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ABSTRACT

Motivation: This article extends our recent research on penalized
estimation methods in genome-wide association studies to the realm
of rare variants.
Results: The new strategy is tested on both simulated and real data.
Our findings on breast cancer data replicate previous results and
shed light on variant effects within genes.
Availability: Rare variant discovery by group penalized
regression is now implemented in the free program Mendel at
http://www.genetics.ucla.edu/software/
Contact: huazhou@ucla.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Genome-wide association studies (GWASs) have enjoyed varying
degrees of success in the past decade (Easton and Eeles, 2008; Frazer
et al., 2009; Lettre and Rioux, 2008). The failure of single nucleotide
polymorphism (SNP)-based studies to explain a substantial fraction
of trait variation is hardly surprising given the tendency of selection
to drive even weakly deleterious mutations to extinction. There
are several candidates for the missing dark matter of genetic
epidemiology. Among these are: (i) copy number variants (CNVs);
(ii) polygenes of small effect; (iii) interactions between genes and
between genes and environment; (iv) epigenetic effects; and (v) rare
variants. Rare variants are currently attracting the most attention.
CNVs are subject to the same selective forces as SNPs. The sole
benefit of discovering polygenes of small effect is the insight these
provide into biochemical pathways and genetic networks. Detecting
interactions is problematic unless they are large or sample sizes are
very large. Epigenetic effects and parent-of-origin effects are clearly
important in certain settings and deserve more study. In view of the
recent striking advances in large-scale sequencing (Hodges et al.,
2007), the search for rare variants is apt to be the most promising
route to disease gene discovery.

Statistical methods must evolve to meet the challenges of
sequence data. Most current analysis methods are predicated on
the common disease common variant (CDCV) hypothesis, which
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postulates that common diseases are caused by common variants
of small to modest effect. The competing common disease rare
variant (CDRV) hypothesis postulates that common diseases are
caused collectively by multiple rare variants of moderate to large
effect. Macular degeneration is cited as an example supporting the
CDCV hypothesis (RetNet, 2010). Because macular degeneration
onset is typically late in life, it has a small impact on Darwinian
fitness. The CDRV hypothesis receives support from traits such as
low plasma levels of HDL cholesterol (Cohen et al., 2004), cystic
fibrosis (Dean and Santis, 1994), colorectal adenomas (Azzopardi
et al., 2008), familial breast cancer (Johnson et al., 2007) and
schizophrenia (Walsh et al., 2008). The distinction between the two
hypotheses is less sharp than proponents might suggest in the heat
of argument. There is a spectrum of deleterious allele frequencies
within many disease genes, and special circumstances of human
history may favor one hypothesis over the other, depending on the
diseases and populations studied (Nielsen et al., 2007, 2009).

It makes good statistical sense to consider all predictors (SNP
variants and environmental covariates) in concert. Because rare
disease predisposing alleles may be present in only a handful of
patients, the traditional variant-by-variant approach is doomed to
low power. A remedy is to group variants by gene or pathway
membership. Once this is done, the strongest marginal signal is
assessed by a weighted sum test (Madsen and Browning, 2009)
or by a groupwise test exploiting the multivariate and collapsing
strategies of Li and Leal (2008). Multiple testing remains a major
concern.

The current article extends our recent research on penalized
estimation methods in GWAS (Wu et al., 2009) to the realm of
rare variants. This approach to association mapping has several
advantages: (i) it applies to both ordinary and logistic regression;
(ii) it is parsimonious and very fast; (iii) it offers a principled
approach to model selection when the number of predictors exceeds
the number of study participants; and (iv) it handles interactions
gracefully. Our current software relies on lasso penalties and forms
part of the Mendel package (Lange et al., 2001). Here, we discuss
how to incorporate group penalties that make it easier for related
predictors to enter a model once one of the predictors does. For
example, one could group all SNPs within a single gene or within
several genes in the same pathway. We will argue that a mixture of
group penalties and single-predictor penalties tends to work best in
practice and constitutes a good alternative to forced collapsing.

