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a b s t r a c t

The celebrated expectation–maximization (EM) algorithm is one of the most widely used
optimization methods in statistics. In recent years it has been realized that EM algorithm
is a special case of the more general minorization–maximization (MM) principle. Both
algorithms create a surrogate function in the first (E or M) step that is maximized in the
second M step. This two step process always drives the objective function uphill and is
iterated until the parameters converge. The two algorithms differ in the way the surrogate
function is constructed. The expectation step of the EM algorithm relies on calculating
conditional expectations, while theminorization step of theMM algorithm builds on crafty
use of inequalities. For many problems, EM and MM derivations yield the same algorithm.
This expository note walks through the construction of both algorithms for estimating
the parameters of the Dirichlet-Multinomial distribution. This particular case is of interest
because EM and MM derivations lead to two different algorithms with completely distinct
operating characteristics. The EM algorithm converges quickly but involves solving a
nontrivial maximization problem in the M step. In contrast the MM updates are extremely
simple but converge slowly. An EM–MM hybrid algorithm is derived which shows faster
convergence than the MM algorithm in certain parameter regimes. The local convergence
rates of the three algorithms are studied theoretically from the unifying MM point of view
and also compared on numerical examples.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Numerical optimization methods have been intensively used by statisticians due to the popularity of the maximum
likelihood estimation. A powerful weapon among them is the celebrated expectation–maximization (EM) algorithm
(Dempster et al., 1977). The E step in the EM algorithm creates a Q function which is then minimized in the M step. In many
problems the surrogate Q function is much simpler than the log-likelihood and thus the M step can be solved analytically.
These two steps iterate until the parameters converge. In recent years, it has been realized that the EM algorithm is a special
case of the more general minorization–maximization (MM) principle (de Leeuw, 1994; Heiser, 1995; Lange et al., 2000; Wu
and Lange, 2010). The first M step of an MM algorithm creates a minorizing function that is optimized in the second M step.
The Q function in the EM algorithm is a specific example of minorizing functions. As in the EM algorithm, this two-step
process always drives the objective function uphill. The key difference between the two algorithms is the construction of
surrogate functions. The minorization step in the MM algorithm hinges upon recognizing and manipulating inequalities,
while the EM algorithm relies on calculating conditional expectations. Advantages enjoyed by both algorithms are their
numerical stability, natural adaption to parameter constraints, and scalability to high dimensions. An open question has
been raised whether anyMM algorithm can be recast as an EM algorithm (Meng, 2000). For instance, theMM algorithms for
fitting Bradley–Terrymodels (Hunter, 2004) have recently been shown to be equivalent to EMalgorithmswith appropriately
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chosen latent variables (Caron and Doucet, 2010). However, in these worked out examples, the construction of missing data
framework turns out non-intuitive and irrelevant to the statistical model that generates the data. Taking the MM point
of view frees the derivation from the dependence on a missing data framework. For instance, the recent article (Wu and
Lange, 2010) demonstrates the potential of the MM algorithm in random graph models, discriminant analysis and image
restoration problems where there is no apparent missing data structure.

This expository paper walks through the construction of both EM and MM algorithms for the maximum likelihood
estimation of the Dirichlet-Multinomial distribution. For this particular problem they produce two completely different
algorithms. The Q function in the EM algorithm is fraught with special functions (digamma and trigamma) and the M step
resists analytical solutions and has to resort to iterative, multivariate Newton’s method. In contrast, the surrogate function
of the MM algorithm is much simpler and yields trivial updates in the M step. Re-inspecting the M step of EM algorithm
from the MM perspective leads to an EM–MM hybrid algorithm which partially resolves the difficulty in the M step of the
EM algorithm. Similar hybrid algorithm is utilized in fitting mixture of Plackett–Luce models for ranking data (Gromley and
Murphy, 2008). The local convergence rates of the MM and hybrid algorithms are studied theoretically and demonstrated
on numerical experiments. There is no clear winner in the sense that one converges faster than the others in all parameter
regimes.

As a road map to the remainder of the paper, Section 2 lays out the problem being studied and introduces a classical
data set for numerical illustrations. EM and MM algorithms are derived in Sections 3 and 4 respectively. The difficulty in
maximizing the Q function in the EM algorithm can be partially remedied if we take the MM point of view. This connection
is explored in Section 5 and leads to an EM–MM hybrid algorithm. Local convergence properties of the three algorithms
are studied in Section 6. The operating characteristics (run time, convergence rates, and final objective values) of the three
algorithms are compared numerically under various parameter settings in Section 7. Finally we conclude with some other
options for solving this problem.

