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A Generic Path Algorithm for Regularized
Statistical Estimation

Hua ZHOU and Yichao WU

Regularization is widely used in statistics and machine learning to prevent overfitting and gear solution toward prior information. In general,
a regularized estimation problem minimizes the sum of a loss function and a penalty term. The penalty term is usually weighted by a tuning
parameter and encourages certain constraints on the parameters to be estimated. Particular choices of constraints lead to the popular lasso,
fused-lasso, and other generalized ℓ1 penalized regression methods. In this article we follow a recent idea by Wu and propose an exact path
solver based on ordinary differential equations (EPSODE) that works for any convex loss function and can deal with generalized ℓ1 penalties
as well as more complicated regularization such as inequality constraints encountered in shape-restricted regressions and nonparametric
density estimation. Nonasymptotic error bounds for the equality regularized estimates are derived. In practice, the EPSODE can be coupled
with AIC, BIC, Cp or cross-validation to select an optimal tuning parameter, or provide a convenient model space for performing model
averaging or aggregation. Our applications to generalized ℓ1 regularized generalized linear models, shape-restricted regressions, Gaussian
graphical models, and nonparametric density estimation showcase the potential of the EPSODE algorithm. Supplementary materials for this
article are available online.
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1. INTRODUCTION

In this article, we consider a general regularization framework

min
β∈Rp

f (β) + ρ∥Vβ − d∥1 + ρ∥Wβ − e∥+, (1)

for which we propose an efficient exact path solver based on
ordinary differential equations (EPSODE). Here f : Rp $→ R
is a convex, smooth function of β ∈ Rp, where p > 0 is the
dimensionality of the parameters. For any vector v = (vi),
∥v∥1 =

∑
i |vi | denotes its ℓ1 norm and ∥v∥+ =

∑
i max{vi, 0}

is the sum of positive parts of its components. ρ is the reg-
ularization tuning parameter and the two regularization terms
embodied by the constant matrices (V , W ) and vectors (d, e)
enforce equality and inequality constraints among the param-
eters, respectively, as explained below. The EPSODE provides
the exact solution path to (1) as the tuning parameter ρ varies.

1.1 Generality of (1)

The generality of (1) is two-fold. First, f can by any con-
vex loss or other types of objective functions. For example, it
can be the negative log-likelihood function of GLMs, negative
quasi-likelihood, the exponential loss function of the AdaBoost
(Friedman, Hastie, and Tibshirani 2000), or many other fre-
quently used loss functions in statistics and machine learning.
Second, we allow V and W to be any regularization matrices
of p columns. This leads to broad applications. In particular,
the first regularization term ρ∥Vβ − d∥1 encourages equality
constraints Vβ = d. When ρ is large enough, the minimizer
β(ρ) of (1) satisfies Vβ(ρ) = d. For instance, when V is the
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identity matrix and d = 0, it recovers the well-known lasso re-
gression (Donoho and Johnstone 1994; Tibshirani 1996) which
encourages sparsity of the estimates. When

V =

⎛

⎜⎜⎝

−1 1
. . .

. . .

−1 1

⎞

⎟⎟⎠

and d = 0, it corresponds to the fused-lasso penalty (Tibshi-
rani et al. 2005), which leads to smoothness among neighboring
regression coefficients. As we will show later, more compli-
cated equality constraints can be incorporated with properly
designed V and d. On the other hand, the second regulariza-
tion term ρ∥Wβ − e∥+ enforces regularization by inequality
relations among regression coefficients. For large enough ρ, the
minimizer β(ρ) satisfies Wβ(ρ) ≤ e. For instance, setting W as
the negative identity matrix and e = 0 encourages nonnegativity
of the estimates, as required in nonnegative least squares prob-
lems (Lawson and Hanson 1987). In the isotonic regression
(Robertson, Wright, and Dykstra 1988; Silvapulle and Sen
2005), the estimates have to be nondecreasing. This can be
achieved by the regularization matrix

W =

⎛

⎜⎜⎝

1 −1
. . .

. . .

1 −1

⎞

⎟⎟⎠

and e = 0. More complicated constraints that occur in shape-
restricted regression and nonparametric regressions also can be
incorporated as we demonstrate in later examples.

In certain applications, both equality and inequality regular-
izations are required. In that case, as shown in Section 2, at a
large but finite ρ, the minimizer β(ρ) coincides with the solution
to the following linearly constrained optimization problem

min f (β) subject to Vβ = d and Wβ ≤ e. (2)
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Consequently, EPSODE solves the linearly constrained esti-
mation problem (2) as a byproduct. In this case, path following
commences from the unconstrained solution argminf (β) and
ends at the constrained solution to (2).

1.2 A Motivating Example

For illustration, we consider a merger and acquisition (M&A)
dataset studied in Fan et al. (2013). This dataset constitutes n =
1371 U.S. companies with a binary response variable indicating
whether the company becomes a leveraged buyout (LBO) target
(yi = 1) or not (yi = 0). Seven covariates (1. cash flow; 2. cash;
3. long-term investment; 4. market to book ratio; 5. log market
equity; 6. tax; 7. return on S&P 500 index) are recorded for
each company. There have been intensive studies on the effects
of these factors on the probability of a company being a target
for strategic mergers. Exploratory analysis using linear logistic
regression shows no significance in most covariates.

To explore the possibly nonlinear effects of these quantitative
covariates, the varying-coefficient model (Hastie and Tibshirani
1993) can be adopted here. We discretize each predictor into,
say, 10 bins and fit a logistic regression. The first bin of each
predictor is used as the reference level and effect coding is ap-
plied to each discretized covariate. The circles (o) in Figure 1
denote the estimated coefficients for each bin of each predictor
and hint at some interesting nonlinear effects. For instance, the
chance of being an LBO target seems to monotonically decease

with market-to-book ratio and be quadratic as a function of log-
market equity. Regularization can be used to borrow strength
between neighboring bins and gear solution toward clearer pat-
terns. To illustrate the flexibility of the regularization scheme (1),
we apply cubic trend filtering to five covariates (cash flow, cash,
long term investment, tax, return on S&P 500 index), impose
the monotonicity (nonincreasing) constraint on the “market-
to-book ratio” covariate, and enforce the concavity constraint
on the “log market equity” covariate. This can be achieved
by minimizing a regularized negative logistic log-likelihood of
form

−ℓ(β1, . . . ,β7) + ρ
∑

j ̸=4,5

∥V jβj∥1 + ρ
∑

j=4,5

∥W jβj∥+,

where βj is the vector of regression coefficients for the jth
discretized covariate. The matrices in the regularization terms
are specified as

Vj =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−1 2 −1

1 −4 6 −4 1
. . .

. . .
. . .

. . .

1 −4 6 −4 1

−1 2 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

for j = 1, 2, 3, 6, 7,
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Figure 1. Snapshots of the path solution to the regularized logistic regression on the M&A dataset.
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W 4 =

⎛

⎜⎜⎝

−1 1
. . .

. . .

−1 1

⎞

⎟⎟⎠ ,

and W 5 =

⎛

⎜⎜⎝

1 −2 1
. . .

. . .
. . .

1 −2 1

⎞

⎟⎟⎠ .

