r = 1, . . . , R.
2. Permutation: B = [[B1$, . . . , BD$]] for any R-by-R per-

mutation matrix $.

For the matrix case (D = 2), a further complication is the non-
singular transformation indeterminacy: B1 BT

2 = B1 O O−1 BT
2

for any R-by-R nonsingular matrix O. Note the scaling and per-
mutation indeterminacy is subsumed in the nonsingular trans-
formation indeterminacy. The singular value decomposition of
a matrix is unique because it imposes orthonormality constraint
on the columns of the factor matrices.

To deal with this complication, it is necessary to adopt
a specific constrained parameterization to fix the scaling
and permutation indeterminacy. For D > 2, we need to put
(D − 1)R restrictions on the parameters B and apparently there
is an infinite number of ways to do this. In this article, we adopt
the following convention. B1, . . . , BD−1 are scaled such that
β

(r)
d1 = 1, that is, the first rows are ones. This in turn determines

entries in the first row of BD and fixes scaling indeterminacy.
To fix the permutation indeterminacy, we assume that the first
row entries of BD are distinct and arranged in descending order
β

(1)
D1 > · · · > β

(R)
D1 . The resulting parameter space is

B =
{
(B1, . . . , BD) : β

(r)
d1 = 1, for d = 1, . . . , D,

r = 1, . . . , R, and β
(1)
D1 > · · · > β

(R)
D1

}
,

which is open and convex. The formulas for score, Hessian
and information in Proposition 2 require changes accordingly,
that is, the entries in the first rows of Bd , d = 1, . . . , D − 1,
are fixed at ones and their corresponding entries, rows and
columns in score, Hessian and information need to be deleted.
Treatment for the D = 2 case is similar and omitted for brevity.
We emphasize that our choice of the restricted space B is
arbitrary and exclude many arrays that might be of interest,
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for example, arrays with any entries in the first rows of Bd ,
d = 1, . . . , D − 1, equal to zeros or with ties in the first row of
BD . However, the set of such exceptional arrays has Lebesgue
measure zero. In specific applications, subject knowledge may
suggest alternative constraints on the parameters.

The second complication comes from possible nonunique-
ness of decomposition when D > 2 even after adjusting scaling
and permutation indeterminacy. The next proposition collects
some recent results that give easy-to-check conditions for the
uniqueness (up to scaling and permutation) of decomposition.
The first two are useful for checking uniqueness of a given ten-
sor, while the latter two give general conditions for uniqueness
almost everywhere in the D = 3 or 4 case.

Proposition 3. Suppose that a D-dimensional array B ∈
IRp1×···×pD has rank R.

1. (Sufficiency; Sidiropoulos and Bro 2000) The decom-
position (1) is unique up to scaling and permutation if∑D

d=1 kBd
≥ 2R + (D − 1), where kA is the k-rank of a

matrix A, that is, the maximum value k such that any k
columns are linearly independent.

2. (Necessity; Liu and Sidiropoulos 2001) If the de-
composition (1) is unique up to scaling and permu-
tation, then mind=1,...,D rank(B1 $ · · · $ Bd−1 $ Bd+1

$ · · · $ BD) = R, which in turn implies that
mind=1,...,D(

∏
d ′ '=d rank(Bd ′ )) ≥ R.

3. (de Lathauwer 2006) When D = 3, R ≤ p3, and R(R −
1) ≤ p1(p1 − 1)p2(p2 − 1)/2, the decomposition (1) is
unique for almost all such tensors except on a set of
Lebesgue measure zero.

4. (de Lathauwer 2006) When D = 4, R ≤ p4, and
R(R − 1) ≤ p1p2p3(3p1p2p3 − p1p2 − p1p3 − p2p3 −
p1 − p2 − p3 + 3)/4, the decomposition (1) is unique
for almost all such tensors except on a set of Lebesgue
measure zero.

Next we give a sufficient and necessary condition for local
identifiability. The proof follows from a classical result (Rothen-
berg 1971) that relates local identifiability to the Fisher infor-
mation matrix.

Proposition 4 (Identifiability). Given iid data points
{(yi, xi), i = 1, . . . , n} from the tensor regression model. Let
B0 ∈ B be a parameter point and assume there exists an open
neighborhood of B0 in which the information matrix has a con-
stant rank. Then B0 is locally identifiable up to permutation if
and only if

I (B0) = [ J1 . . . JD]T

[
n∑

i=1

µ′(ηi)2

σ 2
i

(vec xi)(vec xi)T

]

× [ J1 . . . JD]

is nonsingular.

