
ST552: Linear Models and Variance Components

Mon/Wed 11:45am-1:00pm, Wed 1:30pm-2:45pm, SAS Hall 5270

Instructor: Dr Hua Zhou, hua_zhou@ncsu.edu

1 Lecture 1: Aug 21

Today

• Introduction

• Course logistics

• Read JM Appendix A and chapter 1

• Linear algebra review

• No afternoon session today

How Gauss became famous?
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• 1801, Dr Carl Friedrich Gauss, 24; proved Fundamental Theorem of Algebra;

wrote the book Disquisitiones Arithmetic, which is still being studied today.

• 1801, Jan 1 - Feb 11 (41 days), astronomer Piazzi observed Ceres (a dwarf

planet), which was then lost behind sun.

• 1801, Aug – Sep, futile search by top astronomers; Laplace claimed it unsolvable.

• 1801, Oct – Nov, young Gauss did calculations by method of least squares.

• 1801, Dec 31, astronomer von Zach relocated Ceres according to Gauss’ calcu-

lation.

• 1802, Summarische Übersicht der Bestimmung der Bahnen der beiden neuen

Hauptplaneten angewandten Methoden, considered the origin of linear algebra.

• 1807, Professor of Astronomy and Director of Göttingen Observatory in remain-

der of his life.

• 1809, Theoria motus corporum coelestium in sectionibus conicis solem ambien-

tum (Theory of motion of the celestial bodies moving in conic sections around

the Sun); birth of the Gaussian distribution, as an attempt to rationalize the

method of least squares.
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• 1810, Laplace consolidated importance of Gaussian distribution by proving the

central limit theorem.

• 1829, Gauss-Markov Theorem. Under Gaussian error assumption (actually only

uncorrelated and homoscedastic needed), least square solution is the best linear

unbiased estimate (BLUE), i.e., it has the smallest variance and MSE among all

linear unbiased estimators. Other estimators such as the James-Stein estimator

may have smaller MSE, but they are nonlinear.

For more details

• http://www.keplersdiscovery.com/Asteroid.html

• Teets and Whitehead (1999)

Gauss’ story

• Motivated by a real problem.

• Heuristic solution: method of least squares.

• Solution readily verifiable: Ceres was re-discovered!

3

http://www.keplersdiscovery.com/Asteroid.html


• Algorithmic development: linear algebra, Gaussian elimination, FFT (fast Fourier

transform).

• Theoretical justification: Gaussian distribution, Gauss-Markov theorem.

What is this course about?

This course focuses on the “theoretical” aspect of the method of least squares and

statistical inference under the normal assumption. Read JM chapter 1 for a few

specific examples of linear models.

A hierarchy of linear models

• The linear mean model:

y = Xβ + e,

where E(e) = 0. Only assumption is that errors have mean 0.

• Gauss-Markov model:

y = Xβ + e,

where E(e) = 0 and Var(e) = σ2I (uncorrelated errors with constant variance).

• Aitken model or general linear model:

y = Xβ + e,

where E(e) = 0 and Var(e) = σ2V . V is fixed and known.

• Linear models with joint normal errors: y ∼ N(Xβ, σ2I) or y ∼ N(Xβ, σ2V )

with V known.

• Variance components model: y ∼ N(Xβ, σ2
1V1 + · · · σ2

rVr) with V1, . . . ,Vr

known.

• Multivariate linear model: Y = XB +E.

• Generalized linear models (GLMs). Logistic regression, probit regression, log-

linear model (Poisson regression), ... Note the difference from the general linear

model. GLMs are generalization of the concept of linear models. They are

typically covered in a categorical data analysis course.
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Syllabus

Check course website frequently for updates and announcements.

http://hua-zhou.github.io/teaching/st552-2013fall/

Lecture notes will be updated and posted after each lecture.

Vector and vector space

• A set of vectors x1, . . . ,xn are linearly dependent if there exist coefficients cj

such that
∑n

j=1 cjxj = 0 and ‖c‖2 =
∑n

j=1 c
2
j > 0. They are linearly indepen-

dent if
∑n

j=1 cjxj = 0 implies cj = 0 for all j.

• A vector space V is a set of vectors that are closed under addition and scalar

multiplication (closed under axpy operation). Any vector space must contain

the zero vector 0 (why?).

• A vector space V is generated or spanned by a set of vectors x1, . . . ,xn, writ-

ten as V = span{x1, . . . ,xn}, if any vector x in the vector space is a linear

combination of xi, i = 1, . . . , n.

• A set of linearly independent vectors that generate or span a space V is called

a basis of V .

• Order and dimension. The order of a vectors space is simply the length of the

vectors in that space. The dimension of a vector space is the maximum number

of linearly independent vectors in that space.

• Two vector spaces V1 and V2 are essentially disjoint if the only element in V1∩V2

is the zero vector 0.

• If V1 and V2 are two vector spaces, then V1 ∩ V2 are vector spaces.

• If V1 and V2 are two vector spaces of same order, then V1 + V2 = {v : v =

v1 + v2,v1 ∈ V1,v2 ∈ V2} is a vector space. If furthermore V1 and V2 are

essentially disjoint, the sum is called the direct sum and denoted by V1 ⊕ V2.

• If V1 and V2 are two vector spaces, V1 ∪ V2 is not necessarily a vector space.

(Exercise: find a counter example).
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• Affine spaces. Consider a system of m linear equations in variable x ∈ Rn

cT1 x = b1

... =
...

cTmx = bm,

where c1, . . . , cm ∈ Rn are linearly independent (and hence m ≤ n). The set

of solutions is called an affine space. The intersection of two affine spaces is

an affine space (why?). If the zero vector 0n belongs to the affine space, i.e.,

b1 = · · · = bm = 0, then it is a vector space. Thus any affine space containing

the origin 0 is a vector space, but other affine spaces are not vector spaces.

• If m = 1, the affine space is called a hyperplane. A hyperplane through the

origin is an (n− 1)-dimensional vector space.

• If m = n − 1, the affine space is a line. A line through the origin is a one-

dimensional vector space.

• The mapping x 7→ Ax + b is called an affine function. If b = 0, it is called a

linear function.

Orthogonality and orthogonalization

• Vector x1 is orthogonal to another vector x2, denoted by x1 ⊥ x2, if 〈x1,x2〉 =

xT
1x2 = 0. They are orthonormal if x1 ⊥ x2 and ‖x1‖2 = ‖x2‖2 = 1.

• The projection of a vector x2 onto the vector x1 is

x̂2 =
〈x2,x1〉
‖x1‖2

2

x1 = 〈x̃1,x2〉x̃1,

where x̃1 = x1/‖x1‖2 is the normalized x1 vector.

• Gram-Schmidt transformation: orthonormalize two vectors x1 and x2.

x̃1 =
1

‖x1‖2

x1

x̃2 =
1

‖x2 − 〈x̃1,x2〉x̃1‖2

(x2 − 〈x̃1,x2〉x̃1)
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• Gram-Schmidt algorithm orthonormalizes a set of of vectors.

• A set of nonzero, mutually orthogonal vectors are linearly independent. Proof

by contradiction.

• Two vector spaces V1 and V2 are orthogonal, written V1 ⊥ V2, if each vector in

V1 is orthogonal to every vector in V2.

• The intersection of two orthogonal vector spaces consists only of the zero vector

0.

• If V1 ⊥ V2 and V1⊕V2 = Rn, then V2 is the orthogonal complement of V1. This

is written as V2 = V⊥1 .

Rank

Assume A ∈ Rm×n .

• rank(A) is the maximum number of linearly independent rows of a matrix.

• Alternatively, rank(A) is the maximum number of linearly independent columns

of a matrix. (Exercise: show that these two definitions are equivalent. Hint:

form the full rank partition of A.)

• rank(A) ≤ min{m,n}.
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• A matrix is full rank if rank(A) = min{m,n}. It is full row rank if rank(A) = m.

It is full column rank if rank(A) = n.

• A square matrix A ∈ Rn×n is singular if rank(A) < n and non-singular if

rank(A) = n.

• rank(A) = rank(AT ) = rank(ATA) = rank(AAT ). (Exercise: show it.)

• rank(AB) ≤ min{rank(A), rank(B)}. (Hint: Columns of AB are spanned by

columns of A and rows of AB are spanned by rows of B.)

• rank(AB) = rank(A) if B is square and of full rank. More general, pre-

multiplying by a matrix with full column rank or post-multiplying by a matrix

with full row rank does not change rank. (Exercise: show it.)

• rank(A+B) ≤ rank(A) + rank(B).

A+B = (AB)

(
In

In

)
.

• If Ax = 0m for some x 6= 0n, then rank(A) ≤ n− 1.
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2 Lecture 2: Aug 26

Last time

• How Gauss became famous? Method of least squares, Gauss-Markov theorem,

Gaussian distribution, ...

• What do we mean by “linear models”? Different layers of assumptions: linear

mean model, Gauss-Markov model, Aitken or general linear model, Gaussian as-

sumption, variance components (linear mixed) model, multivariate linear model,

GLM, ...

• Course logistics

• Linear algebra: vector and vector space, rank of a matrix

Today

• Continue review of linear algebra

• TA office hours are posted

• Homework 1 is posted, due Sep 4

• Reach JM chapter 2

Column space and null space

Assume A ∈ Rm×n .

• The column space of a matrix A, denoted by C(A), is the vector space (of order

m) spanned by the columns of the matrix. Other names: range of A, or the

manifold of A.

• The null space of a matrix A, denoted by N (A), is the vector space (of order

n) {y : Ay = 0}.

• dim(C(A)) = r and dim(N (A)) = n− r, where r = rank(A).

See JM Theorem A.1 for the proof.

Interpretation: “dimension of column space + dimension of null space = #
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columns”

Mis interpretation: Columns space and null space are orthogonal complement

to each other. They are of different orders in general! Next result gives the

correct statement.

• C(A) and N (AT ) are orthogonal complement to each other in Rm: C(A) =

N (AT )⊥.

Proof: (1) Orthogonality is trivial. (2) (Essentially disjoint) For any v ∈ C(A)∩
N (AT ), there exists a c such that Ac = v and ATv = 0n. Therefore ATAc =

ATv = 0n and thus cTATAc = 0, implying that v = Ac = 0. Therefore

C(A) ∩ N (AT ) = {0}. (3) Since dim(C(A)) = rank(A) and dim(N (AT )) =

m− rank(A), we have C(A)) ∪N (AT ) = Rm.

• C(AB) ⊂ C(A).

• If C(B) ⊂ C(A), then there exists a matrix C such that B = AC.

• C(AAT ) = C(A) and thus rank(AAT ) = rank(A). (Exercise: show it.)

“Multiplication by its transpose does not change the rank.”

Trace of a square matrix

Assume A ∈ Rn×n is a square matrix.

• tr(A) =
∑n

i=1 aii is the sum of diagonal entries.

• tr(AT ) = tr(A).

• tr(A+B) = tr(A) + tr(B).

• tr(cA) = ctr(A), where c is a scalar.

• Invariance of trace function under cyclic permutation: tr(AB) = tr(BA) for

A ∈ Rm×n and Bn×m. In general, tr(A1 · · ·Ak) = tr(Aj+1 · · ·AkA1 · · ·Aj),

j = 1, . . . , k − 1, for matrices of compatible sizes.
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Inner (dot) product between two matrices

• For A,B ∈ Rm×n, 〈A,B〉 := tr(ATB) = tr(BAT ). Analog of the inner

product between two vectors 〈x,y〉.

• 〈A,B〉 = 〈AT ,BT 〉.

• We say A is orthogonal to B if 〈A,B〉 = 0.

• Trace norm (or Frobenius norm, or Euclidean norm) is the norm on the space

of m × n matrices induced by the inner product: ‖A‖F = (〈A,A〉)1/2 =

tr(ATA)1/2 = (
∑

i,j a
2
ij)

1/2.

• Cauchy-Schwartz: 〈A,B〉 ≤ 〈A,A〉1/2〈B,B〉1/2.

Proof: Expand tr((A− xB)T (A− xB)) ≥ 0.

Matrix inverses

Assume A ∈ Rm×n .

• The Moore-Penrose inverse of A is a matrix A+ ∈ Rn×m with following prop-

erties

(a) AA+A = A. (Generalized inverse, g1 inverse, or inner pseudo-inverse)

(b) A+AA+ = A+. (Outer pseudo-inverse. Any g1 inverse that satisfies

this condition is called a g2 inverse, or reflexive generalized inverse and is

denoted by A∗.)

(c) A+A is symmetric.

(d) AA+ is symmetric.

• A+ exists and is unique for any matrix A.

• Generalized inverse (or g1 inverse, denoted by A− or Ag): property (a).

• g2 inverse (denoted by A∗): properties (a)+(b).

• Moore-Penrose inverse (denoted by A+): properties (a)+(b)+(c)+(d).

• If A is square and full rank, then the generalized inverse is unique and denoted

by A−1 (inverse).
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• How to find a generalized inverse (may be non-unique) for a matrix A ∈ Rm×n

of rank r? Permute rows and columns to form the full rank partitioning

PAQ =

(
Cr×r Dr×(n−r)

E(m−r)×r F(m−r)×(n−r)

)
,

where C ∈ Rr×r is of full rank. Then the matrix

Q

(
C−1
r×r 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

)
P

is a generalized inverse of A. See JM Result A.11 (p247) for the argument.

• In practice, the Moore-Penrose inverse A+ is easily computed from the singular

value decomposition (SVD) of A.

• For any nonzero k, (1/k)A− is a generalized inverse of kA.

• (A−)T is a generalized inverse of AT .

• C(A) = C(AA−) and C(AT ) = C((A−A)T ).

rank(A) = rank(AA−) = rank(A−A).

“Multiplication by generalized inverse does not change rank.”

Proof. We already know C(A) ⊃ C(AA−). Now since A = AA−A, we also

have C(A) ⊂ C(A−A).

• rank(A−) ≥ rank(A). “Generalized inverse has equal or a larger rank than

original matrix.”

Proof. rank(A) = rank(AA−A) ≤ rank(AA−) = rank(A−).

System of linear equations

Ax = b where A ∈ Rm×n , x ∈ Rn , b ∈ Rm .

• When is there a solution? The following statements are equivalent.

1. The linear system Ax = b has a solution (consistent)

2. b ∈ C(A).
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3. rank((A, b)) = rank(A).

4. AA−b = b.

Proof. Equivalence between 1, 2 and 3 is trivial. 4 implies 1: apparently x̃ =

A−b is a solution to Ax = b. 1 implies 4: if x̃ is a solution, then b = Ax̃ =

AA−Ax̃ = AA−b.

The last equivalence gives some intuition why A− is called an inverse.

• How to characterize the solution set? Let’s first study the homogenous case

Ax = 0, which is always consistent (why?).

x̃ is a solution to Ax = 0 if and only if

x̃ = (In −A−A)q

for some q ∈ Rn .

Proof. “If”: Apparently (In −A−A)q is a solution regardless value of q since

A(In − A−A) = A − A = 0m×n. “Only if”: If x̃ is a solution, then x̃ =

(In −A−A)q by taking q = x̃.

• Rephrasing above result we have N (A) = C(In −A−A).

• Now we study the inhomogeneous case.

If Ax = b is consistent, then x̃ is a solution to Ax = b if and only if

x̃ = A−b+ (In −A−A)q

for some q ∈ Rn .

Interpretation: “a specific solution” + “a vector in the null space of A”.

Proof.

Ax = b⇔ Ax = AA−b⇔ A(x−A−b) = 0

⇔ x−A−b = (In −A−A)q ⇔ x = A−b+ (In −A−A)q.

• Ax = b is consistent for all b if and only if A has full row rank.
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Proof. “If”: dim(C(A)) = rank(A) = m. Thus C(A) = Rm and contains any

b ∈ Rm. “Only if”: AA−b = b for any b. Take b = ei gives AA− = Im. Thus

m ≥ rank(A) ≥ rank(AA−) = m.

• If a system is consistent, its solution is unique if and only if A has full column

rank.

Proof. In previous proof, we see there is a one-to-one correspondence between

the solution set to the inhomogenous system Ax = b and the solution set to

the homogeneous system Ax = 0. Now A has full column rank if and only

if dim(N (A)) = n − dim(C(AT )) = n − rank(A) = n − n = 0 if and only if

there is a unique solution to Ax = 0 if and only if there is a unique solution to

Ax = b.

• If A has full row and column rank, then A is non-singular and the unique

solution is A−1b.
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3 Lecture 3: Aug 28

Last time

• Linear algebra: column and null spaces C(A) = N (AT )⊥, trace (invariance

under cyclic permutation), generalized matrix inverse AA−A = A, C(A) =

C(AA−), consistency of a linear system AA−b = b, solution set of a consistent

linear systemA−b+(In−A−A)q, N (A) = C(In−A−A), Ax = b is consistent

for all b if and only if A has full row rank, A consistent system Ax = b has a

unique solution if and only if A has full column rank, ...

Today

• Idempotent matrix, projection and orthogonal projection

• Method of least squares

• Announcement

– Change of TA office hours

– Pre-lecture notes

– Questions on homework 1?

– Make use of comments on course webpages

Idempotent matrix

Assume A ∈ Rn×n.

• A matrix A ∈ Rn×n is idempotent if and only if A2 = A.

• Any idempotent matrix A is a generalized inverse of itself.

• The only idempotent matrix of full rank is I.

Proof. Since A has full rank, the inverse A−1 exists. Then A = A−1AA =

A−1A = I.

Interpretation: all idempotent matrices are singular except the identity matrix.
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• A is idempotent if and only if AT is idempotent if and only if In −A is idem-

potent.

• If A2 = kA for some nonzero scalar k, then tr(A) = k rank(A).

Proof. Suppose rank(A) = r. Choose a set of r linearly independent columns

and form matrix B ∈ Rn×r, which has full column rank. There exists matrix

C ∈ Rr×n such that A = BC. C must have full row rank, otherwise A cannot

have rank r. Then

B(CB)C = A2 = kA = kBC = B(kIr)C.

Since B has full column rank, we must have (CB)C = (kIr)C (why?). Since

C has full row rank, we must have CB = kIr. Then tr(A) = tr(BC) =

tr(CB) = tr(kIr) = kr = k rank(A).

• For any idempotent matrix A, tr(A) = rank(A).

• For any idempotent matrix A,

rank(In −A) = tr(In −A) = n− rank(A).

So rank(A) + rank(I −A) = n for any idempotent matrix A.

• For a general matrix A ∈ Rm×n, the matrices A−A and AA− are idempotent

and

rank(A) = rank(A−A) = rank(AA−) = tr(A−A) = tr(AA−)

rank(In −A−A) = tr(In −A−A) = n− rank(A)

rank(Im −AA−) = tr(Im −AA−) = m− rank(A).

• A ∈ Rm×n and B ∈ Rn×m. Then the following statements are equivalent.

1. B is a generalized inverse of A.

2. AB is idempotent and rank(AB) = rank(A).

3. BA is idempotent and rank(BA) = rank(A).

Proof. Previous result shows 1 implies 2. We need to show 2 implies 1. If

rank(AB) = rank(A), then C(A) = C(AB) andA = ABT for some matrix T .

Thus by idempotency of AB, ABA = ABABT = ABT = A. Equivalence

between 1 and 3 is shown in a similar way.
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Projection

• A matrix P ∈ Rn×n is a projection onto a vector space V if and only if (a) P is

idempotent, (b) Px ∈ V for any x ∈ Rn, and (c) Pz = z for any z ∈ V .

• Any idempotent matrix P is a projection onto its own column space C(P ).

Proof. Property (a) is free. Property (b) is trivial since Px ∈ C(P ) for any x.

For property (c), note PP = P says Ppi = pi for each column pi of P . Thus

Pz = z for any z ∈ C(P ).

• AA− is a projection onto the column space C(A).

This gives a recipe for finding projections onto the column space of a matrix.

Recall in last class we showed C(AA−) = C(A). Therefore the proof is trivial.

Direct proof. (a) Idempotent: AA−AA− = AA− by definition of generalized

inverse. (b) AA−v = A(A−v) ∈ C(A) for any v. (c) Let z ∈ C(A), then

z = Ac for some c. Thus AA−z = AA−Ac = Ac = z.

• In −A−A is a projection onto the null space N (A).

This gives a recipe for finding projection onto the null space of a matrix. Recall

in last class we showed C(In −A−A) = N (A). Therefore the proof is trivial.

Direct proof. (a) In−A−A is idempotent because A−A is idempotent. (b) For

any x, A(In − A−A)x = (A − A)x = 0. That is x ∈ N (A). (c) For any

z ∈ N (A), (In −A−A)z = z −A−Az = z − 0 = z.

• In general, the projections onto a vector space are not unique.

• JM Example A.7. Let A =

(
1

2

)
∈ R2×1. We first find generalized inverse

G = (u, v) ∈ R1×2 of A. Definition of generalized inverse requires AGA =(
1

2

)
(u, v)

(
1

2

)
= A =

(
1

2

)
, i.e., v = (1 − u)/2. Thus Gu = (u, (1 − u)/2) is

a generalized inverse of A for any value of u. Thus

AGu =

(
1

2

)
(u, (1− u)/2) =

(
u (1− u)/2

2u 1− u

)
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is a projection onto C(A) for any u. Taking u = 0 gives a projection

AG0 =

(
0 1/2

0 1

)
.

AG0x =

(
x2/2

x2

)
for any x =

(
x1

x2

)
. That is AG0 projects in R2 points

vertically to the line C(A). Taking u = 1 gives

AG1 =

(
1 0

2 0

)
,

which projects points in R2 horizontally to the line. What if we require the

projection AGu to be symmetric? Then 2u = (1− u)/2 suggests u = 1/5 and

AG1/5 =

(
1/5 2/5

2/5 4/5

)
,

which projects points in R2 to the closest point on the line. This is an instance

of orthogonal projection.
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Orthogonal projection

• A symmetric, idempotent matrix P that projects onto a vector space V is

unique.

Proof. Let P and Q be any two symmetric, idempotent matrices that project

to the same vector space. Q projects onto C(Q), thus P projects onto C(Q)

too. Therefore Pqi = qi for each column qi of Q. That is PQ = Q. Similarly

QP = P . Thus

〈P −Q,P −Q〉 = tr((P −Q)T (P −Q))

= tr(P TP − P TQ−QTP +QTQ)

= tr(P )− tr(PQ)− tr(QP ) + tr(Q)

= tr(P )− tr(Q)− tr(P ) + tr(Q)

= 0.

P and Q must be equal.

• Any symmetric, idempotent matrix is called an orthogonal projection. The term

orthogonal comes from the fact that for any vector y, the residual y − Py is

orthogonal to the vector space P is projecting onto. That is, for any v ∈ V ,

〈y − Py,v〉 = yT (In − P T )v = yT (In − P )v = yT (v − v) = 0.

• Many books use the term “projection” in the sense of orthogonal projection.

• If a symmetric, idempotent matrix P projects onto V , then I−P projects onto

the orthogonal complement V⊥.

Proof. Since P projects onto C(P ), we need to show I − P projects onto

C(P )⊥ = N (P T ) = N (P ). But P is a generalized inverse of itself and thus

I−P = I−PP projects to the C(I−PP ) = N (P ). Symmetry is trivial.

Method of least squares

Given y ∈ Rn and X ∈ Rn×p, we want to find a vector b ∈ Rp such that Xb

approximates y well. In other words, we want to approximate y ∈ Rn by a linear

combination of vectors xj ∈ Rn, j = 1, . . . , p. Note the method of least squares only

concerns approximation and has nothing to do with randomness and estimation.
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• Suppose the linear system Xb = y is consistent, we just need to find a solution

to the linear system, which takes the general formX−y+(Ip−X−X)q, q ∈ Rp.

Recall that Ip −X−X is a projection onto the null space N (X).

• Suppose the linear system is inconsistent. The method of least squares (due to

Gauss) seeks b that minimizes the Euclidean norm of the residual vector

Q(b) = ‖y −Xb‖2
2 = (y −Xb)T (y −Xb) = yTy − 2bTXTy + bTXTXb. (1)

• Normal equation. To find the minimum, we take derivative and set the gradient

to 0

∇Q(b) = −2XTy + 2XTXb = 0p.

This leads to the normal equation

XTXb = XTy. (2)

• Is there a solution to the normal equation?

Normal equation is always consistent and thus admits at least one solution b̂.

(HW1: show that C(XT ) = C(XTX).)

• Is the solution to the normal equation the minimizer to the least squares crite-

rion?

Any solution b̂ to the normal equation (2) minimizes the least squares criterion

(1).

Optimization argument: Any stationarity point (points with zero gradient vec-

tor) of a convex function is a global minimum. Now the least squares criterion is

convex because the Hessian ∇2Q(b) = XTX is positive semidefinite. Therefore

any solution to the normal equation is a stationarity point and thus a global

minimum.

Direct argument: Let b̂ be a solution to the normal equation. For arbitrary
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b ∈ Rp,

Q(b)−Q(b̂) = −2(b− b̂)TXTy + bTXTXb− b̂TXTXb̂

= −2(b− b̂)TXTXb̂+ bTXTXb− b̂TXTXb̂

= b̂TXTXb̂+ bTXTXb− 2bTXTXb̂

= (b− b̂)TXTX(b− b̂)
= ‖X(b− b̂)‖2

2

≥ 0.

• The direct argument also reveals that the fitted values ŷ = Xb̂ is invariant to

the choice of the solution to the normal equation.

• Now we know the normal equation is always consistent and we want to find

solution(s). In general the solution can be represented as

b̂(q) = (XTX)−XTy + [Ip − (XTX)−(XTX)]q, (3)

where q ∈ Rp is arbitrary. One specific solution is

b̂ = (XTX)−XTy

with corresponding fitted values

ŷ = X(XTX)−XTy.

• When is the least squares solution unique?

The least squares solution is unique if and only if X has full column rank. The

solution is given by b̂ = (XTX)−1XTy.

Proof. The solution to normal equation is unique if and only if XTX has full

(column) rank. Therefore rank(X) = rank(XTX) = p.

• (XTX)−XT is a generalized inverse of X.

Proof. By definition of generalized inverse, XTX(XTX)−XTX = XTX. Re-

arranging gives

XTX[(XTX)−XTX − Ip] = 0p×p.
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Each column of the matrix X[(XTX)−XTX − Ip] is in N (XT ) and also

in C(X). Since C(X) ∩ N (XT ) = {0}, that column must be 0. Therefore

X[(XTX)−XTX − Ip] = 0n×p. That is X(XTX)−XTX = X.

• The least squares solution has same format (3) regardless the consistency of the

system Xb = y, since we can replace (XTX)−XT is a version of X− from the

preceding result.

22



4 Lecture 4: Sep 4

Announcement

• HW1 is due today @ 11:59pm; TA is available answering questions in the after-

noon session

• Read JM chapter 3

• Instructor out of town next week; no classes.

