24 Lecture 24: Dec 4

Announcement

- HW8 due today.
- Course evaluation: https://classeval.ncsu.edu/
- No OH from next week. Reachable by email.

Last time

- Variance component testing: eLRT, eRLRT, score test.

Today

- Variance component model: testing with two or more variance components.
- (Last topic!) Prediction: BLP and BLUP

Testing with two or more variance components

- First we extend the test with one variance component to a slightly more general case $\boldsymbol{y} \sim N(\boldsymbol{X} \boldsymbol{b}, \boldsymbol{V})$ with

$$
\begin{equation*}
\boldsymbol{V}=\sigma_{0}^{2} \boldsymbol{V}_{0}+\sigma_{1}^{2} \boldsymbol{V}_{1}, \tag{5}
\end{equation*}
$$

where $\boldsymbol{V}_{0} \in \mathbb{R}^{n \times n}$ is a known psd matrix. Let $r=\operatorname{rank}\left(\boldsymbol{V}_{0}\right)$.
Given eigen-decomposition $\boldsymbol{V}_{0}=\boldsymbol{U}_{r} \boldsymbol{D}_{r} \boldsymbol{U}_{r}^{T}$, define $\boldsymbol{T}=\boldsymbol{D}_{r}^{-1 / 2} \boldsymbol{U}_{r}^{T} \in \mathbb{R}^{r \times n}$. Then

$$
\boldsymbol{T} \boldsymbol{Y} \sim N\left(\boldsymbol{T} \boldsymbol{X} \boldsymbol{b}, \sigma_{0}^{2} \boldsymbol{I}_{r}+\sigma_{1}^{2} \boldsymbol{T} \boldsymbol{V}_{1} \boldsymbol{T}^{T}\right)
$$

and the eLRT, eRLRT or score test can be applied to $\boldsymbol{T} \boldsymbol{Y}$.

- Now we consider the linear model with two variance components

$$
\boldsymbol{Y} \sim N_{n}(\boldsymbol{X} \boldsymbol{b}, \boldsymbol{V})
$$

where

$$
\boldsymbol{V}=\sigma_{0}^{2} \boldsymbol{I}_{n}+\sigma_{1}^{2} \boldsymbol{V}_{1}+\sigma_{2}^{2} \boldsymbol{V}_{2} .
$$

- We are interested in testing $H_{0}: \sigma_{2}^{2}=0$ vs $H_{A}: \sigma_{2}^{2}>0$.
- The idea is to massage the problem to the case (5) above.
- First perform QR (Gram-Schmidt) on the matrix $\left(\boldsymbol{X}, \boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{I}_{n}\right)$ to obtain an orthonormal basis $\left(\boldsymbol{Q}_{0}, \boldsymbol{Q}_{1}, \boldsymbol{Q}_{2}, \boldsymbol{Q}_{3}\right)$ of \mathbb{R}^{n}, where
- \boldsymbol{Q}_{0} is an orthonormal basis of $\mathcal{C}(\boldsymbol{X})$
- \boldsymbol{Q}_{1} is an orthonormal basis of $\mathcal{C}\left(\boldsymbol{X}, \boldsymbol{V}_{1}\right)-\mathcal{C}(\boldsymbol{X})$
- \boldsymbol{Q}_{2} is an orthonormal basis of $\mathcal{C}\left(\boldsymbol{X}, \boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right)-\mathcal{C}\left(\boldsymbol{X}, \boldsymbol{V}_{1}\right)$
- \boldsymbol{Q}_{3} is an orthonormal basis of $\mathcal{C}\left(\boldsymbol{X}, \boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right)^{\perp}$.
- If $\operatorname{rank}\left(\boldsymbol{Q}_{2}\right)>0$, that is $\mathcal{C}\left(\boldsymbol{X}, \boldsymbol{V}_{1}\right) \subsetneq \mathcal{C}\left(\boldsymbol{X}, \boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right)$, then

$$
\boldsymbol{Q}_{2}^{T} \boldsymbol{Y} \sim N\left(\mathbf{0}, \sigma_{0}^{2} \boldsymbol{I}+\sigma_{2}^{2} \boldsymbol{Q}_{2}^{T} \boldsymbol{V}_{2} \boldsymbol{Q}_{2}\right)
$$

and the exact F test, eLRT, eRLRT and score test can be applied to $\boldsymbol{Q}_{2}^{T} \boldsymbol{y}$.
Is this beneficial to add the $\boldsymbol{Q}_{3}^{T} \boldsymbol{Y}$ component???