The equality constraint regularization matrix V j , j =
1, 2, 3, 6, 7, penalizes the fourth order finite differences be-
tween the bin estimates. Thus, as ρ increases, the coefficient
vectors of covariates 1-3,6-7 tend to be piecewise cubic with
two ends being linear, mimicking the natural cubic spline. This
is one example of the polynomial trend filtering (Kim et al.
2009; Tibshirani and Taylor 2011). Similar to semiparametric
regressions, regularizations in polynomial trend filtering “let the
data speak for themselves.” In contrast, the bandwidth selection
in semiparametric regressions is replaced by parameter tuning
in regularizations. The number and locations of knots are au-
tomatically determined by tuning parameter which is chosen
according to model selection criteria. In a similar fashion, the
coefficient vector gradually becomes monotone for covariate
“market-to-book ratio” and concave for covariate “log market
equity.” In addition, with ρ large enough, we recover the corre-
sponding constrained solution, which are shown by the crosses
(+) on solid lines in Figure 1. As noted above, our exact path
algorithm delivers the whole solution path bridging from the
unconstrained estimates (denoted by o) to the constrained esti-
mates (denoted by +). For example, the dotted line in Figure 1
is a snapshot of the solution at ρ = 0.6539. Availability of the
whole solution path renders model selection along the path easy.
For instance, the regularization parameter ρ can be chosen by
minimizing the cross-validation error or other model selection
criteria such as AIC, BIC, or Cp. Figure 2 displays the solution
path and the AIC and BIC along the path. It shows that both cri-
teria favor the fully regularized solution, namely the constrained
estimates. The whole solution path is obtained within seconds
on a laptop using a Matlab implementation of EPSODE.

The patterns revealed by the regularized estimates match
some existing finance theories. For instance, a company with
low cash flow is unlikely to be an LBO target because low cash
flow is hard to meet the heavy debt burden associated with the
LBO. On the other hand, company carrying a high cash flow is
likely to possess a new technology. It is risky to acquire such
firms because it is hard to predict their profitability. The tax
reason is obvious from the regularized estimates. The more tax
the company is paying, the more tax benefits from an LBO. Log
of market equity is a measure of company size. Smaller compa-
nies are unpredictable in their profitability and extremely large
companies are unlikely to be an LBO target because LBOs are
typically financed with a large proportion of external debts.

This illustrative example demonstrates the flexibility of our
novel path algorithm. First, it can be applied to any convex
loss function. In this example, the loss function is the negative
log-likelihood of a logistic model. Second, it works for com-
plicated regularizations like polynomial trend filtering (equality
constraints), monotonicity constraint, and concavity constraint.
More applications will be presented in Section 7 to illustrate the
potential of EPSODE.

1.3 Previous Work and Our Contributions

Path algorithms have been devised for some special cases of
the general regularization problem (1). Most notably the ho-
motopy method (Osborne, Presnell, and Turlach 2000) and the
least angle regression (LARS) procedure (Efron et al. 2004)
handle lasso penalized least squares problem. The solution path
generated is piecewise linear and illustrates the tradeoffs be-
tween goodness-of-fit and sparsity. Rosset and Zhu (2007) gave
sufficient conditions for a solution path to be piecewise linear
and expand its applications to a wider range of loss and penalty
functions. Recently Tibshirani and Taylor (2011) devised a dual
path algorithm for generalized ℓ1 penalized least squares prob-
lems, which is problem (1) with f quadratic but without the
second inequality regularization term. Zhou and Lange (2013)
considered (1) in full generality for quadratic f . All these works
concern regularized linear regression for which the solution path
is piecewise linear. Several attempts have been made to derive
a path following for regularized GLMs for which the solution
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Figure 2. Solution and AIC/BIC paths of the regularized logistic regression on the M&A dataset.
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path is no longer piecewise linear. Park and Hastie (2007) pro-
posed a predictor-corrector approach to approximate the lasso
path for GLMs. Friedman (2008) derived an approximate path
algorithm for any convex loss regularized by a separable, but
not necessarily for convex penalty. Here a penalty function is
called separable if its Hessian matrix is diagonal.

In two pioneering papers, Wu (2011, 2012) presented an
ODE-based LARS path algorithm for GLMs, quasilikelihoods,
and Cox model, a modification of which is able to deliver the
exact path for a lasso solution path. The ODE approach naturally
fits problems with piecewise smooth solution paths and is the
strategy we adopt in this article. Unfortunately, the separability
restriction on the penalty term in (Friedman 2008; Wu 2011,
2012) excludes many important problems encountered in real
applications.

Our proposed approach generalizes previous work in several
aspects. First, it works for any convex loss (or criterion) func-
tion. Second, it allows for any type of regularization in terms
of linear functions of parameters, equality or inequality. Equal-
ity constrained regularizations include lasso, fused-lasso, and
generalized ℓ1 penalty for example. Inequality constrained reg-
ularizations are required in shape-restricted regression and non-
parametric log-concave density estimation. Last but not least, it
is an exact path algorithm. Availability of the exact solution path
has certain features that are appealing to statisticians. Compared
to individual optimizations over a prespecified grid of tuning pa-
rameter values, it gives a more complete picture, capturing all
model changes along the path. Moreover, it greatly eases some
of the adaptive estimation procedure based on the regulariza-
tion path. For instance, Bayesian model averaging over the ℓ1

regularization path has been shown to generate superior predic-
tion, classification, and model selection performances (Ghosh
and Yuan 2009; Fraley and Percival 2010). In each MCMC it-
eration, a new model on regularization path is proposed and
the associated (approximate) model likelihood needs to be eval-
uated. The exact solution path is certainly welcome here as
regularized model at any ρ is likely to be sampled.

The rest of the article is organized as follows. Section 2 re-
views the exact penalty method for optimization. Here the con-
nections between constrained optimization and regularization in
statistics are made clear. Section 3 derives in detail the EPSODE
algorithm for strictly convex loss function f . Its implementation
via the sweep operator and ordinary differential equations are
described in Section 4. An extension of EPSODE for f convex,
but not necessarily strictly convex, is discussed in Section 5.
Nonasymptotic error bounds for equality regularized estimates
are derived in Section 6. Section 7 presents various applications
of EPSODE. Finally, Section 8 discusses the limitations of the
path algorithm and hints at future generalizations.

2. EXACT PENALTY METHOD FOR CONVEX
CONSTRAINED OPTIMIZATION

Consider the convex program

min f (x) subject to gi(x) = 0, 1 ≤ i ≤ r, and
hj (x) ≤ 0, 1 ≤ j ≤ s, (3)

where the objective function f is convex, equality constraint
functions gi are affine, and the inequality constraint functions

hj are convex. We further assume that f and hj are smooth.
Specifically we require that f and hj are continuously twice
differentiable. To fix the notation, differential df (x) is the row
vector of partial derivatives of f at x and the gradient ∇f (x) is
the transpose of df (x). The Hessian matrix of f (·) is denoted
by d2f (x).

Exact penalty method minimizes the function

Eρ(x) = f (x) + ρ

r∑

i=1

|gi(x)| + ρ

s∑

j=1

max{0, hj (x)} (4)

for ρ ≥ 0. Classical results (Ruszczyński 2006, Theorems 6.9
and 7.21) state that for ρ large enough, the solution to the opti-
mization problem (4) coincides with the solution to the original
constrained convex program (3). This justifies the exact penalty
method as one way to solve constrained optimization problems.

According to convex calculus (Ruszczyński 2006, Theorem
3.5), the optimal point x(ρ) of the functionEρ(x) is characterized
by the necessary and sufficient condition

0 = ∇f (x) + ρ

r∑

i=1

si∇gi(x) + ρ

s∑

j=1

tj∇hj (x) (5)

with coefficients satisfying

si ∈

⎧
⎪⎨

⎪⎩

{−1} gi(x) < 0

[ −1, 1] gi(x) = 0

{1} gi(x) > 0

, and tj ∈

⎧
⎪⎨

⎪⎩

{0} hj (x) < 0

[0, 1] hj (x) = 0

{1} hj (x) > 0

.