Last time

• Idempotent matrix

• Projection

– any idempotent matrix P projects onto C(P )

– AA− projects onto C(A)

– I −A−A projects onto N (A)

• Orthogonal projection (symmetric idempotent matrix): uniqueness and orthog-

onality; we will see A(ATA)−AT is the orthogonal projection onto C(A)

• Method of least squares:

– least squares criterion: Q(b) = ‖y −Xb‖2
2

– normal equation: XTXb = XTy

– normal equation is always consistent

– any solution to the normal equation is a least squares solution (that mini-

mizes the least squares criterion)

– least squares solution takes the general form

b̂ = (XTX)−XTy + (Ip − (XTX)−XTX)q,

where q ∈ Rp is arbitrary

– the least squares solution is unique if and only if X has full column rank

– (XTX)−XT is a generalized inverse of X; the least squares solution is the

same whether the system Xb = y is consistent or not
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Today

• Geometry of least squares solution

• Gram-Schmidt orthogonalization

• Reparameterizations

• linear mean model

• random vectors

• estimable functions

Geometry of the least squares solution

• X(XTX)−XT is the orthogonal projection onto C(X).

Proof. We showed that (XTX)−XT is a generalized inverse of X in HW1.

Therefore X(XTX)−XT is a projection onto C(X). We only need to show

the symmetry, which follows from the fact that transpose of (XTX)− is a

generalized inverse of (XTX)T = XTX.

• Since orthogonal projection is unique, X(XTX)−XT is invariant to the choice

of the generalized inverse (XTX)− and thus can be denoted by PX .

• Whichever least squares solution b̂ we use, the fitted values ŷ = Xb̂ is the same

since

ŷ = Xb̂

= X(XTX)−XTy +X(Ip − (XTX)−XTX)q

= X(XTX)−XTy

= PXy

and the orthogonal projection is unique.

• Geometry: The fitted value from the least squares solution ŷ = PXy is the

orthogonal projection of the response vector y onto the column space C(X).
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• In − PX is the orthogonal projection onto N (XT ).

• Decomposition of y:

y = PXy + (In − PX)y = ŷ + ê,

where ŷ ⊥ ê and

‖y‖2
2 = ‖ŷ‖2

2 + ‖ê‖2
2.

The Pythagorean theorem follows from the orthogonality between C(X) and

N (XT ) since ‖y‖2
2 = yTy = (ŷ + ê)T (ŷ + ê) = ŷT ŷ + ŷT ê + êT ŷ + êT ê =

‖ŷ‖2
2 + ‖ê‖2

2.

• Example: simple linear regression (predict yi from intercept and one predictor:

yi ≈ b0 + xib1).
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X =

1 x1

...
...

1 xn

 .

Assume (x1, . . . , xn) is not a constant vector. The Gramian matrix is

XTX =

(
n

∑
i xi∑

i xi
∑

i x
2
i

)
and its inverse is

(XTX)−1 =
1

n
∑

i(xi − x̄)2

( ∑
i x

2
i −

∑
i xi

−
∑

i xi n

)
.

The (unique) least squares solution is

b̂ = (XTX)−1XTy

=
1

n
∑

i(xi − x̄)2

( ∑
i x

2
i −

∑
i xi

−
∑

i xi n

)(
1Tn
xT

)
y

=
1

n
∑

i(xi − x̄)2

( ∑
i x

2
i −

∑
i xi

−
∑

i xi n

)( ∑
i yi∑
i xiyi

)

=
1

n
∑

i(xi − x̄)2

(
(
∑

i x
2
i )(
∑

i yi)− (
∑

i xi)(
∑

i xiyi)

n
∑

i xiyi − (
∑

i xi)(
∑

i yi)

)

=

(
ȳ −

∑
i(xi−x̄)(yi−ȳ)∑

i(xi−x̄)2
x̄∑

i(xi−x̄)(yi−ȳ)∑
i(xi−x̄)2

)
.
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The fitted values are

ŷ = Xb̂ = (ȳ − b̂1x̄)1n + b̂1x = ȳ1n − b̂1(x− x̄1n).

That is ŷi = ȳ + b̂1(xi − x̄). The residuals are êi = (yi − ȳ)− b̂1(xi − x̄). And

〈ŷ, ê〉 =
∑
i

ŷiêi

=
∑
i

[
ȳ + b̂1(xi − x̄)][(yi − ȳ)− b̂1(xi − x̄)

]
= b̂1

[∑
i

(xi − x̄)(yi − ȳ)− b̂1

∑
i

(xi − x̄)2

]
= 0.

Gram-Schmidt and QR decomposition

• Let x1,x2 ∈ Rn be two non-zero, linearly independent vectors. Then PC{x1} =

x1(xT1 x1)−1xT1 = x1x
T
1 /‖x1‖2

2 and

x2 − Px1x2 = x2 −
〈x2,x1〉
‖x1‖2

2

x1

is orthogonal to x1. This is the Gram-Schmidt orthogonalization of two vectors.
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• Gram-Schmidt algorithm orthonormalizes a set of non-zero, linearly independent

vectors x1, . . . ,xp. Initialize q1 = x1/‖x1‖2; then for j = 2, . . . , p,

vj = xj − PC{q1,...,qj−1}xj = xj −
j−1∑
k=1

〈xj, qk〉qk

qj = vj/‖vj‖2

• For j = 1, . . . , q, C{x1, . . . ,xj} = C{q1, . . . , qj} and qj ⊥ C{x1, . . . ,xj−1}.

• Collectively, we have X = QR, where

– Q ∈ Rn×p has orthonormal columns qj and thus QTQ = Ip.

– R = QTX ∈ Rp×p has entries rkj = 〈qk,xj〉, which are available from the

algorithm. Note rkj = 0 for k > j. Thus R is upper triangular.

This is called the QR decomposition of X.

• The original normal equation XTXb = XTy becomes RTRb = RTQy, which

is easy to solve (why?). Therefore QR decomposition by Gram-Schmidt offers

a practical algorithm for solving the least squares problem.

• XTX = RTQTQR = RTR is the Cholesky decomposition of XTX.

Reparameterization

• Example: We want to predict weight yi by height xi (and intercept). Intuitively

it should not matter whether we record weight in pounds or kilograms.

X =


1 x1

1 x2

...
...

1 xn

 , W =


1 w1

1 w2

...
...

1 wn

 ,

where wi = 0.4536xi (1 pound = 0.4536 kilogram). Note

W = X

(
1 0

0 0.4536

)
, X = W

(
1 0

0 2.2046

)
.
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• Example: We want to predict salary yi by gender xi (and intercept). Intuitively

it should not matter whether we record gender as xi = 1{male} or wi = 1{female} =

1− xi or even keeping both xi and wi as predictors.

X1 =


1 x1

1 x2

...
...

1 xn

 , X2 =


1 1− x1

1 1− x2

...
...

1 1− xn

 , X3 =


1 x1 1− x1

1 x2 1− x2

...
...

1 xn 1− xn

 .

Note

X2 = X1

(
1 1

0 −1

)
, X3 = X1

(
1 0 1

0 1 −1

)
, ...

• Two linear models y = Xb+e, whereX ∈ Rn×p, and y = Wc+e, whereW ∈
Rn×q, are equivalent or reparameterizations of each other if C(X) = C(W ).

• If C(X) = C(W ), then PX = PW .

Proof. PX is an orthogonal projection onto C(X). PW is an orthogonal pro-

jection onto C(W ). But we know orthogonal projection onto a vector space is

unique.

• The fitted values ŷ and residuals ê of two equivalent linear models (parameter-

izations) are same. Hence PX = PW .

Proof. ŷ = PXy and ê = (In − PX)y. Since PX = PW , we see the fitted

values and residuals must be same.

• Translation between solutions of equivalent models.

If C(X) = C(W ), then there exist T ∈ Rp×q and S ∈ Rq×p such that W = XT

and X = WS.

– If ĉ is a solution to the normal equation W TWc = W Ty, then b̂ = T ĉ is

a solution to the normal equation XTXb = XTy.

Proof. XTXb̂ = XTXT ĉ = XTWĉ = XTPWy = XTPXy = (PXX)Ty =

XTy

– Similarly, if b̂ is a solution to the normal equation XTXb = XTy, then

ĉ = Sb̂ is a solution to the normal equation W TWc = W Ty.
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Linear mean model

So far we have considered the method of least squares, which concerns the approxi-

mation of a vector y ∈ Rn by p vectors x1, . . . ,xp ∈ Rn. Next we consider the linear

mean model

y = Xb+ e,

where the random errors e are assumed to have mean E(e) = 0.

Random vectors

A brief review of random vectors.

• Let y =

y1

...

yn

 ∈ Rn be a vector of n random variables with mean E(yi) = µi,

variance Var(yi) = E(yi − Eyi)
2 = σ2

i , and covariance Cov(yi, yj) = E[(yi −
Eyi)(yj − Eyj)] = σij = σji. Collectively, we write

E(y) =

µ1

...

µn

 = µ, Cov(y) =


σ11 σ12 · · · σ1n

σ12 σ22 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σnn

 .

• Let y ∈ Rn be a random vector, then

Cov(y) = E(yyT )− (Ey)(Ey)T .

Special case: Var(y) = Ey2 − (Ey)2.

• If y ∈ Rn is a random vector, A ∈ Rr×n is a constant matrix, and b ∈ Rr is a

constant vector, then

E(Ay + b) = AE(y) + b

Cov(Ay + b) = ACov(y)AT .

Special case: E(ay + b) = aE(y) + b and Var(ay + b) = a2Var(y) for random

variable y.
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• For example, under the linear mean model, Ey = E(Xb + e) = Xb + E(e) =

Xb.

• The covariance between two random vectors x ∈ Rm and y ∈ Rn is defined as

Cov(x,y) = E[(x− Ex)(y − Ey)T ] ∈ Rm×n.

Note Cov(y,y) = Cov(y).

• Let x ∈ Rm and y ∈ Rn be two random vectors and A ∈ Rp×m and B ∈ Rq×n

be two constant matrices. Then

Cov(Ax,By) = ACov(x,y)BT .

Special case: Cov(ax, by) = abCov(x, y) for random variables x, y.

• Let x ∈ Rm,y ∈ Rn be two random vectors and A ∈ Rp×m, B ∈ Rp×n are two

constant matrices. Then

Cov(Ax+By)

= ACov(x)AT +ACov(x,y)BT +BCov(y,x)AT +BCov(y)BT .

Special case: Var(ax + by) = a2Var(x) + 2abCov(x, y) + b2Var(y) for random

variables x, y.

• Expectation of quadratic form. Let x ∈ Rn be a random vector with mean

E(x) = µ and covariance Cov(x) = Ω. A ∈ Rn×n is a constant matrix. Then

E(xTAx) = tr(AΩ) + µTAµ.

Proof. E(xTAx) = Etr(xTAx) = Etr(AxxT ) = trE(AxxT ) = trAE(xxT ) =

tr(A(Ω + µµT )) = tr(AΩ) + µTAµ.

Special case: E(ax2) = aVar(x) + a[E(x)]2 for a random variable x.
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5 Lecture 5: Sep 16

Announcement

• HW1 returned.

• HW2 is posted and it is due next Wed, Sep 25.

http://hua-zhou.github.io/teaching/st552-2013fall/ST552-2013-HW2.pdf

Recitations in afternoon sessions of Sep 18 and Sep 25.

• Read JM chapter 3.

Last time

• Geometry of least squares solution: PX = X(XTX)−XT , fitted values ŷ =

PXy, residuals ê = (In − PX)y, ŷ ⊥ ê, ‖y‖2
2 = ‖ŷ‖2

2 + ‖ê‖2
2

• Gram-Schmidt orthogonalization and QR decomposition: GS as a series of lin-

ear regressions, X = QR as a practical way to solve normal equation, see HW2

for the case of non-full rank X

• Reparameterizations (equivalent models): C(X) = C(W ), PX = PW , transla-

tion between solutions of equivalent models

• Linear mean model: y = Xb+ e, where Ee = 0

• Random vectors

Today

• Positive (semi)definite matrix

• Estimable functions

Positive (semi)definite matrix

Assume A ∈ Rn×n is symmetric.

• A real symmetric matrix A ∈ Rn×n is positive semi-definite (or nonnegative

definite, or p.s.d.) if xTAx ≥ 0 for all x. Notation A � 0n×n.
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• E.g., the Gramian matrix XTX or XXT .

• The notation A ≥ 0n×n means aij ≥ 0 for all i, j.

• If inequality is strict for all x 6= 0, then A is positive definite. A � 0n×n.

• The notation A > 0n×n means aij > 0 for all i, j.

• We write A � B means A−B � 0n×n.

• If A � B, then det(A) ≥ det(B) with equality if and only if A = B.

• Cholesky decomposition. Each positive semidefinite matrix A ∈ Rn×n can

be factorized as A = LLT for some lower triangular matrix L ∈ Rn×n with

nonnegative diagonal entries.

• A ∈ Rn×n is positive semidefinite if and only if A is a covariance matrix of a

random vector.

Proof. “If part”: let A = Cov(x) for some random vector x. Then for any

constant c of same length as x, cTAc = cTCov(x)c = Var(cTx) ≥ 0. “Only

if part”: let A = LLT be the Cholesky decomposition and x a vector of iid

standard normals. Then Lx has covariance matrix LCov(x)LT = LInL
T =

A.

Estimable function

Assume the linear mean model: y = Xb + e, E(e) = 0. One main interest is

estimation of the underlying parameter b. Can b be estimated or what functions of

b can be estimated?

• A parametric function Λb, Λ ∈ Rm×p, is said to be (linearly) estimable if there

exists an affinely unbiased estimator of Λb for all b ∈ Rp. That is there exist

constants A ∈ Rm×n and c ∈ Rm such that E(Ay + c) = Λb for all b.

• Theorem: Assuming the linear mean model, the parametric function Λb is

(linearly) estimable if and only if C(ΛT ) ⊂ C(XT ), or equivalently N (X) ⊂
N (Λ).

“Λb is estimable ⇔ the row space of Λ is contained in the row space of X ⇔
the null space of X is contained in the null space of Λ.”
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Proof. Let Ay + c be an affine estimator of Λb. Unbiasedness requires

E(Ay + c) = AE(y) + c = AXb+ c = Λb

for all b ∈ Rp. Taking the special value b = 0 shows that c = 0. Thus

(AX − Λ)b = 0 for all b. Now taking special values b = ei shows that the

columns of the matrix AX−Λ are all zeros. This implies AX = Λ. Therefore

the matrix A exists if and only if rows of Λ are linear combinations of the rows

of X, that is, if and only if C(ΛT ) ⊂ C(XT ).

• Corollary: Xb is estimable.

“Expected value of any observation E(yi) and their linear combinations are

estimable.”

• Corollary: If X has full column rank, then any linear combinations of b are

estimable.

• If Λb is (linearly) estimable, then its least squares estimator Λb̂ is invariant to

the choice of the least squares solution b̂.

Proof. Let b̂1, b̂2 be two least squares solutions. Then b̂1 − b̂2 ∈ N (XTX) =

N (X) ⊂ N (Λ). Hence Λ(b̂1 − b̂2) = 0, that is Λb̂1 = Λb̂2.

• The least squares estimator Λb̂ is a linearly unbiased estimator of Λb.

Proof. The least squares solution takes the general form

b̂ = (XTX)−XTy + [Ip − (XTX)−XTX]q

where q ∈ Rp is arbitrary. Thus the least squares estimator

Λb̂ = Λ(XTX)−XTy + Λ[Ip − (XTX)−XTX]q

= Λ(XTX)−XTy

is a linear function of y. Now

E(Λb̂) = Λ(XTX)−XTE(y)

= Λ(XTX)−XTXb

= Λb,
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since XTX(XTX)− is a projection onto C(XTX) = C(XT ) and C(ΛT ) ⊂
C(XT ). Therefore the least squares estimator is unbiased.

• General recipes for showing estimability of Λb:

1. Identify each row of Λ as a linear combination of rows of X.

2. Find a projection P onto C(XT ), such as XTX(XTX)− or PXT =

XT (XXT )−X. Λb is estimable if and only if PΛT = ΛT .

3. Find a basis B = (b1, . . . , bp−r) ∈ Rp×(p−r) of N (X). Λb is estimable if

and only if ΛB = 0m×(p−r).

One-way ANOVA analysis

• Example: We want to study whether the tips (percentage of meal cost) at a

restaurant depends on the gender of the service person (waiter or waitress)?

Data may be presented as

Waiter Waitress

0.19, 0.15, 0.10 0.15, 0.14, 0.20

Responses: tip. Factors: gender of service person (waiter, waitress).

• Model: yij = µ+ αi + eij, i = 1, . . . , a (a groups), j = 1, . . . , ni (i-th group has

ni observations).

E(y) = Xb =


1n1 1n1

1n2 1n2

...
. . .

1na 1na




µ

α1

α2

...

αa

 .

In total we have n =
∑a

i=1 ni observations and p = a+ 1 parameters.

• X has rank r = a and thus dim(N (X)) = 1. An obvious basis for N (X) is(
1

−1a

)
.
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Therefore λTb is estimable if and only if λT

(
1

−1a

)
= λ0 −

∑a
i=1 λi = 0.

• Examples of estimable functions:

– grand mean: µ+ ᾱ·, where ᾱ· = a−1
∑a

i=1 αi

– cell means: µ+ αi

– contrast :
∑a

i=1 diαi where
∑a

i=1 di = 0

Examples of non-estimable function:

– individual parameters: µ, αi

– αi + αj

• To find the least squares solution, we form the normal equation

XTXb =


n n1 n2 · · · na

n1 n1

n2 n2

...
. . .

na na




µ

α1

α2

...

αa

 =


nȳ··

n1ȳ1·

n2ȳ2·
...

naȳa·

 = XTy.

A generalized inverse of XTX is (see previous notes for finding generalized

inverses)

(XTX)− =


0 0 0 · · · 0

0 n−1
1

0 n−1
2

...
. . .

0 n−1
a

 .

Therefore the least squares solution takes the general form

b̂ = (XTX)−XTy + [Ip − (XTX)−XTX]q =


0

ȳ1·

ȳ2·
...

ȳa·

+ z


1

−1

−1
...

−1
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and the least squares estimator of an estimable function λTb is

λT


0

ȳ1·

ȳ2·
...

ȳa·

 =
a∑
i=1

λiȳi·.

For example, least squares estimators of µ + αi and
∑a

i=1 diαi are ȳi· and∑a
i=1 diȳi· respectively.
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6 Lecture 6: Sep 18

Announcement

• HW2 recitation this afternoon

• Read JM chapter 4

Last time

• Positive (semi)definite matrix

• Estimability: Λb is estimable if and only if C(ΛT ) ⊂ C(XT ), or equivalently

N (X) ⊂ N (Λ), or equivalently ΛT ⊥ N (X)

• The least squares estimator Λb̂ is a linearly unbiased estimate for an estimable

function Λb and invariant to the choice of least squares solution b̂

• One-way ANOVA

Today

• Two-way ANOVA without and with interaction

• Estimability under reparameterizations

Two-way ANOVA without interaction

• Example: We want to study whether the tips (percentage of meal cost) at a

restaurant depends on the gender of the service person (waitress or waiter) and

the gender of paying customer? Data may be presented as

Waiter Waitress

Male customer 0.19, 0.15, 0.10 0.15, 0.14, 0.20

Female customer 0.16, 0.18, 0.14 0.13, 0.15, 0.19

Responses: tip. Factors: gender of service person (waiter, waitress), gender of

paying customer (male, female).
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• Model yijk = µ + αi + βj + eijk, i = 1, . . . , a (a levels in factor 1), j = 1, . . . , b

(b levels in factor 2), and k = 1, . . . , nij (nij observations in the (i, j)-th cell).

In total we have n =
∑

i,j nij observations and p = a + b + 1 parameters. For

simplicity, we consider the case without replicates, i.e., nij = 1. Note adding

more replicates to each cell does not change the rank of X.

E(y) = Xb =


1b 1b Ib

1b 1b Ib
...

. . .

1b 1b Ib





µ

α1

...

αa

β1

...

βb


.

• X ∈ Rab×(1+a+b) has rank r = a+ b− 1 and dim(N (X)) = 2. An obvious basis

for N (X) is 
 1

−1a

0b

 ,

 1

0a

−1b


 .

Therefore λTb is estimable if and only if λT

 1

−1a

0b

 = λ0 −
∑a

i=1 λi = 0 and

λT

 1

0a

−1b

 = λ0 −
∑b

j=1 λa+j = 0.

• Examples of estimable functions:

– grand mean: µ+ ᾱ· + β̄·, where ᾱ· = a−1
∑a

i=1 αi and β̄· = b−1
∑b

j=1 βj

– cell means: µ+ αi + βj

– contrast
∑a

i=1 diαi where
∑a

i=1 di = 0

– contrast
∑b

j=1 fjβj where
∑b

j=1 fj = 0

• Examples of non-estimable functions:
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– individual parameters: µ, αi, βj

– marginal means: µ+ αi, µ+ βj

– αi − βj

• To find the least squares estimators for these estimable functions, see HW2.

Two-way ANOVA with interaction

• Example: Responses: tip. Factors: gender of service person (waiter, waitress),

gender of paying customer (male, female), and their interaction.

• Model yijk = µ+αi+βj+γij+eijk, i = 1, . . . , a (a levels in factor 1), j = 1, . . . , b

(b levels in factor 2), and k = 1, . . . , nij (nij observations in the (i, j)-th cell).

In total we have n =
∑

i,j nij observations and p = 1 + a+ b+ ab parameters.

• We consider the simple case without replicates, i.e., nij = 1. Note adding more

replicates to each cell does not change the rank of X.

E(y) = Xb =


1b 1b Ib Ib

1b 1b Ib Ib
...

. . .
...

. . .

1b 1b Ib Ib





µ

α1

...

αa

β1

...

βb

γ11

γ12

...

γa,(b−1)

γab



.

• X ∈ Rab×(1+a+b+ab) has rank r = ab and dim(N (X)) = 1 + a + b. A basis for

N (X) is

−1

1a

0b

0a ⊗ 0b

 ,


0

−ei
0b

ei ⊗ 1b

 , i = 1, . . . , a,


0

0a

−ej
1a ⊗ ej

 , j = 1, . . . , b

 .
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Therefore λTb is estimable if and only if λ is orthogonal to all these basis

vectors.

• Examples of estimable functions:

– grand mean: µ+ ᾱ· + β̄· + γ̄··

– cell means: µ+ αi + βj + γij

– main effect differences: (αi + γ̄i·)− (αi′ + γ̄i′), (βj + γ̄·j)− (βj′ + γ̄·j′)

– Interaction effect: γij − γij′ − γi′j + γi′j′

• Examples of non-estimable functions:

– individual parameters: µ, αi, βj, γij

– marginal means: µ+ αi + γ̄i·, where γ̄i· = b−1
∑b

j=1 γij

– marginal means: µ+ βj + γ̄·j, where γ̄·j = a−1
∑a

i=1 γij

Estimability under reparameterizations

• Recall that two linear models y = Xb + e and y = Wc + e are equivalent

(reparameterizations) if C(X) = C(W ). There exist transformations S and T

such that

X = WS and W = XT .

Thus

E(y) = Xb = WSb

= Wc = XTc.

• We already know how to translate least square solutions between equivalent

models:

– If ĉ solves W TWc = W Ty, then b̂ = T ĉ solves XTXb = XTy.

– If b̂ solves XTXb = XTy, then ĉ = Sb̂ solves W TWc = W Ty.

• Estimability under reparameterization
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– If Λc is estimable under model y = Wc+e, then ΛSb is estimable under

model y = Xb+ e.

Proof. Since Λc is estimable, C(ΛT ) ⊂ C(W T ) and there exists a matrix

A such that ΛT = W TA. Thus STΛT = STW TA = XTA. In other

words, C(STΛT ) ⊂ C(XT ). Therefore ΛSb is estimable.

– Similarly, if Λb is estimable under model y = Xb + e, then ΛTc is

estimable under model y = Wc+ e.

• Different parameterizations of one-way ANOVA analysis

– An over-parameterized model.

E(y) = Xb =


1n1 1n1

1n2 1n2

...
. . .

1na 1na




µ

α1

α2

...

αa

 .

Individual parameters in b are not estimable since X does not have full

column rank. Certain functions are estimable, such as the grand mean

µ+ ᾱ, cell means µ+ αi, and contrasts
∑a

i=1 diαi (
∑a

i=1 di = 0).

– A full rank parameterization (deleting the first column of X): cell means

model

E(y) = Zµ =


1n1

1n2

. . .

1na



µ1

µ2

...

µa

 .

Note

X = Z

1 1
...

. . .

1 1

 and µ =

µ+ α1

...

µ+ αa

 .

Each element of µ (cell means) is estimable since Z has full column rank.
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– A full rank parameterization (deleting the last column of X): reference

cell model

E(y) = Wc =


1n1 1n1

1n2 1n2

...
. . .

1na−1 1na−1

1na




c1

c2

...

ca

 .

Note

X = W


1 1

1 −1
. . .

...

1 −1

 and c =


µ+ αa

α1 − αa
...

αa−1 − αa

 .

Each element of c is estimable since W has full column rank.

– A full rank parameterization: difference from the mean model

E(y) = Uδ =


1n1 1n1

1n2 1n2

...
. . .

1na−1 1na−1

1na −1na −1na · · · −1na




δ1

δ2

...

δa

 .

Note

X = U


1 a−1 a−1 a−1

1− a−1 −a−1 −a−1

−a−1 1− a−1 −a−1

...
. . .

−a−1 −a−1 1− a−1

 and δ =


µ+ ᾱ

α1 − ᾱ
α2 − ᾱ

...

αa − ᾱ

 .

Each element of δ is estimable since U has full column rank.

Review: correlation and independence

• Two random variables x, y ∈ R are uncorrelated if Cov(x, y) = 0.
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• Two random vectors x ∈ Rm, y ∈ Rn are uncorrelated if Cov(x,y) = 0m×n.

• If x and y are uncorrelated random vectors, then

Cov(Ax+By) = ACov(x)AT +BCov(y)BT .

Special case: If x, y are uncorrelated random variables, then Cov(ax + by) =

a2Var(x) + b2Var(b).

• We say random vectors X1, . . . ,Xn are (mutually) independent if their joint

density factorizes as product of marginal densities

fX1,...,Xn(x1, . . . ,xn) =
n∏
i=1

fXi
(xi)

for all values of x1, . . . ,xn.

• Mutual independence implies pairwise independence. The converse is not true

in general. (HW3)

• If X1, . . . ,Xn are (mutually) independent, then for any functions g1, . . . , gn

E
n∏
i=1

gi(Xi) =
n∏
i=1

Egi(Xi).

• If two random vectors x and y are independent, then they are uncorrelated.

The converse is not true in general. (HW3)

Proof. Corollary of the preceding result.
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7 Lecture 7: Sep 23

Announcement

• Reminder: HW2 due this Wed

• HW3 posted and due Oct 2

http://hua-zhou.github.io/teaching/st552-2013fall/ST552-2013-HW3.pdf

• HW 2/3 recitation this Wed afternoon

Last time

• Estimability of two-way ANOVA without and with interaction

• Estimability under reparameterizations

• 4 commonly used parameterizations of one-way ANOVA

• Review: independence and correlation

• Gauss-Markov model: introduction

Today

• Gauss-Markov theorem

• Least squares estimator of σ2

• Underfitting and overfitting

• Aitken model

Gauss-Markov model and Gauss-Markov theorem (JM 4.2)

• Assumptions of Gauss-Markov model:

y = Xb+ e,

where E(e) = 0 and Cov(e) = σ2In. In words, errors have zero mean, constant

variance (homoskedasiticity), and are uncorrelated. Equivalently, E(y) = Xb

and Cov(y) = σ2In.
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• Under linear mean model, we showed that the least squares estimator Λb̂, where

b̂ is any least squares solution to the normal equation, is a linearly unbiased

estimator of an estimable function Λb (C(ΛT ) ⊂ C(XT )).