2. Problem setup and a running example

Multivariate count data frequently arise in genetics (Lange, 2002; Tvedebrink, 2010; Ionita-Laza and Laird, 2010),
toxicology (Hines and Lawless, 1993), protein homology detection (Sjölander et al., 1996), word burstiness modeling
(Madsen et al., 2005), and languagemodeling (MacKay and Bauman Peto, 1994).Whenmultivariate count data exhibit over-
dispersion, the Dirichlet-Multinomial distribution is preferred over the familiar multinomial distribution. In the Dirichlet-
Multinomial sampling, the multinomial parameter p = (p1, . . . , pd) is modeled as a Dirichlet distribution with parameter
α = (α1, . . . , αd), where αj > 0. Accordingly, given a multivariate count vector x = (x1, . . . , xd) with batch size
m =

d
j=1 xj, the probability mass function under a Dirichlet-Multinomial model is

f (x|α) =


∆d

m
x

 d
j=1

p
xj
j
0(|α|)

d
j=1
0(αj)

d
j=1

p
αj−1
j dp (1)

=

m
x

 d
j=1
0(αj + xj)

0(|α| + m)
0(|α|)

d
j=1
0(αj)

=

m
x

 d
j=1
(αj)xj

|α|m
, (2)

where |α| =
d

j=1 αj and (a)k =
k−1

i=0 (a+ i) denotes the rising factorial. The last equality is due to the fact0(a+k)/0(a) =

(a)k. An alternative parametrization uses

πj =
αj

|α|
, j = 1, . . . , d, θ =

1
|α|
, (3)

in terms of the proportion vector π = (π1, . . . , πd) and the over-dispersion parameter θ . For the sake of brevity, we stick
to parametrization (2) in this article. The derivation and most conclusions equally apply to both parameterizations. Given
independent data points x1, . . . , xn, the log-likelihood is

l(α) =

n
i=1

ln f (xi|α)

=

n
i=1

ln

mi

xi


+

n
i=1

d
j=1

xij−1
k=0

ln(αj + k)−

n
i=1

mi−1
k=0

ln(|α| + k) (4)
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Fig. 1. Histogram of the 524 proportions in the Haseman and Soares data with a Beta(1.23, 12.46) density imposed.

and the maximum likelihood estimation seeks the maximizer of (4). Most current applications utilize Newton’s method for
finding the MLE (Lange, 2002; Tvedebrink, 2010; Ionita-Laza and Laird, 2010), which may be numerically instable because
the objective function (4) is non-concave. The alternative Fisher’s scoring algorithm replaces the observed information
matrix in Newton’s method by an expected information matrix and yields an ascent algorithm. However, the calculation of
expected information matrix for Dirichlet-Multinomial model is expensive due to numerous evaluations of beta-binomial
tail probabilities (Paul et al., 2005). Recently Zhou and Lange (2010) devise theMMalgorithm for awhole class ofmultivariate
discrete distributions which include the Dirichlet-Multinomial as a special case. Compared to Newton’s method, the MM
algorithm is numerically stable, easy to implement and scalable to high-dimensional data. In this article, we take up the
alternative EM approach for maximizing the log-likelihood (4) and contrast it to theMM algorithm in respect to algorithmic
design, per iteration computation cost, and local convergence rate.

As a numerical example we consider the classical data on the mice that are exposed to various mutagens (Haseman
and Soares, 1976). Environmental scientists are interested in investigating the mutagenicity of a compound or irradiation
in vivo in mice. Male mice are treated with the suspect mutagen and then paired to one or more female mice. Seventeen
days after the initial exposure to a male, females are killed and their uteri are examined for the presence of living and
dead embryos (implants). In the first data set of Haseman and Soares (1976), denoted by HS76-1 in following, there are
n = 524 femaleswith the total number of implants per femalemi varying from1 to 20. Counts of dead and survived implants
are recorded for each female. Fig. 1 displays the histogram of the 524 proportions of dead implants. The variability in the
proportions is prominent and the traditional binomial distribution is inappropriate for such over-dispersion count data.
Fitting the beta-binomial distribution (d = 2) to the HS76-1 data set gives the MLE α̂ = (1.23, 12.46) with log-likelihood
−777.79. The density of the beta distribution with parameter α̂ is imposed on the histogram in Fig. 1 and demonstrates a
good fit. The classical binomial fit gives a log-likelihood −842.61. The likelihood ratio test of the over-dispersion parameter
H0 : θ = (α1 +α2)