Remark 3. Proposition 4 explains the merit of tensor regres-
sion from another angle. For identifiability, the classical linear
regression requires vec xi ∈ IR

∏
d pd , i = 1, . . . , n, to be linearly

independent to estimate all parameters, which requires a sam-
ple size n ≥

∏
d pd . The more parsimonious tensor regression

only requires linearly independence of the “collapsed” vectors

[ J1 . . . JD]Tvec xi ∈ IRR(
∑

d pd−D+1), i = 1, . . . , n. The require-
ment on sample size is greatly lessened by imposing structure
on the arrays.

Remark 4. Although global identifiability is hard to check
for a finite sample, a parameter point B ∈ B is asymptotically
and globally identifiable as far as it admits a unique decompo-
sition up to scaling and permutation and

∑n
i=1(vec xi)(vec xi)T

has full rank for n ≥ n0, or, when considered stochasti-
cally, E[(vec X)(vec X)T] has full rank. To see this, whenever∑n

i=1(vec xi)(vec xi)T has full rank, the full coefficient array is
globally identifiable and thus the decomposition is identifiable
whenever it is unique.

Generalizing the concept of estimable functions for linear
models, we call any linear combination of 〈xi ,

∑R
r=1 β

(r)
1 ◦ · · · ◦

β
(r)
D 〉, i = 1, . . . , n, an estimable function. We can estimate es-

timable or collection of estimable functions even when the pa-
rameters are not identifiable.

4.3 Asymptotics

The asymptotics for tensor regression follow from those for
MLE or M-estimation. The key observation is that the nonlinear
part of tensor model (4) is a degree-D polynomial of parameters
and the collection of polynomials {〈B, X〉, B ∈ B} forms a
Vapnik-C̆ervonenkis class. Then standard uniform convergence
theory for M-estimation (van der Vaart 1998) applies.

Theorem 1 (Consistency). Assume B0 = [[B01, . . . , B0D]] ∈
B is (globally) identifiable up to permutation and the array co-
variates X i are iid from a bounded distribution. The MLE is
consistent, that is, B̂n converges to B0 (modulo permutation) in
probability, in the following models: (1) normal tensor regres-
sion with a compact parameter space B0 ⊂ B; (2) binary tensor
regression; and (3) Poisson tensor regression with a compact
parameter space B0 ⊂ B.

Remark 5. (Misspecified rank) In practice it is rare that the
true regression coefficient Btrue ∈ IRp1×···×pD is exactly a low-
rank tensor. However, the MLE of the rank-R tensor model
converges to the maximizer of function M(B) = PBtrue ln pB
or equivalently PBtrue ln(pB/pBtrue ). In other words, the MLE is
consistently estimating the best rank-R approximation of Btrue

in the sense of Kullback–Leibler distance.

To establish the asymptotic normality of B̂n, we note that the
log-likelihood function of tensor regression model is quadratic
mean differentiable (q.m.d.).

Lemma 3. Tensor regression model is q.m.d.

Theorem 2 (Asymptotic normality). For an interior point
B0 = [[B01, . . . , B0D]] ∈ B with nonsingular information ma-
trix I(B01, . . . , B0D) (9) and B̂n is consistent,

√
n[vec(B̂n1, . . . , B̂nD) − vec(B01, . . . , B0D)]

converges in distribution to a normal with mean zero and co-
variance I−1(B01, . . . , B0D).
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5. REGULARIZED ESTIMATION

Sample size in typical neuroimaging studies is often limited.
Even for a low-rank tensor model, it is likely that the number
of parameters exceeds the sample size. As such the p > n chal-
lenge is often the rule rather than the exception in neuroimaging
analysis. Regularization is essential to handle p > n, and is
also useful for stabilizing the estimates and improving their risk
property when p < n. We emphasize that there are a large num-
ber of regularization techniques for different purposes. Here, we
illustrate with using sparsity regularization for identifying sub-
regions that are associated with the response traits. This problem
can be viewed as an analog of variable selection in the tradi-
tional vector-valued covariates. Toward that end, we maximize
a regularized log-likelihood function

