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Introduction to the MM Principle

1. The MM principle is not an algorithm, but a prescription or principle
for constructing optimization algorithms.

2. The EM algorithm from statistics is a special case.

3. An MM algorithm operates by creating a surrogate function that
minorizes or majorizes the objective function. When the surrogate
function is optimized, the objective function is driven uphill or
downhill as needed.

4. In minimization MM stands for majorize/minimize, and in
maximization MM stands for minorize/maximize.
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History of the MM Principle

1. Anticipators: HO Hartley (1958, EM algorithms), AG McKendrick
(1926, epidemiology), CAB Smith (1957, gene counting), E
Weiszfeld (1937, facilities location), F Yates (1934, multiple
classification)

2. Ortega and Rheinboldt (1970) enunciate the principle in the context
of line search methods.

3. de Leeuw (1977) presents an MM algorithm for multidimensional
scaling contemporary with the classic Dempster et al. (1977) paper
on EM algorithms.
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MM Application Areas

a) robust regression, b) logistic regression,c) quantile regression, d)
variance components, e) multidimensional scaling, f) correspondence
analysis, g) medical imaging, h) convex programming, i) DC
programming, j) geometric programming, k) survival analysis, l)
nonnegative matrix factorization, m) discriminant analysis, n) cluster
analysis, o) Bradley-Terry model, p) DNA sequence analysis, q) Gaussian
mixture models, r) paired and multiple comparisons, s) variable selection,
t) support vector machines, u) X-ray crystallography, v) facilities
location, w) signomial programming, x) importance sampling, y) image
restoration, and z) manifold embedding.
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Rationale for the MM Principle

1. It can generate an algorithm that avoids matrix inversion.

2. It can separate the parameters of a problem.

3. It can linearize an optimization problem.

4. It can deal gracefully with equality and inequality constraints.

5. It can restore symmetry.

6. It can turn a non-smooth problem into a smooth problem.
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Majorization and Definition of the Algorithm

1. A function g(θ | θn) is said to majorize the function f (θ) at θn

provided

f (θn) = g(θn | θn) tangency at θn

f (θ) ≤ g(θ | θn) domination for all θ.

The majorization relation between functions is closed under the
formation of sums, nonnegative products, limits, and composition
with an increasing function.

2. A function g(θ | θn) is said to minorize the function f (θ) at θn

provided −g(θ | θn) majorizes −f (θ).

3. In minimization, we choose a majorizing function g(θ | θn) and
minimize it. This produces the next point θn+1 in the algorithm.
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MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

7



MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

7



MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

7



MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

●●

7



MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

●●

●●

7



MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

●●

7



MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

●●

●●

●●

7



MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

●●

●●

●●
●●

7



MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

●●

●●

●●●●●●●●

7



Descent Property

1. An MM minimization algorithm satisfies the descent property
f (θn+1) ≤ f (θn) with strict inequality unless both

g(θn+1 | θn) = g(θn | θn)

f (θn+1) = g(θn+1 | θn).

2. The descent property follows from the definitions and

f (θn+1) ≤ g(θn+1 | θn) ≤ g(θn | θn) = f (θn).

3. The descent property makes the MM algorithm very stable.
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Example 1: Minimum of cos(x)

The univariate function f (x) = cos(x) achieves its minimum of −1 at
odd multiples of π and its maximum of 1 at even multiples of π. For a
given xn, the second-order Taylor expansion

cos(x) = cos(xn)− sin(xn)(x − xn)− 1

2
cos(z)(x − xn)2

holds for some z between x and xn. Because | cos(z)| ≤ 1, the surrogate
function

g(x | xn) = cos(xn)− sin(xn)(x − xn) +
1

2
(x − xn)2

majorizes f (x). Solving d
dx g(x | xn) = 0 gives the MM algorithm

xn+1 = xn + sin(xn)

for minimizing f (x) and represents an instance of the quadratic upper
bound principle.