When we pass to penalized estimation, model selection is
emphasized over hypothesis testing. The lasso penalty is one of
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the best continuous variable selection mechanisms known for high-
dimensional models. The term ‘lasso’ stands for the least absolute
shrinkage and selection operator. Unfortunately, the lasso is too
stringent for rare variants. Shifting some of the lasso action to a
group Euclidean penalty makes it easier for weak or low-frequency
predictors to enter a model. Retention of a partial lasso penalty
still discourages inclusion of neutral mutations within disease
susceptibility genes. The mixed penalty tactic is apt to be most
successful when a disease gene harbors a borderline-rare variant
with substantial risk. Note that there is no reason to omit common
variants in the model selection framework. Hence, a strength of
mixed penalties is that they can be applied without choosing between
the CDCV and CDRV hypotheses. Once the model selection
perspective assumes center stage, multiple testing problems recede.
They reappear in replication, but in a more benign form because the
number of genes and SNPs of interest drop dramatically.

This niche at the intersection between statistics and genetics is
undergoing rapid evolution. Our prior experiences applying lasso-
penalized ordinary regression to microarray data (Wu and Lange,
2008) and lasso-penalized logistic regression to GWAS data (Wu
et al., 2009) were very encouraging. Since we embarked on the
current rare variant research, important work has appeared by
a number of authors. The recent technical report of Friedman
et al. (2010) introduces a mixture of group and lasso penalties in
ordinary regression. Earlier Meier et al. (2008) considered logistic
regression with a pure group penalty. Both of these papers fall
outside the arena of GWAS. The latter paper also employs different
algorithms for optimization. Croiseau and Cordell (2009) applied
logistic regression with a pure group penalty to a North American
rheumatoid arthritis consortium dataset. However, they treat each
SNP as a separate group, whereas we group SNPs by gene or
pathway. To our knowledge, there have been no published papers
on generalized linear models with mixed group and lasso penalties,
certainly none focused on association mapping and rare variants.

The remainder of the article is organized as follows. Section
2 describes our statistical approach and optimization algorithms.
It introduces the lasso and group Euclidean penalties, and shows
how they can be implemented in linear and logistic regression. The
coordinate descent algorithms covered are exceptionally quick and
permit optimal tuning of the penalty constant by cross-validation.
Section 2 also presents an efficient method for simulating samples
under the CDRV model. Section 3 applies the mixed penalty method
to two simulation examples. Section 4 analyzes a breast cancer
dataset that is small enough to allow comparison to traditional model
selection. The discussion highlights some strengths and weaknesses
of model selection with mixed penalties and suggests potentially
helpful extensions.

2 METHODS

2.1 Lasso and group-penalized regression
Lasso-penalized linear regression (Donoho, 1994; Tibshirani, 1996; Wu and
Lange, 2008) is applied to high-dimensional regression problems with tens
to hundreds of thousands of predictors. Estimates are derived by minimizing

f (β) = 1

2
‖y−Xβ‖2

2 +λ‖β‖1,

where y is the response vector, X the design matrix, β the vector of regression
coefficients, ‖z‖2 = (

∑
j z

2
j )1/2 the Euclidean (�2) norm and ‖z‖1 =∑

j |zj| the

taxicab (�1) norm. The sum of squares ‖y−Xβ‖2
2 represents the loss function

minimized in ordinary least squares; the �1 contribution ‖β‖1 is the lasso
penalty function. Its multiplier λ>0 is the penalty constant. The lasso shrinks
the estimates of the regression coefficients βj toward 0. An alternative ridge
penalty λ‖β‖2

2 also shrinks parameter estimates, but it is not effective in
reducing the vast majority of them to 0. For this reason the lasso penalty is
preferred to the ridge penalty. Both lasso and ridge regressions are special
cases of the bridge regression (Fu, 1998). The constant λ can be tuned to give
any desired number of predictors. In this sense, lasso-penalized regression
performs continuous model selection. The order predictors enter a model as λ

decreases is roughly determined by their impact on the response. Exceptions
to this rule occur for correlated predictors.