- If $\operatorname{rank}\left(\boldsymbol{Q}_{2}\right)=0$, that is $\mathcal{C}\left(\boldsymbol{X}, \boldsymbol{V}_{1}\right)=\mathcal{C}\left(\boldsymbol{X}, \boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right)$, then we would like to choose λ and matrix \boldsymbol{K} such that

$$
\boldsymbol{Q}_{1}^{T} \boldsymbol{Y}+\boldsymbol{K} \boldsymbol{Q}_{3}^{T} \boldsymbol{Y} \sim N\left(\mathbf{0},\left(\sigma_{1}^{2}+\sigma_{0}^{2} / \lambda\right) \boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{1} \boldsymbol{Q}_{1}+\sigma_{2}^{2} \boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{2} \boldsymbol{Q}_{1}\right),
$$

which is of form (5). We consider following situations.

- If $\boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{2}=\mathbf{0}$, e.g., when $\mathcal{C}\left(\boldsymbol{V}_{2}\right) \subset \mathcal{C}(\boldsymbol{X})$, then this test cannot be performed.
- If $\boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{1} \boldsymbol{Q}_{1}=\lambda \boldsymbol{I}$, note

$$
\begin{aligned}
\boldsymbol{Q}_{1}^{T} \boldsymbol{Y} & \sim N\left(\mathbf{0}, \sigma_{0}^{2} \boldsymbol{I}+\sigma_{1}^{2} \boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{1} \boldsymbol{Q}_{1}+\sigma_{2}^{2} \boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{2} \boldsymbol{Q}_{1}\right) \\
& =N\left(\mathbf{0},\left(\sigma_{0}^{2}+\lambda \sigma_{1}^{2}\right) \boldsymbol{I}+\sigma_{2}^{2} \boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{2} \boldsymbol{Q}_{1}\right)
\end{aligned}
$$

Then the ordinary tests (F test, eLRT, eRLRT, score) for one variance component can be applied without using the $\boldsymbol{K} \boldsymbol{Q}_{3}^{T} \boldsymbol{y}$ piece as long as $\boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{2} \neq \mathbf{0}$.

- In general, $\boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{1} \boldsymbol{Q}_{1} \neq \lambda \boldsymbol{I}$, then the test requires the $\boldsymbol{K} \boldsymbol{Q}_{3}^{T} \boldsymbol{y}$ term, which has distribution

$$
\boldsymbol{K} \boldsymbol{Q}_{3}^{T} \boldsymbol{Y} \sim N\left(\mathbf{0}, \sigma_{0}^{2} \boldsymbol{K} \boldsymbol{K}^{T}\right)
$$

Note that

$$
\boldsymbol{Q}_{1}^{T} \boldsymbol{V} \boldsymbol{Q}_{3}=\boldsymbol{Q}_{1}^{T}\left(\sigma_{0}^{2} \boldsymbol{I}_{n}+\sigma_{1}^{2} \boldsymbol{V}_{1}+\sigma_{2}^{2} \boldsymbol{V}_{2}\right) \boldsymbol{Q}_{3}=\mathbf{0}
$$

Therefore $\boldsymbol{Q}_{1}^{T} \boldsymbol{Y} \perp \boldsymbol{K} \boldsymbol{Q}_{3}^{T} \boldsymbol{Y}$. We simply pick \boldsymbol{K} such that

$$
\boldsymbol{K} \boldsymbol{Q}_{3}^{T} \boldsymbol{Y} \sim N\left(\mathbf{0}, \sigma_{0}^{2}\left(\lambda^{-1} \boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{2} \boldsymbol{Q}_{1}-\boldsymbol{I}\right)\right)
$$

That is

$$
\boldsymbol{K} \boldsymbol{K}^{T}=\lambda^{-1} \boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{2} \boldsymbol{Q}_{1}-\boldsymbol{I}
$$

Apparently we need to choose λ such that $\lambda^{-1} \boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{2} \boldsymbol{Q}_{1}-\boldsymbol{I}$ is psd. Let

$$
\boldsymbol{Q}_{1}^{T} \boldsymbol{V}_{2} \boldsymbol{Q}_{1}=\boldsymbol{W} \boldsymbol{\Lambda} \boldsymbol{W}^{T}=\boldsymbol{W} \operatorname{diag}\left(\lambda_{i}\right) \boldsymbol{W}^{T}
$$

be the eigendecomposition. Setting λ to be the smallest eigenvalue yields

$$
\boldsymbol{K}=\boldsymbol{W} \operatorname{diag}\left(\sqrt{\lambda_{i} / \lambda-1}\right)
$$

Best linear prediction (BLP)

- Given data $\left(y, x_{1}, \ldots, x_{p}\right)$, regression can be thought of one way to predict y from x_{1}, \ldots, x_{p}.
- A reasonable criterion is to choose predictor $f(\boldsymbol{x})$ such that the mean squared error

$$
\mathrm{MSE}=\mathrm{E}[y-f(\boldsymbol{x})]^{2}
$$

is minimized. Here the expectation is wrt the joint distribution of (y, \boldsymbol{x}).