9



Majorization of cos x
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MM and Newton Iterates for Minimizing cos(x)

MM Newton
n xn cos(xn) yn cos(yn)

0 2.00000000 -0.41614684 2.00000000 -0.41614684
1 2.90929743 -0.97314057 4.18503986 -0.50324437
2 3.13950913 -0.99999783 2.46789367 -0.78151929
3 3.14159265 -1.00000000 3.26618628 -0.99224825
4 3.14159265 -1.00000000 3.14094391 -0.99999979
5 3.14159265 -1.00000000 3.14159265 -1.00000000
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Example 2: Robust Regression

According to Geman and McClure, robust regression can be achieved by
minimizing the amended linear regression criterion

f (β) =
m∑
i=1

(yi − x∗i β)2

c + (yi − x∗i β)2
.

Here yi and x i are the response and the predictor vector for case i and
c > 0. Majorization is achieved via the concave function h(s) = s

c+s . In
view of the linear majorization h(s) ≤ h(sn) + h′(sn)(s − sn), substitution
of (yi − x∗i β)2 for s gives the surrogate function

g(β | βn) =
m∑
i=1

wni (yi − x∗i β)2 + constant,

where the weight wni equals h′(s) evaluated at sn = (yi − x∗i βn)2. The
update βn+1 is found by minimizing this weighted least squares criterion.
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Majorization of h(s) = s
1+s at sn = 1
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Example 3: Missing Data in K -Means Clustering

Lloyd’s algorithm is one of the earliest and simplest algorithms for
K -means clustering. A recent paper extends K -means clustering to
missing data. For subject i we observe an indexed set of components yij
of a vector y i ∈ Rd . Call the index set Oi . Subjects must be assigned to
one of K clusters. Let Ck denote the set of subjects currently assigned to
cluster k. With this notation we seek to minimize the objective function

K∑
k=1

∑
i∈Ck

∑
j∈Oi

(yij − µkj)
2,

where µk is the center of cluster k .
Reference: Chi JT, Chi EC, Baraniuk RG (2016) k-POD: A method for
k-means clustering of missing data. The American Statistician 70:91–99

14



Reformulation of Lloyd’s Algorithm

Lloyd’s algorithm alternates cluster reassignment with re-estimation of
cluster centers. If we fix the centers, then subject i should be reassigned
to the cluster k minimizing the quantity∑

j∈Oi

(yij − µkj)
2.

Re-estimation of the cluster centers relies on the MM principle. The
surrogate function

K∑
k=1

∑
i∈Ck

[∑
j∈Oi

(yij − µkj)
2 +

∑
j 6∈Oi

(µnkj − µkj)
2
]
.

majorizes the objective around the cluster centers µnk at the current
iteration n. Note that the extra terms are nonnegative and vanish when
µk = µnk .
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Center Updates under Lloyd’s Algorithm

If we define

ỹnij =

{
yij j ∈ Oi

µnkj j 6∈ Oi ,

then the surrogate can be rewritten as
∑K

k=1

∑
j∈Ci
‖ỹnj − µk‖2. Its

minimum is achieved at the revised centers

µn+1,i =
1

|Ci |
∑
j∈Ci

ỹnj .

In other words, the center equals the within cluster average over the
combination of the observed data and the imputed data. The MM
principle restores symmetry and leads to exact updates.
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Robust Version of Lloyd’s Algorithm

It is worth mentioning that the same considerations apply to other
objective functions. For instance, if we substitute `1 norms for sums of
squares, then the missing component majorization works with the term
|µnkj − µkj | replacing the term (µnkj − µkj)

2. In this case, each
component of the update µn+1,kj equals the corresponding median of the
completed data points ỹni assigned to cluster k . This version of
clustering is less subject to the influence of outliers.
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Strengths and Weaknesses of K -Means

1. Strength: Speed and simplicity of implementation

2. Strength: Ease of interpretation

3. Weakness: Based on spherical clusters

4. Weakness: Lloyd’s algorithm attracted to local minima

5. Weakness: Distortion by outliers

6. Weakness: Choice of number classes K
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K -Harmonic Means

The K -harmonic means clustering algorithm (KHM) is a clustering
method that is less sensitive to initialization than K -means (B Zhang et
al (1999) Hewlett-Packard Technical Report). It minimizes the criterion

f−1(µ) =
n∑

i=1

1∑K
k=1

1
‖y i−µk‖2

.