Logistic regression is handled in a similar manner. Instead of equating the
loss function to a sum of squares, we equate it to the negative loglikelihood.
The loglikelihood itself can be written as

L(θ) =
n∑

i=1

[yi logpi +(1−yi)log(1−pi)], (1)

where n is the number of responses, θ= (µ,β) the parameter vector and the
success probability pi for trial i is defined by

pi = eµ+xt
i β

1+eµ+xt
i β

. (2)

Here, the response yi is 0 (control) or 1 (case), xt
i the i-th row of the design

matrix X and µ an intercept parameter. In practice, statisticians also include
the intercept in the ordinary regression model. It can be accommodated by
taking the first column of X to be the vector 1 whose entries are identically
1. Because the intercept is felt to belong to any reasonable model, the lasso
and ridge penalties omit it. To put the regression coefficients on an equal
penalization footing, all predictors should be centered around 0 and scaled
to have approximate variance 1. There is a parallel development of lasso-
penalized regression for generalized linear models (Park and Hastie, 2007).
In each case, the objective function is written as

f (θ) = L(θ)−λ‖β‖1

as the difference between the loglikelihood and the lasso penalty. Because
we now maximize f (θ), we subtract the penalty.

In some applications, it is natural to group predictors (Yuan and Lin,
2006). This raises the question of how to penalize a group of parameters.
The lasso penalty and the ridge penalties separate parameters. If a parameter
enters a model, then it does not strongly inhibit or encourage other associated
parameters entering the model. Euclidean penalties have a more subtle effect.
Suppose G denotes a group of parameters. Consider the objective function

f (θ) = L(θ)−λ
∑

G

‖βG‖2

with a Euclidean penalty on each group. Here, βG is the subvector of the
regression coefficients corresponding to group G. In coordinate ascent, we
increase f (θ) by moving one parameter at time. If a slope parameter βj

is parked at 0, when we seek to update it, its potential to move off 0 is
determined by the balance between the increase in the loglikelihood and the
decrease in the penalty. The directional derivatives of these two functions
measure these two opposing forces. The directional derivative of L(θ) is the
score ∂

∂βj
L(θ) for movement to the right and the negative score − ∂

∂βj
L(θ)

for movement to the left. An easy calculation shows that the directional
derivative of λ‖βG‖2 is λ in either direction at βj =0 when βi =0 for all
i∈G with i �= j. In this case note that ‖βG‖2 =|βj|. If βG �=0, then the partial
derivative of λ‖βG‖2 with respect to βj is λβj/|βG‖2. Hence, the directional
derivatives both vanish at βj =0. In other words, the local penalty around 0
for each member of a group relaxes as soon as the regression coefficient for
one member moves off 0.

Euclidean group penalties run the risk of selecting response-neutral
predictors. As soon as one predictor from a group enters a model, it opens the
door for other predictors from the group to enter the model. For this reason,
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we favor a mixture of group and lasso penalties in ordinary regression. In our
genetics context, lasso penalties keep the pressure on for neutral mutations
to be excluded, even if they occur in causative genes or pathways. There
is no need to group SNPs that occur outside coding or obvious regulatory
regions. However, it seems reasonable in the absence of other knowledge
to penalize all SNPs equally. This suggests that all Euclidean penalties have
the same scale and that the sum of the group and lasso scales for each SNP
be the same. Thus, if SNP j belongs to group G, it should experience penalty
λE‖βG‖2 +λL|βj|. If it belongs to no group, it should experience penalty
λ|βj| with λ=λE +λL.

Imposition of lasso and Euclidean penalties has further advantages. In
addition to enforcing model parsimony and selecting relevant parameters,
both penalties improve the convergence rate in minimizing the objective
function. Because the penalties are convex, they also increase the chances
for a unique minimum point when the loss function is non-convex. As we
demonstrate, both kinds of penalties are compatible with coordinate descent,
which is by far the fastest optimization method in sparse regression.