- Let $m(\boldsymbol{x})=\mathrm{E}(y \mid \boldsymbol{x})$. Then for any other predictor $f(\boldsymbol{x})$,

$$
\mathrm{E}[y-m(\boldsymbol{x})]^{2} \leq \mathrm{E}[y-f(\boldsymbol{x})]^{2} .
$$

That is $m(\boldsymbol{x})$ is the best predictor of y.
Proof.

$$
\begin{aligned}
& \mathrm{E}[y-f(\boldsymbol{x})]^{2} \\
= & \mathrm{E}[y-m(\boldsymbol{x})+m(\boldsymbol{x})-f(\boldsymbol{x})]^{2} \\
= & \mathrm{E}[y-m(\boldsymbol{x})]^{2}+\mathrm{E}[m(\boldsymbol{x})-f(\boldsymbol{x})]^{2}+2 \mathrm{E}[y-m(\boldsymbol{x})][m(\boldsymbol{x})-f(\boldsymbol{x})]
\end{aligned}
$$

But the cross term vanishes

$$
\begin{aligned}
& \mathrm{E}[y-m(\boldsymbol{x})][m(\boldsymbol{x})-f(\boldsymbol{x})] \\
= & \mathrm{E}\{\mathrm{E}[y-m(\boldsymbol{x})][m(\boldsymbol{x})-f(\boldsymbol{x})] \mid \boldsymbol{x}\} \\
= & \mathrm{E}\{[m(\boldsymbol{x})-f(\boldsymbol{x})] \mathrm{E}[y-m(\boldsymbol{x}) \mid \boldsymbol{x}]\} \\
= & \mathrm{E}\{[m(\boldsymbol{x})-f(\boldsymbol{x})] 0\} \\
= & 0 .
\end{aligned}
$$

Therefore $\mathrm{E}[y-f(\boldsymbol{x})]^{2} \geq \mathrm{E}[y-m(\boldsymbol{x})]^{2}$ for any $f(\boldsymbol{x})$.

- In order to use this result, we need to know the joint distribution of (y, \boldsymbol{x}). This is often unrealistic © If only the first two moments (means, variances, and covariances) are known, then we can find the best linear predictor (BLP) of y.
- Assume

$$
\mathrm{E}\binom{y}{\boldsymbol{x}}=\binom{\mu_{y}}{\boldsymbol{\mu}_{\boldsymbol{x}}}, \quad \operatorname{Cov}\left(\begin{array}{cc}
\sigma_{y y} & \boldsymbol{\Sigma}_{\boldsymbol{x y}}^{T} \\
\boldsymbol{\Sigma}_{\boldsymbol{x y}} & \boldsymbol{\Sigma}_{\boldsymbol{x} \boldsymbol{x}}
\end{array}\right)
$$

Let $\boldsymbol{\beta}^{*}$ be a solution of $\boldsymbol{\Sigma}_{\boldsymbol{x} \boldsymbol{x}} \boldsymbol{\beta}=\boldsymbol{\Sigma}_{\boldsymbol{x} \boldsymbol{y}}$. Then

$$
\widehat{\mathrm{E}}(y \mid \boldsymbol{x}):=\mu_{y}+\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{x}}\right)^{T} \boldsymbol{\beta}^{*}
$$

is the best linear predictor (BLP) of y.
Proof. Let $f(\boldsymbol{x})=\alpha+\boldsymbol{x}^{T} \boldsymbol{\beta}$ be an arbitrary linear predictor. Then we find $\alpha, \boldsymbol{\beta}$ by minimizing the MSE