−1
= 0 vs H1 : θ > 0 yields a p-value essentially 0, corroborating the appropriateness of a beta-binomial

model.
The performances of the EM, MM and a hybrid algorithm on this data set will be compared in Section 6. Note although

we use a d = 2 data set as the running example for ease of illustration and visualization, all our derivations and convergence
rate results are for general d and numerical experiments are carried out for d as high as 50 in Section 7. We begin with the
EM algorithm for maximizing (4).

3. EM algorithm

Derivation of EM algorithm hinges upon amissing data structure. Let f (θ) be the log-likelihood of the observed data with
parameter vector θ. In the E step, a surrogate function Q (θ|θ(t)) is calculated as the conditional expectation of the complete
data log-likelihood given current parameter iterate θ(t). The well-known calculations (Baum et al., 1970; Dempster et al.,
1977) demonstrate that the Q function satisfies the fundamental inequality

f (θ)− f (θ(t)) ≥ Q (θ|θ(t))− Q (θ(t)|θ(t)). (5)

Maximizing the surrogate Q (θ|θ(t)) with respect to θ generates the next iterate θ(t+1) which obviously drives the
log-likelihood of the observed data uphill.

The admixture representation (1) of the Dirichlet-Multinomial distribution naturally implies an EM algorithm. We
consider pi, i = 1, . . . , n, as the missing data and denote the joint density of complete data by

n
i=1 f (xi, pi,α). Then



3912 H. Zhou, Y. Zhang / Computational Statistics and Data Analysis 56 (2012) 3909–3920

the Q function is

Q (α|α(t)) = E


ln

n
i=1

f (xi, pi,α)|x1, . . . , xn,α(t)

,

where the expectation is with respect to the conditional distribution

f (p1, . . . , pn|x1, . . . , xn,α(t)),

i.e., independent Dirichlet(xi + α(t)). Therefore
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Here Ψ (z) = 0′(z)/0(z) is the digamma function and the exponential family differential identity is used to calculate the
expectation E[ln Pj] under a Dirichlet distribution. Therefore

Q (α|α(t))

=

n
i=1

ln

mi

xi


+

n
i=1

d
j=1

(xij + αj − 1)

Ψ (xij + α

(t)
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d
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d
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n
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αj


Ψ (xij + α

(t)
j )− Ψ (mi + |α(t)|)


− n

d
j=1

ln0(αj)+ n ln0(|α|)+ c(t). (6)

Throughout the paper we use c(t) to collect constants that are irrelevant to the optimization and it may vary in different
equations. Maximizing Q (α|α(t)) is not trivial since αj are intertwined in the ln0(|α|) term. Newton’s method has to be
utilized for the M step. The first two derivatives of Q (α|α(t)) are

[∇Q (α|α(t))]j =
∂Q
∂αj

=


i

[Ψ (xij + α
(t)
j )− Ψ (mi + |α(t)|)] + nΨ (|α|)− nΨ (αj)

[d2Q (α|α(t))]jj′ =
∂2Q
∂αjαj′

= nψ(|α|)− nψ(αj)1{j=j′},

where ψ(z) = Ψ ′(z) is the trigamma function. Newton’s method iterates according to

α(m+1) = α(m) − [d2Q (α(m)|α(t))]−1
· ∇Q (α(m)|α(t)),

where the subscript m indicates its iteration number. Several issues arise here. First, in each iteration the Hessian matrix
d2Q (α|α(t)) has to be computed and a linear system needs to be solved. Second, since the Q function is non-concave (note
ln0 is convex), Newton’s method may not generate an ascent algorithm. Even when its Hessian is negative definite locally,
a line search strategy may be necessary to prevent over-shooting. Lastly Newton’s updates may violate the parameter
constraints αj > 0. At this point it is realized that the EM principle has not reduced the difficulty of the original optimization
problem and Newton’s or Fisher’s scoring method could be used directly on the observed data log-likelihood (4). However
there is a remedy. Before that we first explore the MM solution.