'(α, γ , B1, . . . , BD) −
D∑

d=1

R∑

r=1

pd∑

i=1

Pλ

(∣∣β(r)
di

∣∣, ρ
)
,

where Pλ(|β|, ρ) is a scalar penalty function, ρ is the penalty
tuning parameter, and λ is an index for the penalty family.
Some widely used penalties include: power family (Frank and
Friedman 1993), in which Pλ(|β|, ρ) = ρ|β|λ, λ ∈ (0, 2], and
in particular lasso (Tibshirani 1996) (λ = 1) and ridge (λ = 2);
elastic net (Zou and Hastie 2005), in which Pλ(|β|, ρ) =
ρ[(λ − 1)β2/2 + (2 − λ)|β|], λ ∈ [1, 2]; and SCAD (Fan and
Li 2001), in which ∂/∂|β|Pλ(|β|, ρ) = ρ{1{|β|≤ρ} + (λρ −
|β|)+/(λ − 1)ρ1{|β|>ρ}}, λ > 2, among many others. Choice of
penalty function and tuning parameters ρ and λ depends on
particular purposes: prediction, unbiased estimation, or region
selection.

Regularized estimation for tensor models incurs slight
changes in Algorithm 1. When updating Bd , we simply fit a
penalized GLM regression problem,

B(t+1)
d = argmaxBd

'
(
α(t), γ (t), B(t+1)

1 , . . . , B(t+1)
d−1 , Bd ,

B(t)
d+1, . . . , B(t)

D

)
−

R∑

r=1

pd∑

i=1

Pλ

(∣∣β(r)
di

∣∣, ρ
)
,

for which many software packages exist. Same paradigm cer-
tainly applies to regularizations other than sparsity. The fitting
procedure boils down to alternating regularized GLM regres-
sion. The monotone ascent property of Algorithm 1 is retained
under the modified algorithm. Convex penalties, such as elas-
tic net and power family with λ ≥ 1, tend to convexify the
objective function and alleviate the local maximum problem.
On the other hand, concave penalty such as power family with
λ < 1 and SCAD produces more unbiased estimates but the
regularized objective function is more ruggy and in practice
the algorithm should be initialized from multiple start points to
increase the chance of finding a global maximum. Many meth-
ods are available to guide the choice of the tuning parameter ρ

and/or λ for regularized GLM, notably Akaike information cri-
terion, BIC, and cross-validation. For instance, the recent work
(Zhou, Armagan, and Dunson 2011) derives BIC-type criterion
for GLM with possibly nonconcave penalties such as power
family, which can be applied to regularized tensor regression
models in a straightforward way.

Two remarks are in order. First, it is conceptually possible
to apply these regularization techniques directly to the full co-

efficient array B ∈ IR
∏

d pd without considering any structured
decomposition as in our models. That is, one simply treats vecX
as the predictor vector as employed in the classical total varia-
tion regularization in image denoising and recovery. However,
for the brain imaging data, we should bear in mind the di-
mensionality of the imaging arrays. For instance, to the best
of our knowledge, no software is able to deal with fused lasso
or even simple lasso on 643 = 262,144 or 2563 = 16,777,216
variables. This ultrahigh dimensionality certainly corrupts the
statistical properties of the regularized estimates too. Second,
penalization is only one form of regularization. In specific ap-
plications, prior knowledge often suggests various constraints
among parameters, which may be exploited to regularize param-
eter estimate. For instance, for MRI imaging data, sometimes it
may be reasonable to impose symmetry on the parameters along
the coronal plane, which effectively reduces the dimensionality
by pdR/2. In many applications, nonnegativity of parameter
values is also enforced.

6. NUMERICAL ANALYSIS

We have carried out an extensive numerical study to investi-
gate the finite sample performance of the proposed methods. In
this section, we report selected results from synthetic examples
and an analysis of a real brain imaging data.

6.1 Two-Dimensional Shape Examples

We first elaborate on the illustrative example given in Sec-
tion 2.2 with selected two-dimensional shapes. We examine
the performance of the tensor model under a variety of sample
sizes and signal strengths, and compare the estimates with and
without regularization. More specifically, the response is nor-
mally distributed with mean, η = γ T Z + 〈B, X〉, and standard
deviation σ . X is a 64 × 64 two-dimensional matrix, Z is a
five-dimensional covariate vector, both of which have standard
normal entries, γ = (1, 1, 1, 1, 1)T, and B is binary with the true
signal region equal to one and the rest zero. We fit both a rank-3
tensor model without regularization, and one with a lasso regu-
larization. For sample size, we examine n = 200, 300, 400, 500,

and 750. Note that, for this example, the number of parameters
of a rank-3 model is 380 = 5 + 3 × (64 + 64) − 32. As such,
there are multiple solutions when n = 200 or 300, and we ar-
bitrarily choose one estimate. For signal strength, we vary the
noise level σ = 50%, 20%, 10%, 5%, and 1% of the standard
deviation of the mean η, respectively.