The corresponding K -means criterion without missing data is

f−∞(µ) =
n∑

i=1

min
1≤k≤K

‖y i − µk‖2.

Zhang et al devised an ad hoc algorithm for minimizing f−1(µ) without
realizing that it is an MM algorithm. Can we justify their algorithm and
extend it to a broader context?
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Power Means

The power mean of order s of K nonnegative numbers x1, . . . , xK is

Ms(x) =
( 1

K

K∑
k=1

x sk

) 1
s

.

The choices s = 1 and s = −1 correspond to the arithmetic and
harmonic means. The special case s = 0 is defined by continuity to be
the geometric mean K

√
x1 · · · xK . One can check that Ms(x) is

continuous, positively homogeneous, and symmetric in its arguments.
Again by continuity, Ms(0) = 0. The gradient

∂

∂xj
Ms(x) =

( 1

K

K∑
k=1

x sk

) 1
s−1 1

K
x s−1j

shows that Ms(x) is strictly increasing in each variable. The inequality
Ms(x) ≤ Mt(x) for s ≤ t and limits lims→−∞Ms(x) = min{x1, . . . , xK}
and lims→∞Ms(x) = max{x1, . . . , xK} are exercises in classical analysis.
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Relevance of Power Means to K -Means

Our comments on power means suggest the clustering criterion

fs(µ) =
n∑

i=1

Ms(‖y i − µ1‖2, . . . , ‖y i − µK‖2)

=
n∑

i=1

( 1

K

K∑
k=1

‖y i − µk‖2s
) 1

s

consistent with our previous notation f−∞(µ) (K -means) and f−1
(harmonic mean). The cluster centers µk (columns of µ) can be
estimated by minimizing fs(µ). We can track the solution matrices to the
minimum of f−∞(µ). The advantage of this strategy is that the surface
fs(µ) is less bumpy that the surface f−∞(µ). For example, in the linear
case s = 1, all centers coincide at the single global minimum. The
following slides illustrate how most local minima flatten into nonexistence
as s → 1.
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Objective function surface: K -means

Figure: A cross-section of the K -means objective for n = 100 simulated data
points from K = 3 clusters in dimension d = 1. Two cluster centers vary along
the axes, holding the third center fixed at its true value.
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Objective function surface: power means

(a) s = −10.0 (b) s = −1.0 (KHM)
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Objective function surface: power means

(c) s = −0.2 (d) s = 0.3
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An MM Power Means Clustering Algorithm

Derivation of the MM algorithm depends on the concavity of the power
mean function Ms(x) for s ≤ 1. For s > 1, Ms(x) is convex. (Proofs
omitted.) Concavity entails the inequality,

Ms(x) ≤ Ms(xn) + dMs(xn)(x − xn)

for all x ≥ 0. Substituting ‖y i − µk‖2 for xk yields the majorization

fs(µ) ≤ fs(µn) +
∑n

i=1

∑K
k=1 wnik(‖y i − µk‖2 − ‖y i − µnk‖2),

where the weights are positive numbers derived from the partial
derivatives of Ms(x). The MM algorithm gives the minimum of the
surrogate as

µn+1,k =
1∑n

i=1 wnik

n∑
i=1

wnikx i .

Thus, all updates µn+1,k stay within the convex hull of the data points.
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Simulation study

• Sample n = 2500 points according to standard multivariate normal
distribution from K = 50 randomly sized clusters

• When d = 2, this is exactly the same setting as the original
K -harmonic means paper, but we will vary d .

• The center matrix µtrue has uniform random entries scaled up by a
scale factor of r randomly chosen between 15 and 30

• Performance measure:

√
KM(x , µ̂)

KM(x ,µopt)

where KM denotes the K -means objective function, µ̂ is the
estimate of the centers, and µopt is the estimate obtained by
running Lloyd’s algorithm initialized at µtrue .
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Performance comparison

d = 2 d = 5 d = 10 d = 30 d = 100 d = 200
Lloyd’s 1.151 1.415 1.538 1.617 1.603 1.794
KHM 1.012 1.934 2.636 2.599 2.485 2.665
s0 = −1.0 1.012 1.066 1.111 1.509 2.308 2.190
s0 = −3.0 1.032 1.082 1.081 1.143 1.662 1.485
s0 = −10.0 1.035 1.197 1.212 1.138 1.104 1.131
s0 = −20.0 1.066 1.268 1.272 1.231 1.140 1.178

• Here s0 is the initial power mean index; recall that s → −∞.