(6)

The sets defining possible values of si and tj are the subdiffer-
entials of the functions |x| and x+ = max{x, 0}. For the path
following to make sense, we require uniqueness and continuity
of the solution x(ρ) to (4) as ρ varies. The following lemma con-
cerns the continuity of the solution path and is the foundation
of our path algorithm.

Lemma 2.1.

1. (Uniqueness) If Eρ is strictly convex, then its minimizer
x(ρ) is unique.

2. (Continuity) If Eρ is strictly convex and coercive over an
open neighborhood of ρ, that is, {x : Eρ(x) ≤ Eρ(z)} is
compact for all z, then the minimizer x(ρ) is continuous
at ρ.

3. (Continuity of si and tj ) Furthermore, if the gradi-
ents {∇gi(x) : gi(x) = 0} ∪ {∇hj (x) : hj (x) = 0} of ac-
tive constraints are linearly independent at the solution
x(ρ) over an open neighborhood of ρ, then the coefficient
paths si(ρ) and tj (ρ) are unique and continuous at ρ.

We remark that strict convexity only gives an easy-to-check
sufficient condition for uniqueness and continuity; it is not nec-
essary. A convex but not strictly convex function can still have
a unique minimum. The absolute value function |x| offers such
an example. When the loss function f is strictly convex, then Eρ

is strictly convex for all ρ ≥ 0 and by Lemma 2.1 there exists
a unique, continuous solution path {x(ρ) : ρ ≥ 0}. In Sections
3 and 4, we derive the path algorithm assuming that f is strictly
convex. When f is convex but not strictly convex, for exam-
ple, when n < p in the least squares problems, the solutions at
smaller ρ may not be unique. In that case, it is still possible
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to obtain a solution path over the region of large ρ where the
minimum of Eρ is unique. In Section 5, we extend EPSODE
to the case f is convex but may not be strictly convex. The
third statement of Lemma 2.1 implies that the active constraints
(gi(x) = 0 or hj (x) = 0) with interior coefficients must stay
active until the coefficients hit the end points of the permissible
range, which in turn implies that the solution path is piecewise
smooth. This allows us to develop a path following algorithm
based on ODE.

3. THE PATH FOLLOWING ALGORITHM

In this article, we specialize to the case where the constraint
functions gi and hj are affine, that is, the gradient vectors ∇gi(x)
and ∇hj (x) are constant. This leads to the regularized opti-
mization problem formulated as (1) by defining gi and hj as
constraint residuals gi(x) = vt

i x − di and hj (x) = wt
j x − ej .

In principle, a similar path algorithm can be developed for the
general convex program where the inequality constraint func-
tions hj are relaxed to be convex. But that is beyond the scope
of the current article. In Sections 3 and 4, we assume that the
loss function f is strictly convex. This assumption is relaxed in
Section 5.

EPSODE works in a segment-by-segment fashion. Along the
path we keep track of the following index sets determined by
signs of constraint residuals

NE =
{
i : gi(x) = vt

i x − di < 0
}
,

NI =
{
j : hj (x) = wt

j x − ej < 0
}

ZE =
{
i : gi(x) = vt

i x − di = 0
}
,

ZI =
{
j : hj (x) = wt

j x − ej = 0
}

PE =
{
i : gi(x) = vt

i x − di > 0
}
,

PI =
{
j : hj (x) = wt

j x − ej > 0
}
. (7)

Along each segment of the path, the set configuration is fixed.
This is implied by the continuity of both the solution and coef-
ficient paths established in Lemma 2.1. Throughout this article,
we call the constraints in ZE or ZI active and others inactive.

Next we derive the ODE for the solution x(ρ) on a fixed
segment. Suppose, we are in the interior of a segment. Let
x(ρ) be the solution of (4) indexed by the penalty param-
eter ρ and x(ρ + #ρ) the solution when the penalty is in-
creased by an infinitesimal amount #ρ > 0. Then the difference
#x(ρ) = x(ρ + #ρ) − x(ρ) should minimize the increase in
optimal objective value. That is, to the second order, #x is the
solution to

min#x Eρ+#ρ(x + #x) − Eρ(x)

≈ df (x) · #x + 1
2
#xt · d2f (x) · #x

+ (ρ + #ρ) ·

⎡

⎣−
∑

i∈NE

vi +
∑

i∈PE

vi +
∑

j∈PI

wj

⎤

⎦ · #x

+ #ρ ·

⎡

⎣−
∑

i∈NE

gi(x) +
∑

i∈PE

gi(x) +
∑

j∈PI

hj (x)

⎤

⎦

s.t. vt
i · #x = 0, i ∈ ZE, and wt

j · #x = 0, j ∈ ZI. (8)

Note that the active constraints have to be kept active since the
set configuration is fixed along this segment by Lemma 2.1. This
is why we have these two sets of equality constraints. To ease
notational burden, we define

H(x) = d2f (x) and uZ̄ = −
∑

i∈NE

vi +
∑

i∈PE

vi +
∑

j∈PI

wj .

(9)

This leads to the corresponding Lagrange multiplier problem
(

H(x) U t
Z

UZ 0

)(
#x
λZ

)

=
(

−∇f (x) − (ρ + #ρ)uZ̄

0

)

,

where the rows of the matrix UZ are the constant differentials,
vt

i , i ∈ ZE, and wt
j , j ∈ ZI(x), of the active constraint functions.

Denoting the inverse of matrix as
(

H(x) U t
Z

UZ 0

)−1

=
(

P(x) Q(x)

Qt (x) R(x)

)

,

where

P(x) = H−1(x) − H−1(x)U t
Z

[
UZ H−1(x)U t

Z
]−1

UZ H−1(x)

Q(x) = H−1(x)U t
Z

[
UZ H−1(x)U t

Z
]−1

R(x) = −
[
UZ H−1(x)U t

Z (x)
]−1

, (10)

the solution of the difference vector #x is

#x = −P(x)[∇f (x) + (ρ + #ρ)uZ̄ ]
= −P(x)[∇f (x) + ρuZ̄ (x) + #ρ · uZ̄ ]
= −P(x)

[
−ρU t

Z rZ + #ρ · uZ̄
]
.

Note P(x)U t
Z = 0. Therefore, #x = −#ρ · P(x)uZ̄ . This

gives the direction for the infinitesimal update of solution vector
x(ρ). Taking limit in #ρ leads to the following key result for
developing the path algorithm.

Proposition 3.1. Within interior of a path segment with set
configuration (7), the solution x(ρ) satisfies an ordinary differ-
ential equation (ODE)

dx(ρ)
dρ

= −P(x)uZ̄ , (11)

where the matrix P(x) and vector uZ̄ are defined by (10) and
(9).

Note that the right-hand side of (11) is a constant vector in
x when f is quadratic and gi and hj are affine. Thus the cor-
responding solution path is piecewise linear. This recovers the
case studied in Zhou and Lange (2013). The differential equa-
tion (11) holds on the current segment until one of two types of
events happens: an inactive constraint becomes active or vice
versa. The first type of event is easy to detect—whenever a con-
straint function, gi(x), i ∈ NE ∪ PE, or hj (x), j ∈ NI ∪ PI, hits
zero, we move that constraint to the active set ZE or ZI and
start solving a new system of differential equations. To detect
when the second type of event happens, we need to keep track of
the coefficients si(x) and tj (x) for active constraints. Whenever
the coefficient of an active constraint hits the boundary of its
permissible range in (6), the constraint has to be relaxed from
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being active in next segment. It turns out the coefficients for ac-
tive constraints admit a simple representation in terms of current
solution vector.