We summarize the results in three plots: the snapshots of
estimates with varying sample size, the snapshots with vary-
ing signal strength, and the line plot of the average root mean
squared error (RMSE) for estimation of B. For space consider-
ation, only the first plot is presented in Figure 2 (with 10% noise
level), and the rest in supplementary Section A.1. We make the
following observations. First, estimation accuracy steadily in-
creases with the sample size, demonstrating consistency of the
proposed method. This can be seen from both the snapshots with
improved quality and the decreasing RMSE. Similar patterns are
observed with increasing signal strength. Second, regularization
clearly improves estimation, especially when the sample size is
limited. In practice, when the number of imaging subjects is
moderate, regularized tensor regression is recommended.
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Figure 2. Snapshots of tensor estimation with varying sample size. The matrix variate has size 64 × 64 with entries generated as independent
standard normals. The regression coefficient for each entry is either 0 (white) or 1 (black).
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For this example, we also examined the recovered signals
by regularized tensor regression with a fixed sample size n =
500 and varying penalty parameter. The results are reported in
supplementary Section A.2.

6.2 Attention Deficit Hyperactivity Disorder
Data Analysis

We applied our methods to the attention deficit hyperactivity
disorder (ADHD) data from the ADHD-200 Sample Initiative
(http://fcon_1000.projects.nitrc.org/indi/adhd200/). ADHD is
a common childhood disorder and can continue through ado-
lescence and adulthood. Symptoms include difficulty in staying
focused and paying attention, difficulty in controlling behavior,
and overactivity. The dataset that we used is part of the ADHD-
200 Global Competition datasets. It consists of 776 subjects,
with 491 normal controls and 285 combined ADHD subjects.
Among them, there are 442 males with mean age 12.0 years and
standard deviation 3.1 years, and 287 females with mean age
11.9 years and standard deviation 3.5 years. We removed 47
subjects due to the missing observations or poor image quality.
Resting state fMRIs and T1-weighted images were acquired
for each subject. The T1-weighted images were preprocessed
by standard steps including AC (anterior commissure) and PC
(posterior commissure) correction, N2 bias field correction,
skull-stripping, intensity inhomogeneity correction, cerebellum
removal, segmentation, and registration. After segmentation,
the brains were segmented into four different tissues: gray
matter (GM), white matter (WM), ventricle (VN), and cere-
brospinal fluid (CSF). We quantified the local volumetric group
differences by generating RAVENS maps (Davatzikos et al.
2001) for the whole brain and each of the segmented tissue type
(GM, WM, VN, and CSF), respectively, using the deformation
field we obtained during registration. RAVENS methodology
is based on a volume-preserving spatial transformation, which
ensures that no volumetric information is lost during the
process of spatial normalization, since this process changes an
individual’s brain morphology to conform it to the morphology
of a template. In addition to image covariates, we include
the subjects’ age, gender, and whole brain volume as regular
covariates. One scientific question of interest is to understand
association between the disease outcome and the brain image
patterns after adjustment for the clinical and demographical
variables. We first examined the case with real image covariates
and simulated responses. The goal is to study the empirical
performance of our methods under various response models.
We then showed the performance of the regularized estimation
in terms of region selection. Finally, we applied the method to
the data with the true observed binary response.

6.2.1 Real Image Covariates and Simulated Response. We
first consider a number of GLMs with the real brain image
covariates, where η = γ T Z + 〈B, X〉, the signal tensor B ad-
mits a certain structure, γ = (1, 1, 1)T, X denotes the three-
dimensional MRI image with dimension 256 × 256 × 198, and
Z denotes the vector of age, gender, and whole brain volume. We
consider two structures for B. The first admits a rank-1 decom-
position, with B1 ∈ IR256×1, B2 ∈ IR256×1, and B3 ∈ IR198×1,

Table 1. Tensor regression estimation for the ADHD data. Reported
are mean RMSE and its standard deviation (in parenthesis) of

evaluation criteria based on 100 data replications

Signal Param. Normal Binomial Poisson

One-ball γ 0.0639 (0.0290) 0.2116 (0.0959) 0.0577 (0.0305)
B 0.0039 (0.0002) 0.0065 (0.0002) 0.0064 (0.0002)

