24 Lecture 24: Dec 4

Announcement

e HWS due today.
e Course evaluation: https://classeval.ncsu.edu/

e No OH from next week. Reachable by email.

Last time

e Variance component testing: eLRT, eRLRT, score test.

Today

e Variance component model: testing with two or more variance components.

e (Last topic!) Prediction: BLP and BLUP

Testing with two or more variance components

e First we extend the test with one variance component to a slightly more general
case y ~ N(Xb, V) with

V =0V + oWy, (5)

where Vi € R"*" is a known psd matrix. Let r = rank(V}).

Given eigen-decomposition Vi = U, D, U, define T = D;1/2U7T € R™". Then
TY ~ N(TXb, 031, + i TV,TT)
and the eLRT, eRLRT or score test can be applied to T'Y .
e Now we consider the linear model with two variance components
Y ~ N,(Xb,V),
where

V =031, + oiVi + 05 Va.
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e We are interested in testing Hy : 05 = 0 vs Hy : 03 > 0.
e The idea is to massage the problem to the case (5) above.

e First perform QR (Gram-Schmidt) on the matrix (X, V;, V5, I,,) to obtain an
orthonormal basis (Qq, Q1, Q2, Q3) of R™, where

— Qo is an orthonormal basis of C(X)

(X, V1) - C(X)

— @ is an orthonormal basis of C(X,V;,V,) — C(X, V)
— Q3 is an orthonormal basis of C(X, Vi, V,)*.

— @, is an orthonormal basis of C

o If rank(Q2) > 0, that is C(X, V) € C(X, V4, V1), then
QQTY ~ N(0, UOI + UQQQ V2Q:)

and the exact F test, eLRT, eRLRT and score test can be applied to QIy
Is this beneficial to add the Q1Y component???

o If rank(Q2) = 0, that is C(X, Vi) = C(X, V1, V3), then we would like to choose
A and matrix K such that

QY + KQ3Y ~ N(0, (0] + 03/N)Q1 ViQ: + 03Q1 V2Q1),
which is of form (5). We consider following situations.

— IfQTV, =0, e.g., when C(V,) C C(X), then this test cannot be performed.
— If QTViQ, = M\, note

QLY ~ N(0,00I+0iQ{ViQ1 + 55Q1 V2Q:)
= N(0, (‘70 + )‘01)1 + U2Q1TV2Q1)-

Then the ordinary tests (F test, eLRT, eRLRT, score) for one variance com-
ponent can be applied without using the K Q? y piece as long as QT V, # 0.

— In general, QTViQ, # M, then the test requires the KQZIy term, which
has distribution

KQTY ~ N(0,02KK™).
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Note that

1V Qs = Qi (031, + 0iVi +05V2)Q3 = 0.
Therefore QTY L KQIY. We simply pick K such that

KQ3Y ~ N(0,55(A7'Q{ V2@, — I)).
That is

KK" =)'Q'v,Q, - I.

Apparently we need to choose A such that A\1QTV,Q, — I is psd. Let

Q'V,Q, = WAWT = Wdiag(\)WT
be the eigendecomposition. Setting A to be the smallest eigenvalue yields

K = Wdiag(\/Ai/\—1).

Best linear prediction (BLP)

e Given data (y,x1,...,x,), regression can be thought of one way to predict y

from x1,..., 2.

e A reasonable criterion is to choose predictor f(x) such that the mean squared

error
MSE = By — f(a)]
is minimized. Here the expectation is wrt the joint distribution of (y, ).
e Let m(x) = E(y|x). Then for any other predictor f(x),
Ely —m(®)]* < Ely — f(z)]".

That is m(a) is the best predictor of y.

Proof.
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But the cross term vanishes

Bly — m(z)][m(z) — f()]
= E{Ely — m(@)][m(z) - f(x)] [ =}

= E{[m(z) - f(2)]Ely —m(z) | x[}
= E{lm(e) - f(z)]0}
= 0.
Therefore Ely — f(x)]? > Ely — m(x)]? for any f(x). O

In order to use this result, we need to know the joint distribution of (y,x).
This is often unrealistic ® If only the first two moments (means, variances, and

covariances) are known, then we can find the best linear predictor (BLP) of y.

T
E(Y) = (") cov[w ).
x 1% Ezy DI

Let 8" be a solution of 3,,8 = ¥,,. Then

Assume

E(ylz) = py + (x — p,) " 8"

is the best linear predictor (BLP) of y.

Proof. Let f(x) = a+x’ 3 be an arbitrary linear predictor. Then we find «, 3
by minimizing the MSE

Ely — f()]?

(y—a—x'B)

(y — @) + BT E(za") B8 — 2E[(y — a)(z" B)]
(

(

I
el es

— E(y—a)?+ B"E(ea”)B — 2B(ya”)B + 20E(x")8
— E(y—a)’ + B7E(za”)B - 2E(ya)" 8 + 2aplB.

