
24 Lecture 24: Dec 4

Announcement

• HW8 due today.

• Course evaluation: https://classeval.ncsu.edu/

• No OH from next week. Reachable by email.

Last time

• Variance component testing: eLRT, eRLRT, score test.

Today

• Variance component model: testing with two or more variance components.

• (Last topic!) Prediction: BLP and BLUP

Testing with two or more variance components

• First we extend the test with one variance component to a slightly more general

case y ⇠ N(Xb,V ) with

V = �2
0V0 + �2

1V1, (5)

where V0 2 Rn⇥n is a known psd matrix. Let r = rank(V0).

Given eigen-decomposition V0 = UrDrUT
r , define T = D�1/2

r UT
r 2 Rr⇥n. Then

TY ⇠ N(TXb, �2
0Ir + �2

1TV1T
T )

and the eLRT, eRLRT or score test can be applied to TY .

• Now we consider the linear model with two variance components

Y ⇠ Nn(Xb,V ),

where

V = �2
0In + �2

1V1 + �2
2V2.
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• We are interested in testing H0 : �2
2 = 0 vs HA : �2

2 > 0.

• The idea is to massage the problem to the case (5) above.

• First perform QR (Gram-Schmidt) on the matrix (X,V1,V2, In) to obtain an

orthonormal basis (Q0,Q1,Q2,Q3) of Rn, where

– Q0 is an orthonormal basis of C(X)

– Q1 is an orthonormal basis of C(X,V1)� C(X)

– Q2 is an orthonormal basis of C(X,V1,V2)� C(X,V1)

– Q3 is an orthonormal basis of C(X,V1,V2)?.

• If rank(Q2) > 0, that is C(X,V1) ( C(X,V1,V2), then

QT
2Y ⇠ N(0, �2

0I + �2
2Q

T
2V2Q2)

and the exact F test, eLRT, eRLRT and score test can be applied to QT
2 y.

Is this beneficial to add the QT
3Y component???

• If rank(Q2) = 0, that is C(X,V1) = C(X,V1,V2), then we would like to choose

� and matrix K such that

QT
1Y +KQT

3Y ⇠ N(0, (�2
1 + �2

0/�)Q
T
1V1Q1 + �2

2Q
T
1V2Q1),

which is of form (5). We consider following situations.

– IfQT
1V2 = 0, e.g., when C(V2) ⇢ C(X), then this test cannot be performed.

– If QT
1V1Q1 = �I, note

QT
1Y ⇠ N(0, �2

0I + �2
1Q

T
1V1Q1 + �2

2Q
T
1V2Q1)

= N(0, (�2
0 + ��2

1)I + �2
2Q

T
1V2Q1).

Then the ordinary tests (F test, eLRT, eRLRT, score) for one variance com-

ponent can be applied without using theKQT
3 y piece as long asQT

1V2 6= 0.

– In general, QT
1V1Q1 6= �I, then the test requires the KQT

3 y term, which

has distribution

KQT
3Y ⇠ N(0, �2

0KKT ).
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Note that

QT
1V Q3 = QT

1 (�
2
0In + �2

1V1 + �2
2V2)Q3 = 0.

Therefore QT
1Y ? KQT

3Y . We simply pick K such that

KQT
3Y ⇠ N(0, �2

0(�
�1QT

1V2Q1 � I)).

That is

KKT = ��1QT
1V2Q1 � I.

Apparently we need to choose � such that ��1QT
1V2Q1 � I is psd. Let

QT
1V2Q1 = W⇤W T = Wdiag(�i)W

T

be the eigendecomposition. Setting � to be the smallest eigenvalue yields

K = Wdiag(
p
�i/�� 1).

Best linear prediction (BLP)

• Given data (y, x1, . . . , xp), regression can be thought of one way to predict y

from x1, . . . , xp.

• A reasonable criterion is to choose predictor f(x) such that the mean squared

error

MSE = E[y � f(x)]2

is minimized. Here the expectation is wrt the joint distribution of (y,x).

• Let m(x) = E(y|x). Then for any other predictor f(x),

E[y �m(x)]2  E[y � f(x)]2.

That is m(x) is the best predictor of y.

Proof.

E[y � f(x)]2

= E[y �m(x) +m(x)� f(x)]2

= E[y �m(x)]2 + E[m(x)� f(x)]2 + 2E[y �m(x)][m(x)� f(x)].