4. MM algorithm

Like EM, the MM algorithm is a general principle for creating optimization algorithms. The survey papers (Lange et al.,
2000; Hunter and Lange, 2004) and textbook treatment (Lange, 2010) serve as an excellent introduction. The derivation in
this section also appears in Zhou and Lange (2010) as a special case. Let f (θ) be the objective function, not necessarily a
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log-likelihood, whose maximum we seek. An MM algorithm involves minorizing f (θ) at current iterate θ(t) by a surrogate
function g(θ | θ(t)) that satisfies two properties

f (θ) ≥ g(θ | θ(t)), θ ≠ θ(t)

f (θ(t)) = g(θ(t) | θ(t)).

In other words, the surface θ → g(θ | θ(t)) lies below the surface θ → f (θ) and is tangent to it at the current iteration
θ = θ(t). The construction of the minorizing function g(θ | θ(t)) constitutes the first M of the MM algorithm. The second
M of the MM algorithm maximizes the surrogate g(θ | θ(t)) rather than f (θ) directly. If θ(t+1) denotes the maximum of
g(θ | θ(t))with respect to its left argument, then θ(t+1) increases f (θ). It follows directly from the inequalities

f (θ(t+1)) ≥ g(θ(t+1)
| θ(t)) ≥ g(θ(t) | θ(t)) = f (θ(t)).

This ascent property is the source of the MM algorithm’s numerical stability and remains valid if we merely increase
g(θ | θ(t)) rather than maximize it.

The fundamental inequality (5) in the EM algorithm shows that the Q function produced in the E step constitutes a
minorizing function of the log-likelihood up to an additive constant. This fact readily qualifies EM algorithm as a special case
of theMM algorithm. TheMMperspective is more general as it frees algorithm derivation from themissing data straitjacket
and invites wider applications. Wu and Lange (2010) briefly summarize the history of the MM algorithm and showcase its
flexibility in some problems in which the EM derivation is hard to carry out.

To construct an MM algorithm for maximizing the Dirichlet-Multinomial log-likelihood function (4), the strategy is to
minorize term by term. We first simplify the two sums

n
i=1

d
j=1

xij−1
k=0

ln(αj + k) =

n
i=1

d
j=1

maxi xij−1
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=

d
j=1

maxi xij−1
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ln(αj + k)
n
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d
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k=0

sjk ln(αj + k)

and

−

n
i=1

mi−1
k=0

ln(|α| + k) = −

mi−1
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ln(|α| + k)
n
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= −

maxi mi−1
k=0

rk ln(|α| + k),

where

sjk =

n
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1{xij≥k+1}, rk =

n
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1mi≥k+1

are counts. Applying the Jensen’s inequality to the ln(αj + k) terms
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+
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lnαj + c(t) (7)

and the supporting hyperplane inequality to the − ln(|α| + k) terms
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yields the surrogate function
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Fig. 2. Graphs of minorization inequalities (7) and (8).

Fig. 2 depicts the two minorization inequalities (7) and (8) with α(t) = 2 and k = 1. In both minorizations, the equality
holds at α = α(t). Finding the α that maximizes g(α|α(t)) is trivial and leads to the multiplicative MM updates

α
(t+1)
j = α

(t)
j


k

sjk
α
(t)
j +k

k

rk
|α(t)|+k

, j = 1, . . . , d, (9)

which are substantially simpler than their EM counterparts. It is noteworthy that the parameter constraints αj > 0 are
always satisfied whenever α(0)j > 0. Besides offering a completely different algorithm from EM, the MM principle also
suggests a remedy for the troublesome M step in the EM algorithm.

5. An EM–MM hybrid algorithm

Due to the fact that the ln0(x) function is convex, we can resort to the supporting hyperplane inequality to separate the
parameters in the ln0(|α|) term in the Q function (6)

Q (α|α(t)) ≥


i

ln

mi

xi


+


i


j

(xij + αj − 1)

Ψ (xij + α

(t)
j )− Ψ (mi + |α(t)|)


+ nΨ (|α(t)|)(|α| − |α(t)|)+ n ln0(|α(t)|)− n


j

ln0(αj)+ c(t)

=


j


αj


i


Ψ (xij + α

(t)
j )− Ψ (mi + |α(t)|)+ Ψ (|α(t)|)


− n ln0(αj)


+ c(t). (10)

In this newminorizing function (10), the parametersαj are separated and only need to be optimized independently. Equating
the partial derivatives with respect to αj to 0 gives the function to solve for αj

i

Ψ (xij + α
(t)
j )− nΨ (αj) =


i

Ψ (mi + |α(t)|)− nΨ (|α(t)|).