2.2 Algorithms
Coordinate descent/ascent has proved to be an extremely efficient algorithm
for fitting penalized models in high-dimensional problems (Friedman et al.,
2007; Wu and Lange, 2008; Wu et al., 2009). Traditional algorithms such as
Newton’s method and scoring are not computationally competitive. Cyclic
coordinate descent/ascent optimizes the objective function one parameter
at a time, fixing the remaining parameters. Block relaxation generalizes
cyclic coordinate descent by cycling through disjoint blocks of parameters
and updating one block at time. Meier et al. (2008) use block relaxation
to fit logistic regression. The extreme efficiency of cyclic coordinate
descent/ascent in high-dimensional problems stems from the low cost of
the univariate updates and the fact that most parameters never budge from
their initial value of 0. Here, we present cyclic coordinate descent for linear
and logistic regression with mixed lasso and group penalties.

2.2.1 Logistic regression with cases and controls It is well known that the
logistic loglikelihood (1) with success probabilities (2) has score vector and
observed information matrix

∇L(θ) =
n∑

i=1

[yi −pi(θ)]xi

−d2L(θ) =
n∑

i=1

pi(θ)[1−pi(θ)]xix
t
i .

For the intercept derivatives, recall that the relevant coordinate of xi is 1. The
penalized loglikelihood augmented by group and lasso penalties becomes

f (θ) = L(θ)−λL‖β‖1 −λE

∑
G

‖βG‖2,

where G ranges over all groups. When λL =0, f (θ) incorporates a pure group
penalty (Meier et al., 2008). When λE =0, f (θ) incorporates a pure lasso
penalty (Wu et al., 2009).

In penalized maximum likelihood estimation, coordinate ascent is
implemented by replacing the loglikelihood by its local quadratic
approximation based on the relevant entries of the score and observed
information. The penalty contribution is likewise approximated locally by a
quadratic in the parameter being updated. For the intercept parameter µ, the
penalty can be ignored, and Newton’s update amounts to

µm+1 = µm −
∑n

i=1[yi −pi(θm)]∑n
i=1 pi(θm)[1−pi(θm)] .

To update a slope parameter βj , we commence maximization at 0. If the
directional derivatives to the right and left are both negative, then no
progress can be made, and βj remains at 0. Otherwise, maximization is
confined to the left or right half-axis, whichever shows promise. Because
the objective function is concave, the two directional derivatives cannot be

simultaneously positive. If βj belongs to group G, then the two first two
partial derivatives are

∂

∂βj
f (θ) =

n∑
i=1

[yi −pi(θ)]xij −λLsgn(βj)

−λE

{
βj

‖βG‖2
, ‖βG‖2 >0

sgn(βj), ‖βG‖2 =0

∂2

∂β2
j

f (θ) = −
n∑

i=1

pi(θ)[1−pi(θ)]x2
ij

−λE

⎧⎨
⎩

1
‖βG‖2

(
1− β2

j

‖βG‖2
2

)
, ‖βG‖2 >0

0, ‖βG‖2 =0.

The lack of continuity of the first partial derivative at the point βj =0 does not
prevent the directional derivatives from being well defined. The Newton’s
update of βj

βm+1
j = βm

j −
∂

∂βj
f (θm)

∂2

∂β2
j

f (θm)
(3)

almost always converges within five iterations. At each iteration one should
check that the objective function is driven uphill. If the ascent property fails,
then the simple remedy of step halving is available.

2.2.2 Ordinary regression with a quantitative trait The objective function
to be minimized is

f (θ) = 1

2
‖y−µ−Xβ‖2

2 +λL‖β‖1 +λE

∑
G

‖βG‖2.

The Newton update of the intercept is the obvious average

µm+1 = 1

n

n∑
i=1

(yi −xt
i β

m)

To implement Newton’s method for a slope parameter βj belonging to group
G, one employs the first and second partial derivatives

∂

∂βj
f (θ) = −

n∑
i=1

(yi −µ−xt
i β)xij +λLsgn(βj)

+λE

{
βj

‖βG‖2
, ‖βG‖2 >0

sgn(βj), ‖βG‖2 =0

∂2

∂β2
j

f (θ) =
n∑

i=1

x2
ij +

⎧⎨
⎩

λE‖βG‖2

(
1− β2

j

‖βG‖2
2

)
, ‖βG‖2 >0

0, ‖βG‖2 =0.

With these derivatives in place, the 1D Newton’s update (3) is pertinent.
Once again iteration is confined to the left or right half-axis, provided either
passes the directional derivative test.