160



But the cross term vanishes

E[y �m(x)][m(x)� f(x)]

= E {E[y �m(x)][m(x)� f(x)] | x}
= E {[m(x)� f(x)]E[y �m(x) | x]}
= E {[m(x)� f(x)]0}
= 0.

Therefore E[y � f(x)]2 � E[y �m(x)]2 for any f(x).

• In order to use this result, we need to know the joint distribution of (y,x).

This is often unrealistic / If only the first two moments (means, variances, and

covariances) are known, then we can find the best linear predictor (BLP) of y.

• Assume

E

 
y

x

!
=

 
µy

µ
x

!
, Cov

 
�yy ⌃T

xy

⌃
xy ⌃

xx

!
.

Let �⇤ be a solution of ⌃
xx

� = ⌃
xy. Then

bE(y|x) := µy + (x� µ
x

)T�⇤

is the best linear predictor (BLP) of y.

Proof. Let f(x) = ↵+xT� be an arbitrary linear predictor. Then we find ↵,�

by minimizing the MSE

E[y � f(x)]2

= E(y � ↵� xT�)2

= E(y � ↵)2 + �TE(xxT )� � 2E[(y � ↵)(xT�)]

= E(y � ↵)2 + �TE(xxT )� � 2E(yxT )� + 2↵E(xT )�

= E(y � ↵)2 + �TE(xxT )� � 2E(yx)T� + 2↵µT
x

�.

Setting derivatives to 0 gives

@

@↵
E[y � f(x)]2 = 2(↵� µy) + 2µT

x

� = 0

r�E[y � f(x)]2 = 2E(xxT )� � 2E(xy) + 2↵µ
x

= 0p.
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From the first equation, ↵ = µy � µT
x

�. Substitution into the second equation

yields

(ExxT � µ
x

µT
x

)� = E(xy)� µ
x

µy.

That is

⌃
xx

� = ⌃
xy.

Therefore the optimal ↵ is ↵⇤ = µy � µT
x

�⇤, where �⇤ is any solution to above

equation. And the BLP is

↵⇤ + xT�⇤ = µy + (x� µ
x

)T�⇤.

Because the criterion function is a convex function, the stationary condition is

both necessary and su�cient for the global minima. Therefore any BLP must

be of this form.

Best linear unbiased prediction (BLUP)

• Consider random variables y0, y1, . . . , yn, and we are interested predicting y0

given data y1, . . . , yn. If we know the mean, variances, and covariances, then

we can use above theory to find the BLP of y0.

• In practice, we don’t know the means µ0 = Ey0,µ
y

= Ey most of time /
Let’s impose a linear (Aitken) model for the means µi

E

 
y

y0

!
=

 
Xb

xT
0 b

!
, Cov

 
y

y0

!
=

 
V V

yy0

V T
yy0

Vy0y0

!
. (6)

• If b is known, then the BLP of y0 is

xT
0 b+ (y �Xb)T�⇤,

where �⇤ is a solution to V � = V
yy0 .

• If b is unknown, then the hope is to find the best linear unbiased predictor

(BLUP).

We call a linear predictor f(y) = a0 + aTy of y0 BLUP if
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1. it is unbiased, i.e.,

E f(y) = a0 + aTXb = xT
0 b = Ey0

for all b, and

2. for any other linear unbiased predictor b0 + bTy,

E(y0 � a0 � aTy)2  E(y0 � b0 � bTy)2.

• Theorem: Under the Aitken model (6) and assume V
yy0 2 C(V ,X) and x0 2

C(XT ), the BLUP of y0 is

xT
0 b̂GLS + (y �Xb̂GLS)

T�⇤,

where �⇤ is a solution of (V +XXT )� = V
yy0 and Xb̂GLS is the BLUE of Xb.

Remark 1: We don’t assume V is nonsingular. For nonsingular V , we can take

�⇤ = V �1V
yy0 .

Remark 2: Both b̂GLS and �⇤ depend crucially on V .

Proof. Let a0 + aTy be arbitrary linear predictor of y0. Unbiasedness requires

a0 + aTXb = xT
0 b

for all b. Thus a0 = 0 and aTX = xT
0 . We need to solve the constrained

optimization problem

minimize
1

2
E(y0 � aTy)2 =

1

2
aTE(yyT )a� E(y0a

Ty) +
1

2
Ey20

subject to XTa = x0.