In view of the recurrence relation Ψ (y + 1) = Ψ (y)+ 1/y, this is equivalent to

Ψ (α
(t)
j )− Ψ (αj) =

1
n

n
i=1

mi−1
k=0

1
|α(t)| + k

−
1
n

n
i=1

xij−1
k=0

1

α
(t)
j + k

=
1
n

maxi mi−1
k=0

rk
|α(t)| + k

−
1
n

maxi xij−1
k=0

sjk
α
(t)
j + k

.

It is interesting to note that the two sums on the right hand side were used in the MM updates (9) in a completely different
way. Here we can find the root of Ψ (αj) = a by Newton’s iterates

α(m+1) = α(m) −
Ψ (α(m))− a
ψ(α(m))

.
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Fig. 3. Algorithmic iterates for the HS76-1 data set. Left: Start from a blind guess α(0) = (1, 1). Right: Start from the method of moment estimate
α(0) = (0.4711, 4.8072).

Fig. 4. Distance of algorithmic iterates to the final solution ∥θ(t) − θ∞
∥2 for the HS76-1 data set.

Since ln0 is convex, the trigamma function ψ is positive and Newton’s method is guaranteed to converge to the right root.
Newton’s method applied to individual αj is substantially simpler than the multivariate Newton’s method in the original
EM algorithm, which involves computing and inverting Hessian matrix in each iteration. As we will see in the next section,
the price it pays is more iterations.

6. Convergence rates

The EM, MM, and hybrid algorithms constructed so far enjoy the same ascent property, yet with distinct per iteration
computational cost. A formal comparison entails a close study of their local convergence rates, which roughlymeasures how
fast they converge near the optimal point. Fig. 3 displays the iterates of the three algorithms for the HS76-1 data set with
two different starting points. When starting from a blind guess α(0) = (1, 1), the EM algorithm converges quickly within
20 iterations, while the other two lag behind. The hybrid algorithm outruns MM initially but is caught up when close to the
optimal point. When starting from the method of moment estimate α(0) = (0.4711, 4.8072), EM behaves similarly while
the MM algorithm narrowly edges out the hybrid algorithm.

Because all three algorithms can be deemed as special cases of the MM principle, their convergence properties can be
studied under a unified framework. Consider anMMmapM(θ) for maximizing the objective function f (θ) via the surrogate
function g(θ|θ(t)). When close to the optimal point θ∞,

θ(t+1)
− θ∞

≈ dM(θ∞) · (θ(t) − θ∞),

where dM(θ∞) is the differential of the mapping M at the optimal point θ∞ of f (θ). Fig. 4 displays the distance of the
algorithmic iterates to theMLE for the HS76-1 example on the logarithmic scale and shows the linear convergence behavior
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Fig. 5. Log-likelihood surface and the minorizing functions of EM, MM, and the EM–MM hybrid algorithms at point (0.5, 5) for the HS76-1 data set.

when close to θ∞. Therefore the local convergence rate of the sequence θ(t+1)
= M(θ(t)) is defined as the spectral radius of

dM(θ∞). The familiar calculations (McLachlan and Krishnan, 2008; Lange, 2010) demonstrate that

dM(θ∞) = I − [d2g(θ∞
|θ∞)]−1d2f (θ∞). (11)

In other words, the local convergence rate is determined by how well the surrogate function g approximates the log-
likelihood surface f near the optimal point θ∞. In EM literature, dM(θ∞) is called the rate matrix (Meng and Rubin, 1991).
A smaller rate means that the surrogate function g(θ|θ∞) hugs f (θ) tighter around θ∞ and thus implies faster convergence.

In our case, the Q function of the EM algorithm by construction dominates the minorizing function (10) of the hybrid
algorithm. This implies the faster convergence of the EM algorithm than the hybrid algorithm as observed in Fig. 3. However,
there are no dominance relations between them and the MM surrogate function. Fig. 5 displays the log-likelihood surface
of the HS76-1 data set and the minorizing functions of the three algorithms at the parameter point (α1, α2) = (0.5, 5). All
three minorizing functions lie below the log-likelihood surface while touching it at (0.5, 5). It is clear that the Q function
of the EM algorithm approximates the log-likelihood function better than the minorizing function of the hybrid algorithm
over the whole region. The MMminorizing function intersects with the other two besides the point (0.5, 5).