• Under the Gauss-Markov assumptions, we can compute the covariance matrix

of the least squares estimator

Cov(Λb̂) = Cov(Λ(XTX)−XTy)

= Λ(XTX)−XTCov(y)X(XTX)−ΛT

= σ2Λ(XTX)−XTX(XTX)−ΛT

= σ2Λ(XTX)−ΛT .

The last equality is because XTX(XTX)− is a projection onto C(XTX) =

C(XT ) ⊃ C(ΛT ).

• The celebrated Gauss-Markov theorem states that the least squares estimator

Λb̂ has the smallest variance among all linear unbiased estimators of Λb. Why

smaller variance is better?

• Gauss-Markov Theorem (vector version). Under Gauss-Markov assumptions,

if Λb is estimable, then the least squares estimator Λb̂ is the best (minimum

variance) affine unbiased estimator (MVAUE). That is

Cov(θ̂) � Cov(Λb̂)

for any affine unbiased estimator θ̂ of Λb.

Proof. Let θ̂ = Cy + d. Unbiasedness requires E(θ̂) = CXb+ d = Λb for all

b. Taking b = 0 shows that d = 0. Thus θ̂ must be a linear estimator.

Cov(θ̂)

= Cov(Cy)

= Cov(Λb̂+Cy −Λb̂)

= Cov(Λb̂) + Cov(Cy −Λb̂) + Cov(Λb̂,Cy −Λb̂) + Cov(Cy −Λb̂,Λb̂).
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The covariance terms vanish because

Cov(Λb̂,Cy −Λb̂)

= E(Λb̂−Λb)(Cy −Λb̂)T

= E(Λb̂yTCT )− E(Λb̂b̂TΛT )− E(ΛbyTCT ) + E(Λbb̂TΛT )

= E(Λb̂yTCT )− E(Λb̂b̂TΛT )−ΛbbTΛT + ΛbbTΛT

= E(Λb̂yTCT )− E(Λb̂b̂TΛT )

= E[Λ(XTX)−XTyyTCT ]− E[Λ(XTX)−XTyyTX(XTX)−ΛT ]

= Λ(XTX)−XTE(yyT )CT −Λ(XTX)−XTE(yyT )X(XTX)−ΛT

= Λ(XTX)−XTE(yyT )[CT −X(XTX)−ΛT ]

= Λ(XTX)−XT (σ2I +XbbTXT )[CT −X(XTX)−ΛT ]

= [σ2Λ(XTX)− + Λ(XTX)−XTXbbT ][XTCT −XTX(XTX)−ΛT ]

= [σ2Λ(XTX)− + Λ(XTX)−XTXbbT ][XTCT −ΛT ](why?)

= [σ2Λ(XTX)− + Λ(XTX)−XTXbbT ]0p×m(why?)

= 0m×m.

Therefore Cov(θ̂)− Cov(Λb̂) = Cov(Cy −Λb̂) � 0m×m.

• En route, we showed that any affine unbiased estimator of Λb must be a linear

estimator. Therefore we also say that the least squares estimator is BLUE (best

linear unbiased estimator).

• En route, we also showed that Cov(Λb̂,Cy − Λb̂) = 0m×m for any unbiased

estimator Cy of Λb̂. Therefore the least squares estimator Λb̂ is uncorrelated

with any (linearly) unbiased estimators of 0m.

• When X has full column rank, then the least squares solution

b̂ = (XTX)−1XTy

is BLUE for estimating b.

• A drawback of the criterion of best (minimum variance) affine unbiased esti-

mator (MVAUE) is that it is not operational. We cannot minimize a matrix.

However, we can minimize a scalar function of matrix: trace, determinant,

largest eigenvalue and so on. The trace criterion is the most convenient.
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• The affine minimum-trace unbiased estimator (MTAUE) of an estimable func-

tion Λb is an affine unbiased estimator of Λb, say Λ̂b, such that,

tr(Cov(θ̂)) ≥ tr(Cov(Λ̂b))

for all affine unbiased estimator θ̂ of Λb.

• The best (minimum variance) affine unbiased estimator (MVAUE) is also an

affine minimum-trace unbiased estimator (MTAUE). The converse is not true

in general (HW3). If we can find an MTAUE and show that it is unique, then

it must be the MVAUE unless it does not exist.

• A mechanic way to derive MVAUE is

1. Let θ̂ = Ay + c be an affine estimator of Λb

2. Unbiasedness imposes AX = Λ and c = 0

3. Minimize tr(Cov(θ̂)) = σ2tr(AAT ) subject to AX = Λ to determine A.

This yields MTAUE.

4. Show that MTAUE is MVAUE by showing that MTAUE is unique and

MVAUE exists or by direct argument

Least squares estimator of σ2 (JM 4.3)

• Since σ2 is a quadratic concept, we consider estimation of σ2 by a quadratic

function of y. That is, a function of form

yTAy.

Any estimator of this form is called a quadratic estimator. If in addition A is

positive (semi)definite, then it is called a quadratic and positive estimator.

• An estimator σ̂2 of σ2 is unbiased if

E(σ̂2) = σ2

for all b ∈ Rp and σ2 > 0.
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• Under Gauss-Markov assumptions (E(y) = Xb and Cov(e) = σ2I), the quadratic

estimator

σ̂2 =
1

n− r
yT (I − PX)y =

‖y − ŷ‖2
2

n− r
=
‖ê‖2

2

n− r
=

SSE

n− r
,

where r = rank(X), is unbiased.

Proof.

E(σ̂2) =
1

n− r
E[yT (I − PX)y]

=
1

n− r
tr[(I − PX)Cov(y)] +

1

n− r
E(y)T (I − PX)E(y)

=
σ2

n− r
tr(I − PX) +

1

n− r
(Xb)T (I − PX)(Xb)

=
σ2

n− r
tr(I − PX)

=
σ2

n− r
[rank(I)− rank(PX)]

= σ2.

Remark: σ̂2 = 1
n−ry

T (I − PX)y is called the least squares estimator of σ2.

• To show that the least squares estimator of σ2 is best (minimum variance), we

need further assumptions on the third and fourth moment of e. We will do this

later under the normal linear regression model y ∼ N(Xb, σ2I).

Underfitting and misspecification (JM 4.4.1)

• Underfitting (also called misspecification) means omitting predictors in the true

model.

• Let y = Xb + η + e represent the true model, where η includes the omitted

variables and their coefficients.
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• The bias of a least squares estimater Λb for an estimable function Λb is

E(Λb̂)−Λb = Λ(XTX)−XTE(y)−Λb

= Λ(XTX)−XT (Xb+ η)−Λb

= Λb+ Λ(XTX)−XTη −Λb

= Λ(XTX)−XTη

= ATPXη

where ΛT = XTA. A exists since C(ΛT ) ⊂ C(XT ) due to estimability.

If η ⊥ C(X), then the bias is zero.

• The bias of the least squares estimator of σ2 is

(n− r)−1E[yT (I − PX)y]− σ2

= (n− r)−1tr[(I − PX)σ2I] + (n− r)−1(Xb+ η)T (I − PX)(Xb+ η)− σ2

= σ2 + (n− r)−1(Xb+ η)T (I − PX)(Xb+ η)− σ2

= (n− r)−1(Xb+ η)T (I − PX)(Xb+ η)

= (n− r)−1ηT (I − PX)η.

If η ∈ C(X), then the bias is 0.

• A decomposition of the misspecification η:

y = Xb+ η + e = Xb+ PXη + (I − PX)η + e.

The piece PXη affects estimation of Λb; the other piece (I − PX)η affects

estimation of σ2.

• In presence of underfitting (misspecification), unbiasedness in estimating both

Λb and σ2 can be achieved only when η = 0n.

Overfitting and multicollinearity (JM 4.4.2)

• Overfitting means including unnecessary predictors in the model.

y = X1b1 +X2b2 + e,

where the second group of predictors are redundant. That is b2 = 0.
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• For simplicity, assume both X1 and X = (X1,X2) have full column rank.

• Using only X1, the least squares estimator of b1 is

b̃1 = (XT
1 X1)−1XT

1 y

with

E(b̃1) = b1

Cov(b̃1) = σ2(XT
1 X1)−1.

• Using both X1 and X2 (overfitting), the least squares estimator of

(
b1

b2

)
is

(
b̂1

b̂2

)
=

[(
XT

1

XT
2

)(
X1 X2

)]−1(
XT

1

XT
2

)
y

=

(
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

)−1(
XT

1 y

XT
2 y

)
with

E

(
b̂1

b̂2

)
=

(
b1

0

)

Cov

(
b̂1

b̂2

)
= σ2

(
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

)−1

.

The corresponding block for Cov(b̂1) is (see HW3)

Cov(b̂1) = σ2(XT
1 X1)−1

+σ2(XT
1 X1)−1XT

1 X2[XT
2 (I − PX1)X2]−1XT

2 X1(XT
1 X1)−1.

• Therefore overfitting does not change the unbiasedness of least squares estima-

tors. It inflates their variance.

• Also overfitting does not change the unbiasedness of the least squares estimator

of σ2 since

E(σ̂2
1) =

1

n− r1

E[yT (I − PX1)y] = σ2

E(σ̂2) =
1

n− r
E[yT (I − PX)y] = σ2,

where r1 = rank(X1) and r = rank(X).
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• Under orthogonality between two sets of predictors XT
1 X2 = 0p1×p2 , we have

b̃1 = b̂1 and Cov(b̃1) = Cov(b̂1).

• WhenX2 gets close toX1 (multicollinearity), the second term of Cov(b̂1) (extra

variance) explodes.
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8 Lecture 8: Sep 25

Announcement

• HW2 due today

• HW3 due next Wed Oct 2

• HW 2/3 recitation this afternoon

• HW4 will be posted this week (last HW before Midterm 1)

Last time

• Gauss-Markov model (E(y) = Xb and Cov(y) = σ2I) and Gauss-Markov

theorem (least squares estimators Λb̂ are MVAUE)

• Least squares estimator of σ2, σ̂2 = (n− r)−1yT (I − PX)y, is unbiased

• Underfitting (causing bias) and overfitting (inflating variance)

• Aitken model: introduction

Today

• Aitken model

Aitken model (JM 4.5)

• In the Aitken model, we relax the variance assumption Cov(e) = σ2I to Cov(e) =

σ2V , where V is a fixed, positive semidefinite matrix.

• Example: Heteroskedasticity model V = diag(σ2
1, . . . , σ

2
n). For instance, σ2

i =

σ2x2
i , xi 6= 0.
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• Example: Equicorrelation model

Cov(y) = Cov(e) = σ2I + τ 21n1
T
n =


σ2 + τ 2 τ 2 τ 2 · · · τ 2

τ 2 σ2 + τ 2 · · · τ 2

τ 2 τ 2 σ2 + τ 2

...
. . .

τ 2 τ 2 σ2 + τ 2


• Example: AR(1) (autoregressive model) ei = ρei−1 + ai where Cov(a) = σ2

aI.

Cov(y) = Cov(e) =
σ2
a

1− ρ2


1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1
...

. . .

ρn−1 ρn−2 1

 =
σ2
a

1− ρ2

(
ρ|i−j|

)
i,j
.

Estimability under Aitken model

• Under the Aitken model (E(y) = Xb,Cov(y) = σ2V ), a linear function Λb is

estimable if and only if C(ΛT ) ⊂ C(XT ).

Remark: no assumption about singularity of V is needed.

Proof. The previous proof for the linear mean model case (E(y) = Xb) applies

here since no assumption about the second moment were used. (Aitken model

is just a special linear mean model.)

Review: method of Lagrangian multipliers for optimization

with equality constraints (JM A.2)

minU f(x), U ⊂ Rn , subject to constraints gi(x) = 0 for i = 1, . . . ,m. g : Rn 7→ Rm .

• Lagrange multiplier theory. Lagrangian function L(x,λ) = f(x) + λTg(x) =

f(x) +
∑m

i=1 λigi(x). Strategy for finding equality constrained minimum. Find

the stationary point (x∗,λ∗) of the Lagrangian, ∇xL(x,λ) = 0n for all λ ∈ Rn

together with g(x) = 0m.
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• (Necessary conditions) Assume conditions (i) g(y) = 0m, (2) f and g are differ-

entiable in some n-ball B(y), (iii) Dg(y) ∈ Rm×n is continuous at y, (iv) Dg(y)

has full row rank, (v) f(x) ≥ f(y) for any x ∈ B(y) satisfying g(x) = 0m (y

a local minimum subject to constraints). Then there exists λ ∈ Rm satisfying

∇f(y) + Dg(y)Tλ = 0n, i.e., (y,λ) is a stationarity point of the Lagrangian

L(x,λ). In other words, there exists λ ∈ Rm , such that ∇L(y,λ) = 0m+n.

• (Sufficient conditions) (i) f twice differentiable at y, (ii) g twice differentiable

at y, (iii) the Jacobian matrix Dg(y) ∈ Rm×n has full row rank m, (iv) it is a

stationarity point of the Lagrangian at a given λ ∈ Rm , (v) uTd2f(y)u > 0 for

all u 6= 0n satisfying Dg(y)u = 0m. Then y is a strict local minimum under

constraint g(y) = 0m.

• Check condition (v). Condition (v) is equivalent to the “bordered determinantal

criterion”

(−1)m det

(
0m×m Br

BT
r Arr

)
> 0

for r = m + 1, . . . , n, where Arr is the top left r-by-r block of d2f(y) +∑m
i=1 λid

2gi(y), Br ∈ Rm×r is the first r columns of Dg(y).

• (Sufficient condition for a global minimum) Lagrangian first order condition +

convexity of the Lagrangian on U for some (y,λ).

• Example: Linearly constrained least squares solution. min 1
2
‖y−Xβ‖2

2 subject

to linear constrained V β = d. Form the Lagrangian

L(β,λ) =
1

2
‖y −Xβ‖2

2 + λT(V β − d).

Stationary condition says

XTXβ −XTy + V Tλ = 0p

V β = d

or equivalently (
XTX V T

V 0

)(
β

λ

)
=

(
XTy

d

)
.
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Review: derivatives of trace functions

Let X ∈ Rm×n. A and B are constant matrices of compatible dimensions. Then

∂

∂X
tr(AX) = AT

∂

∂X
tr(XAXTB) = BTXAT +BXA

∂

∂X
tr(XAXB) = BTXTAT +ATXTBT .

Proof: check elementwise.

Aitken theorem and generalized least squares (no constraints,

non-singular V )

• (Aitken theorem) Assume Aitken model (E(y) = Xb, Cov(y) = σ2V and

V � 0n×n. The best (minimum variance) affine unbiased estimator (MVAUE)

of an estimable function Λb is

Λ̂b = Λ(XTV −1X)−XTV −1y

with variance matrix

Cov(Λb) = σ2Λ(XTV −1X)−ΛT .

Proof. Since we are told the answer. We can go ahead checking unbiasedness

and minimum variance property directly. But let’s proceed in a more con-

structive way. First derive the estimator as a minimum trace affine unbiased

estimator (MTAUE) and then show that it is MVAUE.

Let Λ̂b = Ay + c be an affine estimator for Λb. Unbiasedness requires

E(Λ̂b) = AXb+ c = Λb for all b.

This implies c = 0 and AX = Λ. So Λ̂b is linear and its variance is

Cov(Λ̂b) = Cov(Ay) = σ2AV AT .

To find a MTAUE, we consider the minimization problem

minimize
1

2
tr(AV AT )

subject to AX = Λ.
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The relevant Lagrangian function is

ψ(A,L) =
1

2
tr(AV AT )− tr(LT (AX −Λ))

where L ∈ Rm×p is a matrix of Lagrange multipliers. Differentiating ψ with

respect to A yields

AV = LXT

AX = Λ.

From the first equation, A = LXTV −1. Substitution into the second equation

we have

LXTV −1X = Λ.

This system is always consistent (why? show C(XTV −1X) = C(XT ) ⊃ C(ΛT )

in HW4) so Λ(XTV −1X)− is a solution to L (may not be unique). Therefore

A = Λ(XTV −1X)−XTV −1

is a solution to the constrained minimization problem. Actually it is invariant

to the choice of generalized inverse (XTV −1X)− (HW4). Hence it is unique.

Therefore the estimator

Λ̂b = Λ(XTV −1X)−XTV −1y

with variance

Cov(Λ̂b) = σ2Λ(XTV −1X)−XTV −1V V −1X(XTV −1X)−ΛT

= σ2Λ(XTV −1X)−ΛT

is the unique MTAUE. If MVAUE exists, this is it.

Now we have a good candidate, namely the MTAUE. It becomes a routine to

check that it is actually the MVAUE. Consider an arbitrary affine unbiased

estimator

[Λ(XTV −1X)−XTV −1 +C]y + d.
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Unbiasedness imposes CX = 0m×p and d = 0m. Its covariance is

σ2[Λ(XTV −1X)−XTV −1 +C]V [Λ(XTV −1X)−XTV −1 +C]T

= σ2Λ(XTV −1X)−ΛT + σ2CV CT

� Cov(Λ̂b).

Therefore the MTAUE is indeed the MVAUE.

• Λ̂b = Λ(XTV −1X)−XTV −1y is called the generalized least squares estimator

of an estimable function Λb.

• The same good candidate can also be obtained by transforming the Aitken

model back to the Gauss-Markov model (as done in the textbook).

Aitken model with linear constraints (V � 0n×n)

• In many applications, researchers want to fit linear model with some constraints

on the parameter b. We investigate the estimability issue and try to find the

MVAUE assuming that V is non-singular.

• (Estimability under linear constraints) Consider the Aitken model (E(y) = Xb

and Cov(y) = σ2V ) with linear constraints Rb = r. A linear function Λb is

estimable if and only if C(ΛT ) ⊂ C((XT ,RT )).

Remark 1: Apparently there are more estimable functions with constraints than

without constraints.

Remark 2: No assumption on the singularity of V is needed here.

Proof. Aitken model with linear constraints is equivalent to the following ex-

panded unconstrained Aitken model(
y

r

)
=

(
X

R

)
b+

(
e

0

)
,

where the error term has first two moments

E

(
e

0

)
= 0, Cov

(
e

0

)
= σ2

(
V 0

0 0

)
.

Thus the estimability result follows from that for this expanded Aitken model

without constraints.
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• (MVAUE under linear constraints) Consider the Aitken model (E(y) = Xb and

Cov(y) = σ2V ) with linear constraints Rb = r and assume V � 0n×n. The

best (minimum variance) affine unbiased estimator (MVAUE) of an estimable

function Λb is

Λ̂b = ΛG−XTV −1y + ΛG−RT (RG−RT )−(r −RG−XTV −1y)

where

G = XTV −1X +RTR.

It has variance matrix

Cov(Λ̂b) = σ2ΛG−ΛT − σ2ΛG−RT (RG−RT )−RG−ΛT .

Remark 1: Notice that the MVAUE is indeed affine and not linear anymore

under linear constraints.

Remark 2: Notice the variance is reduced in presence of constraints.

Proof. We again proceed in the constructive way: first find MTAUE and then

show it is MVAUE.

Let Λ̂b = Ay + c be an affine estimator of Λb. Unbiasedness imposes

E(Λ̂b) = AXb+ c = Λb for all b satisfying Rb = r.

Substituting the general solution b∗ = R−r + (I −R−R)q shows

(Λ−AX)[R−r + (I −R−R)q] = c for all q,

which implies

(Λ−AX)R−r = c

(Λ−AX)(I −R−R) = 0m×p.

The second equation says C((Λ −AX)T ) ⊂ C(RT ). There exists a matrix B

such that Λ − AX = BR and c = BRR−r = Br. Therefore the affine

estimator takes the form

Λ̂b = Ay +Br
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and the unbiasedness condition boils down to AX +BR = Λ.

To find a MTAUE, we consider the minimization problem

minimize
1

2
tr(AV AT )

subject to AX +BR = Λ.

The relevant Lagrangian function is

ψ(A,B,L) =
1

2
trAV AT − trLT (AX +BR−Λ),

where L is a matrix of Lagrangian multipliers. Differentiating with respect to

A and B gives the first order conditions

AV = LXT

RLT = 0

AX +BR = Λ.

Step 1: Express L in terms of A. From the first equation, A = LXTV −1.

Thus

AX = LXTV −1X = L(XTV −1X +RTR) = LG

by the second equation, where G = XTV −1X+RTR is p.s.d. It can be shown

that C(G) ⊃ C(XT )∪C(RT ) (HW4). ThereforeAX = LG as an equation in L

is always consistent (since GG−XTAT = XTAT ) and AXG− is one solution

to L.

Step 2: Solve for B. Post-multiply both sides of the third equation by G−RT

we get BRG−RT = ΛG−RT . As a linear equation in B, it is always consistent

if we can check

(RG−RT )(RG−RT )−RG−ΛT = RG−ΛT .

We show this by writing ΛT = (XT ,RT )T for some transformation matrix T .

Such T exists because of the estimability of Λb. Then it only remains to show

that C(RG−RT ) ⊃ C(RG−XT ) (HW4).

Therefore the linear system is always consistent and one specific solution to B

is ΛG−RT (RG−RT )−.
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Step 3: Aseemble pieces to get the minimizing A

A = LXTV −1 = AXG−XTV −1

= (Λ−BR)G−XTV −1

= ΛG−XTV −1 −BRG−XTV −1

= ΛG−XTV −1 −ΛG−RT (RG−RT )−RG−XTV −1.

Therefore the MTAUE is

Λ̂b = Ay +Br

= ΛG−XTV −1y + ΛG−RT (RG−RT )−(r −RG−XTV −1y),

which serves a good candidate for MVAUE. The last two (routine) steps are

to derive the variance formula for this MTAUE and show that it is indeed the

MVAUE. They are left as exercises in HW4.
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9 Lecture 9: Sep 30

Announcement

• HW2 returned (77± 15). For comparison: HW1 (89± 4).

• HW3 due this Wed Oct 2

• HW 3/4 recitation this Wednesday afternoon

• HW4 is posted and due Oct 9 (HW4 questions are covered in Midterm 1)

• Plan for this week: finish Aitken model and Midterm 1 review

• Please send your specific questions (HWs, lecture notes, textbook, ...) to me

(hua_zhou@ncsu.edu) by this Saturday; so I can go over during classes (Oct 2

or Oct 7)

Last time

• Aitken model (no constraints, non-singular V ):

MVAUE is Λ̂b = Λ(XTV −1X)−XTV −1y with variance σ2Λ(XTV −1X)−ΛT

• Aitken model (linear constraints Rb = r, non-singular V ):

Estimability: C(ΛT ) ⊂ C((XT ,RT )), MVAUE (via MTAUE).

Today

• Aitken model: imposing constraints for a unique solution

• Aitken model with singular V

Aitken model with linear constraints: special case C(RT ) ∩
C(XT ) = {0}

• As we saw, incorporating constraints increases the class the linear functions Λb

that are estimatible. When

(
X

R

)
has full column rank p, we can estimate every

single parameter in b!
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• In many applications, we purposely add constraints which are linearly indepen-

dent of rows of X. That is C(RT ) ∩ C(XT ) = {0}. In this case, the MVAUE

takes a simpler form.

• Estimability: C(ΛT ) ⊂ C((XT ,RT )). Note rank((XT ,RT )) = rank(XT ) +

rank(RT ) when C(RT ) ∩ C(XT ) = {0}.

• For example, in one-way ANOVA

X =


1n1 1n1

1n2 1n2

...
. . .

1na 1na

 ,

where rank(X) = a. Three commonly used constraints are

1. αa = 0

2.
∑a

i=1 αi = 0

3.
∑a

i=1 niαi = 0.

Each of them will make every single parameter in (µ, α1, . . . , αa) estimable.

• (MVAUE) Consider the Aitken model (E(y) = Xb and Cov(y) = σ2V ) with

linear constraints Rb = r where C(RT ) ∩ C(XT ) = {0}. Assume V � 0n×n.

The best (minimum variance) affine unbiased estimator (MVAUE) of an es-

timable function Λb is

Λ̂b = ΛG−(XTV −1y +RTr),

where

G = XTV −1X +RTR.

It has variance matrix

Cov(Λ̂b) = σ2ΛG−ΛT − σ2ΛG−RTRG−ΛT .

Remark: note C(RT )∩C(XT ) = {0} is equivalent to rank(XT ,RT ) = rank(XT )+

rank(RT ).

Proof. Do HW4 Q3 and you will find some cancellations occur in the previous

more general result.
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Aitken model with linear constraints and a singular V

Now we are in a position to consider the most general case: Aiken model with linear

constraints Rb = r and a possibly singular V .

• First we notice that, with a singular V , not all values of y are possible. For

example, yi = µ+ei, i = 1, 2, 3, 4, where Var(e1) = Var(e2) = 0 and Var(ei) > 0

for i = 3, 4, is a linear model with rank(V ) = 2. Any y with y1 6= y2 is

inconsistent with this model.

• We can write the constrained linear model as an unconstrained one

ye = Xeb+ u, E(u) = 0, ,Cov(u) = σ2Ve,

where

ye =

(
y

r

)
, Xe =

(
X

R

)
, Ve =

(
V 0

0 0

)
.

• (Consistency) Aitken model (E(y) = Xb, Cov(y) = σ2V ) with linear con-

straints Rb = r is consistent if and only if(
y

r

)
∈ C

(
X V

R 0

)
.

Proof. Note the model ye = Xeb + u is equivalent to the model ye = Xeb +

VeV
−
e u since

E(u) = VeV
−
e E(u) = 0n, Cov(u) = σ2VeV

−
e VeV

−
e Ve = σ2Ve.

Therefore the linear model is consistent if and only if ye ∈ C((Xe,VeV
−
e )) =

C((Xe,Ve)) = C

((
X V

R 0

))
.

• (Estimability) Λb is estimable if and only if

C(ΛT ) ⊂ C((XT ,RT )).
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• (MVAUE) Consider the Aitken model (E(y) = Xb, Cov(y) = σ2V ) with linear

constraints Rb = r. The best (minimum) variance affine unbiased estimator

(MVAUE) of an estimable function Λb is

Λ̂b = Λ(XT
e V

−
0 Xe)

−XT
e V

−
0 ye,

where V0 = Ve +XeX
T
e , with variance

Cov(Λ̂b) = σ2Λ[(XT
e V

−
0 Xe)

− − Ip]ΛT .

Remark: Since ye involves both y and r, the MVAUE is affine in general.

Proof. Let’s try to derive the MTAUE first, and then show that the MTAUE is

MVAUE. Let Aye + c be an affine unbiased estimator of an estimable function

Λb. Unbiasedness requires

AXeb+ c = Λb for all b ∈ Rp,

which implies

AXe = Λ and c = 0.

We seek the MTAUE by solving

minimize
1

2
trAVeA

T

subject to AXe = Λ.

The relevant Lagrangian is

ψ(A,L) =
1

2
trAVeA

T − tr(LT (AXe −Λ)),

where L is a matrix of Lagrangian multipliers. Differentiating with respect to

A yields the first order conditions

AVe = LXT
e

AXe = Λ,

or, as a matrix equation,(
Ve Xe

XT
e 0

)(
AT

−LT

)
=

(
0

ΛT

)
.
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By HW4 Q5(d), a generalized inverse of the matrix on left side is(
Ve Xe

XT
e 0

)−
=

(
V −0 − V −0 XeC

−XT
e V

−
0 V −0 XeC

−

C−XT
e V

−
0 −C− +CC−

)
,

where V0 = Ve +XeX
T
e and C = XT

e V
−

0 Xe, and(
Ve Xe

XT
e 0

)(
Ve Xe

XT
e 0

)−
=

(
V0V

−
0 0

0 CC−

)
.