Proposition 3.2. On a path segment with set configuration
(7), the coefficients si and tj for active constraints are

rZ (ρ) =
(

sZE (ρ)
tZI (ρ)

)
= − Qt (x)

[
1
ρ

∇f (x) + uZ̄

]
, (12)

where x = x(ρ) is the solution at ρ and the matrix Q(x) is
defined by (10).

Given current solution vector x(ρ), the coefficients of the
active constraints are readily obtained from (12). Once a coeffi-
cient hits the end points, we move that constraint from the active
set to the inactive set that matches the endpoint being hit. In next
section, we detail the implementation of the path algorithm.

4. IMPLEMENTATION: ODE AND SWEEPING
OPERATOR

Algorithm 1 EPSODE: Solution path for regularization problem
(1) with strictly convex f .

Initialize ρ = 0, β(0) = argminf (β), and its set configura-
tion (7).
repeat

Solve ODE (11) until an inactive constraint becomes active
or the coefficient (12) of an active constraint hits boundary.
Update the set configuration (7).

until NE = PE = PI = ∅

Algorithm 1 summarizes EPSODE based on Propositions 3.1
and 3.2. It involves solving ODEs segment by segment and
is extremely simple to implement using softwares with a re-
liable ODE solver such as the ode45 function in Matlab and
the deSolve package (Soetaert, Petzoldt, and Setzer 2010) in
R. There has been extensive research in applied mathematics
on numerical methods for solving ODEs, notably the Runge-
Kutta, Richardson extrapolation and predictor-corrector meth-
ods. Some path following algorithms developed for specific sta-
tistical problems (Park and Hastie 2007; Friedman 2008) turn
out to be approximate methods for solving the corresponding
ODE. Wu (2011) first explicitly uses ODE to derive an exact
solution path for the lasso penalized GLM. The connection of
the path following to ODE relieves statisticians from the burden
of developing specific path algorithms for a variety of regular-
ization problems. For instance, the rich numerical resources of
Matlab include ODE solvers that control the tolerance for the
accuracy of solution (10−6 by default) and alert the user when
certain events such as constraint hitting and escape occur.

Any ODE solver repeatedly evaluates the derivative. Suppose
the number of parameters is p. Computation of the matrix-vector
multiplications in (11) and (12) has computation cost of order
O(p2) + O(p|Z|) + O(|Z|3) if the inverse H−1 of Hessian ma-
trix of loss function f is readily available, where Z = ZE ∪ ZI

and |Z| denote its cardinality. Otherwise the computation cost
is O(p3) + O(p|Z|) + O(|Z|3).

An alternative implementation avoids repeated matrix inver-
sions by solving an ODE for the matrices P , Q, and R them-

selves. The computations can be conveniently organized around
the classical sweep and inverse sweep operators of regres-
sion analysis (Dempster 1969; Jennrich 1977; Goodnight 1979;
Little and Rubin 2002; Lange 2010). Suppose A is an m × m

symmetric matrix. Sweeping on the kth diagonal entry akk ̸= 0
of A yields a new symmetric matrix Â with entries

âkk = − 1
akk

, âik = aik

akk

, i ̸= k,

âkj = akj

akk

, j ̸= k, âij = aij − aikakj

akk

, i, j ̸= k.

These arithmetic operations can be undone by inverse sweeping
on the same diagonal entry. Inverse sweeping on the kth diagonal
entry sends the symmetric matrix A into the symmetric matrix
Ǎ with entries

ǎkk = − 1
akk

, ǎik = − aik

akk

, i ̸= k,

ǎkj = −akj

akk

, j ̸= k, ǎij = aij − aikakj

akk

, i, j ̸= k.

Both sweeping and inverse sweeping preserve symmetry. Thus,
all operations can be carried out on either the lower or upper
triangle of A alone, saving both computational time and storage.
When several sweeps or inverse sweeps are performed, their
order is irrelevant.

At beginning (ρ = 0) of the path following, we initialize a
sweeping tableau as

(
H−1(x) H−1(x)U t

∗ U H−1(x)U t

)
,

where the matrix U ∈ R(r+s)×p holds all constraint differen-
tials vt

i and wt
j in rows. Further sweeping of diagonal entries

corresponding to the active constraints yields
⎛

⎜⎝
P(x) Q(x) P(x)U t

Z̄

∗ R(x) Qt (x)U t
Z̄

∗ ∗ U Z̄ P(x)U t
Z̄

⎞

⎟⎠ . (13)

Here we conveniently organized the columns of the swept active
constraints before those of un-swept ones. In practice the sweep
tableau is not necessary as in (13) and it is enough to keep an
indicator vector recording the columns being swept. The key
elements for the path algorithm can be easily retrieved from the
sweep tableau (13) as

dx(ρ)
dρ

= −P(x)U t
Z̄ r Z̄

rZ (ρ) = − Qt (x)U t
Z̄ r Z̄ − 1

ρ
Qt (x)∇f (x),

where rZ denotes the coefficient vector for the inactive con-
straints, with entries −1 for constraints in NE, 0 for con-
straints in NI, and 1 for constraints in PE ∪ PI. Therefore, the
path following procedure only involves solving ODE for the
whole sweep tableau (13) with sweeping or inverse sweeping
at kinks between successive segments. For this purpose, we de-
rive the ODE for the sweep tableau (13). For a matrix function
F (X) : Rn×q → Rm×p,

DF(X) = ∂vecF (X)
∂(vecX)t
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denotes the mp × nq Jacobian matrix (Magnus and Neudecker
1999). As a special case, Proposition 3.1 states Dx(ρ) =
−P(x)uZ̄ where m = p = 1.

Proposition 4.1 (ODE for Sweep Tableau). On a segment of
path with fixed set configuration, the matrices P(ρ), Q(ρ), and
R(ρ) satisfy the ordinary differential equations (ODE)

D P(ρ) = [P(x) ⊗ P(x)] · [DH(x)] · P(x)uZ̄
D Q(ρ) = [ Qt (x) ⊗ P(x)] · [DH(x)] · P(x)uZ̄
DR(ρ) = [ Qt (x) ⊗ Qt (x)] · [DH(x)] · P(x)uZ̄ .

Solving ODE for these matrices requires the p2-by-p Jacobian
matrix of the Hessian matrix H(x) = d2f (x),

DH(x) = ∂[vecH(x)]
∂vec(x)t

= ∂vec[df 2(x)]
∂vec(x)t

,

which we provide for each example in Section 7 for conve-
nience. When the number of parameter p is large, DH is
a large matrix. However, there is no need to compute and
store DH and only the matrix vector multiplication DH · v
for any vector v is needed. In light of the useful identity
(Bt ⊗ A)vec(C) = vec(AC B), evaluating the derivative for the
whole tableau only involves multiplying three matrices and in-
curs computational cost O(p3) + O(p2|Z|) + O(p|Z|2).

Although we have presented the path algorithm as moving
from ρ = 0 to large ρ, it can be applied in either direction.
Lasso and fused-lasso usually start from the constrained solu-
tion, while in presence of general equality constraints, for ex-
ample, polynomial trend filtering, and/or inequality constraints,
the constrained solution is not readily available and the path
algorithm must be initiated at ρ = 0.