$$
\begin{aligned}
& \mathrm{E}[y-f(\boldsymbol{x})]^{2} \\
= & \mathrm{E}\left(y-\alpha-\boldsymbol{x}^{T} \boldsymbol{\beta}\right)^{2} \\
= & \mathrm{E}(y-\alpha)^{2}+\boldsymbol{\beta}^{T} \mathrm{E}\left(\boldsymbol{x} \boldsymbol{x}^{T}\right) \boldsymbol{\beta}-2 \mathrm{E}\left[(y-\alpha)\left(\boldsymbol{x}^{T} \boldsymbol{\beta}\right)\right] \\
= & \mathrm{E}(y-\alpha)^{2}+\boldsymbol{\beta}^{T} \mathrm{E}\left(\boldsymbol{x} \boldsymbol{x}^{T}\right) \boldsymbol{\beta}-2 \mathrm{E}\left(y \boldsymbol{x}^{T}\right) \boldsymbol{\beta}+2 \alpha \mathrm{E}\left(\boldsymbol{x}^{T}\right) \boldsymbol{\beta} \\
= & \mathrm{E}(y-\alpha)^{2}+\boldsymbol{\beta}^{T} \mathrm{E}\left(\boldsymbol{x} \boldsymbol{x}^{T}\right) \boldsymbol{\beta}-2 \mathrm{E}(y \boldsymbol{x})^{T} \boldsymbol{\beta}+2 \alpha \boldsymbol{\mu}_{\boldsymbol{x}}^{T} \boldsymbol{\beta} .
\end{aligned}
$$

Setting derivatives to 0 gives

$$
\begin{aligned}
& \frac{\partial}{\partial \alpha} \mathrm{E}[y-f(\boldsymbol{x})]^{2}=2\left(\alpha-\mu_{y}\right)+2 \boldsymbol{\mu}_{\boldsymbol{x}}^{T} \boldsymbol{\beta}=0 \\
& \nabla_{\boldsymbol{\beta}^{\mathrm{E}}[y-f(\boldsymbol{x})]^{2}}=2 \mathrm{E}\left(\boldsymbol{x} \boldsymbol{x}^{T}\right) \boldsymbol{\beta}-2 \mathrm{E}(\boldsymbol{x} y)+2 \alpha \boldsymbol{\mu}_{\boldsymbol{x}}=\mathbf{0}_{p}
\end{aligned}
$$

From the first equation, $\alpha=\mu_{y}-\boldsymbol{\mu}_{\boldsymbol{x}}^{T} \boldsymbol{\beta}$. Substitution into the second equation yields

$$
\left(\mathrm{E} \boldsymbol{x} \boldsymbol{x}^{T}-\boldsymbol{\mu}_{\boldsymbol{x}} \boldsymbol{\mu}_{\boldsymbol{x}}^{T}\right) \boldsymbol{\beta}=\mathrm{E}(\boldsymbol{x} y)-\boldsymbol{\mu}_{\boldsymbol{x}} \mu_{y}
$$

That is

$$
\Sigma_{x x} \beta=\Sigma_{x y}
$$

Therefore the optimal α is $\alpha^{*}=\mu_{y}-\boldsymbol{\mu}_{\boldsymbol{x}}^{T} \beta^{*}$, where $\boldsymbol{\beta}^{*}$ is any solution to above equation. And the BLP is

$$
\alpha^{*}+\boldsymbol{x}^{T} \boldsymbol{\beta}^{*}=\mu_{y}+\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{x}}\right)^{T} \boldsymbol{\beta}^{*} .
$$

Because the criterion function is a convex function, the stationary condition is both necessary and sufficient for the global minima. Therefore any BLP must be of this form.

Best linear unbiased prediction (BLUP)

- Consider random variables $y_{0}, y_{1}, \ldots, y_{n}$, and we are interested predicting y_{0} given data y_{1}, \ldots, y_{n}. If we know the mean, variances, and covariances, then we can use above theory to find the BLP of y_{0}.
- In practice, we don't know the means $\mu_{0}=\mathrm{E} y_{0}, \boldsymbol{\mu}_{\boldsymbol{y}}=\mathrm{E} \boldsymbol{y}$ most of time $)^{-}$ Let's impose a linear (Aitken) model for the means μ_{i}

$$
\mathrm{E}\binom{\boldsymbol{y}}{y_{0}}=\binom{\boldsymbol{X} \boldsymbol{b}}{\boldsymbol{x}_{0}^{T} \boldsymbol{b}}, \quad \operatorname{Cov}\binom{\boldsymbol{y}}{y_{0}}=\left(\begin{array}{cc}
\boldsymbol{V} & \boldsymbol{V}_{\boldsymbol{y} y_{0}} \tag{6}\\
\boldsymbol{V}_{\boldsymbol{y}_{y_{0}}} & V_{y_{0} y_{0}}
\end{array}\right) .
$$

- If \boldsymbol{b} is known, then the BLP of y_{0} is

$$
\boldsymbol{x}_{0}^{T} \boldsymbol{b}+(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b})^{T} \boldsymbol{\beta}^{*}
$$

where $\boldsymbol{\beta}^{*}$ is a solution to $\boldsymbol{V} \boldsymbol{\beta}=\boldsymbol{V}_{\boldsymbol{y} y_{0}}$.