By estimability, C(ΛT ) ⊂ C(XT
e ) = C(C) (In HW4 Q5(c), we also show

C(XT
e V

−
0 Xe) = C(XT

e )) and thus CC−ΛT = ΛT . Therefore the linear sys-

tem is consistent and the solution to A takes the general form

A = Λ(XT
e V

−
0 Xe)

−XT
e V

−
0 +Q(I − V0V

−
0 )

where Q is arbitrary. Therefore the MTAUE is

Λ̂b = Aye

= Λ(XT
e V

−
0 Xe)

−XT
e V

−
0 ye +Q(I − V0V

−
0 )ye

= Λ(XT
e V

−
0 Xe)

−XT
e V

−
0 ye.

The last equality follows from C(V0) = C(Ve + XeX
T
e ) = C((Xe,Ve)) (HW4

Q5(a)) and the consistency ye ∈ C((Xe,Ve)).

The variance of the MTAUE is

Cov(Λ̂b) = σ2Λ(XT
e V

−
0 Xe)

−XT
e V

−
0 VeV

−
0 Xe(X

T
e V

−
0 Xe)

−ΛT

= σ2Λ(XT
e V

−
0 Xe)

−XT
e V

−
0 (V0 −XeX

T
e )V −0 Xe(X

T
e V

−
0 Xe)

−ΛT

= σ2Λ(XT
e V

−
0 Xe)

−ΛT − σ2ΛΛT

= σ2Λ[(XT
e V

−
0 Xe)

− − I]ΛT .

Last order of business is to show that the MTAUE is indeed MVAUE. Here is

another useful device for proving this. If Λb is estimable, then cTΛb is estimable

(why?) and cT Λ̂b is the MTAUE for estimating cTΛb. Let θ̂ be another affine

unbiased estimator of Λb. Then cT θ̂ is an affine unbiased estimator of cTΛb.

Thus

Var(cT Λ̂b) ≤ Var(cT θ̂),

66



which implies that

cTCov(Λ̂b)cT ≤ cTCov(θ̂)c.

Since c is arbitrary, we have shown that Cov(Λ̂b) � Cov(θ̂).

• (Conflict with previous result?) The special case V � 0n×n does not recover our

previous result (Aitken with linear constraints and non-singular V ) obviously.

We will take an alternative approach below – transforming a singular Aitken

model to a non-singular one.

Before that we first review some basic results on determinant, eigenvalues and

eigenvectors.
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10 Lecture 10: Oct 2

Announcement

• HW3 due today

• HW 3/4 recitation this afternoon

• HW4 is due next Wed Oct 9 (covered in Midterm 1)

• Please send your specific questions (HWs, lecture notes, textbook, ...) to me

(hua_zhou@ncsu.edu) by this Saturday

Last time

• Aitken model: imposing constraints for a unique solution

• Aitken model with linear constraints Rb = r and a possibly singular V

Today

• Generalized least squares

A result on the invariance to the choice of generalized inverse

We often need to show that a product BA−C is invariant to the choice of the gen-

eralized inverse. Let’s summarize a useful result here.

• If C(BT ) ⊂ C(AT ) and C(C) ⊂ C(A), then the product BA−C is invariant to

the choice of the generalized inverse. In other words, it is unique.

Proof. Since C(BT ) ⊂ C(AT ), there exists a matrix L such that B = LA.

Since C(C) ⊂ C(A), there exists a matrix R such that C = AR. Then

BA−C = LAA−AR = LAR.

It is also invariant to the choice of the transformation matrix since L1AR −
L2AR = BR−BR = 0 for any two candidate transformation matrices L1 and

L2. Similarly it is invariant to the choice of transformation matrix R too.
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• Applications: uniqueness of PX = X(XTX)−XT , uniqueness of all MVAUEs

we derived so far, uniqueness of the variance of all MVAUEs we derived so far,

...

Generalized least squares

• Gauss invented method of least squares as an approximation method. The least

squares solution (magically) turns out to be MVAUE.

• For Aitken model, we approached MVAUE through MTAUE. Are the MVAUEs

solutions to some generalized least squares criterion? The answer is affirmative.

This coincidence is surprising but not trivial.

• (Generalized least squares for Aitken with linear constraints) Consider the

Aitken model, E(y) = Xb and Cov(y) = σ2V , with a possibly singular V

and linear constraints Rb = r. Assume(
y

r

)
∈ C

((
X V

R 0

))
(consistency)

and C(ΛT ) ⊂ C((XT ,RT )) (estimability). Then the best (minimum) variance

affine unbiased estimator (MVAUE) of Λb is Λb̂, where b̂ minimizes the gener-

alized least squares criterion(
y −Xb
r −Rb

)T (
V +XXT XRT

RXT RRT

)−(
y −Xb
r −Rb

)
.

Remark 1: The generalized least squares solution b̂ may not be unique.

Remark 2: One implication of this connection is that we can obtain the MVAUE

by solving the generalized least squares problem. There are good algorithms for

minimizing a generalized least squares criterion.

Proof. Consider the augmented linear model E(ye) = Xeb, Cov(y) = σ2Ve

where

ye =

(
y

r

)
, Xe =

(
X

R

)
, Ve =

(
V 0

0 0

)
.
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Then generalized least squares criterion is

(ye −Xeb)
TV −0 (ye −Xeb),

where V0 = Ve + XeX
T
e . We first show that this expression in invariant to

the choice of the generalized inverse V −0 . This is true because ye − Xeb ∈
C((Xe,Ve)) = C(V0) by consistency. Therefore without loss of generality we can

use the Moore-Penrose inverse V +
0 , which is symmetric and positive semidefi-

nite, in the criterion.

Let V +
0 = LLT , where L can be the Cholesky factor or the symmetric square

root. Then the generalized least squares criterion becomes

‖LT (ye −Xeb)‖2
2.

The least squares solution (may be non-unique) to this regular least squares

problem is

b̂ = (XT
e LL

TXe)
−XT

e LL
Ty = (XT

e V
+

0 Xe)
−XT

e V
+

0 ye.

The final step is to show that

Λb̂ = Λ(XT
e V

+
0 Xe)

−XT
e V

+
0 ye

is invariant to the choice of the generalized inverse (XT
e V

+
0 Xe)

− and we can

replace V +
0 by any generalized inverse V −0 . We use the result summarized in

the previous section.

– To show that we can replace the Moore-Penrose inverse V +
0 in XT

e V
+

0 Xe

by any generalized inverse V −0 , we note C(V0) = C((Xe,Ve)) ⊃ C(Xe).

– To show that we can replace the Moore-Penrose inverse V +
0 inXT

e V
+

0 ye by

any generalized inverse V −0 , we note C(V0) ⊃ C(Xe) and ye ∈ C((Xe,Ve)) =

C(V0) by consistency.

– To show that Λb̂ is invariant to the choice of (XT
e V

+
0 Xe)

−, we note

C(XT
e V

+
0 Xe) = C(XT

e ) ⊃ C(ΛT ).

Thus we have shown that Λb̂ coincides with the MVAUE we derived earlier.

• In absence of constraints, the generalized least squares criterion reduces to

(y −Xb)T (V +XXT )−(y −Xb).
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11 Lecture 11: Oct 7

Announcement

• HW3 returned (92± 11)

• HW4 deadline extended to next Wed Oct 16

• Midterm 1, Oct 9 @ 11:45AM-1PM

• No afternoon session this Wed Oct 9

• No office hours today (instructor out for conference).

Makeup office hours: Tue Oct 8 @ 1-3PM

• No office hours Wed Oct 9

• No class and office hours next Monday Oct 14 (instructor out of town)

Last time

• Generalized least squares

Today

• Q&A

• HW4

Q&A

• After all the lectures, I am getting confused and mixed up with some definitions.

I wonder if you can give us a summary of what are the ways to get (BLUE,

invertible, estimable, consistency, MTAUE, MVAUE, etc.).

• HW5 question1 (b), and question 3.

• I made a mistake in HW2 about writing nested design model (last question from

book). I wonder if there are more difficult models we should know how to write

out. I just cannot come up with other examples.
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• When we prove the unbiasedness of the Λb̂, we plug in the least square solution

of b, then we have Λ(XTX)−XTXy+Λ[I−(XTX)−XTX]q, then the second

term is vanished. My thought is: [I − (XTX)−XTX] is projection onto null

space of XTX. Because N (XTX) = N (XT ), and because Λb is estimable, so

C(ΛT ) ⊂ C(XT )⇔ N (XT ) ⊂ N (ΛT ). My problem is: we can take transpose,

which is [[I− (XTX)−XTX]ΛT ]T , but we only have N (XT ) ⊂ N (ΛT ), I can-

not see projection onto N (XT ) is also projection onto N (ΛT )? (since N (ΛT )

contains N (XT ))

• Can you explain the jointly non-estimable function. And why the number of

them is fixed, p− r?

• Reparameterization for one-way ANOVA, since we can reparemeterize X to be

full rank, I am thinking if that matrix is equivalent to one-way ANOVA without

interception? (maybe this is trivial)

• For the overfitting part, we have Cov(b̂) = Cov((XTX)−XTy), which is

σ2(XTX)−XTX((XTX)−)T .

my question is how do we come up with σ2(XTX)−XTX)((XTX)−)T =

σ2(XTX)−XTX)(XTX)− = σ2(XTX)−? Is that because the projection.

It is like the property of G+ inverse?

• For the Lagrangian multiplier in linearly constrained least squares solution,

what is that constrained do or mean? V β = d what is d?

• How does that come out for the consistency of Aitken model with linear con-

straints?

• Conflict, yes, I got confused about the Aitken model with linear constraints and

non-singular V / Aitken model with linear constraints and singular V. Why the

first MVAUE is non linear , the second is linear?

• Can you go over how to prove column spaces are equal using the null space

property?

• Homework 1: 2 (d).

• Homework 2: 1 (JM 2.11) (f), (g) and (h);
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12 Lecture 12: Oct 16

Announcement

• HW4 due today.

• HW5 will be posted today and due next Fri Oct 25 (?).

• Midterm 1 returned (80± 14).

Today

• Finish Chapter 4: Aitken model with linear constraints Rb = r and a possibly

singular V – alternative approach

• Chapter 5: normal and related distributions

Review: determinant (JM A.6)

Assume A ∈ Rn×n is a square matrix.

• The determinant of a matrix det(A) = |A| =
∑

(−1)φ(j1,...,jn)
∏n

i=1 aiji , where

φ(j1, . . . , jn) is the number of transpositions to change (1, . . . , n) to (j1, . . . , jn).

• Example,

det

(
a11 a12

a21 a22

)
= a11a22 − a12a21.
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• Interpretation of the (absolute value of) determinant as the volume of the par-

allelogram defined by the columns of the matrix:

area = bh = ‖x1‖‖x2‖ sin(θ)

= ‖x1‖‖x2‖

√
1−

(
〈x1,x2〉
‖x1‖‖x2‖

)2

=
√
‖x1‖2‖x‖2 − (〈x1,x2〉)2

=
√

(x2
11 + x2

12)(x2
21 + x2

22)− (x11x21 − x12x22)2

= |x11x22 − x12x21|
= | det(X)|.

• Another interpretation of the determinant is the volume changing factor when

operating on a set in Rn. volume(f(S)) = | det(A)|volume(f(S)) where f :

Rn 7→ Rn is the linear mapping defined by A.

• The determinant of a lower or upper triangular matrix A is the product of the

diagonal elements
∏n

i=1 aii.

• Determinant of a singular matrix is 0.

• Determinant of an orthogonal matrix is 1 (rotation) or -1 (reflection).
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• det(AT ) = det(A).

• det(A−1) = 1/ det(A).

• det(cA) = cn det(A).

• det(AB) = det(A) det(B).

• For A and D square and nonsingular,

det

((
A B

C D

))
= det(A) det(D −CA−1B) = det(D) det(A−BD−1C).

Proof. Take determinant on the both sides of the matrix identity(
A 0

0 D −CA−1B

)
=

(
I 0

−CA−1 I

)(
A B

C D

)(
I −A−1B

0 I

)
.

Review: eigenvalues and eigenvectors (JM A.6)

Assume A ∈ Rn×n a square matrix.

• Eigenvalues are defined as roots of the characteristic equation det(λIn−A) = 0.

• A is singular if and only if it has at least one 0 eigenvalue.

• If λ is an eigenvalue of A, then there exist non-zero vectors x,y ∈ Rn such that

Ax = λx and yTA = λyT . x and y are called the (column) eigenvector and

row eigenvector of A associated with the eigenvalue λ.

• Eigenvectors associated with distinct eigenvalues are linearly independent.

Proof. Let Ax1 = λ1x1, Ax2 = λ2x2, and λ1 6= λ2. Assume that x1 and x2

are linearly dependent such that x2 = αx1. Then

αλ1x1 = αAx1 = Ax2 = λ2x2 = αλ2x1.

That is α(λ1 − λ2)x1 = 0. Since α 6= 0 and λ1 6= λ2, we have x1 = 0, a

contradiction.
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• Eigenvalues of an upper or lower triangular matrix are its diagonal entries:

λi = aii.

• Eigenvalues of an idempotent matrix are either 0 or 1.

Proof. If AA = A and Ax = λx, then

λx = Ax = AAx = λ2x.

Hence λ = λ2, i.e., λ = 0 or 1.

• Eigenvalues of an orthogonal matrix have complex modulus 1.

• In most statistical applications, we deal with eigenvalues/eigenvectors of sym-

metric matrices.

The eigenvalues and eigenvectors of a real symmetric matrix are real.

• Eigenvectors associated with distinct eigenvalues of a symmetry matrix are or-

thogonal to each other.

• Eigen-decompostion of a symmetric matrix: A = UΛU T, where

– Λ = diag(λ1, . . . , λn)

– columns of U are the eigenvectors which are (or can be chosen to be)

mutually orthonormal

• A real symmetric matrix is positive semidefinite (positive definite) if and only

if all eigenvalues are nonnegative (positive).

Proof. If A is positive definite and Ax = λx, then xTAx = λxTx. Now

xTAx > 0 and xTx > 0 imply λ > 0.

• If A has r non-zero eigenvalues, then rank(A) ≥ r.

If A is symmetric and has r non-zero eigenvalues, then rank(A) = r.

If A is idempotent and has r eigenvalues equal to 1, then rank(A) = tr(A) = r.
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• If A ∈ Rn×n is positive definite and has eigen-decomposition

A = Udiag(λ1, . . . , λn)UT ,

where the eigenvalues λi are positive. Then the inverse is

A−1 = Udiag(λ−1
1 , . . . , λ−1

n )UT .

• If A ∈ Rn×n is psd with rank r < n and has eigen-decomposition

A = Udiag(λ1, . . . , λr, 0, . . . , 0)UT ,

where λi > 0, i = 1, . . . , r, are positive eigenvalues. Then the Moore-Penrose

inverse is

A+ = Udiag(λ−1
1 , . . . , λ−1

r , 0, . . . , 0)UT = Urdiag(λ−1
1 , . . . , λ−1

r )UT
r ,

where Ur contains the first r columns of U . Note A+ is psd too.

• If A ∈ Rn×n is psd, then

A1/2 = Udiag(λ
1/2
1 , . . . , λ1/2

r , 0, . . . , 0)UT = Urdiag(λ
1/2
1 , . . . , λ1/2

r )UT
r

is a symmetric square root of A and A1/2 is psd too.

• A ∈ Rn×n a square matrix (not required to be symmetric), then tr(A) =
∑

i λi

and det(A) =
∏

i λi.

Aitken model with linear constraints and a singular V (alter-

native approach)

Here we derive an alternative expression for the MVAUE of Aiken model, E(y) = Xb

and Cov(y) = σ2V , with linear constraints Rb = r and a possibly singular V .

• First we show that a singular V essentially imposes linear constraints on b.
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Suppose V is positive semi-definte with rank s. From eigen-decomposition,

V = UDUT

= (Sn×s,Tn×(n−s))



d1

. . .

ds

0
. . .

0


(

STn×s
T T
n×(n−s)

)

= Sdiag(d1, . . . , ds)S
T

= SDsS
T ,

where d1, . . . , ds are positive eigenvalues, STS = Is, T
TT = In−s, and STT =

0s×(n−s). C(S) = C(V ) and C(T ) = N (V T ) = N (V ). Note that

V + = SD−1
s S

T ,

is the Moore-Penrose inverse of V .

Let’s transform the original model y = Xb+ e by

(
ST

T T

)
:

STy = STXb+ STe = STXb+ u

T Ty = T TXb+ T Te = T TXb+ v,

where

E(u) = 0s, Cov(u) = σ2Ds

E(v) = 0n−s, Cov(v) = 0(n−s)×(n−s).

This shows that the singularity of V essentially introduces linear constraints to

the parameters

T Ty = T TXb.

• Next we add explicit constraints. Rb = r is the explicit constraints and singu-

larity of V imposes implicit constraints T TXb = T Ty. Collectively we write

this as

R0b = r0,
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where

R0 =

(
T TX

R

)
and r0 =

(
T Ty

r

)
.

• In summary, Aitken model with linear constraints Rb = r and a singular V is

equivalent to the constrained model

STy = STXb+ u,

with E(u) = 0n, Cov(u) = σ2Ds, and linear constraints

R0b = r0.

• (Estimability and MVAUE) Consider the Aitken model (E(y) = Xb, Cov(y) =

σ2V ) with linear constraints Rb = r. A linear function Λb is estimable if

and only if C(ΛT ) ⊂ C((XT ,RT )). And the best (minimum) variance affine

unbiased estimator (MVAUE) is

Λ̂b = ΛG−XTV +y + ΛG−RT
0 (R0G

−RT
0 )−(r0 −R0G

−XTV +y),

where

R0 =

(
T TX

R

)
, r0 =

(
T Ty

r

)
, G = XTV +X +RT

0R0,

and T is a matrix of maximum rank such that V T = 0. The variance matrix

of Λ̂b is

Cov(Λ̂b) = σ2ΛG−ΛT − σ2ΛG−RT
0 (R0G

−RT
0 )−R0G

−ΛT .

Proof. Use previous result for Aitken model with linear constraints and a non-

singular V .

Normal distribution (JM 5.2)

• So far we studied the following linear models

– Method of least squares: find b that minimizes ‖y−Xb‖2 (approximation)
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– Linear mean model: E(y) = Xb (unbiasedness, estimability)

– Gauss-Markov model: E(y) = Xb, Cov(y) = σ2I (MVAUE, BLUE)

– Aitken model: E(y) = Xb, Cov(y) = σ2V (MVAUE, BLUE)

Next we add distribution assumption y ∼ N(Xb, σ2V ) so we can do more:

confidence interval, testing, best estimator of σ2,...

• Moment generating function (mgf) of random variables.

– Assume X ∼ FX(t) = P (X ≤ t). If E(etX) <∞ for all t in a neighborhood

of 0, i.e., |t| < δ for some δ > 0, then the function

mX(t) = E(etX)

is defined for all t such that |t| < δ. mX(t) is the moment generating

function (mgf) of X.

– If mX(t) exists, then E(|X|j) <∞ for j = 0, 1, . . ..

– Differentiating mgf and setting t = 0 yields moments: mX(0) = 1, m′X(0) =

E(X), m′′X(0) = E(X2), ...

In general, m
(j)
X (0) = E(Xj), j = 0, 1, 2, . . .

– (mgf determines distribution) If X1 and X2 are random variables with mgf

mX1(t) and mX2(t), then mX1(t) = mX2(t) for all t in a neighborhood of 0

if and only if FX1(t) = FX2(t) for all t.

– If X1, X2, . . . , Xn are independent with mgfs mX1(t), . . . ,mXn(t) and

Y = a0 +
n∑
i=1

aiXi,

then

mY (t) = eta0
n∏
i=1

mXi(ait).

• Moment generating function (mgf) of random vectors.

– Let X = (X1, . . . , Xp)
T ∈ Rp be a random vector. Then

mX(t) = E(et
TX) = E(et1X1+···+tpXp), t ∈ Rp

is the mgf of X provided that E(et
TX) <∞ for all t such that ‖t‖ < δ for

some δ > 0.
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– IfmX(t) exists, then E(|X1|a1 · · · |Xp|ap) <∞ for aj = 0, 1, 2, . . . Especially

E(|Xj|aj) <∞, aj = 0, 1, 2, . . . Also

mXj(t) = mX(tej) = mX((0, . . . , t, . . . , 0)T ).

– Differentiating mgf and setting t = 0 yields moments. Let n = (n1, . . . , np)

and tn =
∏p

i=1 t
ni
i . Then

∂
∑p
i=1 ni

∂tn
mX(t)

∣∣∣∣
t=0

= E

(
p∏
i=1

Xni
i

)
.

The first two moments are

∇mX(t)|t=0 = E(X)

d2mX(t)|t=0 = E(XXT ).

– (mgf determines distribution) mX(t) = mY (t) for all ‖t‖ < δ (δ > 0) if

and only if FX(t) = FY (t) for all t.

– Suppose that X is partitioned as X =

X1

...

Xm

 and has mgf mX(t) =

E(et
TX). Then X1, . . . ,Xm are independent if and only if

mX(t) =
m∏
i=1

mXi
(ti)

for all t =

 t1...
tm

 in a neighborhood of 0.

– If X1, . . . ,Xn are independent random vectors and

Y = A0 +
n∑
i=1

AiXi,

then

mY (t) = et
TA0

n∏
i=1

mXi
(AT

i t).
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• A random variable Z has a standard normal distribution, denoted Z ∼ N(0, 1),

if

FZ(t) = P (Z ≤ t) =

∫ t

−∞

1√
2π
e−z

2/2 dz,

or equivalently Z has density

fZ(z) =
1√
2π
e−z

2/2, −∞ < z <∞.

or equivalently

mZ(t) = E(etZ) = et
2/2, −∞ < t <∞.

• Non-standard normal random variable.

– Definition 1: A random variable X has normal distribution with mean µ

and variance σ2, denoted X ∼ N(µ, σ2), if

X =D µ+ σZ,

where Z ∼ N(0, 1).

– Definition 2: X ∼ N(µ, σ2) if

mX(t) = E(etX) = etµ+σ2t2/2, −∞ < t <∞.

– In both definitions, σ2 = 0 is allowed. If σ2 > 0, it has a density

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2

, −∞ < x <∞.

• The standard multivariate normal is a vector of independent standard normals,

denoted Z ∼ Np(0p, Ip). The joint density is

fZ(z) =
1

(2π)p/2
e−

∑p
i=1 z

2
i /2.

The mgf is

mZ(t) =

p∏
i=1

mZi(ti) =

p∏
i=1

et
2
i /2 = e

∑p
i=1 t

2
i /2 = et

T t/2.
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• Consider the affine transformation X = µ + AZ, where Z ∼ Np(0p, Ip). X

has mean and variance

E(X) = µ, Var(X) = AAT

and the moment generating function is

mX(t) = E(et
T (µ+AZ)) = et

TµEet
TAZ = et

Tµ+tTAAT t/2.

• X ∈ Rp has a multivariate normal distribution with mean µ ∈ Rp and covari-

ance V ∈ Rp×p (V psd), denoted X ∼ Np(µ,V ), if its mgf takes the form

mX(t) = et
Tµ+tTV t/2, t ∈ Rp.

Remarks

– We already see any affine transform of a multivariate standard normal is

normal. Conversely, any multivariate normal X ∼ Np(µ,V ) is also an

affine transform of a multivariate standard normal. Just take A to be the

Cholesky factor or symmetric square root of V .

– V can be singular, in which case the density does not exist. Suppose

X ∼ Np(µ,V ) and V is psd with rank s < p. From eigen-decomposition

V = UDUT

= (Sp×s,Tp×(p−s))



d1

. . .

ds

0
. . .

0


(
STp×s
T T
p×(p−s)

)

= Sdiag(d1, . . . , ds)S
T

= SDsS
T ,

where d1, . . . , ds are positive eigenvalues, STS = Is, T
TT = Ip−s, and

STT = 0s×(p−s). Then

STX ∼ Ns(S
Tµ,Ds)

T TX = T Tµ.
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The second set of equations indicates that a singular V imposes constraints

on the values X can take. The probability mass lies in a subspace of

dimension s.

• If X ∼ Np(µ,V ) and V is non-singular, then

– V = AAT for some non-singular A

– A−1(X − µ) ∼ Np(0p, Ip)

– The density of X is

fX(x) =
1

(2π)p/2|V |1/2
e−(x−µ)TV −1(x−µ)/2.

Proof. The first fact follows by taking A to be the Cholesky factor or

square root of V . The second fact is trivial. For the third fact, we use the

change of variable formula. Let Z ∼ Np(0p, Ip). By the change of variable

formula X = µ+AZ has density

fX(x) =
1

(2π)p/2
e−(x−µ)TA−TA−1(x−µ)/2| det(A−1)|

=
1

(2π)p/2|V |1/2
e−(x−µ)TV −1(x−µ)/2.

• (Any affine transform of normal is normal) If X ∼ Np(µ,V ) and Y = a+BX,

where a ∈ Rq and B ∈ Rq×p, then Y ∼ Nq(a+Bµ,BV BT ).

Proof. Check the mgf.

• (Marginal of normal is normal) If X ∼ Np(µ,V ), then any subvector of X is

normal too.

Proof. Immediate corollary of the preceding result.

• A convenient fact about normal random variables/vectors is that zero correla-

tion/covariance implies independence.
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If X ∼ Np(µ,V ) and is partitioned as

X =

X1

...

Xm

 , µ =

µ1
...

µm

 , V =

V11 · · · V1m

...

Vm1 · · · Vmm

 ,

then X1, . . . ,Xm are jointly independent if and only if Vij = 0 for all i 6= j.

Proof. If X1, . . . ,Xm are jointly independent, then Vij = Cov(Xi,Xj) =

E(Xi − µi)(Xj − µj)T = E(Xi − µi)E(Xj − µj)T = 0pi0
T
pj

= 0pi×pj . Con-

versely, if Vij = 0 for all i 6= j, then the mgf of X = (X1, . . . ,Xm)T is

mX(t) = et
Tµ+tTV t/2

= e
∑m
i=1 t

T
i µi+

∑m
i=1 t

T
i Viiti/2

= mX1(t1) · · ·mXm(tm).

Thus X1, . . . ,Xm are jointly independent.

• Let X ∼ Np(µ,V ), Y1 = a1 +B1X, and Y2 = a2 +B2X. Then Y1 and Y2

are independent if and only if B1V B
T
2 = 0.

Proof. Note Cov(Y1,Y2) = B1Cov(X)BT
2 = B1V B

T
2 .

Chi-square and related distributions (JM 5.3)

• Let Z ∼ Np(0p, Ip). Then U = ‖Z‖2
2 =

∑p
i=1 Z

2
i has the chi-square distribution

with p degrees of freedom, denoted by U ∼ χ2
p.