2.3 Selection of tuning constants
In principle, cross-validation can be invoked to determine the optimal values
of λL and λE. As we show in our simulations, setting them equal works well.
Given a fixed ratio of the two penalties, the total penalty λ=λL+λE can
be adjusted to deliver a predetermined number of genes or SNP variants.
Because the number of non-zero predictors entering a model is a generally a
decreasing function of λ, a bracketing and bisection strategy is effective in
finding a relevant λ (Wu et al., 2009). Of course, the smaller the number of
predictors desired, the faster the overall computation proceeds. If computing
time is not a constraint, it is helpful to optimize the objective function over a
grid of points and monitor how new predictors enter the model as λ decreases.
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2.4 Simulation algorithms
For the sake of simplicity, we adopt the rare variant model of Li and Leal
(2008). They postulate that any of v variants can independently cause the
disease under consideration. If Ii is the indicator of disease attributed to
variant i, then the sum S =∑v

i=1 Ii captures the essence of the model. An
individual is affected if and only if his/her value of S satisfies S ≥1. Thus,
an individual could have multiple mutations, each one sufficient to cause the
disease. Ignoring genetic details for the moment, let ki =Pr(Ii =1). These
prevalences plus the independence of the indicators Ii completely determine
the Poisson-binomial distribution characterizing S. The discrete density of S
can be computed recursively from the probabilities ki (Lange, 2010). Once
the discrete density is available, we sample from the conditional distribution
Pr(S = j |S ≥1). Obviously, all Ii =0 whenever S =0. Finally, given a positive
value j of S, one can sample from the conditional Poisson-binomial

Pr(I1 = i1,...,Iv = iv |S = j)

in an efficient sequential manner (Lange, 2010). This brief account omits
many details that are fully supplied in the cited reference and the table labeled
Algorithm 1.

The most suspect assumption in the model is the independence of the
disease indicators Ii, which rules out linkage disequilibrium for closely
spaced variants. The remaining genetics assumptions are more defensible.
Let Gi be the genotype at variant i. Designate the normal allele by ai

and the high-risk allele by Ai. If the latter has frequency pi, then under
Hardy–Weinberg equilibrium the three genotypes ai/ai =0, Ai/ai =1 and
Ai/Ai =2 have frequencies (1−pi)2, 2pi(1−pi) and p2

i , respectively. Denote
the penetrance of the genotype Gi = j at variant i by fij =Pr(Ii =1 |Gi = j).
The prevalence attributed to variant i amounts to ki =∑

j Pr(Gi = j)fij . Under

an additive model, fi1 = 1
2 (fi0 +fi2). For a multiplicative model, f 2

i1 = fi0fi2.
A dominant model takes fi1 = fi2, and a recessive model takes fi0 = fi1.
For purposes of discussion, the wild-type penetrance f0 =1−∏v

i=1(1−fi0)
is the probability that a person with no high-risk alleles is affected. The
variant-specific relative risks (RRs) are defined by the ratios γij = fij/f0.

To simulate genotypes in a case/control study, we first simulate the
disease indicators Ii, assuming case status (S ≥1) or control status (S =0).
Conditional on the indicators Ii, the genotypes Gi are independent. Sampling
Gi given Ii is a simple application of Bayes rule taking into account
the various genotype probabilities and penetrances. Our entire simulation
scheme is summarized in Algorithm 1. Computation of the discrete density
of S requires v2/2 operations but only needs to be done once. Simulating
each case requires 3v operations and each control v operations. It takes <2 s
on a standard laptop to simulate 10000 SNPs for 500 cases and 500 controls.