• Initialized each algorithm from matching randomized centers,
averaged over 25 trials

• Same message under K -means++ and other initializations and
different performance measures (variation of information, adjusted
random index)

• Power means perform best. Harmonic means outperforms standard
K -means only in low dimensions.
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Background on Distance Majorization

1. The Euclidean distance dist(x ,C ) = miny∈C ‖x − y‖ can be
equivalently expressed using projection onto C :

dist(x ,C ) = ‖x − PC (x)‖

2. The closest point PC (x) in C to x exists and is unique when C is
closed and convex. For a nonconvex set, PC (x) may multi-valued.
Many projection operators PC (x) have explicit formulas or reduce to
simple algorithms.

3. The standard distance majorization is

dist(x ,C ) ≤ g(x | xn) = ‖x − PC (xn)‖.

4. The function dist(x ,C ) is typically non-differentiable at boundary
points even for convex C ; however, dist(x ,C )2 is differentiable
whenever PC (x) is single valued. In this case, one can calculate
∇ dist(x ,C )2 = 2[x − PC (x)].
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Sample Projection Operators

1. If C = {x ∈ Rp : ‖x − z‖ ≤ r} is a closed ball, then

PC (y) =

{
z + r

‖y−z‖ (y − z) y 6∈ C

y y ∈ C .

2. If C = [a,b] is a closed rectangle in Rp, then PC (y) has entries

PC (y)i =


ai yi < ai

yi yi ∈ [ai , bi ]

bi yi > bi .

3. If C = {x ∈ Rp : a∗x = b} for a 6= 0 is a hyperplane, then

PC (y) = y − a∗y − b

‖a‖2
a.

4. If C is the unit sphere (surface of the unit ball), then
PC (x) = x/‖x‖ for all x 6= 0. However, PC (0) = C .
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Example 4a: Averaged Projections
Let S1, . . . ,Sm be closed sets. The method of averaged projections
attempts to find a point in their intersection S = ∩mj=1Sj . To derive the
algorithm, consider the proximity function

f (x) =
m∑
j=1

dist(x ,Sj)2.

It’s minimum value of 0 is attained by any x ∈ ∩mj=1Sj . The surrogate

g(x | xn) =
m∑
j=1

‖x − PSj (xn)‖2

majorizes f (x). The minimum point of g(x | xn),

xn+1 =
1

m

m∑
j=1

PSj (xn),

defines the averaged projection. The MM principle guarantees that xn+1

decreases the proximity function.
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Depiction of Averaged Projections
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Example 4b: Alternating Projections

For two sets closed S1 and S2, consider the problem of minimizing the
proximity function

f (x) = dist(x ,S2)2

subject to the constraint x ∈ S1. Clearly, S1 ∩ S2 6= ∅ is equivalent to a
minimum value of 0. The function

g(x | xn) = ‖x − PS2(xn)‖2

majorizes f (x) on S1 and is minimized by taking

xn+1 = PS1 ◦ PS2(xn).

This is Von Neumann’s method of alternating projections for finding
x ∈ S1 ∩ S2.
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Depiction of Alternating Projections
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Example 5: Intensity-Modulated Radiation Therapy
This problem involves optimizing beamlet intensities in radiation
oncology. Mathematically, both domain and range constraints are
important. The tumor and surrounding tissues are divided into voxels.

The goals/constraints:

1. Sufficiently irradiate cancerous (target) tissue

2. Minimize radiation to normal tissue

3. Impose nonnegativity constraints on the entries of x .

The dose d = Ax is a linear map of beamlet intensities x .

Lower bound Lj on target regions j : for all voxels i in region j

di ≥ Lj

Upper bound Uj on non-target regions j : for all voxels i in region j cap
the radiation

di ≤ Uj .
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MM for Multiset Nonlinear Split Feasibility
For a smooth function h(x), consider the problem of finding x ∈ ∩iCi

such the h(x) ∈ ∩jQj . This problem can be attacked by minimizing

f (x) =
1

2

∑
i

dist(x ,Ci )
2 +

1

2

∑
j

dist[h(x),Qj ]
2.