– The mgf of U is

mU(t) = E(etU) = E
(
et
∑p
i=1 Z

2
i

)
=

p∏
i=1

∫ ∞
−∞

1√
2π
etz

2
i−z2i /2 dzi

=

p∏
i=1

∫ ∞
−∞

1√
2π
e
− z2i

2(1−2t)−1 dzi

=

p∏
i=1

(1− 2t)−1/2

= (1− 2t)−p/2.
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– The first two moments of U are

E(U) = p, Var(U) = 2p.

– The density of U is

fU(u) =
u(p−2)/2e−u/2

Γ(p/2)2p/2
, u > 0.

• Let J ∼ Poisson(φ) and U |J = j ∼ χ2
p+2j. Then the unconditional distribution

of U is the noncentral chi-square distribution with noncentrality parameter φ,

denoted by U ∼ χ2
p(φ).

– The density of U is

fU(u) =
∞∑
j=0

e−φ
φj

j!
× u(p+2j−2)/2e−u/2

Γ((p+ 2j)/2)2(p+2j)/2
, u > 0.

– The mgf of U is

mU(t) = E(etU) = E[E(etU |J)]

= E(1− 2t)−(p+2J)/2

= (1− 2t)−p/2E[(1− 2t)−J ]

= (1− 2t)−p/2e2φt/(1−2t).

– The first two moments of U are

E(U) = p+ 2φ, Var(U) = 2p+ 8φ.

• If Ui ∼ χ2
pi

(φi), i = 1, . . . ,m, are jointly independent, then U =
∑m

i=1 Ui ∼
χp(φ), where p =

∑m
i=1 pi and φ =

∑m
i=1 φi.

Proof. The mgf of U is

mU(t) =
m∏
i=1

mUi(t) =
m∏
i=1

(1− 2t)−pi/2e2tφi/(1−2t) = (1− 2t)−p/2e2tφ/(1−2t).

• If X ∼ N(µ, 1), then U = X2 ∼ χ2
1(µ2/2).
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Proof. The mgf of U is

mU(t) = E(etU) = E(etX
2

)

=

∫ ∞
−∞

1√
2π
etx

2−(x−µ)2/2

=

∫ ∞
−∞

1√
2π
e−

1−2t
2

(x− µ
1−2t

)2−µ2+ µ2

1−2t

= (1− 2t)−1/2 × e(µ2/2)2t/(1−2t),

which matches that of χ2
1(µ2/2).

• If X ∼ Np(µ, Ip), then W = ‖X‖2
2 =

∑p
i=1X

2
i ∼ χ2

p(
1
2
µTµ).

Proof. Immediate corollary of the preceding two results.

• IfX ∼ Np(µ,V ) and V is non-singular. ThenW = XTV −1X ∼ χ2
p(

1
2
µTV −1µ).

Proof. Let V = AAT . Then Z = A−1X ∼ Np(A
−1µ, Ip). And

W = XTV −1X = ZTZ ∼ χ2
p(

1

2
µTV −1µ).

• (Stochastic monotonicity of non-central chi-square) Let U ∼ χ2
p(φ). Then

P (U > c) is increasing in φ for fixed p and c > 0.

Proof. For an algebraic proof, see JM Result 5.11 (p106). For a probabilistic

proof, we fix p and assume φ2 > φ1 > 0. Let X1, X2, . . . be a sequence of

independent standard normals, J1 ∼ Poisson(φ1), ∆J ∼ Poisson(φ2 − φ1), and

X1, X2, . . . , J1,∆J) are jointly independent. Let J2 = J1 + ∆J ∼ Poisson(φ2).

Define

U1|J1 =

p+2J1∑
i=1

X2
i

U2|J2 =

p+2J2∑
i=1

X2
i .

Then U1 ∼ χ2
p(φ1), U2 ∼ χ2

p(φ2), and U2 ≥ U1 almost surely. Hence P (U2 >

c) ≥ P (U1 > c).
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• Let U1 ∼ χ2
p1

and U2 ∼ χ2
p2

be independent. Then F = U1/p1
U2/p2

has the F-

distribution with p1 and p2 degrees of freedom, denoted by F ∼ Fp1,p2 .

– Then density of F is

fF (f) =
Γ(p1+p2

2
)
(
p2
p1

)p1/2
Γ(p1

2
)Γ(p2

2
)

fp1/2−1

(
1 +

p1

p2

f

)−(p1+p2)/2

, f > 0.

– Not all moments of F exist.

E(F ) =
p2

p2 − 2
for p2 > 2

Var(F ) =
2p2

2(p1 + p2 − 2)

p1(p2 − 2)2(p2 − 4)
for p2 > 4.

• Let U1 ∼ χ2
p1

(φ) and U2 ∼ χ2
p2

be independent. Then F = U1/p1
U2/p2

has the

noncentral F-distribution with p1 and p2 degrees of freedom and noncentrality

parameter φ, denoted by F ∼ Fp1,p2(φ).

• (Stochastic monotonicity of noncentral F) Let W ∼ Fp1,p2(φ). Then P (W > c)

is strictly increasing in φ for fixed p1 and p2.

Proof. It follows from stochastic monotonicity of non-central chi-square.

• Let U ∼ N(µ, 1) and V ∼ χ2
k be independent. Then T = U/

√
V/k has the

noncentral Student’s t-distribution with k degrees of freedom and noncentrality

parameter µ, denoted T ∼ tk(µ).

If T ∼ tk(µ), then T 2 = F1,k(µ
2/2).

If µ = 0, the distribution is the Student’s t distribution, denoted by T ∼ tk, and

has density

fT (t) =
Γ((k + 1)/2)

Γ(k/2)
√
πk
× (1 + t2/k)−(k+1)/2.
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13 Lecture 13: Oct 21

Announcement

• HW5 posted and due this Fri Oct 25.

Last time

• Multivariate normal Np(µ,V ), mgf m(t) = et
Tµ+tTV t/2, correlation and inde-

pendence, existence of density when V is non-singular.

• (Central) Chi-square distribution: If Z ∼ Np(0p, Ip), then U = ‖Z‖2
2 ∼ χ2

p.

• Noncentral chi-square distribution:

– If Z ∼ Np(µ, Ip), then U = ‖Z‖2
2 ∼ χ2

p(µ
Tµ/2).

– If Z ∼ Np(µ,V ), then U = ZTV −1Z ∼ χ2
p(µ

TV −1µ/2).

– U ∼ χ2
p(φ) is stochastic monotone in p and φ.

– If Ui ∼ χ2
pi

(φi) are independent, then
∑

i Ui ∼ χ2∑
i pi

(
∑

i φi).

• (Central) F distribution: If U1 ∼ χ2
p1

and U2 ∼ χ2
p2

, then (U1/p1)/(U2/p2) ∼
Fp1,p2 .

• Noncentral F distribution: If U1 ∼ χ2
p1

(φ) and U2 ∼ χ2
p2

, then F = (U1/p1)/(U2/p2) ∼
Fp1,p2(φ). Fp1,p2(φ) is stochastic monotone in φ.

• Noncentral t distribution: If U ∼ N(µ, 1) and V ∼ χ2
p, then T = U/

√
V/p ∼

tp(µ).

Today

• Distribution of quadratic forms (JM 5.4)

• Cochran’s theorem (JM 5.5)
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Distribution of quadratic forms (JM 5.4)

• Motivation: From the geometry of least squares problem, we know

y = ŷ + ê = PXy + (I − PX)y

and

‖y‖2
2 = ‖ŷ‖2

2 + ‖ê‖2
2 = yTPXy + yT (I − PX)y.

Now assuming y ∼ Nn(Xb, σ2In), we would like to know the distribution of

the sums of squares yTPXy and yT (I − PX)y.

• A symmetric matrix A ∈ Rn×n is idempotent with rank s if and only if there

exists a matrix G ∈ Rn×s with orthonormal columns, that is GTG = Is, such

that A = GGT .

Proof. The “if part” is easy. For the “only if part”, recall that the eigenvalues

of an idempotent matrix are either 1 or 0 and rank(A) = s equals the number

of nonzero eigenvalues. Thus by the eigen-decomposition,

A = (Q1,Q2)

(
Is 0

0 0

)(
QT

1

QT
2

)
= Q1Q

T
1 ,

where Q1 ∈ Rn×s and Q2 ∈ Rn×(n−s).

• Let X ∼ Np(µ, Ip) and A be symmetric and idempotent with rank s. Then

XTAX ∼ χ2
s(

1
2
µTAµ).
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Proof. By the preceding result, A = GGT , where G ∈ Rp×s and GGT = Is.

Then GTX ∼ Ns(G
Tµ, Is) and we have

XTAX = (GTX)TGTX = ‖GTX‖2
2 ∼ χ2

s

(
1

2
µTAµ

)
.

• (General case) Let X ∼ Np(µ,V ) with V non-singular, and A ∈ Rp×p be

symmetric. If AV is idempotent with rank s, then XTAX ∼ χ2
s(

1
2
µTAµ).

Proof. Let V = ΓΓT , where Γ can be the Cholesky factor or symmetric square

root of V , and Y = Γ−1X ∼ Np(Γ
−1µ, Ip). Note

XTAX = Y TΓTAΓY .

The preceding results applies if ΓTAΓ is symmetric (trivial) and idempotent.

Idempotency holds since

(ΓTAΓ)(ΓTAΓ) = ΓTAV AΓ = ΓTAΓ.

The last equation is true since AV is a projection onto C(AV ) = C(A). Also

note that rank(ΓTAΓ) = rank(A) = rank(AV ) = s. Therefore by the preced-

ing result, XTAX ∼ χ2
s(φ) with φ = 1

2
µTΓ−TΓTAΓΓ−1µ = 1

2
µTAµ.

• Consider the normal linear model y ∼ Nn(Xb, σ2In).

– Using A = (1/σ2)(I − PX), we have

SSE/σ2 = ‖ê‖2
2/σ

2 = yTAy ∼ χ2
n−r,

where r = rank(X). Note the noncentrality parameter is

φ =
1

2
(Xb)T (1/σ2)(I − PX)(Xb) = 0 for all b.

– Using A = (1/σ2)PX , we have

SSR/σ2 = ‖ŷ‖2
2/σ

2 = yTAy ∼ χ2
r(φ)

with the noncentrality parameter

φ =
1

2
(Xb)T (1/σ2)PX(Xb) =

1

2σ2
‖Xb‖2

2.
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– The joint distribution of ŷ and ê is(
ŷ

ê

)
=

(
PX

In − PX

)
y ∼ N2n

((
Xb

0n

)
,

(
σ2PX 0

0 σ2(I − PX)

))
.

So ŷ is independent of ê. Thus ‖ŷ‖2
2 is independent of ‖ê‖2

2 and

F =
‖ŷ‖2

2/r

‖ê‖2
2/(n− r)

∼ Fr,n−r

(
1

2σ2
‖Xb‖2

2

)
.

• (Independence between two linear forms of a multivariate normal) In last lecture

we showed the following result.

Let X ∼ Np(µ,V ). Then a1 + B1X and a2 + B2X are independent if and

only if B1V B
T
2 = 0.

• (Independence between linear and quadratic forms of a multivariate normal)

Let X ∼ Np(µ,V ) and A is symmetric with rank s. If BV A = 0, then BX

and XTAX are independent.

Proof. By eigen-decomposition, A = Q1Λ1Q
T
1 , where QT

1Q1 = Is and Λ1 ∈
Rs×s is non-singular. Consider the joint distribution(

BX

QT
1X

)
∼ N

((
Bµ

QT
1µ

)
,

(
BV BT BV Q1

QT
1V B

T QT
1V Q1

))
.

By hypothesis

BV A = BV Q1Λ1Q
T
1 = 0.

Post-multiplying both sides by Q1Λ
−1
1 gives BV Q1 = 0, which implies that

BX is independent of both QT
1X and XTQ1Λ1Q1X = XTAX.

• (Independence between two quadratic forms of a multivariate normal) Let X ∼
Np(µ,V ), A be symmetric with rank r, and B be symmetric with rank s. If

BV A = 0, then XTAX and XTBX are independent.

Proof. Again by eigen-decomposition,

A = Q1Λ1Q
T
1 , where Q1 ∈ Rp×r,Λ1 ∈ Rr×r nonsingular

B = Q2Λ2Q
T
2 , where Q2 ∈ Rp×s,Λ2 ∈ Rs×s nonsingular.
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Now consider the joint distribution(
QT

1X

QT
2X

)
∼ N

((
QT

1µ

QT
2µ

)
,

(
QT

1V Q2 QT
1V Q2

QT
2V Q1 QT

2V Q2

))
.

By hypothesis

BV A = Q2Λ2Q
T
2V Q1Λ1Q

T
1 = 0.

Pre-multiplying both sides by Λ−1
2 Q

T
2 and then post-multiplying both sides by

Q1Λ
−1
1 gives

QT
2V Q1 = 0.

ThereforeQT
1X is independent ofQT

2X, which impliesXTAX = XTQ1Λ1Q
T
1

is independent of XTBX = XTQ2Λ2Q
T
2 .

93



14 Lecture 14: Oct 23

Announcement

• HW5 due this Fri Oct 25.

• Homework session this afternoon.

Last time

• Distribution of quadratic forms (JM 5.4)

– X ∼ Np(µ,V ) with V non-singular, A ∈ Rp×p be symmetric, and AV is

idempotent with rank s, then XTAX ∼ χ2
s(

1
2
µTAµ).

– See HW5 for a more general version.

• Independence between linear and quadratic forms of a normal X ∼ N(µ,V )

– (a+AX) ⊥ (b+BX) if AV BT = 0.

– BX ⊥XTAX if A is symmetric and BV A = 0.

– XTAX ⊥XTBX if A and B are symmetric and BV A = 0.

Today

• Cochran’s theorem (JM 5.5)

• Statistical inference for normal Gauss-Markov model y ∼ Nn(Xb, σ2I)

Cochran theorem (JM 5.5)

• We already saw that, under the normal linear model y ∼ Nn(Xb, σ2I), the sum

of squares ‖ŷ‖2
2 = ‖yTPXy‖2

2 and ‖ê‖2
2 = ‖yT (I − PX)y‖2

2 are independent

chi-square distributions.

The Cochran theorem deals with the distributions of more general sum of

squares from normal linear model.
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• (Cochran theorem) Let y ∼ Nn(µ, σ2In) and Ai, i = 1, . . . , k, be symmet-

ric idempotent matrix with rank si. If
∑k

i=1Ai = In, then (1/σ2)yTAiy are

independent χ2
si

(φi), with φi = 1
2σ2µ

TAiµ and
∑k

i=1 si = n.

Proof. Since Ai is symmetric and idempotent with rank si, Ai = QiQ
T
i with

Qi ∈ Rn×si and QT
i Qi = Isi . Define Q = (Q1, . . . ,Qk) ∈ Rn×

∑k
i=1 si . Note

QTQ = I∑k
i=1 si

QQT =
k∑
i=1

QiQ
T
i =

k∑
i=1

Ai = In.

From the second equation, we have

k∑
i=1

si =
k∑
i=1

rank(Ai) =
k∑
i=1

tr(Ai) = tr(In) = n.

Now

QTy =

Q
T
1 y
...

QT
k y

 ∼ Nn


Q

T
1µ
...

QT
kµ

 , σ2In

 ,

implying that QT
i y ∼ Nsi(Q

T
i µ, σ

2Isi) are jointly independent. Therefore

(1/σ2)yTAiy = (1/σ2)‖QT
i y‖2

2 ∼ χ2
si

( 1
2σ2µAiµ) are jointly independent.

• Application to the one-way ANOVA: yij = µ + αi + eij, or y = Nn(Xb, σ2In)

where

Xb =


1n1 1n1

1n2 1n2

...
. . .

1na 1na




µ

α1

α2

...

αa

 .
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Note

P1 = n−111T

PX = X(XTX)−XT

=


1n1 1n1

1n2 1n2

...
. . .

1na 1na





0

n−1
1

n−1
2

. . .

n−1
a




1n1 1n1

1n2 1n2

...
. . .

1na 1na


T

=


n−1

1 1n11
T
n1

n−1
2 1n21

T
n2

. . .

n−1
a 1na1

T
na

 .

Define

A1 = P1

A2 = PX − P1

A3 = In − PX .

with corresponding quadratic forms

SSM = yTA1y = nȳ2, (1/σ2)yTA1y ∼ χ2
1(φ1),

φ1 =
1

2σ2
(Xb)TA1(Xb) =

n(µ+ ᾱ)2

2σ2

SSAcfm = yTA2y =
a∑
i=1

niȳ
2
i· − nȳ2, (1/σ2)yTA2y ∼ χ2

a−1(φ2),

φ2 =
1

2σ2
(Xb)TA2(Xb) =

∑a
i=1 ni(αi − ᾱ)2

2σ2

SSE = yTA3y = yTy − nȳ2 =
a∑
i=1

ni∑
j=1

(yij − ȳ)2, (1/σ2)yTA3y ∼ χ2
n−a(φ3),

φ3 =
1

2σ2
(Xb)TA3(Xb) = 0.

We have the classical ANOVA table
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Source df Projection SS Noncentrality

Mean 1 P1 SSM=nȳ2 1
2σ2n(µ+ ᾱ)2

Group a− 1 PX − P1 SSAcfm =
∑a

i=1 niȳ
2
i − nȳ2 1

2σ2

∑a
i=1 ni(αi − ᾱ)2

Error n− a I − PX SSE=
∑a

i=1

∑ni
j=1(yij − ȳi)2 0

Total n I SST=
∑

i

∑
j y

2
ij

1
2σ2

∑a
i=1 ni(µ+ αi)

2

Estimation under the normal Gauss-Markov model (JM 6.2)

Assume normal Gauss-Markov model y ∼ Nn(Xb, σ2I).

• The density of y ∼ Nn(Xb, σ2I) is

f(y | b, σ2) =
1

(2πσ2)n/2
e−

1
2σ2

(y−Xb)T (y−Xb)

=
1

(2πσ2)n/2
e−

1
2σ2

yTy+ 1
σ2

yTXb− 1
2σ2

bTXTXb.

• Recall Theorem 6.2.25 of Casella and Berger (2001).

Let X1, . . . ,Xn be iid observations from an exponential family with pdf or pmf

of the form

f(x|θ) = h(x)c(θ) exp

(
k∑
j=1

w(θj)tj(x)

)
,

where θ = (θ1, . . . , θk). Then the statistics

T (X) =

(
n∑
i=1

t1(Xi), . . . ,
n∑
i=1

tk(Xi)

)
is complete as long as the parameter space Θ contains an open set in Rk.

• Also by Theorem 6.2.28 of Casella and Berger (2001):

If a minimal sufficient statistic exists, then any complete statistic is also a

minimal sufficient statistic.

• From the density of the normal Gauss-Markov model, we see

T (y) = (yTy,XTy)

is a complete and minimal sufficient statistic for (σ2, b).
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• Recall the Rao-Blackwell theorem (Casella and Berger, 2001, Theorem 7.3.17).

Any function of a sufficient statistic has the smallest variance among all unbiased

estimators of its expectation.

• Under the normal Gauss-Markov model y ∼ Nn(Xb, σ2I), the least squares

estimator Λb̂ of an estimable function Λb has the smallest variance among all

unbiased estimators.

Remark: The least squares estimator Λb̂ is also called the MVUE (minimum

variance unbiased estimator) under normal assumption.

Proof. The least squares estimator Λb̂ = Λ(XTX)−XTy is a function of the

complete sufficient statistic T (y) = (yTy,XTy) and has expectation E(Λb̂) =

Λb.

• (MLE) Under the normal Gauss-Markov model y ∼ Nn(Xb, σ2I), the maxi-

mum likelihood estimator (MLE) of (b, σ2) is(
b̂,

SSE

n

)
,

where b̂ is any least squares solution (solution to the normal equation) and

SSE = yT (I − PX)y.

Remark: The MLE for σ2 is biased.

Proof. To maximize the density

f(y | b, σ2) =
1

(2πσ2)n/2
e−

1
2σ2

(y−Xb)T (y−Xb)

is equivalent to maximizing the log-likelihood

L(b, σ2|y) = ln f(y | b, σ2) = −n
2

ln(2πσ2)− 1

2σ2
(y −Xb)T (y −Xb).

For any σ2, the quadratic form is minimized by any least squares solution (as

we showed before) and optimal value SSE. To find the maximizing σ2, we set

the derivative to 0

− n

2σ2
+

1

2σ4
SSE = 0,

which yields σ̂2 = SSE/n.
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• Under the normal Gauss-Markov model y ∼ Nn(Xb, σ2I), the MLE of an

estimable function Λb is Λb̂, where b̂ is any least squares solution.

Proof. If follows from the invariance property of the MLE (Casella and Berger,

2001, Theorem 7.2.10).
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15 Lecture 15: Oct 28

Announcement

• HW5 due today.

• HW6 posted today and due next Monday.

• HW7 will be posted this Wed and due next Wed.

• HW5-7 are covered in Midterm 2.

Last time

• Cochran’s theorem: Let y ∼ Nn(µ, σ2In) and Ai, i = 1, . . . , k, be symmet-

ric idempotent matrix with rank si. If
∑k

i=1Ai = In, then (1/σ2)yTAiy are

independent χ2
si

(φi), with φi = 1
2σ2µ

TAiµ and
∑k

i=1 si = n.

• Application of Cochran’s theorem to the one-way ANOVA model.

• Statistical inference for normal Gauss-Markov model y ∼ Nn(Xb, σ2I).

– (yTy,XTy) is a complete and minimal sufficient statistic for (σ2, b).

– The least squares estimator Λb̂ of an estimable function Λb is not only

MVAUE, but also MVUE under normal Gauss-Markov assumption.

– MLE of (b, σ2) is (b̂, SSE/n), where b̂ is any least squares solution and

SSE = yT (I − PX)y.

– MLE of any estimable function Λb is Λb̂.

Today

• Testing general linear hypothesis: first principles test

• Testing general linear hypothesis: LRT
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General linear hypothesis (JM 6.3)

We assume normal Gauss-Markov model y ∼ Nn(Xb, σ2I).

• In many applications, we are interested in testing a genera linear hypothesis

H0 : Rb = r vs HA : Rb 6= r,

where R ∈ Rs×p and r ∈ Rs.

• Examples

– HA : bj = 0

– HA : b1 = b2 = b3 = 0

– HA : b2 = b3 = b4

– HA : b1 + b3 = 1, b2 = 3

– HA : b ∈ C(B)

• We say a general linear hypothesis H0 : Rb = r is testable if R has full row

rank s and Rb is estimable.

• Example (testing the interaction in two-way ANOVA): Consider the two-way

ANOVA model with interaction

yij = µ+ αi + βj + γij + eijk.

In Lecture 6 (Sep 18), we showed that the interaction effects

γij − γij′ − γi′j + γi′j′

are estimable. There are (a− 1)(b− 1) linearly independent interaction effects.

Thus s = (a − 1)(b − 1) in the linear hypothesis H0 : Rb = 0s for testing

interaction effects.

Recall that the design matrix for a two-way ANOVA with interaction has rank

ab and that for a two-way ANOVA without interaction has rank a+ b− 1. The

difference is ab− (a+ b− 1) = (a− 1)(b− 1).
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First principles test for a general linear hypothesis (JM 6.3)

• Consider testing a testable general linear hypothesis Rb = r under the normal

Gauss-Markov model y ∼ Nn(Xb, σ2I).

• Since Rb is estimable, the MVAUE (also the MVUE and MLE)

Rb̂ = R(XTX)−XTy

is a multivariate normal with mean

R(XTX)−XTXb = Rb

and covariance

σ2R(XTX)−XTX(XTX)−RT = σ2R(XTX)−RT =: σ2H .

Hence

Rb̂− r ∼ Ns(Rb− r, σ2H).

• Note

rank(H) = rank(X(XTX)−RT )

≥ rank(XTX(XTX)−RT ) = rank(RT ) = s,

thus H is non-singular.

• By previous result (Lecture 12),

(Rb̂− r)T (σ2H)−1(Rb̂− r) ∼ χ2
s(φ)

with noncentrality parameter

φ =
1

2
(Rb− r)T (σ2H)−1(Rb− r).

• Since

[R(XTX)−XT ](σ2I)(I − PX) = 0,

the quadratic form (Rb̂−r)T (σ2H)−1(Rb̂−r) is independent of the quadratic

form SSE = yT (I − PX)y.
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• Therefore the ratio is a F random variable

F =
(Rb̂− r)TH−1(Rb̂− r)/s

SSE/(n− r)
∼ Fs,n−r(φ).

Under H0 : Rb = r, φ = 0 and the ratio is a central F distribution.

Under HA : Rb 6= r, φ > 0 and the ratio is a noncentral F distribution.

• Consider one-way ANOVA model

yij = µ+ αi + eij.

We want test the hypothesis that all effects αi are equal. The two hypotheses

H0 : α1 − α2 = 0, α1 − α3 = 0, . . . , αa − αa = 0

and

H0 : α1 − α2 = 0, α2 − α3 = 0, . . . , αa−1 − αa = 0

are two logically equivalent ways of expressing the test. Will they lead to the

same test procedure?

• Two linear hypotheses R1b = r1 and R2b = r2 are equivalent if

{b : R1b = r1} = {b : R2b = r2}.

• (Invariance of the first principles test under equivalent linear hypotheses) Sup-

pose two linear hypotheses R1b = r1 and R2b = r2 are equivalent and both

R1 and R2 have full row rank s. The points in the set {b : R1b = r1} are

characterized by

R−1 r1 + (I −R−1 R1)q.

Now

R2[R−1 r1 + (I −R−1 R1)q] = r2

for all q implies that R2R
−
1 r1 = r2 (taking q = 0) and

R2(I −R−1 R1) = 0s×p.
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Thus C(RT
2 ) ⊂ C(RT

1 ). Reversing the roles of (R1, b1) and (R2, b2) shows that

C(RT
1 ) ⊂ C(RT

2 ). Hence C(RT
1 ) = C(RT

2 ).

R2 = TR1 for some transformation matrix T ∈ Rs×s. T must be non-singular,

otherwise rank(R2) ≤ rank(T ) < s, a contradiction with R2 has full row rank.

Also we have

R2R
−
1 r1 = TR1R

−
1 r1 = Tr1 = r2.

Thus the numerator of the F statistic for testing H0 : R2b = r2

(R2b− r2)T [R2(XTX)−RT
2 ]−1(R2b− r2)

= (R1b− r1)TT T [TR1(XTX)−RT
1 T

T ]−1T (R1b− r1)

= (R1b− r1)T [R1(XTX)−RT
1 ]−1(R1b− r1).

is same as that for testing H0 : R1b = r1.

Likelihood ratio test (LRT) for a general linear hypothesis

(JM 6.4-6.5)

• We derive the LRT for testing the general linear hypothesis H0 : Rb = r.

• The log-likelihood function is

L(b, σ2|y) = −n
2

ln(2πσ2)− 1

2σ2
(y −Xb)T (y −Xb)

= −n
2

ln(2πσ2)− 1

2σ2
Q(b),

where Q(b) = (y −Xb)T (y −Xb). As derived in the last lecture, for any b,

the maximizing σ2 is given by

σ̂2 =
Q(b)

n

and the resultant log-likelihood is

−n
2

ln[2πQ(b)/n]− n

2
.

We only need to derive the constrained and unconstrained MLE for b. That is

the constrained and unconstrained maximizers of Q(b).
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• The unconstrained MLE is the least squares solution b̂, i.e., any solution to the

normal equation.