3 ANALYSIS OF SIMULATED DATA
Our first simulation example compares mixed group and lasso
penalties to pure lasso and pure group penalties in association
testing. Figure 1 shows the solution paths of a simulation example
with 500 cases and 500 controls at various mixes of lasso and group
penalties for three genes. Gene 1 (red) contains one common causal
variant [minor allele frequency (MAF) 10% and RR 1.2] and four
neutral rare variants. Gene 2 (green) contains five causal rare variants
(MAF 1% and RR 5) and five neutral rare variants. Gene 3 (blue)
contains 10 neutral rare variants. All neutral rare variants have MAF
1% and RR 1. The wild-type penetrance f0 is set at 0.01. The pure
lasso penalty (λL/λ=1) picks up significant variants (common and
rare) sequentially. The pure group penalty (λL/λ=0) picks up genes
(groups) 1, 2 and 3 sequentially. The mixed group plus lasso penalty
(λL/λ=0.75 or 0.50) achieves a good compromise between the two.

Our second simulation example involves 100 simulations each
with 500 controls and 500 cases under different scenarios, reflecting
heterogeneity in both MAFs and RRs. There are 10 participating

Algorithm 1 Given MAFs p1,...,pv and variant specific penetrances
fij for i=1,...,v and j=0,1,2, simulate D cases and N controls

Calculate genotype frequencies under HWE: Pr(Gi = j)
Calculate variant prevalences ki =∑2

j=0 Pr(Gi = j)fij
Calculate the lower triangular probability table Q(0 :v,0 :v) via recursion

Q(0,0)=1

Q(j,0)= (1−kj)Q(j−1,0)

Q(j,i)=kjQ(j−1,i−1)+(1−kj)Q(j−1,i)

Q(j,j)=kjQ(j−1,j−1).

for each control do
Sample from Pr(Gi = j | Ii =0)= (1−fij)/(1−ki) for i=1,...,v

end for
for each case do

Sample from Pr(S = i |S ≥1)=Q(v,i)/(1−Q(v,0))
for m=v :1 do

Sample Ii from Bernoulli with parameter kmQ(m−1,S−1)/Q(m,S)
Sample Gi from Pr(Gi | Ii)
S =S−Ii

end for
end for

genes, each with 5 rare variants. Across the simulations, the MAF is
uniformly distributed from 0.1% to 1%. For i=1,...,5, gene i has i
causal rare variants. Therefore, the model has 15 causal rare variants
dispersed over 5 genes and 35 neutral rare variants dispersed over
10 genes. All neutral variants have RR 1. The wild-type penetrance
f0 is set at 0.01. Figure 2 reports the receiver operating characteristic
(ROC) curves calculated from selected variants and genes, with the
proportion of the lasso penalty λL/λ set at 0 (pure group penalty),
0.5 and 1.0 (pure lasso penalty). Each point of the ROC curves
records the true and false positive rates of the selected variants (first
row) or genes (second row) at a specific λ value. Inspection of these
graphs shows that the performance of the mixed group and lasso
penalties dominates that of the pure lasso penalty in variant selection.
Note how the green ROC curves are shifted toward the upper left.
The effects on gene selection is not clear-cut. The second and third
scenarios (columns) support our contention that penalized regression
with mixed penalties performs better when any of the causal variants
is relatively common or has a high RR in groups.

4 APPLICATION TO FAMILY CANCER REGISTRY
DATA

Germline mutations in genes from various DNA repair pathways,
most notably BRCA1, BRCA2 and ATM, have been shown to
dramatically increase the risk of familial breast cancer but do
not explain all of the risk (Claus et al., 1996; Ford et al., 1994;
Gatti, 1998; Wooster et al., 1995). Based on a candidate gene
study of the double-strand break repair (DSBR) pathway, we have
identified SNPs from genes involved in DSBR (XRCC4, XRCC2,
NBS1, RAD21, TP53, BRIP1, ZNF350) that are associated with
risk of familial breast cancer in single SNP analyses (Sehl et al.,
2009). Identifying group effects from this pathway can be helpful
in understanding factors that modulate an individual’s risk of
developing breast cancer. We wish to identify group effects by gene
and apply here mixed group and lasso-penalized regression.
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Fig. 1. A simulation example with 500 cases and 500 controls. There are three genes. Gene 1 (red) contains one common causal variant (MAF 10% and
RR 1.2) and four neutral rare variants. Gene 2 (green) contains five causal rare variants (MAF 1% and RR 5) and five neutral rare variants. Gene 3 (blue)
contains 10 neutral rare variants. All neutral rare variants have MAF 1% and RR 1. The wild-type penetrance f0 is set at 0.01. The pure lasso penalty (λL/λ=1)
picks up significant variants (common and rare) sequentially. The pure group penalty (λL/λ=0) picks up the genes (groups) 1, 2 and 3 sequentially. The
mixed group plus lasso penalty (λL/λ=0.75 or 0.50) achieves a good compromise between the two.