Given a data set, the local convergence rates of the three algorithms can be calculated. Let α∞ be the MLE and define
constants

a =

maxi mi−1
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(|α∞| + k)2
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All roots of these polynomials are real and especially the smallest roots give the information about the local convergence
rates of the algorithms. Formally we have the following result.

Proposition 6.1. The MM, hybrid, and EM algorithms have linear rates of convergence 1 − λMM, 1 − λhybrid, and 1 − λEM,
respectively, where λ are the smallest roots of the corresponding polynomials.

The proof of Proposition 6.1 utilizes (11) straightforwardly and is relegated to the Appendix. For the HS76-1 data, the
local convergence rates of EM, MM, and hybrid algorithms are 0.9893, 0.9915, and 0.9946 respectively, corroborating what
we observe in Fig. 4. It also illustrates the point that local convergence rate only captures the convergence behavior close
to the optimal point. In the left panel of Fig. 3, all algorithms are started far away from the optimal point and the hybrid
algorithm converges faster than the MM algorithm initially even though it has a slower local convergence rate.

The convergence rates are data dependent and vary with data sets even when they are generated from the same
distribution. Approximate convergence rates at any MLE α∞ can be obtained by replacing sjk appearing in (12) by their
expected values E(sjk) =

n
i=1 P(Xij > k), where Xi = (Xi1, . . . , Xid) is a Dirichlet-Multinomial random vector with

parameter α∞ and batch size mi. For the beta-binomial distribution (d = 2), the relevant polynomials (12) are quadratic
and the smallest roots can be readily computed. Fig. 6 displays the approximate convergence rates of the hybrid and MM
algorithms over the parameter region [0.3, 5]× [0.3, 5] for data sets with fixed batch sizesm = 5, 10, or 20. The number of
observations n cancels in the formula (12) and does not play a role in this setting. The convergence rate of the EM algorithm
is not displayed here since it has little practical use. Both algorithms claim their own territory of faster convergence. Neither
of themdominates the other in all three settings ofm. Atm = 5, theMMalgorithm enjoys faster convergence over thewhole
region while the reverse is true at m = 20. The m = 10 case represents a compromise between the two. Both convergence
rates improve with increasing batch sizem. The convergence is fast for both when α1 and α2 are small and slow when their
magnitude is large. At fixed |α| = α1 +α2, the convergence is slow when αj differ dramatically. For general d > 2, it is hard
to obtain explicit expressions for these rates but the approximate rates can be easily computed and similar observations are
made.

7. Numerical experiments

We stress that the sheer number of iterations until convergence is not the sole determinant of algorithm speed.
Computational complexity per iteration also comes into play. The iterations within iteration feature of the EM and hybrid
algorithms may compromise their fast convergence in ceratin parameter regimes. To demonstrate the tradeoff between
number of iterations and speed of each iteration, we compare the performance of MM, EM, and hybrid algorithms under
various parameter values. Fig. 7 displays the boxplots of the timing, number of iterations, and final objective values from the
three algorithms on 100 multivariate count data sets simulated with parameter values α = (0.1, 1) (row 1), α = (0.2, 2)
(row 2), α1 = · · · = α50 = 0.5 (row 3) and α1 = · · · = α50 = 5 (row 4) respectively. The sample size is fixed at n = 100
and the batch size atm = 20. The trio of algorithms are run on the same data set in each simulation replicate. Convergence
is declared when the relative change in objective values is less than 10−6. Apparently there is no winner that can dominate
others across all scenarios. The EM algorithm always enjoys the fastest convergence. However its speed is compromised by
the extra computation cost per iteration. Convergence rates of MM and hybrid algorithms vary over parameter regime as
we already see in Section 6. For high dimensional problems (d = 50), the simplicity of MM updates overcomes its slower
convergence, making it the fastest one under the two tested parameter settings (rows 3 and 4).