• To derive the constrained MLE, we need to solve the minimization problem

minimize
1

2
(y −Xb)T (y −Xb)

subject to Rb = r.

Setting the gradient of the Lagrangian function

1

2
(y −Xb)T (y −Xb) + λT (Rb− r)

to zero leads to the linear equation(
XTX RT

R 0

)(
b

λ

)
=

(
XTy

r

)
.

This equation is always consistent since XTy ∈ C(XT ) = C(XTX) and r =

Rb ∈ C(R). By HW4 Q5(e), a generalized inverse of bordered Gramian matrix

is (
XTX RT

R 0

)−

=

(
(XTX)− − (XTX)−RTH−1R(XTX)− (XTX)−RTH−1

H−1R(XTX)− −H−1

)
,

where H = R(XTX)−RT is non-singular under the assumption R has full row

rank. Therefore a solution is

b̂0 = [(XTX)− − (XTX)−RTH−1R(XTX)−]XTy + (XTX)−RTH−1r

= b̂− (XTX)−RTH−1Rb̂+ (XTX)−RTH−1r

= b̂− (XTX)−RTH−1(Rb̂− r).

• The change in the SSEs of constrained and unconstrained models is

Q(b̂0)−Q(b̂)

= (y −Xb̂0)T (y −Xb̂0)− (y −Xb̂)T (y −Xb̂)
= 2yTX(b̂− b̂0)− 2b̂XTXb̂+ 2b̂TXTXb̂0 + (b̂0 − b̂)TXTX(b̂0 − b̂)
= 2(y −Xb̂)TX(b̂− b̂0) + (b̂0 − b̂)TXTX(b̂0 − b̂)
= 0 + (Rb̂− r)TH−1R(XTX)−XTX(XTX)−RTH−1(Rb̂− r)

= (Rb̂− r)TH−1(Rb̂− r).
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• The LRT rejects when

maxΩ0 L(b, σ2)

maxΩ L(b, σ2)
=

(
Q(b̂0)

Q(b̂)

)−n/2
is small, or equivalently when

Q(b̂0)−Q(b̂)

Q(b̂)

is large, or equivalently when

(Rb̂− r)TH−1(Rb̂− r)/s

SSE/(n− r)

is large.

Therefore the LRT is same as the first principles test!
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16 Lecture 16: Oct 30

Announcement

• HW4 returned.

• HW4 Q5(e) mystery resolved: http://hua-zhou.github.io/teaching/st552-2013fall/

2013/10/29/hw4-Q5e-mystery-resolved.html

• HW6 due next Monday (?)

• No HW session this afternoon.

• HW7 posted today and due next Wed.

• Midterm 2 covers Chapter 5-7 and HW 5-7.

Last time

• Testing general linear hypothesis H0 : Rb = r: first principles test

F =
(Rb̂− r)TH−1(Rb̂− r)/s

SSE/(n− r)
∼ Fs,n−r(φ).

• Testing general linear hypothesis: LRT = first principles test

• The first principles test (and LRT) is same under equivalent linear hypotheses.

Today

• t test and confidence interval

• simultaneous confidence intervals and multiple comparison

t test and confidence interval

Assume the normal Gauss-Markov model y ∼ Nn(Xb, σ2I).
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• If rTb is estimable, then the least squares estimator (MVAUE, MVUE, MLE)

is

rT b̂ ∼ N(rTb, σ2rT (XTX)−r),

or equivalently

rT b̂− rTb
σ
√
rT (XTX)−r

∼ N(0, 1).

• We estimate σ2 by the usual σ̂2 = SSE/(n− r). Then

rT b̂− rTb
σ̂
√
rT (XTX)−r

=
(rT b̂− rTb)/

√
σ2rT (XTX)−r

SSE/[σ2(n− r)]
∼ tn−r.

• A (1− α) confidence interval for rTb is given by

rT b̂± tn−r,α/2σ̂
√
rT (XTX)−r,

where tn−r,α/2 is the critical value of a central t distribution with n− r degrees

of freedom. We are assured that

P(rT b̂− tn−r,α/2σ̂
√
rT (XTX)−r ≤ rTb ≤ rT b̂+ tn−r,α/2σ̂

√
rT (XTX)−r) = 1− α.

• For two-sided testing

H0 : rTb = r vs HA : rTb 6= r.

The t test rejects H0 when∣∣∣∣∣ rT b̂− r
σ̂
√
rT (XTX)−r

∣∣∣∣∣ > tn−r,α/2.

One-sided tests are carried out similarly using critical value tn−r,α.

Simultaneous confidence intervals/multiple comparison (JM

6.6)

Assume the normal Gauss-Markov model y ∼ Nn(Xb, σ2I).
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• Now we consider estimating an estimable function Rb where R has full row

rank s. The least squares estimator (also MVAUE, MVUE and MLE) is

Rb̂ ∼ Ns(Rb, σ
2H),

where

H = R(XTX)−RT .

• The 1− α confidence interval for the i-th linear function rTi b is [li, ui], where

li = rTi b̂− tn−r,α/2σ̂
√
rTi (XTX)−ri = rTi b̂− tn−r,α/2σ̂

√
hii

ui = rTi b̂+ tn−r,α/2σ̂
√
rTi (XTX)−ri = rTi b̂+ tn−r,α/2σ̂

√
hii.

That means

P(li ≤ rTi b ≤ ui) = 1− α for i = 1, . . . , s,

and thus

P(li ≤ rTi b ≤ ui for all i = 1, . . . , s) ≤ 1− α,

where the inequality can be strict. In other words, our joint confidence intervals

don’t have the right coverage /

Bonferroni correction

• (Bonferroni inequalities) Let Ei be a collection of events. Then

P(∪jEj) = P(at least one Ej) ≤
∑
j

P(Ej)

P(∩jEj) = P(all Ej) ≥ 1−
∑
j

P(Ec
j ).

• Bonferroni method for simultaneous confidence intervals. Set

li = rTi b̂− tn−r,α/(2s)σ̂
√
rTi (XTX)−ri = rTi b̂− tn−r,α/2σ̂

√
hii

ui = rTi b̂+ tn−r,α/(2s)σ̂
√
rTi (XTX)−ri = rTi b̂+ tn−r,α/2σ̂

√
hii.
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Then

P(li ≤ rTi b ≤ ui for all i = 1, . . . , s)

≥ 1−
s∑
i=1

P(rTi b /∈ [li, ui])

= 1− s(α/s)
= 1− α.

Now our joint confidence intervals have the right coverage ,

• Obviously we can utilize these simultaneous intervals for testing H0 : Rb = r.

Simply reject H0 when |rTi b̂− ri| > tn−r,α/2sσ̂
√
hii for any i.

Scheffé’s method

• Scheffé’s method constructs simultaneous confidence intervals

[uTRb̂− cσ̂
√
uTHu,uTRb̂+ cσ̂

√
uTHu]

for all possible linear combinations uTRb of the estimable function Rb. The

universal constant c needs to be chosen so that we have the right coverage.

• Observe that

P(uTRb ∈ [uTRb̂− cσ̂
√
uTHu,uTRb̂+ cσ̂

√
uTHu] for all u)

= P

(
|uTRb̂− uTRb|

σ̂
√
uTHu

≤ c for all u

)

= P

(
max
u

|uTRb̂− uTRb|
σ̂
√
uTHu

≤ c

)

= P

(
max
u

[uT (Rb̂−Rb)]2

σ̂2uTHu
≤ c2

)

= P

(
(Rb̂−Rb)TH−1(Rb̂−Rb)

σ̂2
≤ c2

)

= P

(
(Rb̂−Rb)TH−1(Rb̂−Rb)

sσ̂2
≤ c2

s

)
.
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The key step (the fourth equality) is due to a generalized Cauchy-Schwartz

inequality (HW7). Since

(Rb̂−Rb)TH−1(Rb̂−Rb)
sσ̂2

∼ Fs,n−r,

we choose c such that c2/s = Fs,n−r,α, i.e.,

c =
√
sFs,n−r,α.

• Scheffé’s simultaneous confidence intervals are just inversion of the F test (first

principles test, LRT) and are invariant under equivalent linear hypotheses.

Tukey’s method

• Consider the balanced one-way ANOVA model: yij = µ + αi + eij, where n1 =

· · · = na = n.

• We are interested constructing simultaneous confidence intervals for all pairwise

differences of treatment effects αi − αj.

• The key observation is

max
i,j

(xi − xj) = max
i
xi −min

i
xi.

for any real numbers xi.

• Under balanced one-way ANOVA

ȳi· ∼ N(µ+ αi, σ
2/n)

for i = 1, . . . , a and are independent. So

Zi =
ȳi· − (µ+ αi)

σ/
√
n

are independent standard normals. Then

max
i,j

(ȳi· − ȳj·)− (αi − αj)
σ/
√
n

= max
i

ȳi· − (µ+ αi)

σ/
√
n

−min
i

ȳi· − (µ+ αi)

σ/
√
n

= max
i
Zi −min

i
Zi.
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Also recall that

SSE

σ2
=
a(n− 1)σ̂2

σ2
∼ χ2

a(n−1)

and is independent of Zi.

• We tabulate the distribution of the random variable

W =
maxj Zj −minj Zj√

U/ν
,

where Zj are k iid standard normals and independent of U ∼ χ2
ν . Let wk,ν,α be

the critical values of this distribution.

Then

1− α

= P

(
maxi(ȳi· − (µ+ αi))/(σ/

√
n)−mini(ȳi· − (µ+ αi))/(σ/

√
n)√

σ̂2/σ2
≤ wa,a(n−1),α

)

= P

(
max
i

(ȳi· − (µ+ αi))−min
i

(ȳi· − (µ+ αi)) ≤
σ̂√
n
wa,a(n−1),α

)
= P

(
max
i,j

[(ȳi· − ȳj·)− (αi − αj)] ≤
σ̂√
n
wa,a(n−1),α

)
= P

(
|(ȳi· − ȳj·)− (αi − αj)| ≤

σ̂√
n
wa,a(n−1),α for all i, j

)
= P

(
(ȳi· − ȳj·)−

σ̂√
n
wa,a(n−1),α ≤ αi − αj ≤ (ȳi· − ȳj·) +

σ̂√
n
wa,a(n−1),α for all i, j

)
.

Therefore[
(ȳi· − ȳj·)−

σ̂√
n
wa,a(n−1),α, (ȳi· − ȳj·) +

σ̂√
n
wa,a(n−1),α

]
are level 1 − α simultaneous confidence intervals for all pairwise differences of

treatment means αi − αj.

• (Extension to contrasts) Any linear combination uTα =
∑a

i=1 uiαi, where∑a
i=1 ui = 0, is called a contrast. Tukey’s method can be extended to simulta-

neous confidence intervals for all contrasts in balanced one-way ANOVA (HW7)[∑
i

uiȳi· −
σ̂√
n
wa,a(n−1),α ×

1

2

∑
i

|ui|,
∑
i

uiȳi· +
σ̂√
n
wa,a(n−1),α ×

1

2

∑
i

|ui|

]
.
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Sequential sum of squares (JM 7.3)

Assume the normal Gauss-Markov model y ∼ Nn(Xb, σ2I).

• Partition the design matrix as

X = (X0,X1, . . . ,Xk),

where Xj ∈ Rn×pj and
∑k

j=0 pj = p.

• Define

A0 = PX0

Aj = P(X0,...,Xj) − P(X0,...,Xj−1), j = 1, . . . , k,

Ak+1 = In − PX .

Let

rj = rank(Aj) = rank(P(X0,...,Xj))− rank(P(X0,...,Xj−1))

= rank((X0, . . . ,Xj))− rank((X0, . . . ,Xj−1))

be the extra rank contribution from predictors in Xj.

• Aj are orthogonal projections and

k+1∑
j=0

Aj = In.

Therefore we can apply the Cochran’s theorem,

SSj
σ2

=
1

σ2
yTAjy ∼ χ2

rj
(φj), j = 0, . . . , k + 1,

with noncentrality parameter

φj =
1

2σ2
(Xb)TAj(Xb)

and are independent.

• ANOVA table for sequential SS (type I SS in SAS). See Table 1.

• Example SAS output. Two-way ANOVA with interaction.
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17 Lecture 17: Nov 4

Announcement

• HW6 due this Wed

• HW7 due this Wed.

• Midterm 2 change of time?

Last time

• t test and confidence interval

rT b̂± tn−r,α/2σ̂
√
rT (XTX)−r.

• Simultaneous confidence intervals and multiple comparison

– Bonferroni for s linear hypotheses rTi b

rTi b̂± tn−r,α/(2s)σ̂
√
rTi (XTX)−ri.

– Scheffé for all linear combinations uTRb

uTRb̂± cσ̂
√
uTR(XTX)−RTu.

where c =
√
sFs,n−r,α.

– Tukey for all pairwise differences between treatment effects αi − αj in

balanced one-way ANOVA

(ȳi· − ȳj·)±
σ̂√
n
wa,a(n−1),α,

where wa,a(n−1),α is critical value ofW = (maxj Zj−minj Zj)/
√
U/(an− a),

U ∼ χ2
a(n−1).

• Sequential SS (type I SS).

Today

• Testing under the Aitken model y ∼ N(Xb, σ2V ).
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Testing under the Aitken model

Assume the Aitken model y ∼ N(Xb, σ2V ), where V can be singular.

• Consider testing a reduced model versus a full model

H0 : y ∼ (X0c, σ
2V ) vs HA : y ∼ (Xb, σ2V ),

where C(X0) ⊂ C(X). Equivalently, we are testing the column space hypothesis

H0 : b ∈ C(B) vs HA : b ∈ Rp

for some B. It’s a special case of the more general linear hypothesis Rb = r.

• The MVAUE of the estimable function Xb is

Λ̂b = X(XTV −1 X)−XTV −1 y,

where V1 = V +XXT . We also showed that

X̂b = Xb̂,

where b̂ = (XTV −1 X)−XTV −1 y minimizes the generalized least squares crite-

rion (y −Xb)TV −1 (y −Xb). Therefore the SSE under the full model is

SSE = (y −Xb̂)TV −1 (y −Xb̂)
= yT [I −X(XTV −1 X)−XTV −1 ]TV −1 [I −X(XTV −1 X)−XTV −1 ]y

= yT [V −1 − V −1 X(XTV −1 X)−XTV −1 ]y

=: yTA1y.

The third equality uses HW4 Q5 (c) C(XTV −1 X) = C(XT ).

We observe that SSE is invariant to the choice of the generalized inverses V −1
and (XTV −1 X)− (why?). Without loss of generality, we may assume A1 is

symmetric by using the Moore-Penrose inverses throughout.

• Similarly, the SSE under the reduced model is

SSE0 = yT [I −X0(XT
0 V

−
0 X0)−XT

0 V
−

0 ]TV −0 [I −X0(XT
0 V

−
0 X0)−XT

0 V
−

0 ]y

= yT [V −0 − V −0 X0(XT
0 V

−
0 X0)−XT

0 V
−

0 ]y

=: yTA0y,

where V0 = V +X0X
T
0 .
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• A reasonable test for a general linear hypothesis may be based on the change

in SSEs under the constrained and full models

SSE0 − SSE

SSE
.

We need some preparatory results first.

• Assume X ∼ N(µ,V ), where µ ∈ C(V ) and V is an orthogonal projection

matrix. Then

XTX ∼ χ2
rank(V )(µ

Tµ/2).

Proof. V = OOT , where O ∈ Rn×rank(V ) and OTO = Irank(V ). Note C(V ) =

C(O). Let µ = Ob for some b. Then X = OZ, where Z ∼ N(b, Irank(V )).

Thus

XTX = ZTOTOZ = ZTZ ∼ χ2
rank(V )(µ

Tµ/2).

• Assume X ∼ N(µ,V ), V possibly singular and A is symmetric. Then

XTAX ∼ χ2
tr(AV )(µ

TAµ/2)

if (1) V AV AV = V AV , (2) µTAV Aµ = µTAµ, and (3) V AV Aµ =

V Aµ.

Remark: Previously (in Lecture 13) we showed the special case where V is

nonsingular, A is symmetric, and AV is idempotent.

Proof. X = µ+ e, where e ∼ N(0,V ) and thus e ∈ C(V ). Then

XTAV AX

= (µ+ e)T (AV A)(µ+ e)

= µTAV Aµ+ 2eTAV Aµ+ eTAV Ae

= µTAµ+ 2eTAµ+ eTAe

= XTAX.
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Let V = QQT where Q can be the Cholesky factor or symmetric square root.

Note C(V ) = C(Q). Then

XTAX = XTAV AX = (XTAQ)(QTAX)

and

QTAX ∼ N(QTAµ,QTAV AQ).

By assumption (1), the covariance matrix is an orthogonal projection with rank

rank(QTAV AQ) = rank(QTAQ)

= tr(QTAQ) = tr(AQQT ) = tr(AV ).

We also need to check QTAµ ∈ C(QTAV AQ). This is true because

QTAV AQ(QTAµ)

= QTAV AV Aµ

= QTAV Aµ

= QTAµ.

Thus the result follows form the preceding result.

• If X ∼ N(µ,V ), V possibly singular, and (1) V AV BV = 0, (2) V AV Bµ =

0, (3) V BV Aµ = 0, (4) µTAV Bµ = 0, then XTAX and XTBX are

independent.

Remark: Previously (in Lecture 13) we showed the special case where V is

nonsingular and A and B are symmetric.

Proof. Let V = QΛsQ
T , where Λs is diagonal containing all nonzero eigenval-

ues of V . Then X = µ+QΛ1/2
s Z, where Z ∼ N(0, I), and

XTAX = (µ+QΛ1/2
s Z)TA(µ+QΛ1/2

s Z)

= µTAµ+ 2µTAQΛ1/2
s Z +ZTΛ1/2

s QTAQΛ1/2
s Z

XTBX = (µ+QΛ1/2
s Z)TB(µ+QΛ1/2

s Z)

= µTBµ+ 2µTBQZΛ1/2
s +ZTΛ1/2

s QTBQΛ1/2
s Z.

Now we check independence between the summands of the two expressions.
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– From assumption (4),

µTAQΛ1/2
s Λ1/2

s QTBµ = µTAV Bµ = 0

⇒ µTAQZ ⊥ µTBQZ.

– From assumption (3),

V BV Aµ = 0

⇒ QΛsQ
TBV Aµ = 0

⇒ QTBV Aµ = 0

⇒ µTAQΛ1/2
s Λ1/2

s QTBQ = 0T

⇒ µTAQΛ1/2
s Z ⊥ ZTΛ1/2

s QTBQΛ1/2
s Z.

– Similarly, by assumption (2), µTBQΛ1/2
s Z ⊥ ZTΛ1/2

s QTAQΛ1/2
s Z.

– From assumption (1),

V AV B = 0

= QΛsQ
TAV B = 0

⇒ QTAQΛ1/2
s Λ1/2

s QTBQ = 0

⇒ ZTΛ1/2
s QTAQΛ1/2

s Z ⊥ ZTΛ1/2
s QTBQΛ1/2

s Z.

Therefore, we have XTAX ⊥XTBX.

120



18 Lecture 18: Nov 6

Announcement

• HW6 due this Wed.

• HW7 due next Mon.

• Midterm 2 changed to next Wed Nov 13 @ 11:45AM-1PM.

• Q&A for basic exam questions? (if interested, submit your questions by 11/27).

Last time

Testing under Aitken model y ∼ N(Xb, σ2V ) – preparatory results. Note correction

to the proof about independence of quadratic forms result (thanks to Xue Feng).

Today

Testing under Aitken model y ∼ N(Xb, σ2V ).

Testing under the Aitken model (cont’d)

Test H0 : y ∼ (X0c, σ
2V ) vs HA : y ∼ (Xb, σ2V ), V possibly singular.

• Now we can state and prove the results related to testing under Aitken model.

Recall the notation

SSE = yTA1y

SSE0 = yTA0y,

where

A1 = V −1 − V −1 X(XTV −1 X)−XTV −1 , V1 = V +XXT

A0 = V −0 − V −0 X0(XT
0 V

−
0 X0)−XT

0 V
−

0 , V0 = V +X0X
T
0 .

• Theorem

1. 1
σ2y

TA1y ∼ χ2
tr(A1V ).
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2. If Xb ∈ C(X0,V ), then

1

σ2
yT (A0 −A1)y ∼ χ2

tr((A0−A1)V )(b
TXTA0Xb/2).

3. If Xb ∈ C(X0,V ), then yTA1y is independent of yT (A0 −A1)y.

• The proof involves checking various conditions in the preparatory results.

– V A1 = V1A1

V A0 = V0A0.

Proof.

V A1 = (V1 −XXT )A1

= V1A1 −XXT [V −1 − V −1 X(XTV −1 X)−XTV −1 ]

= V1A1 −XXTV −1 +XXTV −1 X(XTV −1 X)−XTV −1

= V1A1 −XXTV −1 +XXTV −1

= V1A1.

Similarly V A0 = V0A0.

– (1) V A1V A1V = V A1V

(2) bTXTA1V A1Xb = bTXTA1Xb

(3) V A1V A1Xb = V A1Xb.

Remark: The first part of the theorem is checked by this result. Note that

the centrality parameter is bTXTA1Xb = 0 since

A1X = [V −1 − V −1 X(XTV −1 X)−XTV −1 ]X = 0.

Proof. For (1), by previous fact,

V A1V A1V = V A1V1A1V

= V [I − V −1 X(XTV −1 X)−XT ]V −1 V1V
−

1 [I −X(XTV −1 X)−XTV −1 ]V

= V [I − V −1 X(XTV −1 X)−XT ]V −1 [V1V
−

1 − V1V
−

1 X(XTV −1 X)−XTV −1 ]V

= V [I − V −1 X(XTV −1 X)−XT ]V −1 [V1V
−

1 −X(XTV −1 X)−XTV −1 ]V

= V [I − V −1 X(XTV −1 X)−XT ]V −1 [V1V
−

1 V −X(XTV −1 X)−XTV −1 V ]

= V [I − V −1 X(XTV −1 X)−XT ]V −1 [V −X(XTV −1 X)−XTV −1 V ]

= V [I − V −1 X(XTV −1 X)−XT ]V −1 [I −X(XTV −1 X)−XTV −1 ]V

= V A1V .
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For (2),

bTXTA1V A1Xb

= bTXTA1V1A1Xb

= bTXTA1Xb (since C(X) ⊂ C(V1)).

For (3),

V A1V A1Xb

= V1A1V1A1Xb

= V1A1Xb (since C(X) ⊂ C(V1))

= V A1Xb.

– V A1V A0V = V A1V .

Proof.

V A1V A0V

= V A1V0[V −0 − V −0 X0(XT
0 V

−
0 X0)−XT

0 V
−

0 ]V

= V A1[V −X0(XT
0 V

−
0 X0)−XT

0 V
−

0 V ]

= V A1V

= V AV .

The third equality is because

A1X0

= [V −1 − V −1 X(XTV −1 X)−XTV −1 ]X0

= V −1 X0 − V −1 X(XTV −1 X)−XTV −1 X0

= V −1 X0 − V −1 X(XTV −1 X)−XTV −1 XT (C(X0) ⊂ C(X))

= V −1 X0 − V −1 X0

= 0.
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– (1) V (A0 −A1)V (A0 −A1)V = V (A0 −A1)V .

(2) bTXT (A0−A1)V (A0−A1)Xb = bTXT (A0−A1)Xb = bTXTA0Xb.

(3) IfXb ∈ C(X0,V ), then V (A0−A1)V (A0−A1)Xb = V (A0−A1)Xb.

Remark: The second part of the theorem is checked by this result. The

non-centrality parameter is

1

2
bTXT (A0 −A1)Xb =

1

2
bTXTA0Xb.

and the degrees of freedom is tr((A0 −A1)V ).

Proof. For (1),

V (A0 −A1)V (A0 −A1)V

= V A0V A0V − 2V A0V A1V + V A1V A1V

= V A0V − 2V A1V + V A1V

= V (A0 −A1)V .

For (2), recall that A1X = 0. Then (2) follows from (same proof as the

preceding result part (1))

V0A0V0A0V0 = V0A0V0.

For (3), since A1X = 0, enough to show

V A0V A0Xb− V A1V A0Xb = V A0Xb.

With V A0V A0Xb = V A0Xb, it’s enough to show

V A1V A0Xb = 0.

This is verified by

V A1V A0Xb

= V A1V A0V c (because Xb ∈ C(X0,V ) = C(V0) and A0X0 = 0)

= V A1V c (preceding result)

= V A1Xb (because A1X0 = 0)

= 0. (because A1X = 0)
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– (1) V A1V (A0 −A1)V = 0

(2) If Xb ∈ C(X0,V ), then V A1V (A0 −A1)Xb = 0.

(3) V (A0 −A1)V A1Xb = 0

(4) bTXT (A0 −A1)V A1Xb = 0.

Remark: The third part of the theorem (independence) is checked by this

result.

Proof. For (1),

V A1V (A0 −A1)V

= V A1V A0V − V A1V A1V

= V A1V − V A1V

= 0.

(2) follows from the proof in the preceding result.

(3) and (4) are trivial since A1X = 0.

• Before we state the F-test, we show that the constrained model is consistent if

and only if Xb ∈ C(X0).

1. (Null model) If Xb ∈ C(X0), then P(Y ∈ C(X0,V )) = 1 and

bTXTA0Xb = 0.

2. (Alternative model) If Xb /∈ C(X0), then either

– Xb ∈ C(X0,V ), P(Y ∈ C(X0,V )) = 1, and bTXTA0Xb > 0, or

– Xb /∈ C(X0,V ) and P(Y /∈ C(X0,V )) = 1.

Proof. For Part 1, note Y = Xb + e, where e ∈ C(V ) and A0X0 = 0. For

part 2

– If Xb ∈ C(X0,V ), we need to show bTXTA0Xb > 0. Here is a proof

thanks to Po Ning. Suppose

bTXTA0Xb = bTXT [V −0 − V −0 X0(XT
0 V

−
0 X0)−XT

0 V
−

0 ]Xb = 0.

Note this quantity is invariant to the choice of generalized inverse V −0 due

to the fact Xb ∈ C(X0,V ) = C(V0) and C(X0) ⊂ C(V0). Without loss of
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generality, we can use V +
0 , which is psd and thus can be decomposed as

V + = LLT , L ∈ Rn×r full column rank. Therefore

bTXT [V −0 − V −0 X0(XT
0 V

−
0 X0)−XT

0 V
−

0 ]Xb

= bTXT [V +
0 − V +

0 X0(XT
0 V

+
0 X0)−XT

0 V
+

0 ]Xb

= bTXT [LLT −LLTX0(XT
0 V

+
0 X0)−XT

0 LL
T ]Xb

= bTXTL[I −LTX0(XT
0 LL

TX0)−XT
0 L]LTXb

= bTXTL(I − PZ)LTXb (let Z = LTX0)

= bTXTL(I − PZ)(I − PZ)LTXb

= ‖(I − PZ)LTXb‖2
2

= 0,

implying that (I − PZ)LTXb = 0 and thus

LTXb ∈ C(Z) = C(LTX0).

Then what?

– If Xb /∈ C(X0,V ), then Y = Xb + e cannot be in C(X0,V ) since e ∈
C(V ). If it does, thenXb = Y −e ∈ C(X0,V ), a contradiction. Therefore

P(Y /∈ C(X0,V )) = 1.