- If \boldsymbol{b} is unknown, then the hope is to find the best linear unbiased predictor (BLUP).
We call a linear predictor $f(\boldsymbol{y})=a_{0}+\boldsymbol{a}^{T} \boldsymbol{y}$ of y_{0} BLUP if

1. it is unbiased, i.e.,

$$
\mathrm{E} f(\boldsymbol{y})=a_{0}+\boldsymbol{a}^{T} \boldsymbol{X} \boldsymbol{b}=\boldsymbol{x}_{0}^{T} \boldsymbol{b}=\mathrm{E} y_{0}
$$

for all \boldsymbol{b}, and
2. for any other linear unbiased predictor $b_{0}+\boldsymbol{b}^{T} \boldsymbol{y}$,

$$
\mathrm{E}\left(y_{0}-a_{0}-\boldsymbol{a}^{T} \boldsymbol{y}\right)^{2} \leq \mathrm{E}\left(y_{0}-b_{0}-\boldsymbol{b}^{T} \boldsymbol{y}\right)^{2} .
$$

- Theorem: Under the Aitken model (6) and assume $\boldsymbol{V}_{\boldsymbol{y} y_{0}} \in \mathcal{C}(\boldsymbol{V}, \boldsymbol{X})$ and $\boldsymbol{x}_{0} \in$ $\mathcal{C}\left(\boldsymbol{X}^{T}\right)$, the BLUP of y_{0} is

$$
\boldsymbol{x}_{0}^{T} \hat{\boldsymbol{b}}_{\mathrm{GLS}}+\left(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{b}}_{\mathrm{GLS}}\right)^{T} \boldsymbol{\beta}_{*},
$$

where $\boldsymbol{\beta}_{*}$ is a solution of $\left(\boldsymbol{V}+\boldsymbol{X} \boldsymbol{X}^{T}\right) \boldsymbol{\beta}=\boldsymbol{V}_{\boldsymbol{y} y_{0}}$ and $\boldsymbol{X} \hat{\boldsymbol{b}}_{\mathrm{GLS}}$ is the BLUE of $\boldsymbol{X} \boldsymbol{b}$. Remark 1: We don't assume \boldsymbol{V} is nonsingular. For nonsingular \boldsymbol{V}, we can take $\boldsymbol{\beta}_{*}=\boldsymbol{V}^{-1} \boldsymbol{V}_{\boldsymbol{y} y_{0}}$.
Remark 2: Both $\hat{\boldsymbol{b}}_{\mathrm{GLS}}$ and $\boldsymbol{\beta}^{*}$ depend crucially on \boldsymbol{V}.
Proof. Let $a_{0}+\boldsymbol{a}^{T} \boldsymbol{y}$ be arbitrary linear predictor of y_{0}. Unbiasedness requires

$$
a_{0}+\boldsymbol{a}^{T} \boldsymbol{X} \boldsymbol{b}=\boldsymbol{x}_{0}^{T} \boldsymbol{b}
$$

for all \boldsymbol{b}. Thus $a_{0}=0$ and $\boldsymbol{a}^{T} \boldsymbol{X}=\boldsymbol{x}_{0}^{T}$. We need to solve the constrained optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \mathrm{E}\left(y_{0}-\boldsymbol{a}^{T} \boldsymbol{y}\right)^{2}=\frac{1}{2} \boldsymbol{a}^{T} \mathrm{E}\left(\boldsymbol{y} \boldsymbol{y}^{T}\right) \boldsymbol{a}-\mathrm{E}\left(y_{0} \boldsymbol{a}^{T} \boldsymbol{y}\right)+\frac{1}{2} \mathrm{E} y_{0}^{2} \\
\text { subject to } & \boldsymbol{X}^{T} \boldsymbol{a}=\boldsymbol{x}_{0}
\end{array}
$$