5. EXTENSION OF EPSODE

So far we have assumed strict convexity of the loss function
f . This unfortunately excludes many interesting applications,
especially p > n case of the regression problems. In this sec-
tion we briefly indicate an extension of EPSODE to the case
f is convex but not necessarily strictly convex. In the proof
of Proposition 3.1, the infinitesimal change of solution #x is
derived via minimizing the equality-constrained quadratic pro-
gram (8), the solution to which requires inverse of Hessian H−1

and thus strict convexity of f . Alternatively we may solve (8)
via reparameterization. Let UZ hold the active constraint vec-
tors and Y ∈ Rp×(p−|Z|) be a null space matrix of UZ , that
is, the columns of Y are orthogonal to the rows of UZ . Then
the infinitesimal change can be represented as #x = Y# y for
some vector # y ∈ Rp−|Z|. Under this reparameterization, the
quadratic program (8) is equivalent to

min
# y

1
2
# yt [Y t H(x)Y ]# y +

[
df (x) + (ρ + #ρ)ut

Z̄
]
Y · # y

with explicit solution

# y = −[Y t H(x)Y ]−1Y t [∇f (x) + (ρ + #ρ)uZ̄ ].

Hence, the infinitesimal change in x(ρ) is

#x = −Y [Y t H(x)Y ]−1Y t [∇f (x) + (ρ + #ρ)uZ̄ ]
= −#ρ · Y [Y t H(x)Y ]−1Y t uZ̄ ].

Again taking limit gives the following result in parallel to
Proposition 3.1.

Proposition 5.1. Within interior of a path segment with set
configuration (7), the solution x(ρ) satisfies an ordinary differ-
ential equation (ODE)

dx(ρ)
dρ

= −Y [Y t H(x)Y ]−1Y t uZ̄ , (14)

where Y is a null space matrix of UZ .

An advantage of (14) is that only nonsingularity of the matrix
Y t H(x)Y is required which is much weaker than the nonsingu-
larity of H . The computational cost of calculating the derivative
in (14) is O((p − |Z|)3) + O(p(p − |Z|)), which is more effi-
cient than (11) when p − |Z| is small. However, it requires the
null space matrix Y , which is nonunique and may be expensive
to compute. Fortunately, the null space matrix Y is constant
over each path segment and in practice can be calculated by QR
decomposition of the active constraint matrix UZ . At each kink
either one constraint leaves Z or one enters Z . Therefore, Y can
be sequentially updated (Lawson and Hanson 1987) and need
not to be calculated anew for each segment. Which version of
(11) and (14) to use depends on specific application. When the
loss function f is not strictly convex, for example, p > n case
in regression analysis, only (14) applies.

6. STATISTICAL PROPERTIES

In this section, we derive error bounds for the regularized esti-
mates produced by EPSODE using the regularized M-estimation
framework (Negahban et al. 2012). We restrict to the equality
constraint regularization

min
β∈Rp

f (β) + ρ∥Vβ∥1.,

where V ∈ Rr×p. The case with inequality regularization is
outside the scope of this article and will be pursued elsewhere.

Suppose the data are generated from β∗ ∈ Rp. Let S =
supp(Vβ∗) = {j : vt

jβ
∗ ̸= 0} be the set of violated constraints,

and VS and VSc be the submatrices of V with corresponding
rows in S and Sc, respectively. We make two assumptions: (1)
Vβ∗ is s-sparse with |S| = s and (2) V has full column rank,
that is, rank(V ) = p. Note Assumption (2) implies that r ≥ p.
Many popular regularizations with a tall regularization matrix
V such as the sparse fused-lasso (Tibshirani et al. 2005) satisfies
this assumption. Define spaces

M = null(VSc ), M⊥ = row(VSc ),

M = row(VS ), M⊥ = null(VS ),

and the projections

θM := ProjM(θ) = V t
S
(
VSV t

S
)+VSθ

θM⊥ := ProjM⊥ (θ) =
[
Ip − V t

S
(
VSV t

S
)+VS

]
θ

of a vector θ ∈ Rp onto spaces M and M⊥
, respectively.

The regularizer ∥Vθ∥1 is decomposable with respect to the
model space pair (M,M⊥

) in the sense that, for any β ∈
M and γ ∈ M⊥

, ∥V (β + γ )∥1 = ∥Vβ∥1 + ∥Vγ ∥1. Define a
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cone C by

C := {% ∈ Rp : ∥V%M⊥∥1 = ∥VSc%M⊥∥1 ≤ 3∥V%M∥1}
(15)

and a compatibility constant % = supθ∈row(VS ),∥θ∥2≤1 ∥Vθ∥1.
Then we have the following deterministic error bounds for the
discrepancy between the regularized estimate β̂(ρ) and the true
parameter value β∗.

Proposition 6.1. Suppose ρ ≥ 2∥V (V t V )−1∇f (β∗)∥∞ and
f satisfies the restricted strong convexity on C with parameter
κ > 0, that is, for all % ∈ C,

f (β∗ + %) − f (β∗) − ⟨∇f (β∗),%⟩ ≥ κ∥%∥2
2.

Then

∥β̂(ρ) − β∗∥2 ≤ 3
2
κ−1ρ%,

∥V [β̂(ρ) − β∗]∥1 ≤ 6κ−1ρ%2.

Now we specialize to the linear regression case y = Xβ∗ + ϵ,
where X ∈ Rn×p and ϵ = (ϵ1, . . . , ϵn)t are iid mean zero ran-
dom variables. The loss function under consideration is f (β) =
1

2n
∥ y − Xβ∥2

2.

Corollary 6.1. Suppose that X satisfies the restricted eigen-
value condition

∥Xθ∥2
2

n
≥ κ∥θ∥2

2

for all θ ∈ C and the column normalization condition
∥[X(V t V )−1V t ]j /

√
n∥2 ≤ 1 for all j = 1, . . . , r . With ρ =

4σ
√

(ln r)/n and the errors ϵ are mean-zero sub-Gaussian ran-
dom variables with constant σ 2, then with probability at least
1 − 2/r ,

∥β̂(ρ) − β∗∥2 ≤ 6κ−1σ

√
ln r

n
%

∥V̂ [β(ρ) − β∗]∥1 ≤ 24κ−1σ

√
ln r

n
%2.

Proposition 6.1 and Corollary 6.1 highlight a few differences
with the corresponding error bounds for lasso regularized esti-
mates (V = Ip) (Negahban et al. 2012).

• The number of parameter p does not play a role in the error
bounds; the number of regularization terms r does.

• The compatibility constant % = supθ∈row(VS ),∥θ∥2≤1 ∥Vθ∥1

emphasizes the effect of the structure of the regulariza-
tion matrix V on the error bounds. For lasso, V = Ip and
% = sup∥θS∥2≤1 ∥θS∥1 =

√
s (Negahban et al. 2012). For

a general regularization matrix V , there is no analytic ex-
pression for % but it can be readily computed numerically.

• The lasso error bound requires the column normalization
condition on the original design matrix X ; a general V
imposes the same condition on the transformed matrix
X(V t V )−1V t .

7. APPLICATIONS

In this section, we collect some representative regularized or
constrained estimation problems and demonstrate how they can

be solved by path following. For all applications, we list the
first three derivatives of the loss function f in (1). In fact, the
third derivative is only needed when implementing by solving
the ODE for the sweep tableau.