• (F test under Aitken model) The test rejects H0 : y ∼ N(X0c, σ
2V )

– if y /∈ C(X0,V ), or

– if y ∈ C(X0,V ) and

(SSE0 − SSE)/tr((A0 −A1)V )

SSE/tr(A1V )
> Ftr((A0−A1)V ),tr(A1V ),α.

It is a level-α test because P(Y /∈ C(X0,V )) = 0 under H0. The power of the

test is always greater than α since if bTXTA0Xb = 0, then the test will reject

H0 with probability 1.
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19 Lecture 19: Nov 11

Announcement

• HW6 returned.

• HW7 due today.

• Midterm 2 this Wed Nov 13 @ 11:45AM-1PM.

Last time

Testing under Aitken model y ∼ N(Xb, σ2V ) – main results and proofs.

Today

• Q&A

• Estimation of σ2.

Q&A for midterm 2

• Notes p101 about independence of numerator and denominator of the F statistic.

• Notes p103 about cancellation of T .

MVQUE of σ2

• So far we have focused on estimation and testing of b. What’s a good estimator

of σ2? We only know that the least squares estimator

σ̂2 = SSE/(n− rank(X))

is unbiased under the Gauss-Markov assumption.

With additional normality assumption, does this have minimum variance within

certain class of estimators? Does this have minimum mean square error (MSE)

within certain class of estimators?
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• Since σ2 is a quadratic concept, we consider estimation of σ2 by a quadratic

function of y.

We call any estimator yTAy, where A is symmetric and non-stochastic, a

quadratic estimator.

• Any estimator σ̂2 such that

E(σ̂2) = σ2 for all b ∈ Rp and σ2 > 0

is called an unbiased estimator of σ2.

• The minimum variance unbiased estimator (MVQUE, also called BQUE) of σ2

is a quadratic unbiased estimator of σ2, say σ̂2, such that

Var(σ̂2) ≤ Var(τ̂ 2)

for all quadratic unbiased estimators τ̂ 2 of σ̂2.

• Since we are dealing with quadratic function of a multivariate normal, we recall

a useful result (shown in HW5).

Let Y ∼ N(µ,V ), V nonsingular, and let U = Y TAY for A symmetric.

1. The mgf of U is

mU(t) = |I − 2tAV |−1/2e−µ
TV −1µ/2+µT (V −2tV AV )−1µ/2

= |I − 2tAV |−1/2e−tµ
T (I−2tAV )−1Aµ.

2. The mean and variance of U is

EU = tr(AV ) + µTAµ

VarU = 2tr(AV )2 + 4µTAV Aµ.

• Under Gauss-Markov normal model y ∼ N(Xb, σ2I), the least squares estima-

tor

σ̂2 =
SSE

n− rank(X)
=
yT (I − PX)y

n− rank(X)

is MVQUE.

128



Proof. Let σ̂2 = yTAy be a quadratic estimator of σ2. Then

σ̂2 = (Xb+ e)TA(Xb+ e)

= bTXTAXb+ 2bTXTAe+ eTAe

and

E(σ̂2) = bTXTAXb+ σ2trA = σ2

for all b and σ2 > 0 if and only if

XTAX = 0p×p and trA = 1.

The variance of σ̂2 is (why?)

Var(σ̂2) = Var(yTAy)

= 2σ4(trA2 + 2γTXTA2Xγ),

where γ = b/σ. To seek the MVQUE, we solve the optimization problem

minimize trA2 + 2γTXTA2Xγ

subject to XTAX = 0 and trA = 1.

(It turns out the optimal A is independent of the unknown parameter γ.) We

form the Lagrangian

L(A, λ,L) =
1

2
trA2 + γTXTA2Xγ − λ(trA− 1)− tr(LTXTAX),

where λ and L ∈ Rp×p are Lagrange multipliers. Since XTAX is symmetric,

we assume L is symmetric too. Setting derivative of the Lagrangian to 0 gives

A+XγγTXTA+AXγγTXT − λI = XLXT

XTAX = 0p×p

trA = 1

(Check Lecture 8 p56 for derivatives of trace functions.) Pre- and post-multiplying

the first equation by PX = X(XTX)−XT yields

−λPX = XTLX.
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Substitution back to the first equation shows

A = λ(I − PX)− (XγγTXTA+AXγγTXT ).

Taking trace on both sides gives tr(A) = λ(n− r) = 1, i.e.,

λ =
1

n− r
.

Taking square on both sides gives

A2 = λ2(I − PX)− λAXγγTXT

−λXγγTXTA+XγγTXTA2XγγTXT

+AXγγTXTXγγTXTA.

Taking trace on both sides

tr(A2) =
1

n− r
+ 2(γTXTA2Xγ)(γTXTXγ).

Thus the objective function can be expressed as

tr(A2) + 2γTXTA2Xγ

=
1

n− r
+ 2(γTXTA2Xγ)(1 + γTXTXγ),

which is minimized by taking AXγ = 0. Therefore

A = λ(I − PX) =
I − PX

n− r
.
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20 Lecture 20: Nov 18

Last time

Under Gauss-Markov normal model, the least squares estimator σ̂2 = SSE/(n− r) is

MVQUE.

Today

• Best quadratic invariant estimator of σ2.

• Variance components and mixed model (Chapter 8): introduction.

Best quadratic invariant estimation of σ2

• In this section, we seek the quadratic estimator of σ2 with smallest mean squared

error (MSE), within the class of invariant quadratic estimators. Recall that the

MSE of an estimator of σ2 is

E(σ̂2 − σ2)2 = E[σ̂2 − E(σ̂2) + E(σ̂2)− σ2]

= Var(σ̂2) + [E(σ̂2)− σ2]2

= Variance + Bias2.

• Assume y ∼ N(Xb, σ2V ), V nonsingular. Let yTAy be a quadratic estimator.

In HW5, we showed that its first two moments are

E(yTAy) = bTXTAXb+ σ2tr(AV )

Var(yTAy) = 4σ2bTXTAV AXb+ 2σ4tr(AV )2

and its mgf is

m(t) = |I − 2tAV |−1/2e−b
TXTV −1Xb/2+bTXT (V −2tV AV )−1Xb/2

= |I − 2tAV |−1/2e−tb
TXT (I−2tAV )−1AXb.

Thus distribution is independent of b if and only if AX = 0n×p.

Proof. The “if” part is trivial from the mgf. For the “only if” part, bTXTAV AXb =

0 for all b implies XTAV AX = 0p×p. Since V is nonsingular, AX = 0.
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• We say a quadratic estimator yTAy is invariant under translation of b ifAX =

0.

A quadratic invariant estimator σ̂2 is the best quadratic invariant estimator of

σ2 if

E(σ̂2 − σ2)2 ≤ E(τ̂ 2 − σ2)2

for all quadratic invariant estimator τ̂ 2 of σ2.

• Under Gauss-Markov normal model y ∼ N(Xb, σ2I), the best quadratic in-

variant estimator of σ2 is

σ̂2 =
yT (I − PX)y

n− r + 2
=

SSE

n− r + 2
.

Remark: By introducing bias (shrinkage) to the unbiased estimator SSE/(n−r),
we achieve optimal MSE.

Proof. Let σ̂2 = yTAy be a quadratic estimator. Invariance imposes AX = 0.

Thus

σ̂2 = yTAy = (Xb+ e)TA(Xb+ e) = eTAe

and the MSE is (why?)

E(σ̂2 − σ2)2 = 2σ4trA2 + σ4(1− trA)2.

We seek the best quadratic invariant estimator by solving

minimize 2trA2 + (1− trA)2

subject to AX = 0.

We form the Lagrangian

L(A,L) = trA2 +
1

2
(1− trA)2 − tr(LTAX)

and set its gradient to zero

2A− (1− trA)In = LXT

AX = 0.
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Pre-multiplying the first equation by A yields

2A2 − (1− trA)A = ALXT .

Post-multiplying by PX = X(XTX)−XT shows

ALXT = 0.

Substitution back gives

A2 =
1− trA

2
A.

Let rank(A) = ρ. By a result shown in Lecture 3 (p16),

trA =
1− trA

2
rank(A) =

1− trA

2
ρ.

Thus

tr(A) =
ρ

ρ+ 2
and tr(A2) =

ρ

(ρ+ 2)2
.

The objective function becomes

2

ρ+ 2
.

Since AX = 0, the maximing ρ is n− rank(X) = n− r. Note (n− r + 2)A is

symmetric, idempotent, and orthogonal to C(X), thus equals I−PX . Therefore

A = (I − PX)/(n− r + 2).

• In summary, we have the following estimators for σ2

– MVQUE (aka least square estimator): SSE/(n− r)

– MLE: SSE/n

– Best quadratic invariant estimate: SSE/(n− r + 2)
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Variance components and mixed models

• Traditionally, linear models have been divided into three categories:

– Fixed effects model : y = Xb+ e, where b is fixed.

– Random effects model : y = Zu+ e, where u is random.

– Mixed effects model : y = Xb+Zu+e, where b is fixed and u is random.

• In a mixed effects model

y = Xb+Zu+ e

– X ∈ Rn×p is a design matrix for fixed effects b ∈ Rp.

– Z ∈ Rn×q is a design matrix for random effects u ∈ Rq.

– The most general assumption is e ∈ N(0n,R), u ∈ N(0q,G), and e is

independent of u.

In many applications, e ∼ N(0n, σ
2In) and

Zu =
(
Z1 · · · Zm

)u1

...

um

 = Z1u1 + · · ·+Zmum,

where ui ∼ N(0qi , σ
2
i Iqi),

∑m
i=1 qi = q. e and ui, i = 1, . . . ,m, are jointly

independent. Then the covariance of responses y

V (σ2, σ2
1, . . . , σ

2
m) = σ2I +

m∑
i=1

σ2
iZiZ

T
i

is a function of the variance components (σ2, σ2
1, . . . , σ

2
m).

• Primary goal of the mixed model (aka variance components model) is to

– estimation and testing of the fixed effects b

– estimation and testing of the variance components (σ2, σ2
1, . . . , σ

2
m)

– prediction
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• Example: One-way ANOVA with random treatment effects (JM 8.2)

yij = µ+ αi + eij, i = 1, . . . , a, j = 1, . . . , ni,
a∑
i=1

ni = n.

So far we considered the fixed effects model where the treatment effects αi are

assumed to be constant. In random effects model, the common assumption is

αi ∼ N(0, σ2
a)

eij ∼ N(0, σ2)

are jointly independent. Equivalently the model is

y = Xb+Zu+ e

= 1nµ+


1n1

1n2

. . .

1na

u+ e,

where u ∼ N(0a, σ
2
aIa) and e ∼ N(0n, σ

2In) are independent. The covariance

matrix is

V = BlkDiag(V1, . . . ,Va) =


V1

V2

. . .

Va

 ,

where Vi = σ2Ini + σ2
a1ni1

T
ni

.

The model parameters are (µ, σ2, σ2
a).

• Example: Two-way ANOVA with random effects

yijk = µ+ αi + βj + γij + eijk, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , nij,

where

αi ∼ N(0, σ2
a), βj ∼ N(0, σ2

b )

γij ∼ N(0, σ2
c ), eijk ∼ N(0, σ2)
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are jointly independent.

Equivalently the model is

y = 1nµ+



1n11

1n12

...

1n1b

...
...

1na1
1na2

...

1nab



ua +



1n11

1n12

. . .

11b

...
...

1na1
1na2

. . .

1ab



ub

+



1n11

1n12

. . .

11b

. . .

1na1
1na2

. . .

1ab



uc + e,

where

ua ∼ N(0a, σ
2
aIa), ub ∼ N(0b, σ

2
bIb),

uc ∼ N(0ab, σ
2
cIab), e ∼ N(0n, σ

2In)

are jointly independent.

The model parameters are (µ, σ2, σ2
a, σ

2
b , σ

2
c ).

• We may also have two-way ANOVA mixed model, where one factor has fixed

effects and the other factor has random effects (JM Example 8.1 p190).
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21 Lecture 21: Nov 20

Announcement

• HW7 returned.

• Midterm 2 returned (85.63± 6.32).

• HW8 posted and due Mon Dec 2.

• No afternoon session today.

• Email your comments (compliments?) on TA to me.

Last time

• Best (minimal MSE) quadratic invariant estimator of σ2.

• Variance components and mixed model (Chapter 8): introduction.

Today

• Variance component estimation: MLE.

• Variance component estimation: REML.

Variance component estimation: MLE (JM 8.4.1)

In this section, we pursue MLE for the variance components model

y ∼ Nn(Xb,V ),

where

V =
m∑
i=0

σ2
iVi,

with Vi psd and V nonsingular. Parameters are b and (σ2
0, σ

2
1, . . . , σ

2
m).
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• Assume V is nonsingular, then the log-likelihood function is

L(b, σ2
0, σ

2
1, . . . , σ

2
m)

= −n
2

ln(2π)− 1

2
ln det(V )− 1

2
(y −Xb)TV −1(y −Xb).

• In general we need some iterative optimization algorithm (Fisher scoring, EM

algorithm) to find the MLE.

• The following facts are useful when deriving the derivatives of log-likelihood.

1. The partial derivative of a matrix B = (bij) with respect to a scalar pa-

rameter θ is the matrix

∂

∂θ
B =

(
∂

∂θ
bij

)
.

2. Because the trace function is linear,

∂

∂θ
tr(B) = tr

(
∂

∂θ
B

)
.

3. The product rule of differentiation implies

∂

∂θ
(BC) =

(
∂

∂θ
B

)
C +B

(
∂

∂θ
C

)
.

4. The derivative of a matrix inverse is

∂

∂θ
B−1 = −B−1

(
∂

∂θ
B

)
B−1

Proof. Solving for ∂
∂θ
B−1 in

0 =
∂

∂θ
I

=
∂

∂θ
(B−1B)

=

(
∂

∂θ
B−1

)
B +B−1

(
∂

∂θ
B

)
.
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5. If B is a square nonsingular matrix, then

∂

∂θ
detB = detB · tr

(
B−1 ∂

∂θ
B

)
,

∂

∂θ
ln detB = tr

(
B−1 ∂

∂θ
B

)
.

• The score, observed information matrix, and expected (Fisher) information ma-

trix of the variance components model are listed below (HW8).

1. Score (gradient) vector is

∂

∂bi
L = eTi X

TV −1(y −Xb)

∂

∂σ2
i

L = −1

2
tr(V −1Vi) +

1

2
(y −Xb)TV −1ViV

−1(y −Xb).

2. The observed information matrix has entries

− ∂2

∂bi∂bj
L = eTi X

TV −1Xej

− ∂2

∂σ2
i ∂bj

L = eTjX
TV −1ViV

−1(y −Xb)

− ∂2

∂σ2
i ∂σ

2
j

L = −1

2
tr(V −1ViV

−1Vj) + (y −Xb)TV −1ViV
−1VjV

−1(y −Xb).

3. The expected (Fisher) information matrix has entries

E

(
− ∂2

∂bi∂bj
L

)
= eTi X

TV −1Xej

E

(
− ∂2

∂σ2
i ∂bj

L

)
= 0

E

(
− ∂2

∂σ2
i ∂σ

2
j

L

)
=

1

2
tr(V −1ViV

−1Vj)

and thus has a block diagonal form(
E(−d2

bL) 0p

0Tp E(−d2
σ2L)

)
.
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• Setting the score (gradient) vector to zero gives the likelihood equation for b

and σ2
i

XTV −1(y −Xb) = 0

(y −Xb)TV −1ViV
−1(y −Xb) = tr(V −1Vi), i = 0, . . . ,m.

Root of the likelihood equation is the MLE.

• Example: One-way ANOVA with random effects

yij = µ+ αi + eij, i = 1, . . . , a, j = 1, . . . , ni,

where αi ∼ N(0, σ2
1) and eij ∼ N(0, σ2

0) are independent. Here

X = 1n, V0 = In, V1 = BlkDiag(σ2
11ni1

T
ni

),

and

V = BlkDiag
(
σ2

0Ini + σ2
11ni1

T
ni

)
,

V −1 = BlkDiag

(
σ−2

0 Ini − σ−2
0

σ2
1

σ2
0 + niσ2

1

1ni1
T
ni

)
V −2 = BlkDiag

(
σ−4

0 Ini + σ−4
0

σ2
1(ni − 2)

σ2
0 + niσ2

1

1ni1
T
ni

)
.

Setting the score vector to 0 gives the likelihood equation (check it! it might be

wrong)

σ−2
0

∑
i

(
ni −

σ2
1n

2
i

σ2
0 + niσ2

1

)
µ = σ−2

0

∑
i

(
1− σ2

1ni
σ2

0 + niσ2
1

)∑
j

yij

σ−2
0

∑
i

(
ni −

σ2
1ni

σ2
0 + niσ2

1

)
= σ−4

0

∑
i

(∑
j

(yij − µ)2 +
σ2

1(ni − 2)

σ2
0 + niσ2

1

(
∑
j

yij − niµ)2

)

σ−2
0 σ2

1

∑
i

(
ni −

σ2
1n

2
i

σ2
0 + niσ2

1

)
= σ−4

0 σ2
1

∑
i

σ2
0 − niσ2

1

σ2
0 + niσ2

1

(∑
j

yij − niµ

)2

.

In the un-balanced case, there is no analytical solution to the likelihood equa-

tion. In the balanced case, analytical solution is available (HW8).
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MLE under singular V

• Suppose Y ∼ Nn(µ,V ), where V is singular. MLE depends on a density, which

does not exist for singular V /

• Assume r = rank(V ) < n, let B ∈ Rn×r such that C(B) = C(V ). Then

BTY ∼ Nr(B
Tµ,BTV B),

where the covariance matrix is nonsingular since

rank(BTV B) = rank(BTUrDrU
T
r B)

= rank(UT
r B) = rank(UT

r UrT ) = rank(UT
r Ur) = r.

• The log-likelihood of BTY is

−r
2

ln(2π)− 1

2
ln det(BTV B)− 1

2
(BTy −BTµ)T (BTV B)−1(BTy −BTµ)

= −r
2

ln(2π)− 1

2
ln det(BTV B)− 1

2
(y − µ)TB(BTV B)−1BT (y − µ).

• We now show that maximization of the log-density does not depend on choice

of B.

Let B1,B2 ∈ Rn×r be such that C(B1) = C(B2) = C(V ) with r = rank(V ).

Then

1. det(BT
1 V B1) = c det(BT

2 V B2) for some constant c.

2. B1(BT
1 V B1)−1BT

1 = B2(BT
2 V B2)−1BT

2 .

Proof. Since C(B1) = C(B2), B1 = B2T for some nonsingular transformation

matrix T . Then

det(BT
1 V B1) = det(T TBT

2 V B2T ) = [det(T )]2 det(BT
2 V B2)

and

B1(BT
1 V B1)−1BT

1 = B2T (T TBT
2 V B2T )−1T TBT

1 = B2(BT
2 V B2)−1BT

2 .
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22 Lecture 22: Nov 25

Announcement

• HW8 due Mon Dec 2.

• Email your comments (compliments?) on TA to me.

Last time

• Variance component estimation: MLE.

Today

• Variance component estimation: REML.

• Variance component estimation: method of moment.

• Variance component testing: exact F tests.

Variance component estimation: REML (JM 8.4.2)

• Again we consider estimating the variance components (σ2
0, . . . , σ

2
m) of the model

y ∼ Nn(Xb,V ),

where

V =
m∑
i=0

σ2
iVi,

with Vi psd and V nonsingular. Parameters are b and variance components

(σ2
0, . . . , σ

2
m).

• Restricted (or residual) maximum likelihood (REML) estimation involves finding

the MLE of variance components from the distribution of residuals. This allows

for estimation of the variance components without complication of the fixed

effects.
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• It is not clear how to define residuals since V is unknown.

Let M be any projection (not necessarily orthogonal) onto C(X). Then resid-

uals can be defined as

(I −M )y.

The distribution of the residuals is a singular normal

(I −M )Y ∼ N(0, (I −M )V (I −M)T )

and, due to nonsingularity of V ,

C((I −M )V (I −M )T ) = C(I −M )

Suppose s = rank(X) = rank(M), then

rank(I −M ) = n− s.

• We use the result in last section to do MLE on this singular normal distribution.

Let B ∈ Rn×(n−s) such that C(B) = C(I −M ). Then

BT (I −M )Y ∼ Nn−s(0,B
T (I −M)V (I −M )TB)

and the MLE of variance components maximizes the log-likelihood

−n− s
2

ln(2π)− 1

2
ln det(BT (I −M )V (I −M )TB)

−1

2
yT (I −M )TB[BT (I −M )V (I −M)TB]−1BT (I −M)y.

In last section we saw that maximization of this log-likelihood does not depend

on choice of B. Does this depend on choice of projection matrix M?

• C((I −M)TB) = N (XT ).

Proof. Clearly BT (I −M )X = BT (X −X) = 0(n−s)×p. So C((I −M )TB) ⊂
N (XT ). It is enough to show rank((I−M )TB) = n−s = dim(N (XT )). Since

C(B) = C(I −M) and I −M is idemponent, (I −M )B = B. Thus

rank((I −M )TB) = rank(BT (I −M )) = rank(BT ) = n− s.
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Remark: This result shows that for any projection M and B,

(I −M )TB = (I − PX)T

for some transformation matrix T ∈ Rn×(n−s) with full column rank and C(T ) =

N (XT ) (otherwise contradicting with rank((I −M )TB) = n − s). Therefore

the MLE estimation of variance components does not depend on choice of either

M or B.

• It turns out we even do not have to make this choice! The entire REML proce-

dure can be carried out using the original data.

• An alternative definition of REML is to do MLE from

BTY ∼ Nn−s(0,B
TV B),

where B ∈ Rn×(n−s) is any basis of N (XT ). That is BTX = 0(n−s)×p and

rank(B) = n− s.

Essentially we find a basis B of N (XT ) and estimate the variance components

from BTY . This is equivalent to the above procedure of choosing a projection

M and then doing MLE from residuals (why?). Hence the name restricted

maximum likelihood (REML).

• Thus we are doing MLE of variance components from the log-likelihood

−n− s
2

ln(2π)− 1

2
ln det(BTV B)− 1

2
yTB[BTV B]−1BTy.

Setting gradient to zero shows REML of the variance components has to satisfy

the likelihood equation

yTB(BTV B)−1BTViB(BTV B)−1BTy

= tr((BTV B)−1BTViB)

= tr(B(BTV B)−1BTVi), i = 0, . . . ,m.

It turns out the likelihood equation is independent of the choice of basis B.

• B(BTV B)−1BT = V −1 − V −1X(XTV −1X)−XTV −1.

144



Proof. Since V is pd, the symmetric square root V 1/2 is pd too. It suffices to

show

V 1/2B(BTV B)−1BTV 1/2 = I − V −1/2X(XTV −1X)−XTV −1/2.

The left side is the orthogonal projection onto C(V 1/2B) = C(B) = N (XT ).

The right side is the orthogonal projection onto N (XTV −1/2) = N (XT ). Since

orthogonal projection to a vector space is unique, proof is done.

• In summary, let

A := V −1 − V −1X(XTV −1X)−XTV −1.

Then any solution (σ̂2
0, . . . , σ̂

2
m) to the (restricted) likelihood equation

yTAViAy = tr(AVi), i = 0, 1, . . . ,m.

is the REML.

• Example: REML for balanced one-way ANOVA with random effects (HW8).

Variance component estimation: method of moment (JM 8.4.3)

Also called the ANOVA method (JM 8.4.3).

• Again we consider estimating the variance components (σ2
0, . . . , σ

2
m) of the model

y ∼ Nn(Xb,V ),

where

V =
m∑
i=0

σ2
iVi,

with Vi psd and V nonsingular.

• Recall

E(yTAy) = tr(AV ) + bTXTAXb

=
m∑
i=0

σ2
i tr(AVi) + bTXTAXb.
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• Choose Ai, i = 0, . . . ,m, such that XTAiX = 0. This leads to a system of

equations by setting E(yTAiy) to the observed yTAiy tr(A0V0) tr(A0V1) · · · tr(A0Vm)
...

...

tr(AmV0) tr(AmV1) · · · tr(AmVm)


σ

2
0
...

σ2
m

 =

y
TA0y

...

yTAmy

 ,

which can be solved for the variance components.

• Example: MoM for unbalanced one-way ANOVA with random effects (HW8).

Choose A0 = PZ − P1 and A1 = I − PZ .

Variance components testing: Wald’s exact F test

Proposed by Seely and El Bassiouni (1983).

• Consider the mixed linear model:

Y = Xb+Z1u1 +Z2u2 + e,

where Z1 ∈ Rn×q1 and Z2 ∈ Rn×q2 . u1, u2, and e are independent random

vectors with

u1 ∼ N(0q1 ,R), u2 ∼ N(0q2 , σ
2
2Iq2), e ∼ N(0n, σ

2
0In).

Equivalently, we have the variance component model

Y ∼ Nn(Xb,V ),

where

V = σ2
0In +Z1RZ

T
1 + σ2

2Z2Z
T
2 .

• We are interested testing H0 : σ2
2 = 0 vs HA : σ2

2 > 0.

• Idea of the Wald test is to treat u1 and u2 as fixed effects and use the change

in SSE as the test statistic.
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• Let P1 = PX,Z1 be the orthogonal projection onto C(X,Z1).

Let P2 = PX,Z1,Z2 be the orthogonal projection onto C(X,Z1,Z2).

Then

SSE1 = yT (I − P1)y

SSE2 = yT (I − P2)y

and

SSE1 − SSE2 = yT (P2 − P1)y.

Ideally we would like to conduct a F test based on the ratio

SSE1 − SSE2

SSE2

.

By previous result (p90 of notes), it is enough to show the following facts.

1. σ−2
0 (I − P2)V is idempotent with rank((I − P2)V ) = rank(I − P2).

Proof. Just note that

(I − P2)V (I − P2)

= V − V P2 − P2V + P2V P2

= V − (σ2
0P2 +Z1RZ

T
1 + σ2

2Z2Z
T
2 )

= σ2
0(I − P2).

2. σ−2
0 (P2 −P1)V is idempotent under the null hypothesis σ2

2 = 0 with rank

rank((P2 − P1)V ) = rank(P2 − P1).

Proof. Just note that, when σ2
2 = 0,

(P2 − P1)V (P2 − P1)

= P2V P2 − P2V P1 − P1V P2 + P1V P1

= (σ2
0P2 +Z1RZ

T
1 )− (σ2

0P1 +Z1RZ
T
1 )

−(σ2
0P1 +Z1RZ

T
1 ) + (σ2

0P1 +Z1RZ
T
1 )

= σ2
0(P2 − P1).
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3. (P2 − P1)V (I − P1) = 0.

Proof. Just note that

(P2 − P1)V (I − P1)

= P2V − P2V P2 − P1V + P1V P2

= (σ2
0P2 +Z1RZ

T
1 + σ2

2Z2Z
T
2 )− (σ2

0P2 +Z1RZ
T
1 + σ2

2Z2Z
T
2 )

−(σ2
0P1 +Z1RZ

T
1 + σ2

2P1Z2Z
T
2 ) + (σ2

0P1 +Z1RZ
T
1 + σ2

2P1Z2Z
T
2 )

= 0.

• (Wald’s F test) The test reject H0 : σ2
2 = 0 when

(SSE1 − SSE2)/rank(P2 − P1)

SSE1/rank(I − P2)
> Frank(P2−P1),rank(I−P2),α.