Setting the gradient of the Lagrangian

$$
L(\boldsymbol{a}, \boldsymbol{\lambda})=\frac{1}{2} \boldsymbol{a}^{T} \mathrm{E}\left(\boldsymbol{y} \boldsymbol{y}^{T}\right) \boldsymbol{a}-\mathrm{E}\left(y_{0} \boldsymbol{a}^{T} \boldsymbol{y}\right)+\frac{1}{2} \mathrm{E} y_{0}^{2}+\boldsymbol{\lambda}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{a}-\boldsymbol{x}_{0}\right)
$$

to zero yields equations

$$
\begin{aligned}
\boldsymbol{E}\left(\boldsymbol{y} \boldsymbol{y}^{T}\right) \boldsymbol{a}-\boldsymbol{E}\left(\boldsymbol{y} y_{0}\right)+\boldsymbol{X} \boldsymbol{\lambda} & =\mathbf{0}_{n} \\
\boldsymbol{X}^{T} \boldsymbol{a} & =\boldsymbol{x}_{0} .
\end{aligned}
$$

Adding and subtracting $\left(\mathrm{E} \boldsymbol{y} \mathrm{E} \boldsymbol{y}^{T}\right) \boldsymbol{a}=\boldsymbol{X} \boldsymbol{b} \boldsymbol{b}^{T} \boldsymbol{X}^{T} \boldsymbol{a}=\boldsymbol{X} \boldsymbol{b} \boldsymbol{b}^{T} \boldsymbol{x}_{0}=\mathrm{E} \boldsymbol{y} \mathrm{E} y_{0}$ to the first equation shows $\boldsymbol{V} \boldsymbol{a}-\boldsymbol{V}_{\boldsymbol{y} y_{0}}+\boldsymbol{X} \boldsymbol{\lambda}=\mathbf{0}_{n}$. In matrix notation,

$$
\left(\begin{array}{cc}
\boldsymbol{V} & \boldsymbol{X} \\
\boldsymbol{X}^{T} & 0
\end{array}\right)\binom{\boldsymbol{a}}{\boldsymbol{\lambda}}=\binom{\boldsymbol{V}_{\boldsymbol{y} y_{0}}}{\boldsymbol{x}_{0}} .
$$

By HW4 5(d), solution for the optimal \boldsymbol{a} is

$$
\boldsymbol{a}_{*}=\left[\boldsymbol{V}_{0}^{-}-\boldsymbol{V}_{0}^{-} \boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{V}_{0}^{-} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{T} \boldsymbol{V}_{0}^{-}\right] \boldsymbol{V}_{\boldsymbol{y} y_{0}}+\boldsymbol{V}_{0}^{-} \boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{V}_{0}^{-} \boldsymbol{X}\right)^{-} \boldsymbol{x}_{0},
$$

where $\boldsymbol{V}_{0}=\boldsymbol{V}+\boldsymbol{X} \boldsymbol{X}^{T}$. Thus the BLUP is

$$
\begin{aligned}
\boldsymbol{a}_{*}^{T} \boldsymbol{y} & =\boldsymbol{V}_{\boldsymbol{y} y_{0}}^{T}\left[\boldsymbol{V}_{0}^{-}-\boldsymbol{V}_{0}^{-} \boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{V}_{0}^{-} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{T} \boldsymbol{V}_{0}^{-}\right] \boldsymbol{y}+\boldsymbol{x}_{0}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{V}_{0}^{-} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{T} \boldsymbol{V}_{0}^{-} \boldsymbol{y} \\
& =\boldsymbol{V}_{\boldsymbol{y} y_{0}}^{T} \boldsymbol{V}_{0}^{-}\left(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{b}}_{\mathrm{GLS}}\right)+\boldsymbol{x}_{0}^{T} \hat{\boldsymbol{b}}_{\mathrm{GLS}} \\
& =\boldsymbol{\beta}_{*}^{T}\left(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{b}}_{\mathrm{GLS}}\right)+\boldsymbol{x}_{0}^{T} \hat{\boldsymbol{b}}_{\mathrm{GLS}} .
\end{aligned}
$$

- The prediction variance of BLUP is (TODO)

$$
\mathrm{E}\left(y_{0}-\boldsymbol{a}_{*}^{T} \boldsymbol{y}\right)^{2}=V_{y_{0} y_{0}}-2 \boldsymbol{a}_{*}^{T} \boldsymbol{V}_{\boldsymbol{y} y_{0}}+\boldsymbol{a}_{*}^{T} \boldsymbol{V} \boldsymbol{a}_{*} . \quad ? ? ?
$$

- Example (BLUP in Gauss-Markov linear model): $\boldsymbol{V}=\sigma^{2} \boldsymbol{I}$ and $\boldsymbol{V}_{\boldsymbol{y} y_{0}}=\mathbf{0}_{p}$. Thus $\boldsymbol{\beta}_{*}=\mathbf{0}_{p}$ and the BLUP for y_{0} is $\boldsymbol{x}_{0}^{T} \hat{\boldsymbol{b}}$, which is also the BLUE of $\boldsymbol{x}_{0}^{T} \boldsymbol{b}$.