Two-ball γ 0.0711 (0.0310) 0.3119 (0.1586) 0.0711 (0.0307)
B 0.0058 (0.0002) 0.0082 (0.0003) 0.0083 (0.0003)

and all of whose (90 + j )th element equal to sin(jπ/14) for
j = 0, 1, . . . , 14. This corresponds to a single-ball signal in a
three-dimensional space. The second admits a rank-2 decompo-
sition, with B1 ∈ IR256×2, B2 ∈ IR256×2, and B3 ∈ IR198×2. All
the first columns of Bd have their (90 + j )th element equal to
sin(jπ/14), and the second columns of Bd have their (140 +
j )th element equal to sin(jπ/14) for j = 0, 1, . . . , 14. This
mimics a two-ball signal in the three-dimensional space. We
then generate the response through the GLM models: for the nor-
mal model, Y ∼ Normal(µ, 1), where µ = η; for the binomial
model, Y ∼ Bernoulli(p), with p = 1/[1 + exp(−0.1η)]; and
for the Poisson model, Y ∼ Poission(µ), with µ = exp(0.01η).
Table 1 summarizes the average RMSE and its standard devi-
ation out of 100 data replications. We see that the normal and
Poisson responses both have competitive performance, whereas
the binomial case is relatively more challenging. The two-ball
signal is more challenging than a one-ball signal, and overall
the tensor models work well across different response types and
different signals.

6.2.2 Regularized Estimation. Next we focus on the ability
of the regularized tensor regression model to identify relevant
regions in brain associated with the response. This is analo-
gous to the variable selection problem in the traditional re-
gression with vector-valued covariates. We employ the two-ball
signal and the normal model in Section 6.2.1. Figure 3 shows
images with the true signal, the unregularized tensor regres-
sion estimate, and the regularized tensor regression estimates
with a lasso penalty, respectively, overlaid on an image of an
arbitrarily chosen subject, or on a three-dimensional render-
ing of a template. The plots clearly show that the true sparse
signal regions can be well recovered through regularization.

6.2.3 Real Data Analysis. Finally, we analyze the ADHD
data with the observed binary diagnosis status as the response.
We fitted a rank-3 tensor logistic regression model, since in
practice it is rare that the true signal would follow an exact
reduced rank formulation. We also applied the regularized esti-
mation using a lasso penalty. Figure 4 shows the results. Inspect-
ing Figure 4 reveals two regions of interest: left temporal lobe
white matter and the splenium that connects parietal and oc-
cipital cortices across the midline in the corpus callosum. The
anatomical disturbance in the temporal lobe has been consis-
tently revealed and its interpretation would be consistent with a
finer-grained analysis of the morphological features of the corti-
cal surface, which reported prominent volume reductions in the
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Figure 3. Region selection. The true signal regions are colored in
red, the estimated signal regions are in green, and the overlapped re-
gions are in yellow. The left panel is the true or estimated signal
overlaid on a randomly selected subject, and the right panel is a three-
dimensional rendering of the true or estimated signal overlaid on the
template.

temporal and frontal cortices in children with ADHD compared
with matched controls (Sowell et al. 2003). Moreover, a reduced
size of the splenium is the most reliable finding in the corpus
callosum (Valera et al. 2007).

7. DISCUSSION

We have proposed a tensor decomposition-based approach
for regression modeling with array covariates. The curse of di-
mensionality is lessened by imposing a low-rank approximation
to the extremely high-dimensional full coefficient array. This al-
lows development of a fast estimation algorithm and regulariza-
tion. Numerical analysis demonstrates that, despite its massive
reduction, the method works well in recovering various geomet-
ric as well as natural shape images. Although there have been
previous imaging studies using tensor structure (Li, Du, and
Lin 2005; Park and Savvides 2007), our proposal, to the best of
our knowledge, is the first that integrates tensor decomposition
within a statistical regression (supervised learning) framework.

A key motivation of our work is the recent emergence of
large-scale neuroimaging data. Traditional imaging studies usu-
ally have only a handful of subjects. More recently, however,
a number of large-scale brain imaging studies are accumulat-
ing imaging data from a much larger number of subjects. For
instance, the Attention Deficit Hyperactivity Disorder Sample
Initiative (ADHD 2012) consists of 776 participants from eight
imaging centers with both MRI and fMRI images, as well as
their clinical information. The Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI 2012) database, which includes over 3000
participants with MRI, fMRI, PET, and genomics data. Our
proposed tensor regression model was motivated by and aims
to address the computational and modeling challenges of such
large-scale imaging data. Meanwhile, our approach is equally
applicable to smaller scale imaging dataset, for example, images
acquired from a single lab with a moderate number of subjects.
In that scenario, the regularization strategy outlined in Section
5 is expected to play a central role in scientific discovery.