A split feasible point exits if and only if the minimum value is 0. The
MM principle suggests minimizing the surrogate

g(x | xn) =
1

2

∑
i

‖x − PCi (xn)‖2 +
1

2

∑
j

‖h(x)− PQj [h(xn)]‖2

to find an improved point xn+1. When h(x) = Ax , the MM update
involves solving a system of linear equations and reduces to the iterative
projection algorithm of Censor & Elfving (1994). In the nonlinear case,
one can exploit the inexact minimization

xn+1 = xn − d2g(xn | xn)−1∇g(xn | xn)

provided by applying one step of Newton’s method to the surrogate.
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MM for Multiset Nonlinear Split Feasibility

The gradient and Hessian of the surrogate are

∇g(xn | xn) =
∑
i

[xn − PCi (xn)] +
∑
j

∇h(xn){h(xn)− PQj [h(xn)}

d2g(xn | xn) =
∑
i

I +
∑
j

∇h(xn)dh(xn)

+
∑
j

d2h(x){h(xn)− PQj [h(xn)]}

≈ (# of i ’s )I + (# of j ’s )∇h(xn)dh(xn).

When all constraints Qj are satisfied, PQj [h(xn)] = h(xn), and the
approximation is exact. Dropping the second sum in the Hessian to avoid
the tensor d2h(xn) is analogous to the Gauss-Newton maneuver in
nonlinear regression. The approximation to the Hessian is positive
definite and well conditioned. Step halving is seldom necessary.
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Graphical Display of IMRT Solution
1,000-5,000 beamlets and nearly 100,000 voxels, but only 5-10 regions

Figure: Solutions to the voxel-by-voxel split feasibility problem on a
cross-section of liver data (left) and prostate data (right).
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Proximal Distance Algorithm

1. Problem: Minimize a continuous function f (x) subject to x ∈ C .

2. Let xρ minimize the unconstrained function f (x) + ρ
2 dist(x ,C )2 for

ρ > 0. Then any cluster point of xρ as ρ→∞ is feasible and
attains the constrained minimum value of f (x). If f (x) is coercive
and possesses a unique minimum point x∞, then xρ → x∞.

3. The proximal distance method minimizes f (x) + ρ
2 dist(x ,C )2 by

distance majorization. If f (x) is convex, then this MM procedure is
a concave-convex algorithm.

4. For many choices of f (x), the proximal operator

xn+1 = proxρ−1f (xn) = argminx [f (x) +
ρ

2
‖x − PC (xn)‖2]

is explicitly known.

5. In practice, ρ is gradually increased to some large value, say 105.
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Example 6: Sparse Dominant Eigenvector

1. For a symmetric matrix A, the dominant eigenvector maximizes
x tAx subject to ‖x‖ = 1.

2. One can introduce sparsity by requiring that at most k components
of x be nonzero. The constraint set Sk is the unit sphere with this
additional sparsity constraint.

3. The projection operator PSk
(y) sets to 0 all but the k largest

components of y in absolute value. It then replaces the result ỹ by
ỹ/‖ỹ‖.

4. A sparse dominant eigenvector is then found by minimizing
f (x) = − 1

2x
tAx subject to x ∈ Sk .

5. The proximal distance update solves 0 = −Ax + ρ[x − PSk
(xn)] in

the form

xn+1 = (ρI − A)−1ρPSk
(xn) =

∞∑
n=0

(ρ−1A)nPSk
(xn).
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Plot of ‖Ax − λx‖ for A a 100× 100 Symmetric Matrix
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Remaining Challenges

1. Devise new MM algorithms, particularly for high dimensional and
nonconvex problems.

2. Quantify the local rate of convergence of the MM algorithm in the
presence of complex constraints. When does an MM algorithm
converge at a sublinear rate?

3. Estimate the computational complexity of various MM algorithms.

4. Devise new annealing schemes to avoid local minima.

5. Devise better ways of accelerating MM and EM algorithms.

6. Write Julia and R packages for various MM algorithms. Parallel and
GPU versions especially needed.
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