Mixed model equation (MME)

- Consider the mixed effects model

$$
y=X \boldsymbol{b}+\boldsymbol{Z} \boldsymbol{u}+e
$$

- $\boldsymbol{X} \in \mathbb{R}^{n \times p}$ is a design matrix for fixed effects $\boldsymbol{b} \in \mathbb{R}^{p}$.
- $\boldsymbol{Z} \in \mathbb{R}^{n \times q}$ is a design matrix for random effects $\boldsymbol{u} \in \mathbb{R}^{q}$.
- The most general assumption is $\boldsymbol{e} \in N\left(\mathbf{0}_{n}, \boldsymbol{R}\right), \boldsymbol{u} \in N\left(\mathbf{0}_{q}, \boldsymbol{G}\right)$, and \boldsymbol{e} is independent of \boldsymbol{u}. That is

$$
\binom{\boldsymbol{u}}{\boldsymbol{e}} \sim N\left(\mathbf{0}_{q+n},\left(\begin{array}{cc}
\boldsymbol{G} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{R}
\end{array}\right)\right) .
$$

Assume \boldsymbol{G} and \boldsymbol{R} are nonsingular.

- We already know that the BLUE of $\boldsymbol{X} \boldsymbol{b}$ is

$$
\boldsymbol{X} \hat{\boldsymbol{b}}_{\mathrm{GLS}}=\boldsymbol{X}\left[\boldsymbol{X}^{T}\left(\boldsymbol{R}+\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}\right)^{-1} \boldsymbol{X}\right]^{-} \boldsymbol{X}^{T}\left(\boldsymbol{R}+\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}\right)^{-1} \boldsymbol{y}
$$

- We can apply the previous theorem to derive the BLUP of \boldsymbol{u}. Note

$$
\mathrm{E}\binom{\boldsymbol{y}}{\boldsymbol{u}}=\binom{\boldsymbol{X} \boldsymbol{b}}{\mathbf{0}_{q}}, \quad \operatorname{Cov}\binom{\boldsymbol{y}}{\boldsymbol{u}}=\left(\begin{array}{cc}
\boldsymbol{R}+\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T} & \boldsymbol{Z} \boldsymbol{G} \\
\boldsymbol{G} \boldsymbol{Z}^{T} & \boldsymbol{R}
\end{array}\right) .
$$

Therefore the BLUP for \boldsymbol{u} is

$$
\boldsymbol{G} \boldsymbol{Z}^{T}\left(\boldsymbol{R}+\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{b}}_{\mathrm{GLS}}\right)
$$

- It turns out both BLUE of $\boldsymbol{X} \boldsymbol{b}$ and BLUP of \boldsymbol{u} can be obtained simultaneously by solving a so-called mixed model equation (MME).

Mixed model equation (MME) defined as

$$
\left(\begin{array}{cc}
\boldsymbol{X}^{T} \boldsymbol{R}^{-1} \boldsymbol{X} & \boldsymbol{X}^{T} \boldsymbol{R}^{-1} \boldsymbol{Z} \\
\boldsymbol{Z}^{T} \boldsymbol{R}^{-1} \boldsymbol{X} & \boldsymbol{G}^{-1}+\boldsymbol{Z}^{T} \boldsymbol{R}^{-1} \boldsymbol{Z}
\end{array}\right)\binom{\boldsymbol{b}}{\boldsymbol{u}}=\binom{\boldsymbol{X}^{T} \boldsymbol{R}^{-1} \boldsymbol{y}}{\boldsymbol{Z}^{T} \boldsymbol{R}^{-1} \boldsymbol{y}}
$$

is a generalization of the normal equation for fixed effects model.

- Theorem: Let $(\hat{\boldsymbol{b}}, \hat{\boldsymbol{u}})$ be a solution to MME. Then $\boldsymbol{X} \hat{\boldsymbol{b}}$ is the BLUE of $\boldsymbol{X} \boldsymbol{b}$ and $\hat{\boldsymbol{u}}$ is the BLUP of \boldsymbol{u}.