In applications such as regularized GLMs, the tuning param-
eter ρ in the regularization problem (1) is chosen by a model
selection criterion such as AIC, BIC, Cp, or cross-validation.
The cross-validation errors can be readily computed using the
solution path output by EPSODE. Yet the AIC, BIC, and Cp

criteria require an estimate of the degrees of freedom of es-
timate β(ρ). In this article, we use df(β(ρ)) = p − |ZE ∪ ZI|
as a measure of the degrees of freedom under GLMs. It has
previously been shown to be an unbiased estimate of the de-
grees of freedom for lasso penalized least squares (Efron et al.
2004; Zou et al. 2007), generalized lasso penalized least squares
(Tibshirani and Taylor 2011), and the least squares version of
the regularized problem (1) (Zhou and Lange 2013). Using the
same degrees of freedom formula for GLMs is justified by the
local approximation of GLM log-likelihood by weighted least
squares (Park and Hastie 2007).

7.1 GLMs and Quasilikelihoods With Generalized
ℓ1 Regularizations

The generalized linear model (GLM) deals with exponential
families in which the sufficient statistics is Y and the conditional
mean µ of Y completely determines its distribution. Conditional
on the covariate vector x ∈ Rp, the response variable y is mod-
eled as

p(y|x; β, σ ) ∝ exp
{

y⟨x,β⟩ − ψ(⟨x,β⟩)
c(σ )

}
, (16)

where the scalar σ > 0 is a fixed and known scale parameter
and the vector β is the parameters to be estimated. The function
ψ : R $→ R is the link function. When y ∈ R, ψ(u) = u2/2
and c(σ ) = σ 2, (16) is the normal regression model. When y ∈
{0, 1}, ψ(u) = ln(1 + exp(u)), and c(σ ) = 1, (16) is the logistic
regression model. When y ∈ N, ψ(u) = exp(u), and c(σ ) = 1,
(16) is the Poisson regression model.

The quasilikelihoods generalize GLM without assuming a
specific distribution form of Y . Instead only a function relation
between the conditional means µi and variances σ 2

i , σ 2
i = V (µi)

for some variance function V , is needed. Then the integral

Q(µ, y) =
∫ µ

y

y − t

σ 2V (t)
dt

behaves like a log-likelihood function under mild conditions
and is called the quasilikelihood. The quasilikelihood includes
GLMs as special cases with appropriately chosen variance func-
tion V (·). Readers are referred to the classical text (McCullagh
and Nelder 1983, Table 9.1) for the commonly used quasilikeli-
hoods. By slightly abusing our notation, we assume a known link
function between the conditional mean µi and linear predictor
xT

i β, µ = µ(xT
i β) and denote Qi(β) = Q(µ(xT

i β), yi). Then
the quasilikelihood with generalized ℓ1 regularization takes the
form

− Q(β) + ρ∥Vβ − d∥1 = −
n∑

i=1

Qi(β) + ρ∥Vβ − d∥1,

(17)
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which is a special case of the general form (1). Specific choices
of the regularization matrix V and constant vector d lead to
lasso, fused-lasso, trend filtering, and many other applications.

For the path algorithm, we require the first two or three deriva-
tives of the complete quasilikelihood. Denoting η = Xβ with
X = (xt

1, xt
2, . . . , xt

n)t , we have

∇Q(β) = [Dµ(β)]t V −1( y − µ)/σ 2

= X t [Dµ(η)]V −1( y − µ)/σ 2,

H(β) = d2Q(β) = [( y − µ)t V −1 ⊗ X t ] · D2µ(η) · X/σ 2,

DH(β) = d3Q(β) = [X t ⊗ ( y − µ)t V −1 ⊗ X t ]
· D3µ(η) · X/σ 2, (18)

where V is a n-by-n diagonal matrix with diagonal entries
V (µ(xt

i y)), Dµ(η) is a n-by-n diagonal matrix with diagonal en-
tries µ′(xt

iβ), D2µ(η) is a n2-by-n matrix with (n(i − 1) + i, i)
entry equal to µ′′(xt

iβ) for i = 1, . . . , n and 0 otherwise, and
D3µ(η) is a n3-by-n matrix with (n2(i − 1) + n(i − 1) + i, i)
entry equal to µ′′′(xt

iβ) for i = 1, . . . , n and 0 otherwise. These
formulas simplify for GLM with canonical link.

The most widely used ℓ1 regularization is the lasso penalty
which imposes sparsity on the regression coefficients. For nu-
merical demonstration, we revisit the M&A example introduced
in Section 1 without discretizing each predictor. We standard-
ize each predictor first and consider the lasso penalized linear
logistic regression model. Figure 3 shows the lasso solution
path for each standardized predictor in the left panel and cor-
responding AIC and BIC scores in the right panel. The order
at which predictors enter the model matches the more detailed
patterns revealed by the varying coefficient model in Figure 1.
The almost monotone effects of the predictors “market-to-book
ratio,” “cash flow,” “cash,” and “tax” can be captured by the
usual linear logistic regression and these covariates are picked
up by lasso first. The nonlinear effects shown in the other pre-
dictors are likely to be missed by the linear logistic regression.
For instance, the quadratic effects of “log market equity” shown
in the regularized estimates in Figure 1 are missed by both AIC
and BIC criteria.

7.2 Shape-Restricted Regressions

Order-constrained regression has been an important mod-
eling tool (Robertson, Wright, and Dykstra 1988; Silvapulle
and Sen 2005). If β denotes the parameter vector, monotone
regression imposes isotone constraints β1 ≤ β2 ≤ · · · ≤ βp or
antitone constraints β1 ≥ β2 ≥ · · · ≥ βp. In partially ordered
regression, subsets of the parameters are subject to isotone or
antitone constraints. In some other problems, it is sensible to im-
pose convex or concave constraints. Note that if locations of pa-
rameters are at irregularly spaced time points t1 ≤ t2 ≤ · · · ≤ tp,
convexity translates into the constraints

βi+2 − βi+1

ti+2 − ti+1
≥ βi+1 − βi

ti+1 − ti

for 1 ≤ i ≤ p − 2. When the time intervals are uniform, the con-
straints simplify to βi+2 − βi+1 ≥ βi+1 − βi , i = 1, 2, · · · , p −
1. Concavity translates into the opposite set of inequalities.

Most of previous works have focused on the linear regres-
sion problems because of the computational and theoretical
complexities in the generalized linear model setting. The re-
cent work (Rufibach 2010) proposes an active set algorithm for
GLMs with order constraints. The EPSODE algorithm conve-
niently provides a solution to the linearly constrained estimation
problem (2). The relevant derivatives of loss function are listed
in (18). It is noteworthy that EPSODE not only provides the
constrained estimate but also the whole path bridging the un-
constrained estimate to the constrained solution. Availability of
the whole solution path renders model selection between the
two extremes simple.

In the illustrative M&A example of Section 1, the bin pre-
dictors for the “market-to-book ratio” are regularized by the
antitone constraint and those for the “log market equity” covari-
ate by the concavity constraint.