Fig. 2. ROC curves based on 100 simulations each with 500 controls and 500 cases. The first row is for variants and the second row for genes. MAFs of all
variants are uniform between 0.1% and 1%. Neutral variants have RR 1. Column 1: RRs of causal variants are uniform between 1.2 and 5. Column 2: RRs of
causal variants are uniform between 1.1 and 2, except one RR is set to 10 in each causal gene. Column 3: MAF of one variant is set to 5% in each causal gene.
The true positive rate (sensitivity) is the proportion of causal variants/genes correctly identified, while the false positive rate (1-specificity) is the proportion
of neutral variants/genes identified as causal.
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Fig. 3. SNPs and genes from the DSBR pathway selected by group lasso penalized regression based on familial breast cancer data. All results assume an
additive model. Panels reveal the varying trajectories of SNP and gene entrances into the model under varying proportions of lasso to total (lasso plus group)
penalty.

Family Cancer Registry: data are taken from genotype samples
of participants enrolled in the UCLA Family Cancer registry. To be
eligible, individuals must have a personal or family history of either
a known cancer genetic susceptibility, such as a mutation in BRCA1
or BRCA2, or a family history containing at least two first or second
degree relatives who are afflicted with the same primary cancer.
This enriched sample of participants allows for the identification
of factors that modulate risk of breast cancer. Data analysis has to
be fairly subtle because of the way in which the participants were
enrolled.

Analysis: we performed penalized logistic regression with the
dependent variable, breast cancer status (affected versus unaffected)
coded as a binary outcome. We limited our sample to 399 Caucasian
participants because other ethnic groups were too small to fully
characterize and provide little power to detect differences. There
were 196 affected and 203 unaffected individuals. Age was used
as a covariate in our analysis. The well-known association of age
with breast cancer was confirmed in our previous analysis (Sehl
et al., 2009). We imputed missing data for covariates using the mean
value for continuous variables and the most frequent category for
categorical variables.

SNPs were excluded from our analysis if genotype call rates
were <75%. Missing SNPs were imputed using the SNP imputation
option of the Mendel 10.0 software (Lange et al., 2001). 148 SNPs
from the DSBR pathway were grouped by gene. These 17 genes
included BRCA1, BRCA2, BRIP1,ATM, RAD50, RAD51, RAD52,
RAD54L, RAD21, TP53, NBS1, XRCC2, XRCC4, XRCC5,
MRE11A, ZNF350 and LIG4. Some genes carried large numbers

of SNPs (e.g. BRCA2 had 19 SNPs), and some genes had only
one SNP for analysis. SNPs were analyzed under additive models.
Penalized regression was performed under varying proportions of
lasso and group penalties. Analysis under a dominant model leads
to similar conclusions (data not shown).

Results: although most of the SNPs in this dataset are common,
4 have MAFs <1%, 5 have MAF between 1% and 5% and 13 have
MAF between 5% and 10%. Figure 3 plots the selection trajectories
for groups of SNPs and demonstrate the ability of mixed group and
lasso-penalized regression to select SNPs within a gene as a group.
As the total penalty grows, SNPs are selected either singly or as
groups. In the case of the pure lasso, SNPs enter the model singly,
and in the case of the pure group penalty, genes enter the model with
their full sets of SNPs. In the mixed cases, we see that either single
SNPs or sets of SNPs grouped by gene enter the model. When a
group enters in the mixed cases, it need not contain all of the SNPs
in that gene.

Age was the first predictor selected in all models as expected.
The content and order of selection of the top four gene-defined
groups under varying proportions of lasso to total penalty are shown
in Table 1. Under a purely lasso penalty, single SNPs from genes
BRIP1, RAD21, RAD52 and XRCC4 are selected. As we increase
the proportion of the group penalty, more SNPs from each of these
four genes are selected together as a group.