Setting the gradient of the Lagrangian

L(a,�) =
1

2
aTE(yyT )a� E(y0a

Ty) +
1

2
Ey20 + �T (XTa� x0)

to zero yields equations

E(yyT )a�E(yy0) +X� = 0n

XTa = x0.
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Adding and subtracting (EyEyT )a = XbbTXTa = XbbTx0 = EyEy0 to the

first equation shows V a� V
yy0 +X� = 0n. In matrix notation,

 
V X

XT 0

! 
a

�

!
=

 
V

yy0

x0

!
.

By HW4 5(d), solution for the optimal a is

a⇤ = [V �
0 � V �

0 X(XTV �
0 X)�XTV �

0 ]V
yy0 + V �

0 X(XTV �
0 X)�x0,

where V0 = V +XXT . Thus the BLUP is

aT
⇤ y = V T

yy0
[V �

0 � V �
0 X(XTV �

0 X)�XTV �
0 ]y + xT

0 (X
TV �

0 X)�XTV �
0 y

= V T
yy0

V �
0 (y �Xb̂GLS) + xT

0 b̂GLS

= �T
⇤ (y �Xb̂GLS) + xT

0 b̂GLS.

• The prediction variance of BLUP is (TODO)

E(y0 � aT
⇤ y)

2 = Vy0y0 � 2aT
⇤Vyy0 + aT

⇤V a⇤. ???

• Example (BLUP in Gauss-Markov linear model): V = �2I and V
yy0 = 0p.

Thus �⇤ = 0p and the BLUP for y0 is xT
0 b̂, which is also the BLUE of xT

0 b.

Mixed model equation (MME)

• Consider the mixed e↵ects model

y = Xb+Zu+ e

– X 2 Rn⇥p is a design matrix for fixed e↵ects b 2 Rp.

– Z 2 Rn⇥q is a design matrix for random e↵ects u 2 Rq.

– The most general assumption is e 2 N(0n,R), u 2 N(0q,G), and e is

independent of u. That is
 
u

e

!
⇠ N

 
0q+n,

 
G 0

0 R

!!
.

Assume G and R are nonsingular.
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• We already know that the BLUE of Xb is

Xb̂GLS = X[XT (R+ZGZT )�1X]�XT (R+ZGZT )�1y.

• We can apply the previous theorem to derive the BLUP of u. Note

E

 
y

u

!
=

 
Xb

0q

!
, Cov

 
y

u

!
=

 
R+ZGZT ZG

GZT R

!
.

Therefore the BLUP for u is

GZT (R+ZGZT )�1(y �Xb̂GLS).

• It turns out both BLUE of Xb and BLUP of u can be obtained simultaneously

by solving a so-called mixed model equation (MME).

Mixed model equation (MME) defined as
 
XTR�1X XTR�1Z

ZTR�1X G�1 +ZTR�1Z

! 
b

u

!
=

 
XTR�1y

ZTR�1y

!

is a generalization of the normal equation for fixed e↵ects model.

• Theorem: Let (b̂, û) be a solution to MME. Then Xb̂ is the BLUE of Xb and

û is the BLUP of u.

Proof. Let

V = Cov(y) = R+ZGZT .

Then Xb̂ is a BLUE of Xb if b̂ is a solution to

XTV �1Xb = XTV �1y.

By the binomial inversion formula (HW1), we have

V �1 = R�1 �R�1Z(G�1 +ZTR�1Z)�1ZTR�1.

The MME says

XTR�1Xb+XTR�1Zu = XTR�1y

ZTR�1Xb+ (G�1 +ZTR�1Z)u = ZTR�1y.
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From the second equation we solve for

u = (G�1 +ZTR�1Z)�1ZTR�1(y �Xb)

and substituting into the first equation shows

XTV �1Xb̂ = XTV �1y.

Thus b̂ is a generalized least squares solution and Xb̂ is the BLUE of Xb.

To show that û is BLUP, only need to show that

(G�1 +ZTR�1Z)�1ZTR�1 = GZT (R+ZGZT )�1,

or equivalently

ZTR�1(R+ZGZT ) = (G�1 +ZTR�1Z)GZT ,

which is obvious.
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