Setting derivatives to 0 gives

SLEly — f@) = 2o )+ 2458 =0
VBE[ — f(®)])? = 2BE(zz")B - 2E(xy) + 2ap, = 0,.
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From the first equation, a = p,, — u 3. Substitution into the second equation

yields
(Eza” — p,pg)B = E(zy) — pgpy.
That is
YealB = Yy

Therefore the optimal « is o* = pu, — p 3*, where 3" is any solution to above
equation. And the BLP is

o + wTﬁ* = Hy + (33 - l’l’m)T/B*

Because the criterion function is a convex function, the stationary condition is
both necessary and sufficient for the global minima. Therefore any BLP must
be of this form. O

Best linear unbiased prediction (BLUP)

e Consider random variables g, y1, ..., ¥, and we are interested predicting g
given data yi,...,y,. If we know the mean, variances, and covariances, then

we can use above theory to find the BLP of y.

e In practice, we don’t know the means po = Eyo, p,, = Ey most of time ®

Let’s impose a linear (Aitken) model for the means y;

Xb vV Vv
E(Y)=("0), co(Y)=(.), M. (6)
Yo xyb Yo V:uyo Vyoyo
o If b is known, then the BLP of g is

where 8" is a solution to V3 = V.

e If b is unknown, then the hope is to find the best linear unbiased predictor
(BLUP).

We call a linear predictor f(y) = ag + a’y of yo BLUP if
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1. it is unbiased, i.e.,
Ef(y) = ao+a’ Xb=xlb=Ey

for all b, and

2. for any other linear unbiased predictor by + by,
E(yo — ao — aTy)2 < E(yo —bo — bTy)2-

e Theorem: Under the Aitken model (6) and assume V,,, € C(V,X) and x, €
C(XT), the BLUP of g is

wgi)GLs + (y - XBGLS)Tﬁ*a

where 3, is a solution of (V + X X7T)8 =V, and Xbgys is the BLUE of Xb.

Remark 1: We don’t assume V is nonsingular. For nonsingular V', we can take
/3* = V_IIV'.;JZJO'

Remark 2: Both BGLS and 8" depend crucially on V.

Proof. Let ay + a’y be arbitrary linear predictor of 35. Unbiasedness requires
ap+a’ Xb=1xlb

for all b. Thus ap = 0 and a’ X = xl. We need to solve the constrained

optimization problem

1 1 1
minimize §E(y0 —a'y)? = éaTE(ny)a — E(yoa’y) + EEy(Q)

subject to XTa = x.
Setting the gradient of the Lagrangian
L(a,\) = %aTE(ny)a — E(yoa’y) + %Eyé + A(XTa — x))
to zero yields equations
E(yy")a— E(yy) + XX = 0,

XTa = .

163



Adding and subtracting (EyEy”)a = Xbb" XTa = Xbb'x, = EyEy, to the

first equation shows Va — V,,; + XA = 0,,. In matrix notation,
(v ) () (%)
X 0)\X xo |
By HW4 5(d), solution for the optimal a is
a.=[Vy = Vi X(XTVy X)"XTV]V,,, + Vi X(XTVy X) ",
where V5 = V + X X7T. Thus the BLUP is
aly = ViV — Vi XXV X)XV Jy o+l (XTV, X)X Yy

Yyo

= VT VE]_ (y — X6GL3> -+ wOTBGLS

Yyo
= BTy — Xbars) + xlbars.

e The prediction variance of BLUP is (TODO)

E(yo —aly)? = V —2a'V,,, +a’Va, 7?77

e Example (BLUP in Gauss-Markov linear model): V = ¢?I and V,, = 0,.

Thus B, = 0, and the BLUP for y, is b, which is also the BLUE of x]'b.

Mixed model equation (MME)

e Consider the mixed effects model
y=Xb+Zu+e

— X € R™ P is a design matrix for fixed effects b € RP.
— Z € R is a design matrix for random effects u € RY.

— The most general assumption is e € N(0,,R), u € N(0,,G), and e is
independent of w. That is

u G 0
~ N | 0y4n, .
Assume G and R are nonsingular.
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We already know that the BLUE of Xb is

Xbers = X[ XT(R+ZGZ") ' X|"XT"(R+ ZGZ") y.
We can apply the previous theorem to derive the BLUP of u. Note
Yy Xb Y R+ZGZ" ZG
E = ,  Cov = )
u 0, u Gz* R
Therefore the BLUP for w is

GZ"(R+ ZGZ") '(y — Xbars).

It turns out both BLUE of Xb and BLUP of u can be obtained simultaneously
by solving a so-called mixed model equation (MME).

Mized model equation (MME) defined as

X"R'X X'R'Z b\ (X"R'y
Z'TR'X G '+Z'R'Z)\u) \Z'Ry

is a generalization of the normal equation for fixed effects model.

Theorem: Let (b, %) be a solution to MME. Then Xb is the BLUE of Xb and
u is the BLUP of .

Proof. Let
V =Cov(y) = R+ ZGZ".
Then Xb is a BLUE of Xb if b is a solution to
XT'v1ixXbp=XTv 1y
By the binomial inversion formula (HW1), we have
VI=R'-R'ZG'+Z"R'Z2)'Z"R ™.
The MME says
X"R'Xb+ X"R'Zu = X"R'y
Z'R'Xb+ (G '+ Z"R'Z)u = Z'R'y.
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From the second equation we solve for
u=(G'+Z"R'Z)'Z"R ' (y — Xb)
and substituting into the first equation shows
X'v1Xb=X"V'y.

Thus b is a generalized least squares solution and X b is the BLUE of Xb.
To show that @ is BLUP, only need to show that

(G*'+Z"R'2)"'Z'R™' = GZ'(R+2ZGZ")™,
or equivalently
Z'"RY R+2ZGZ") = (G'+Z"R'Z2)GZ",

which is obvious.
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