8. Conclusions

Multiple solutions to the same problem have proven illuminating inmany areas of mathematics. In this article we devise
and compare the EM and MM algorithms for estimating the parameters of Dirichlet-Multinomial distribution. This exercise
vividly contrasts the different approaches utilized by EM andMMalgorithms for constructing the surrogate functions. In this
example, taking the MM perspective remedies the difficulty encountered in the EM algorithm and yields a new algorithm
that enjoys faster convergence over certain parameter regimes. This interplay between the two algorithms illustrates the
delicacy of algorithmic development in computational statistics.

We have omitted the discussion of two other popular optimization methods, Newton’s method and the Fisher’s scoring
method. The paramount advantage of these two methods is their fast convergence. However they require evaluating and
inverting an information matrix at each iteration. For Dirichlet-Multinomial distribution, the information matrices are
easy to invert and therefore not a big concern. Even so, Newton’s method may still suffer from instability and violation
of parameter constraints. The scoring method remedies the instability by using the expected information matrix, which
is negative definite and guarantees an ascent direction. Parameter constraint violation is still pertinent. More severely,
calculation of the expected information matrix involves evaluating numerous beta-binomial tail probabilities (Paul et al.,
2005). On large scale problems, this is simply infeasible. However there is still room to combine Newton’s method and EM
orMM algorithms. For example, the recent work (Zhou et al., 2011) presents a new quasi-Newton scheme that achieves one
to three orders of magnitude acceleration of many EM andMM algorithms. Many practitioners tend to prefer one particular
optimization method over the others. In practice, some of the best algorithms are hybrids.
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Fig. 6. Approximate convergence rates of the MM and hybrid algorithms for fitting the beta-binomial distribution (d = 2) when all data points have the
same batch sizem. Top: m = 5; middle:m = 10; bottom:m = 20.

Acknowledgments

The first author was partially supported by NIH grant HG006139 and NCSU FRPD grant.

Appendix

Proof of Proposition 6.1. The Hessian of the log-likelihood function (4) at the optimal point α∞ is

[d2l(α∞)]jj′ =


k

rk
(|α∞| + k)2

−


k

sjk
(α∞

j + k)2
1{j=j′}

= a − bj1{j=j′}.
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Fig. 7. Comparison of algorithmic timing, convergence rates, and final objective values under different parameter values. Row 1: α = (0.1, 1); row 2:
α = (0.2, 2); row 3: α1 = · · · = α50 = 0.5; row 4: α1 = · · · = α50 = 5. The sample size is n = 200. The batch size is m = 20. There are 100 replicates in
each scenario. Convergence criterion is 10−6 .

The MMminorizing function has curvature

[d2gMM(α
∞

|α∞)]−1
jj′ = −


k

sjk
α∞

j (α
∞

j + k)

−1

1{j=j′} = −c−1
j 1{j=j′}

while the curvature of the minorizing function for the hybrid algorithm is

[d2ghybrid(α∞
|α∞)]−1

jj′ = −[nψ(α∞

j )]
−11{j=j′} = −d−1

j 1{j=j′}.

Lastly the EM Q function has curvature

[d2Q (α∞
|α∞)]−1

jj′ = −
ψ(α∞

j )
−1ψ(α∞

j′ )
−1

n


ψ(|α∞|)−1 −


j
ψ(α∞

j )
−1

 −
ψ(α∞

j )
−1

n
1{j=j′}

= −d−1
j d−1

j′ e−1
− d−1

j 1{j=j′}.

The characteristic polynomial of [d2gMM(α
∞

|α∞)]−1d2f (α∞) is

PMM(λ) = det[λI − diag(bjc−1
j )+ a · c−11t

]

= det[λI − diag(bjc−1
j )]{1 + a1t

[λI − diag(bjc−1
j )]−1c−1

}

=

d
j=1

(λ− bjc−1
j )+ a

d
j=1

c−1
j


j′≠j

(λ− bj′c−1
j′ ).

Here, c−1
= (c−1

1 , c−1
2 , . . . , c−1

d )′. Similarly, the characteristic polynomial for the hybrid algorithm is

Phybrid(λ) =

d
j=1
(λ− bjd−1

j )+ a
d

j=1
d−1
j

j′≠j
(λ− bj′d−1

j′ )
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and the characteristic polynomial for the EM algorithm is

PEM(λ) =

d
j=1

(λ− bjd−1
j )−


j


bjd−1

j e−1
− ae−1


j′′

d−1
j′′ − a


d−1
j


j′≠j

(λ− bj′d−1
j′ ). �
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