7.3 Gaussian Graphical Models

In recent years, several authors (Friedman, Hastie, and
Tibshirani 2008; Yuan 2008) proposed to estimate the sparse
undirected graphical model by using lasso regularizations
to the log-likelihood function of the precision matrix, the
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Figure 3. M&A example revisited. Lasso solution path on the seven standardized predictors.
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inverse of the variance-covariance matrix. Given an ob-
served variance–covariance matrix (̂ ∈ Rp×p, the negative log-
likelihood of the precision matrix ) = (−1 under normal as-
sumption is

f ()) = − log det ) + tr((̂)) (19)

with the MLE solution (̂
−1

when (̂ is nondegenerate. A zero
in the precision matrix implies conditional independence of the
corresponding nodes. Graphical lasso proposes to solve

f ()) + ρ
∑

i<j

|ωij |, (20)

where ρ ≥ 0 is the tuning constant and ωij denotes the (i, j )-
element of ). It is well known that the determinant function is
log-concave (Magnus and Neudecker 1999). Therefore, the loss
function f (19) is convex and the EPSODE algorithm applies
to (20). Friedman, Hastie, and Tibshirani (2008) proposed an
efficient coordinate descent procedure for solving (20) at a fixed
ρ. A recent attempt to approximate the whole solution path is
made by Yuan (2008). Again his path algorithm can be deemed
as a primitive predictor-corrector method for approximating the
ODE solution.

With symmetry in mind, we parameterize ) in terms of its
lower triangular part by a p(p + 1)/2 column vector x and
let D)(x) = ∂vec)

∂(vecx)t be the corresponding p2-by-p(p + 1)/2
Jacobian matrix. Note D)(x) · x = vec)(x) and each row of
D)(x) has exactly one nonzero entry which equals unity. We
list here the first three derivatives of f .

Lemma 7.1.

1. The derivatives for the Gaussian graphical model (19) with
respect to ) are

Df ()) = df ()) = [vec(−)−1 + ()]t

D2f ()) = d2f ()) = )−1 ⊗ )−1

D3f ()) = −(In ⊗ K nn ⊗ In) · [)−1 ⊗ )−1 ⊗ vec()−1)
+ vec()−1) ⊗ )−1 ⊗ )−1],

where K nn is the commutation matrix (Magnus and
Neudecker 1999).

2. The derivatives for the Gaussian graphical model (19) with
respect to x are

Df (x) = Df ()) · D)(x)
H(x) = D2f (x) = [D)(x)]t · D2f ()) · D)(x)

DH(x) = D3f (x) = {[D)(x)]t ⊗ [D)(x)]t }
· D3f ()) · D)(x).

When the covariance matrix (̂ is nonsingular, EPSODE can
be initiated either at ρ = 0 or ρ = ∞. When (̂ is singular,
we start from ρ = ∞ and the extended version of EPSODE
(14) should be used. If starting at ρ = 0, the solution is initial-
ized at (̂

−1
; if starting at ρ = ∞, the solution is initialized at

diag(σ̂−1
ii ). Minimization of both the unpenalized and penalized

objective function has to be performed over the convex cone
of symmetric, positive semidefinite matrices, which is not ex-

00.51
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

ρ

x(
ρ)

ana−alg

sta−alg

alg−vec

Figure 4. Solution path of the 10 edges in lasso-regularized Gaus-
sian graphical model for the math score data. The top three edges
chosen by lasso are labeled.

plicitly incorporated in our path following algorithm. The next
result ensures the positive definiteness of the path solution.

Lemma 7.2. (Positive definiteness along the path). The path
solution )(ρ) minimizes (20) over the convex cone of symmet-
ric, positive semidefinite matrices.

We illustrate the path algorithm by the classical example
of 88 students’ scores on five math courses—mechanics, vec-
tor, algebra, analysis, and statistics (Mardia, Kent, and Bibby
1979, Table 1.2.1). Figure 4 displays the solution path from EP-
SODE. The top three edges chosen by lasso are analysis-algebra,
statistics-algebra, and algebra-vector.

7.4 Nonparametric Density Estimation

The maximum likelihood estimation for nonparametric den-
sity estimation often involves a nontrivial, high-dimensional
constrained optimization problem. In this section, we briefly
demonstrate the applicability of EPSODE to the maximum like-
lihood estimation of univariate log-concave density. Extensions
to multivariate log-concave density estimation (Cule, Gramacy,
and Samworth 2009; Cule, Samworth, and Stewart 2010) will
be pursued elsewhere. It is noteworthy that, besides provid-
ing an alternative solver for log-concave density estimation,
EPSODE offers the whole solution path between the uncon-
strained and constrained solutions. For example, an “almost”
log-concave density estimate in the middle of the path can
be chosen that minimizes cross-validation or prediction error.
This adds another dimension to the flexibility of nonparametric
modeling.

The family of log-concave densities is an attractive modeling
tool. It includes most of the commonly used parametric dis-
tributions as special cases. Examples include normal, gamma
with shape parameter ≥ 1, and beta densities with both pa-
rameters ≥ 1. The survey article (Walther 2009) gives a recent
review. A probability density g(·) on R is log-concave if its log-
arithm φ(x) = ln g(x) is concave. Given iid observations, from
an unknown distribution of density g(·), with support at points
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x1 < · · · < xn with corresponding frequencies p1, . . . , pn, it is
well known (Walther 2002) that the nonparametric MLE of g
exists, is unique and takes the form ĝ = exp(φ̂), where φ̂ is
continuous and piecewise linear on [x1, xn] with the set of knots
contained in {x1, . . . , xn}, and φ̂ = −∞ outside the interval
[x1, xn]. This implies that the MLE is obtained by minimizing
the strictly convex function

f (φ) = −
n∑

i=1

piφi +
n−1∑

k=1

(xk+1 − xk)
∫ 1

0
e(1−t)φk+tφk+1 dt

over φ = (φ1,φ2, . . . , φn)t ∈ Rn subject to constraints

φi+1 − φi

xi+1 − xi

≤ φi − φi−1

xi − xi−1
, i = 2, . . . , n − 1.

The consistency of the MLE is proved by Pal, Woodroofe, and
Meyer (2007) and the pointwise asymptotic distribution of the
MLE studied in Balabdaoui, Rufibach, and Wellner (2009).

Following Duembgen, Rufibach, and Huesler (2007), we use
notations

δ0 = δn = 0, δi = xi+1 − xi, i = 1, . . . , n − 1

J (r, s) =
∫ 1

0
e(1−t)r+ts dt =

⎧
⎨

⎩

es − er

s − r
r ̸= s

er r = s
.

Then the objective function becomes

f (φ) = −
n∑

i=1

piφi +
n−1∑

k=1

δkJ (φk,φk+1).

The path algorithm requires up to the third derivative of the
objective function f

[∇f (φ)]i = −pi + δi−1J01(φi−1,φi)
+ δiJ10(φi ,φi+1)

[H (φ)]ij = [d2f (φ)]ij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δi−1J11(φi−1,φi) j = i − 1

δi−1J02(φi−1,φi) j = i

+ δiJ20(φi ,φi+1)
δiJ11(φi ,φi+1) j = i + 1

0 otherwise

∂[H (φ)]i,i−1

∂φk

=

⎧
⎪⎨

⎪⎩

δi−1J21(φi−1,φi) k = i − 1

δi−1J12(φi−1,φi) k = i

0 otherwise

∂[H (φ)]i,i
∂φk

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δi−1J12(φi−1,φi) k = i − 1

δi−1J03(φi−1,φi) k = i

+ δiJ30(φi ,φi+1)
δiJ21(φi ,φi+1) k = i + 1

0 otherwise

∂[H (φ)]i,i+1

∂φk

=

⎧
⎪⎨

⎪⎩

δiJ21(φi ,φi+1) k = i

δiJ12(φi ,φi+1) k = i + 1

0 otherwise

.

Interchanging the derivative and integral operators, justified by
the dominated convergence theorem, gives a useful representa-

tion for the partial derivatives of J

Jab(r, s) = ∂a+b

∂ra∂sb J (r, s) =
∫ 1

0 (1 − t)atbe(1−t)r+ts dt.