It is reassuring that a broad range of proportions (0.25–0.75) of the
lasso penalty deliver stable results. In most models, the same 3 SNPs
from RAD21, and the same 4–5 SNPs from XRCC4 are retained. The
3 SNPs from RAD21 lie in a common haplotype block as defined
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Table 1. Top four groups of SNPs selected under varying lasso and group
penalties and an additive model

λL/λ Seconda Thirda Fourtha Fiftha

1 BRIP1 XRCC4 RAD21 RAD52
rs4986763 rs1120476 rs16889040 rs9634161

0.75 RAD21 XRCC4 BRIP1 RAD52
rs16888927 rs10474081 rs4986763 rs11571476
rs16888997 rs1120476 rs9634161
rs16889040 rs6452525 rs7311151

rs10514249

0.25 – 0.5 XRCC4 RAD21 RAD52b BRIP1b

rs10474081 rs16888927 rs11571476 rs4986763
rs1120476 rs16888997 rs9634161
rs6452525 rs16889040 rs7311151
rs10514249
rs1193695

0c BRIP1 XRCC4b RAD21b RAD52

aOrder of entry of groups of predictors (following age) into the model.
bThese groups entered together.
cFor the pure group penalty results, all SNPs from a gene were selected together;
hence individual SNPs are not listed. Values of the total λ required to select the top
five predictors are 6.4, 8.6, 10.2 and 10.4 for λL/λ equal to 0, 0.25-0.5, 0.75 and 1.0,
respectively. The SNPs with P < 0.05 in marginal analysis are boldfaced.

by Gabriel et al. (2002), while the XRCC4 SNPs fall in different
haplotype blocks. Many of these SNPs are found to be associated
with familial breast cancer in single SNP analyses. In marginal
analysis, 14 SNPs have P < 0.05. Ten of these are also selected
by the mixed penalty method with λL/λ=0.25−0.5 (boldfaced in
Table 1). It seems biologically reasonable that these SNP sets should
be among the first predictors selected after age.

SNP rs4986763 from gene BRIP1 is present in all models. This
SNP was found to be significant in previous single SNP analyses.
However, it was only highly significant after excluding individuals
who were known to be BRCA1 and BRCA2 positive. RAD52
was not found to be significant in previous single SNP analyses
(Sehl et al., 2009), suggesting it may modulate the effects of other
SNPs. In a follow-up study (Sehl,M. et al., in preparation), possible
interaction of RAD52 with other genes is investigated.

5 DISCUSSION
The results of this article suggest that mixed group and lasso
penalties outperform lasso penalties alone, especially when both
common and rare variants are present. Our simulated examples
clearly demonstrate this fact. Our analysis of the breast cancer data
is more ambiguous because we do not know the truth that nature
hides. In our view, the focus in genetic epidemiology should be on
both SNP and gene discovery.

The connections between penalized regression and Bayesian
analysis are obvious. One could argue the case for passing to a
full Bayesian assault on association testing. This has already been
accomplished for marginal analysis of SNPs (Wellcome Trust Case-
Control Consortium, 2007). Although it is tempting to construct
multi-predictor Bayesian methods, the computational costs are apt
to be high. Penalized estimation and model selection achieve many
of the same goals at a fraction of the computational cost.

Mixed penalties help us sort through the confusion of causal
genes and neutral variants within them. Even though mixed penalties
improve both false positive and false negative rates, we are not
suggesting that mixed penalties are a panacea. However, the gradual
accumulation of incremental improvements in statistical methods
will make a substantial difference. The statistical tools showcased
here form part of the next release of the Mendel statistical genetics
package. Mendel is available for free in Linux, MacOS and Windows
versions at http://www.genetics.ucla.edu/software. It takes <5 s on a
standard desktop computer to complete all single SNP analyses and
lasso estimation on the family cancer registry data. Our companion
paper (Zhou,H. et al., unpublished data) discusses Mendel syntax
and output conventions. Geneticists and statisticians wanting to
judge for themselves the virtues of mixed penalties are welcome
to use Mendel on their own data.
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