Proof. Let

$$
\boldsymbol{V}=\operatorname{Cov}(\boldsymbol{y})=\boldsymbol{R}+\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}
$$

Then $\boldsymbol{X} \hat{\boldsymbol{b}}$ is a BLUE of $\boldsymbol{X} \boldsymbol{b}$ if $\hat{\boldsymbol{b}}$ is a solution to

$$
\boldsymbol{X}^{T} \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{b}=\boldsymbol{X}^{T} \boldsymbol{V}^{-1} \boldsymbol{y}
$$

By the binomial inversion formula (HW1), we have

$$
\boldsymbol{V}^{-1}=\boldsymbol{R}^{-1}-\boldsymbol{R}^{-1} \boldsymbol{Z}\left(\boldsymbol{G}^{-1}+\boldsymbol{Z}^{T} \boldsymbol{R}^{-1} \boldsymbol{Z}\right)^{-1} \boldsymbol{Z}^{T} \boldsymbol{R}^{-1}
$$

The MME says

$$
\begin{aligned}
\boldsymbol{X}^{T} \boldsymbol{R}^{-1} \boldsymbol{X} \boldsymbol{b}+\boldsymbol{X}^{T} \boldsymbol{R}^{-1} \boldsymbol{Z} \boldsymbol{u} & =\boldsymbol{X}^{T} \boldsymbol{R}^{-1} \boldsymbol{y} \\
\boldsymbol{Z}^{T} \boldsymbol{R}^{-1} \boldsymbol{X} \boldsymbol{b}+\left(\boldsymbol{G}^{-1}+\boldsymbol{Z}^{T} \boldsymbol{R}^{-1} \boldsymbol{Z}\right) \boldsymbol{u} & =\boldsymbol{Z}^{T} \boldsymbol{R}^{-1} \boldsymbol{y}
\end{aligned}
$$

From the second equation we solve for

$$
\boldsymbol{u}=\left(\boldsymbol{G}^{-1}+\boldsymbol{Z}^{T} \boldsymbol{R}^{-1} \boldsymbol{Z}\right)^{-1} \boldsymbol{Z}^{T} \boldsymbol{R}^{-1}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b})
$$

and substituting into the first equation shows

$$
\boldsymbol{X}^{T} \boldsymbol{V}^{-1} \boldsymbol{X} \hat{\boldsymbol{b}}=\boldsymbol{X}^{T} \boldsymbol{V}^{-1} \boldsymbol{y}
$$

Thus $\hat{\boldsymbol{b}}$ is a generalized least squares solution and $\boldsymbol{X} \hat{\boldsymbol{b}}$ is the BLUE of $\boldsymbol{X} \boldsymbol{b}$.
To show that $\hat{\boldsymbol{u}}$ is BLUP, only need to show that

$$
\left(\boldsymbol{G}^{-1}+\boldsymbol{Z}^{T} \boldsymbol{R}^{-1} \boldsymbol{Z}\right)^{-1} \boldsymbol{Z}^{T} \boldsymbol{R}^{-1}=\boldsymbol{G} \boldsymbol{Z}^{T}\left(\boldsymbol{R}+\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}\right)^{-1}
$$

or equivalently

$$
\boldsymbol{Z}^{T} \boldsymbol{R}^{-1}\left(\boldsymbol{R}+\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{T}\right)=\left(\boldsymbol{G}^{-1}+\boldsymbol{Z}^{T} \boldsymbol{R}^{-1} \boldsymbol{Z}\right) \boldsymbol{G} \boldsymbol{Z}^{T}
$$

which is obvious.

References

Casella, G. and Berger, R. (2001). Statistical Inference. Duxbury Resource Center.
Christensen, R. (1996). Exact tests for variance components. Biometrics, 52(1):309314.

Crainiceanu, C. M. and Ruppert, D. (2004). Likelihood ratio tests in linear mixed models with one variance component. J. R. Stat. Soc. Ser. B Stat. Methodol., 66(1):165-185.

Davies, R. B. (1980). The distribution of linear combinations of χ^{2} random variables. Applied Statistics, 29:323-333.

Öfversten, J. (1993). Exact tests for variance components in unbalanced mixed linear models. Biometrics, 49(1):45-57.

Seely, J. F. and El Bassiouni, Y. (1983). Applying Wald's variance component test. Ann. Statist., 11(1):197-201.

Teets, D. and Whitehead, K. (1999). The discovery of Ceres: how Gauss became famous. Math. Mag., 72(2):83-93.