We derive a recurrence relation for Jab(r, s) to facilitate its
computation.

Lemma 7.3. Jab(r, s) satisfy following recurrence

1. For r ̸= s,

J00(r, s) = es − er

s − r
, J10(r, s) = − er

s − r
+ es − er

(s − r)2

J01(r, s) = es

s − r
− es − er

(s − r)2
,

J11(r, s) = es + er

(s − r)2
− 2(es − er )

(s − r)3

Jab(r, s) = a + b + s − r

s − r
Ja−1,b(r, s)− a − 1

s − r
Ja−2,b(r, s)

Jab(r, s) = −a + b − s + r

s − r
Ja,b−1(r, s)

+ b − 1
s − r

Ja,b−2(r, s).

2. For r = s,

Jab(r, s) = era!b!
(a + b + 1)!

= a

a + b + 1
Ja−1,b

= b

a + b + 1
Ja,b−1.

To illustrate the path algorithm for this problem, we simu-
late n = 25 points from the extremal distribution Gumbel(0,1).
Figure 5 displays the constrained and unconstrained estimates
of φi and the solution path bridging the two.

7.5 Kernel Machines

In recent years, kernel methods are widely used in non-
linear regression and classification problems (Scholkopf and
Smola 2001). During the review of this article, a referee
brought to our attention that various path algorithms in ker-
nel machine methods can be unified in the ODE framework.
In this section, we briefly indicate this connection. Given data
(yi, xi), i = 1, . . . , n, the responses yi ∈ R are connected to
the features xi ∈ Rp through a nonparametric function h(xi) =
β0 +

∑n
j=1 βik(xi , xj ), where k : Rp × Rp $→ R is a positive

definite kernel function and h belongs to the reproducing ker-
nel Hilbert space Hk . The coefficients β ∈ Rp are estimated
by minimizing the criterion L( y, h(x)) + ρ∥h∥2

HK
, where L

is a loss function and ρ is the regularization parameter. Let
K = [k(xi , xj )]i,j ∈ Rp×p be the kernel matrix based on the ob-
served features xi , K̃ = [1n, K ] ∈ Rp×(p+1), and β̃ = [β0,β

t ]t .
This leads to the regularization problem

minβ L( y,β01n + Kβ) + ρβ t Kβ = L( y, K̃ β̃) + ρβ t Kβ,

for which the regularization path is sought. Here are a few
examples:

• The support vector machines rely on the hinge loss
L( y, X) = ∥1n − diag( y)K̃ β̃∥+. By switching the roles
of loss and penalty, we see the criterion belongs to the
EPSODE framework (1) with a quadratic β t Kβ loss and

D
ow

nl
oa

de
d 

by
 [N

or
th

 C
ar

ol
in

a 
St

at
e 

U
ni

ve
rs

ity
] a

t 1
1:

39
 2

8 
M

ay
 2

01
5 



Zhou and Wu: A Generic Path Algorithm for Regularized Statistical Estimation 697

−3 −2 −1 0 1
−4

−3

−2

−1

0

1

2

x

φ

 

 

unconstrained estimate
constrained estimate

00.20.40.60.8
−3

−2

−1

0

1

2

ρ

φ(
ρ)

−3 −2 −1 0 1
0

0.2

0.4

0.6

0.8

1

x

cd
f

Figure 5. Log-concave density estimation. n = 25 points are generated from Gumbel(0,1) distribution. Top left: Unconstrained and concavity-
constrained estimates φ. Top right: Solution path. Bottom left: Empirical cdf and the cdf of MLE density.

inequality regularization specified by W = −diag( y)K̃ β̃
and e = −1n. Since the Hessian of a quadratic function
is constant, the path following directions (11) and (14)
are constant, which leads to the piecewise linear solution
path originally derived in Hastie et al. (2004). By similar
arguments, the kernel quantile regression (Li et al. 2007)
also admits piecewise linear solution path and allows fast
computation.

• For regression with squared error loss, L( y, X) = ∥ y −
K̃ β̃∥2

2. At optimal solution, β0 = 1
n

1t
n( y − Kβ); thus it suf-

fices to minimize ∥ y − (In − 1n1t
n)Kβ∥2

2 + ρβ t Kβ for β.
This overall quadratic criterion admits an analytic solu-
tion β̂(ρ) = [K t (In − 1n1t

n)K + ρ K ]−1 K t (In − 1n1t
n) y

at each ρ. Suppose, the kernel matrix K is row (column)-
centered and admits eigendecomposition K = U DU t ,
then β̂(ρ) = U(D2 + ρ D)−1 DU t y can be computed ef-
ficiently at any ρ and dismisses the need for special path
following method.

• Nonlinear logistic regression uses the binomial de-
viance loss L( y, X) =

∑n
i=1{yih(xi) − ln(1 + eh(xi ))},

with h(xi) = β0 +
∑n

j=1 βik(xi , xj ). Although the regu-
larized criterion L( y, X) + ρβ t Kβ does not belong to the
EPSODE formulation, the same argument as the for Propo-

sition 3.1 shows that the path following direction is given
by

⎛

⎜⎜⎜⎝

dβ̂0(ρ)
dρ

dβ̂(ρ)
dρ

⎞

⎟⎟⎟⎠
= −2[d2L(β̃) + 2ρ K̃ 0]−1 K

(
0

β̂(ρ)

)

,

where K̃ 0 ∈ R(p+1)×(p+1) is the original kernel matrix K
augmented by an extra (first) row and (first) column of 0.

8. CONCLUSIONS

In this article, we propose a generic path following algorithm
EPSODE that works for any regularization problems of form (1).
The advantages are its simplicity and generality. Path following
only involves solving ODEs segment by segment and is simple
to implement using popular softwares such as R and Matlab.
Besides providing the whole regularization path, it also gives a
solver for linearly constrained optimization problems that fre-
quently arise in statistics. Our applications to shape-restricted
regressions and nonparametric density estimation are special
cases in particular.
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Several extensions deserve further study. Current algorithm
requires sufficient smoothness (twice differentiable) in the loss
function. This precludes certain applications with nonsmooth
objective function, for example, the Huber loss in robust estima-
tion and the loss function in quantile regression. Generalization
of our path algorithm to regularization of these loss functions
requires further research. Another restriction in our formulation
is the linearity in the regularization terms. In sparse regres-
sions, several authors have proposed nonlinear and nonconvex
penalties. The bridge regression (Frank and Friedman 1993) and
SCAD penalties (Fan and Li 2001) fall into this category. As
observed in (Friedman 2008), when the penalty is not convex,
the solution path may not be continuous and poses difficulty
in path following, which strongly depends on the continuity
and smoothness of the solution path. Fortunately, in these prob-
lems, the discontinuities only occur when new variables enter or
leave the model. A promising strategy is to initialize the start-
ing point of next segment by solving an equality constrained
optimization problem. This again invites further investigation.
Lastly, our formulation (1) imposes same penalty parameter on
equality and inequality regularization terms. Relaxing to dif-
ferent tuning parameters apparently increases flexibility of the
regularization scheme. In this setup, the relevant target will be
a “solution surface” instead of “solution path,” which is worth
further investigation.

SUPPLEMENTARY MATERIALS

Proofs for: Lemmas 2.1, 7.2, and 7.3; and Propositions 3.2,
4.1, and 6.1.

[Received August 2011. Revised June 2013.]
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