Remark: When C(X,Z1,Z2) = C(X,Z1), the test cannot be performed since

the numerator is 0/0.

Remark: Under the alternative hypothesis σ2
2 > 0, the numerator is not a χ2

random variable anymore but can be numerically evaluated by a method of

Davies (1980).

• Extension of Wald’s F test to the case

V = σ2
0Σ +Z1RZ

T
1 + σ2

2Z2Z
T
2 , (4)

where Σ ∈ Rn×n is a known psd matrix. Let r = rank(Σ).

Given eigen-decomposition Σ = UrDrU
T
r , define T = D

−1/2
r UT

r . Thus

TY ∼ N(TXb, σ2
0Ir + (TZ1)R(TZ1)T + σ2

2(TZ2)(TZ2)T ).

Then Wald’s F test can be applied to TY .

Variance components testing: Öfversten’s exact F test

Proposed by Öfversten (1993) and Christensen (1996).
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• Consider the mixed linear model:

Y = Xb+Z1u1 +Z2u2 + e,

where Z1 ∈ Rn×q1 and Z2 ∈ Rn×q2 . u1, u2, and e are independent random

vectors with

u1 ∼ N(0q1 , σ
2
1Iq1), u2 ∼ N(0q2 , σ

2
2Iq2), e ∼ N(0n, σ

2
0In).

Equivalently, we have the variance component model

Y ∼ Nn(Xb,V ),

where

V = σ2
0In + σ2

1Z1Z
T
1 + σ2

2Z2Z
T
2 .

• We are interested in testing H0 : σ2
1 = 0 vs HA : σ2

1 > 0.

• The idea is to massage the problem to the case (4) considered above.

First perform QR (Gram-Schmidt) on the matrix
(
X Z2 Z1 In

)
to obtain

an orthonormal basis
(
C1 C2 C3 C4

)
of Rn, where

– C1 is an orthonormal basis of C(X)

– C2 is an orthonormal basis of C(X,Z2)− C(X)

– C3 is an orthonormal basis of C(X,Z2,Z1)− C(X,Z2)

– C4 is an orthonormal basis of C(X,Z2,Z1)⊥.

Then we choose λ and matrix K such that

CT
2 Y +KCT

4 Y ∼ N(0, (σ2
2 + σ2

0/λ)CT
2 Z2Z

T
2 C2 + σ2

1C
T
2 Z1Z

T
1 C2),

which is of form (4).

• If CT
2 Z1 = 0, e.g., when C(Z1) ⊂ C(X), then this test cannot be performed.

• If CT
2 Z2Z

T
2 C2 = λI, note

CT
2 Y ∼ N(0, σ2

0I + σ2
2C

T
2 Z2Z

T
2 C2 + σ2

1C
T
2 Z1Z

T
1 C2)

= N(0, (σ2
0 + λσ2

2)I + σ2
1C

T
2 Z1Z

T
1 C2).

Then the ordinary Wald’s F test can be applied without using the KCT
4 Y piece

as long as CT
2 Z1 6= 0.
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• In general, CT
2 Z2Z

T
2 C2 6= λI, then the test requires KCT

4 Y . Note that

CT
2 V C4 = CT

2 (σ2
0In + σ2

1Z1Z
T
1 + σ2

2Z2Z
T
2 )C4 = 0.

Therefore CT
2 Y is independent of KCT

4 Y . We simply pick K such that

KCT
4 Y ∼ N(0, σ2

0(λ−1CT
2 Z2Z

T
2 C2 − I)).

That is

KKT = λ−1CT
2 Z2Z

T
2 C2 − I.

Apparently we need to choose λ such that λ−1CT
2 Z2Z

T
2 C2 − I is psd. Let

CT
2 Z2Z

T
2 C2 = WΛW T = Wdiag(λi)W

T be the eigendecomposition. Setting

λ to be the smallest eigenvalue yields

K = Wdiag(
√
λi/λ− 1).
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23 Lecture 23: Dec 2

Announcement

• HW8 due this Wed (?)

• Course evaluation: https://classeval.ncsu.edu/

Last time

• Variance component estimation: REML.

• Variance component estimation: method of moment/ANOVA method.

• Variance component testing: exact F tests.

Today

• Variance component testing: eLRT, eRLRT, score.

Exact LRT and RLRT with one variance component

This is proposed by Crainiceanu and Ruppert (2004). Slight notation change below.

• Consider the variance component model

Y ∼ Nn(Xb,V ),

where

V = σ2
0In + σ2

1V1.

Let λ = σ2
1/σ

2
0 be the signal-to-noise ratio, and write the covariance as

V = σ2
0(In + λV1) = σ2

0Vλ.

The model parameters are (b, σ2
0, λ). Denote s = rank(X).

• Testing H0 : σ2
1 = 0 vs HA : σ2

1 > 0 is equivalent to testing H0 : λ = 0 vs

HA : λ > 0.
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• The log-likelihood function is

L(b, σ2
0, λ) = −n

2
lnσ2

0 −
1

2
ln det(Vλ)−

1

2σ2
0

(y −Xb)TV −1
λ (y −Xb).

• The likelihood ratio test (LRT) statistic is

LRT = 2 sup
HA

L(b, σ2
0, λ)− 2 sup

H0

L(b, σ2
0, λ).

– Under the null λ = 0, it is a regular linear model with MLE

b̂ = (XTX)−XTy

σ̂2
0 =

SSE

n
=
yT (I − PX)y

n
=:
yTA0y

n
.

Thus

2 sup
H0

L(b, σ2
0, λ) = −n lnyTA0y + n lnn− n.

– Under the alternative, for fixed λ > 0, the profile likelihood maximizers

are

b̂(λ) = (XTV −1
λ X)−XTV −1

λ y

σ̂2
0(λ) =

yT [V −1
λ − V −1

λ X(XTV −1
λ X)−XTV −1

λ ]y

n
=:
yTAλy

n
.

Thus

2 sup
HA

L(b, σ2
0, λ) = sup

λ≥0
−n lnyTAλy − ln det(Vλ) + n lnn− n.

– Therefore the LRT statistic is

LRT = sup
λ≥0

n lnyTA0y − n lnyTAλy − ln det(Vλ),

where

A0 = I − PX

Aλ = V −1
λ − V −1

λ X(XTV −1
λ X)−XTV −1

λ .

• First obtain an orthonormal basis
(
Q0 Q1 Q2

)
of Rn such that
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– Q0 ∈ Rn×s is an orthonormal basis of C(X),

– Q1 ∈ Rn×k is an orthonormal basis from the eigendecomposition

A0V1A0 = Q1diag(µ1, . . . , µk)Q
T
1 ,

where k = rank(A0V1A0), and

– Q2 ∈ Rn×(n−s−k) is an orthonormal basis of C(Q0,Q1)⊥ = C(X,Q1)⊥.

Define Q = (Q1,Q2) ∈ Rn×(n−s), an orthonormal basis of C(X)⊥ = N (XT ).

Then the following results hold.

1. A0 = QQT .

Proof. Both sides are the orthogonal projection onto N (XT ).

2. QTVλQ = diag(1 + λµ1, . . . , 1 + λµk, 1, . . . , 1).

Proof. Note A0Q = (I − PX)Q = Q. Then

QTVλQ

= QTA0VλA0Q

= QTA0(In + λV1)A0Q

= QTA0Q+ λQTQ1diag(µ1, . . . , µk)Q
T
1Q

= QTQ+ λ

(
Ik

0

)
diag(µ1, . . . , µk)

(
Ik 0

)
= In−s + λdiag(µ1, . . . , µk, 0, . . . , 0)

= diag(1 + µ1, . . . , 1 + µk, 1, . . . , 1).

3. Aλ = Qdiag((1 + µ1)−1, . . . , (1 + µk)
−1, 1, . . . , 1)QT .

Proof. Since Q form a basis of N (XT ), by a previous result (p143),

Aλ = V −1
λ − V −1

λ X(XTV −1
λ X)−XTV −1

λ = Q(QTVλQ)−1QT .

Then substitute the result 2 for QTVλQ.
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4. Under the alternative λ > 0,

σ−1
0 Q

Ty ∼ N(0n−s, diag(1 + λµ1, . . . , 1 + λµk, 1, . . . , 1)).

Under the null λ = 0,

σ−1
0 Q

Ty ∼ N(0n−s, In−s).

Proof. Since C(Q) = N (XT ), QTXb = 0n−s. Covariance follows from

result 2.

5. Let the eigenvalues of V1 be (ξ1, . . . , ξ`), where ` = rank(V1). Then

ln det(Vλ) =
∑̀
i=1

ln(1 + λξi).

Proof. This is trivial.

• Putting things together, under the null,

LRT = sup
λ≥0

n lnyTA0y − n lnyTAλy − ln det(Vλ)

= sup
λ≥0

n lnyTQQTy

−n lnyTQdiag((1 + λµ1)−1, . . . , (1 + λµk)
−1, 1, . . . , 1)QTy

− ln det(Vλ)

=D sup
λ≥0

n ln

∑n−s
i=1 w

2
i∑k

i=1
w2
i

1+λµi
+
∑n−s

i=k+1w
2
i

−
l∑

i=1

ln(1 + λξi),

where wi are (n− s) independent standard normals.

• The null distribution can be obtained from computer simulation:

Given y,X,V1, and simulation replicates B

Eigen-decomposition: V1 = U`diag(ξ1, . . . , ξl)U
T
`

Regress U`diag(
√
ξ1, . . . ,

√
ξ`) on X and obtain residuals A0V

1/2
1

Obtain eigenvalues (µ1, . . . , µk) of A0V1A0

for b = 1 to B do

Simulate (w1, . . . , wn−s) independent standard normals
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Find and record the maximal value of

f(λ) = n ln

∑n−s
i=1 w

2
i∑k

i=1
w2
i

1+λµi
+
∑n−s

i=k+1w
2
i

−
l∑

i=1

ln(1 + λξi)

over λ ∈ [0,∞)

end for

Remark: The maximization task is subject to an MM algorithm.

• 0 is a local maximum of f(λ) if f ′(λ) <= 0. Therefore the probability of having

a local maximum at 0 is

Prob

(∑k
i=1 µiw

2
i∑n−s

i=1 w
2
i

≤ 1

n

∑̀
i=1

ξi

)
,

which provides a good approximation of the point mass at 0 of the null distri-

bution of LRT.

• Same derivation can be carried out for the restricted (residual) LRT, in which

case

RLRT =D sup
λ≥0

(n− s) ln

∑n−s
i=1 w

2
i∑k

i=1
w2
i

1+λµi
+
∑n−s

i=k+1w
2
i

−
l∑

i=1

ln(1 + λξi)

under the null λ = 0.

(Rao) score test with one variance component

• Again we consider the variance component model

Y ∼ Nn(Xb,V ),

where

V = σ2
0In + σ2

1V1.

• We develop an exact score test for H0 : σ2
1 = 0 vs HA : σ2

1 > 0.

Score test avoids the maximization step in simulating the null distribution of

test statistic.
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• The log-likelihood function is

L(b, σ2
0, λ) = −1

2
ln det(V )− 1

2
(y −Xb)TV −1(y −Xb).

and the first derivative with respect to σ2
1 is

∂

∂σ2
1

L = −1

2
tr(V −1V1) +

1

2
(y −Xb)TV −1V1V

−1(y −Xb).

The information matrix relevant to variance components are

E

(
− ∂2

∂σ2
0∂σ

2
0

L

)
=

1

2
tr(V −2)

E

(
− ∂2

∂σ2
0∂σ

2
1

L

)
= E

(
− ∂2

∂σ2
1∂σ

2
0

L

)
=

1

2
tr(V −2V1)

E

(
− ∂2

∂σ2
1∂σ

2
1

L

)
=

1

2
tr(V −1V1V

−1V1).

• The (Rao) score statistic is based on

I−1
σ2
1 ,σ

2
1

(
∂

∂σ2
1

L

)2

evaluated at the MLE under the null.

• We evaluate the partial derivatives at the MLE under the null

b̂ = (XTX)−XTy, σ̂2
0 =

yT (I − PX)y

n
.

That is

D1 :=
∂

∂σ2
1

L(b̂, σ̂2
0)

= − ntr(V1)

2yT (I − PX)y
+
n2yT (I − PX)V1(I − PX)y

2[yT (I − PX)y]2

=
−ntr(V1)[yT (I − PX)y] + n2yT (I − PX)V1(I − PX)y

2[yT (I − PX)y]2

J00 := E

(
− ∂2

∂σ2
0∂σ

2
0

L(b̂, σ̂2
0)

)
=

n3

2[yT (I − PX)y]2

J01 = J10 := E

(
− ∂2

∂σ2
0∂σ

2
1

L(b̂, σ̂2
0)

)
=

n2tr(V1)

2[yT (I − PX)y]2

J11 := E

(
− ∂2

∂σ2
1∂σ

2
1

L(b̂, σ̂2
0)

)
=

n2tr(V 2
1 )

2[yT (I − PX)y]2
,
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from which we form the score statistic

T =

(J11 − J10J
−1
00 J01)−1D2

1 D1 ≥ 0

0 D1 < 0

=


[
−ntr(V1)+n2 yT (I−PX )V1(I−PX )y

yT (I−PX )y

]2
2[n2tr(V 2

1 )−ntr(V1)2]

yT (I−PX)V1(I−PX)y
yT (I−PX)y

≥ tr(V1)
n

0 yT (I−PX)V1(I−PX)y
yT (I−PX)y

< tr(V1)
n

.

Essentially the score test rejects when

T ′ = max

{
yT (I − PX)V1(I − PX)y

yT (I − PX)y
,
tr(V1)

n

}
is large.

• Let the eigen-decomposition of (I − PX)V1(I − PX) be

(I − PX)V1(I − PX) = Q1diag(µ1, . . . , µk)Q
T
1 ,

Q2 be an orthonormal basis of C(X,Q1)⊥, andQ = (Q1,Q2) ∈ Rn×(n−s). Then

T ′ = max

{
yTQdiag(µ1, . . . , µk, 0, . . . , 0)QTy

yTQQTy
,
tr(V1)

n

}
=D max

{∑k
i=1 µkw

2
i∑n−s

i=1 w
2
i

,
tr(V1)

n

}
,

where wi are n− s independent standard normals.

• The null distribution can be obtained from computer simulation:

Given y,X,V1, and simulation replicates B

Eigen-decomposition: V1 = U`diag(ξ1, . . . , ξl)U
T
`

Regress U`diag(
√
ξ1, . . . ,

√
ξ`) on X to obtain residuals (I − PX)V

1/2
1

Obtain eigenvalues (µ1, . . . , µk) of (I − PX)V1(I − PX)

for b = 1 to B do

Simulate (w1, . . . , wn−s) independent standard normals

Record the value

max

{∑k
i=1 µkw

2
i∑n−s

i=1 w
2
i

,
tr(V1)

n

}
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end for

• The probability mass of T ′ at lower boundary tr(V1)/n is

Prob

(∑k
i=1 µiw

2
i∑n−s

i=1 w
2
i

≤ tr(V1)

n

)
,

same as the point mass at 0 of the null distribution of eLRT.

Wald test with one variance component

TODO.
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24 Lecture 24: Dec 4

Announcement

• HW8 due today.

• Course evaluation: https://classeval.ncsu.edu/

• No OH from next week. Reachable by email.

• Final exam: Fiday, Dec 13 @ 8A-11A, SAS 5270.

Last time

• Variance component testing: eLRT, eRLRT, score test.

Today

• Variance component model: testing with two or more variance components.

• (Last topic!) Prediction: BLP and BLUP.

Testing with two or more variance components

• First we extend the test with one variance component to a slightly more general

case y ∼ N(Xb,V ) with

V = σ2
0V0 + σ2

1V1, (5)

where V0 ∈ Rn×n is a known psd matrix. Let r = rank(V0).

Given eigen-decomposition V0 = UrDrU
T
r , define T = D

−1/2
r UT

r ∈ Rr×n. Then

TY ∼ N(TXb, σ2
0Ir + σ2

1TV1T
T )

and the eLRT, eRLRT or score test can be applied to TY .

• Now we consider the linear model with two variance components

Y ∼ Nn(Xb,V ),

where

V = σ2
0In + σ2

1V1 + σ2
2V2.
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• We are interested in testing H0 : σ2
2 = 0 vs HA : σ2

2 > 0.

• The idea is to massage the problem to the case (5) above.

• First perform QR (Gram-Schmidt) on the matrix (X,V1,V2, In) to obtain an

orthonormal basis (Q0,Q1,Q2,Q3) of Rn, where

– Q0 is an orthonormal basis of C(X)

– Q1 is an orthonormal basis of C(X,V1)− C(X)

– Q2 is an orthonormal basis of C(X,V1,V2)− C(X,V1)

– Q3 is an orthonormal basis of C(X,V1,V2)⊥.

• If rank(Q2) > 0, that is C(X,V1) ( C(X,V1,V2), then

QT
2Y ∼ N(0, σ2

0I + σ2
2Q

T
2V2Q2)

and the exact F test, eLRT, eRLRT and score test can be applied to QT
2 y.

Is this beneficial to add the QT
3Y component???

• If rank(Q2) = 0, that is C(X,V1) = C(X,V1,V2), then we would like to choose

λ and matrix K such that

QT
1Y +KQT

3Y ∼ N(0, (σ2
1 + σ2

0/λ)QT
1V1Q1 + σ2

2Q
T
1V2Q1),

which is of form (5). We consider following situations.

– IfQT
1V2 = 0, e.g., when C(V2) ⊂ C(X), then this test cannot be performed.

– If QT
1V1Q1 = λI, note

QT
1Y ∼ N(0, σ2

0I + σ2
1Q

T
1V1Q1 + σ2

2Q
T
1V2Q1)

= N(0, (σ2
0 + λσ2

1)I + σ2
2Q

T
1V2Q1).

Then the ordinary tests (F test, eLRT, eRLRT, score) for one variance com-

ponent can be applied without using theKQT
3 y piece as long asQT

1V2 6= 0.

– In general, QT
1V1Q1 6= λI, then the test requires the KQT

3 y term, which

has distribution

KQT
3Y ∼ N(0, σ2

0KK
T ).
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Note that

QT
1V Q3 = QT

1 (σ2
0In + σ2

1V1 + σ2
2V2)Q3 = 0.

Therefore QT
1Y ⊥KQT

3Y . We simply pick K such that

KQT
3Y ∼ N(0, σ2

0(λ−1QT
1V2Q1 − I)).

That is

KKT = λ−1QT
1V2Q1 − I.

Apparently we need to choose λ such that λ−1QT
1V2Q1 − I is psd. Let

QT
1V2Q1 = WΛW T = Wdiag(λi)W

T

be the eigendecomposition. Setting λ to be the smallest eigenvalue yields

K = Wdiag(
√
λi/λ− 1).

Best linear prediction (BLP)

• Given data (y, x1, . . . , xp), regression can be thought of one way to predict y

from x1, . . . , xp.

• A reasonable criterion is to choose predictor f(x) such that the mean squared

error

MSE = E[y − f(x)]2

is minimized. Here the expectation is wrt the joint distribution of (y,x).

• Let m(x) = E(y|x). Then for any other predictor f(x),

E[y −m(x)]2 ≤ E[y − f(x)]2.

That is m(x) is the best predictor of y.

Proof.

E[y − f(x)]2

= E[y −m(x) +m(x)− f(x)]2

= E[y −m(x)]2 + E[m(x)− f(x)]2 + 2E[y −m(x)][m(x)− f(x)].
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But the cross term vanishes

E[y −m(x)][m(x)− f(x)]

= E {E[y −m(x)][m(x)− f(x)] | x}
= E {[m(x)− f(x)]E[y −m(x) | x]}
= E {[m(x)− f(x)]0}
= 0.

Therefore E[y − f(x)]2 ≥ E[y −m(x)]2 for any f(x).

• In order to use this result, we need to know the joint distribution of (y,x).

This is often unrealistic / If only the first two moments (means, variances, and

covariances) are known, then we can find the best linear predictor (BLP) of y.

• Assume

E

(
y

x

)
=

(
µy

µx

)
, Cov

(
σyy ΣT

xy

Σxy Σxx

)
.

Let β∗ be a solution of Σxxβ = Σxy. Then

Ê(y|x) := µy + (x− µx)Tβ∗

is the best linear predictor (BLP) of y.

Proof. Let f(x) = α+xTβ be an arbitrary linear predictor. Then we find α,β

by minimizing the MSE

E[y − f(x)]2

= E(y − α− xTβ)2

= E(y − α)2 + βTE(xxT )β − 2E[(y − α)(xTβ)]

= E(y − α)2 + βTE(xxT )β − 2E(yxT )β + 2αE(xT )β

= E(y − α)2 + βTE(xxT )β − 2E(yx)Tβ + 2αµTxβ.

Setting derivatives to 0 gives

∂

∂α
E[y − f(x)]2 = 2(α− µy) + 2µTxβ = 0

∇βE[y − f(x)]2 = 2E(xxT )β − 2E(xy) + 2αµx = 0p.
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From the first equation, α = µy − µTxβ. Substitution into the second equation

yields

(ExxT − µxµ
T
x)β = E(xy)− µxµy.

That is

Σxxβ = Σxy.

Therefore the optimal α is α∗ = µy − µTxβ∗, where β∗ is any solution to above

equation. And the BLP is

α∗ + xTβ∗ = µy + (x− µx)Tβ∗.

Because the criterion function is a convex function, the stationary condition is

both necessary and sufficient for the global minima. Therefore any BLP must

be of this form.

Best linear unbiased prediction (BLUP)

• Consider random variables y0, y1, . . . , yn, and we are interested predicting y0

given data y1, . . . , yn. If we know the mean, variances, and covariances, then

we can use above theory to find the BLP of y0.

• In practice, we don’t know the means µ0 = Ey0,µy = Ey most of time /
Let’s impose a linear (Aitken) model for the means µi

E

(
y

y0

)
=

(
Xb

xT0 b

)
, Cov

(
y

y0

)
=

(
V Vyy0

V T
yy0

Vy0y0

)
. (6)

• If b is known, then the BLP of y0 is

xT0 b+ (y −Xb)Tβ∗,

where β∗ is a solution to V β = Vyy0 .

• If b is unknown, then the hope is to find the best linear unbiased predictor

(BLUP).

We call a linear predictor f(y) = a0 + aTy of y0 BLUP if
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1. it is unbiased, i.e.,

E f(y) = a0 + aTXb = xT0 b = Ey0

for all b, and

2. for any other linear unbiased predictor b0 + bTy,

E(y0 − a0 − aTy)2 ≤ E(y0 − b0 − bTy)2.

• Theorem: Under the Aitken model (6) and assume Vyy0 ∈ C(V ,X) and x0 ∈
C(XT ), the BLUP of y0 is

xT0 b̂GLS + (y −Xb̂GLS)Tβ∗,

where β∗ is a solution of (V +XXT )β = Vyy0 and Xb̂GLS is the BLUE of Xb.

Remark 1: We don’t assume V is nonsingular. For nonsingular V , we can take

β∗ = V −1Vyy0 .

Remark 2: Both b̂GLS and β∗ depend crucially on V .

Proof. Let a0 + aTy be arbitrary linear predictor of y0. Unbiasedness requires

a0 + aTXb = xT0 b

for all b. Thus a0 = 0 and aTX = xT0 . We need to solve the constrained

optimization problem

minimize
1

2
E(y0 − aTy)2 =

1

2
aTE(yyT )a− E(y0a

Ty) +
1

2
Ey2

0

subject to XTa = x0.

Setting the gradient of the Lagrangian

L(a,λ) =
1

2
aTE(yyT )a− E(y0a

Ty) +
1

2
Ey2

0 + λT (XTa− x0)

to zero yields equations

E(yyT )a−E(yy0) +Xλ = 0n

XTa = x0.
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Adding and subtracting (EyEyT )a = XbbTXTa = XbbTx0 = EyEy0 to the

first equation shows V a− Vyy0 +Xλ = 0n. In matrix notation,(
V X

XT 0

)(
a

λ

)
=

(
Vyy0

x0

)
.

By HW4 5(d), solution for the optimal a is

a∗ = [V −0 − V −0 X(XTV −0 X)−XTV −0 ]Vyy0 + V −0 X(XTV −0 X)−x0,

where V0 = V +XXT . Thus the BLUP is

aT∗ y = V T
yy0

[V −0 − V −0 X(XTV −0 X)−XTV −0 ]y + xT0 (XTV −0 X)−XTV −0 y

= V T
yy0
V −0 (y −Xb̂GLS) + xT0 b̂GLS

= βT∗ (y −Xb̂GLS) + xT0 b̂GLS.

• The prediction variance of BLUP is (TODO)

E(y0 − aT∗ y)2 = Vy0y0 − 2aT∗Vyy0 + aT∗V a∗. ???

• Example (BLUP in Gauss-Markov linear model): V = σ2I and Vyy0 = 0p.

Thus β∗ = 0p and the BLUP for y0 is xT0 b̂, which is also the BLUE of xT0 b.

Mixed model equation (MME)

• Consider the mixed effects model

y = Xb+Zu+ e

– X ∈ Rn×p is a design matrix for fixed effects b ∈ Rp.

– Z ∈ Rn×q is a design matrix for random effects u ∈ Rq.

– The most general assumption is e ∈ N(0n,R), u ∈ N(0q,G), and e is

independent of u. That is(
u

e

)
∼ N

(
0q+n,

(
G 0

0 R

))
.

Assume G and R are nonsingular.
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• We already know that the BLUE of Xb is

Xb̂GLS = X[XT (R+ZGZT )−1X]−XT (R+ZGZT )−1y.

• We can apply the previous theorem to derive the BLUP of u. Note

E

(
y

u

)
=

(
Xb

0q

)
, Cov

(
y

u

)
=

(
R+ZGZT ZG

GZT R

)
.

Therefore the BLUP for u is

GZT (R+ZGZT )−1(y −Xb̂GLS).

• It turns out both BLUE of Xb and BLUP of u can be obtained simultaneously

by solving a so-called mixed model equation (MME).

Mixed model equation (MME) defined as(
XTR−1X XTR−1Z

ZTR−1X G−1 +ZTR−1Z

)(
b

u

)
=

(
XTR−1y

ZTR−1y

)
is a generalization of the normal equation for fixed effects model.

• Theorem: Let (b̂, û) be a solution to MME. Then Xb̂ is the BLUE of Xb and

û is the BLUP of u.

Proof. Let

V = Cov(y) = R+ZGZT .

Then Xb̂ is a BLUE of Xb if b̂ is a solution to

XTV −1Xb = XTV −1y.

By the binomial inversion formula (HW1), we have

V −1 = R−1 −R−1Z(G−1 +ZTR−1Z)−1ZTR−1.

The MME says

XTR−1Xb+XTR−1Zu = XTR−1y

ZTR−1Xb+ (G−1 +ZTR−1Z)u = ZTR−1y.
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From the second equation we solve for

u = (G−1 +ZTR−1Z)−1ZTR−1(y −Xb)

and substituting into the first equation shows

XTV −1Xb̂ = XTV −1y.

Thus b̂ is a generalized least squares solution and Xb̂ is the BLUE of Xb.

To show that û is BLUP, only need to show that

(G−1 +ZTR−1Z)−1ZTR−1 = GZT (R+ZGZT )−1,

or equivalently

ZTR−1(R+ZGZT ) = (G−1 +ZTR−1Z)GZT ,

which is obvious.
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