The classical large n asymptotics in Section 4 may seem ir-
relevant for imaging data with a limited sample size. However,
it outlines some basic properties of the proposed tensor regres-
sion model and has practical relevance in several aspects. For
instance, by choosing a small rank such that the model size pe is
effectively smaller than n, we know that, under the specified con-
ditions, the tensor regression model is consistently estimating
the best rank-R approximation to the full model in the sense of
Kullback–Leibler distance. Moreover, the regular asymptotics
is useful for testing significance of a low-rank sparse model in
a replication study. Classical hypothesis tests such as likelihood
ratio test can be formulated based on the asymptotic normality

Figure 4. Application to the ADHD data. Panel (a) is the unpenalized estimate overlaid on a randomly selected subject; (b) is the regularized
estimate overlaid on a randomly selected subject; (c) is a selected slice of the regularized estimate overlaid on the template; and (d) is a
three-dimensional rendering of the regularized estimate overlaid on the template.
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of the tensor estimates established in Section 4. The explicit
formula for score and information in Section 4.1 and the iden-
tifiability issue discussed in Section 4.2 are not only useful for
asymptotic theory but also for computation.

Regularization plays a crucial role in practical applications,
as the challenge of p > n is the rule rather than the exception in
neuroimaging analysis. We consider the tensor regression pre-
sented in this article an analog of the hard thresholding in clas-
sical regression, where the rank of the model is fixed. Currently,
we are also investigating another line of regularization through
“soft thresholding.” That is, we estimate the tensor regression
model without fixing the rank but instead subject to a convex
regularization of the rank of the tensor parameter. Results along
this line will be reported elsewhere.

In real imaging analysis, the signal is hardly of an exact
low-rank structure. However, given the limited sample size, a
low-rank estimate often provides a reasonable approximation to
the true tensor regression parameter, even when the truth is of
a high rank. This can be seen from our numerical experiments,
where a rank-3 model yields an informative recovery of a but-
terfly shape in Figure 1, and a two-ball structure in Figure 3.
We also note that, our proposed regularized tensor model often
yields a significantly better recovery than the classical regular-
ized regression model. This is partly verified in an experiment
comparing our solution to a classical lasso with vectorized im-
age covariates. The results are given in supplementary Section
A.3.

The scale and complexity of neuroimaging data require
the estimation algorithm to be highly scalable, efficient, and
stable. The methods in this article are implemented in an
efficient Matlab toolbox, and the run time is remarkably fast.
For instance, the median run time of fitting a rank-3 model to
the two-dimensional triangle shape in Figure 1 was about 5
sec. Fitting a rank-3 logistic model to the three-dimensional
ADHD data in Section 6.2.3 took about 285 sec for 10 runs
from 10 random starting points, averaging < 30 sec per run.
Supplementary Section A.4 contains further numerical results
to study the algorithm stability with respect to starting values as
well as computing time. All results were obtained on a standard
laptop computer with a 2.6 GHz Intel i7 CPU.

We view the method of this article as a first step toward a
more general area of array regression analysis, and the idea can
be extended to a wide range of problems. We describe a few
potential future directions here. First, although we only present
results for models with a conventional covariate vector and an
array covariate, the framework applies to arbitrary combina-
tion of array covariates. This provides a promising approach to
the analysis of multimodality data, which becomes increasingly
available in modern neuroimaging and medical studies. Second,
we remark that our modeling approach and algorithm equally
apply to many general loss functions occurring in classification
and prediction. For example, for a binary response Y ∈ {0, 1},
the hinge loss takes the form

n∑

i=1

[

1 − yi

{

α + γ Tzi +
〈

R∑

r=1

β
(r)
1 ◦ β

(r)
2 ◦ · · · ◦ β

(r)
D , xi

〉}]

+

and should play an important role in support vector machines
with array variates. Third, in this article, rotation has not been

explicitly considered in the modeling. When prior knowledge
indicates, sometimes it is prudent to work in polar coordinates.
For example, the “disk” signal in Figure 1 can be effectively
captured by a rank-1 outer product if the image is coded in polar
coordinates. A diagonal signal array has full rank and cannot be
approximated by any lower rank array, but if changed to polar
coordinates, the rank reduces to one. Some of these extensions
are currently under investigation.

SUPPLEMENTARY MATERIALS

Supplementary materials contains additional numerical re-
sults as indicated in Section 6, and all technical proofs.

[Received March 2012. Revised November 2012.]
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