ST552, Homework 1

Due Wednesday, Sep 4, 2013

Please make your proofs self-contained, without citing any corresponding theorem in the textbook or lecture notes

1. Show that for an arbitrary matrix \boldsymbol{A}, the maximum number of linearly independent rows equals the maximum number of linearly independent columns. Therefore the rank can be defined either way.
2. Assume $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{B} \in \mathbb{R}^{n \times p}$. Show the following facts about the effect of matrix multiplication on the rank.
(a) $\operatorname{rank}(\boldsymbol{A B}) \leq \min \{\operatorname{rank}(\boldsymbol{A}), \operatorname{rank}(\boldsymbol{B})\}$ for any \boldsymbol{B}.
(b) $\operatorname{rank}(\boldsymbol{A B})=\operatorname{rank}(\boldsymbol{B})$ for any \boldsymbol{A} of full column rank.
(c) $\operatorname{rank}(\boldsymbol{A B})=\operatorname{rank}(\boldsymbol{A})$ for any \boldsymbol{B} of full row rank.
(d) $\operatorname{rank}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)=\operatorname{rank}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$. This is same as 3(c) below.
(e) $\operatorname{rank}\left(\boldsymbol{A} \boldsymbol{A}^{-}\right)=\operatorname{rank}\left(\boldsymbol{A}^{-} \boldsymbol{A}\right)=\operatorname{rank}(\boldsymbol{A})$.
3. Show the following facts about the Gramian matrix $\boldsymbol{A}^{\top} \boldsymbol{A}$.
(a) $\boldsymbol{A}^{\top} \boldsymbol{A}$ is symmetric and positive semidefinite.
(b) $\mathcal{C}(\boldsymbol{A})=\mathcal{C}\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)$.
(c) $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}\left(\boldsymbol{A}^{\top}\right)=\operatorname{rank}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\operatorname{rank}\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)$.
(d) $\boldsymbol{A}^{\top} \boldsymbol{A}=\mathbf{0}$ if and only if $\boldsymbol{A}=\mathbf{0}$.
(e) $\boldsymbol{B} \boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{C} \boldsymbol{A}^{\top} \boldsymbol{A}$ if and only if $\boldsymbol{B} \boldsymbol{A}^{\top}=\boldsymbol{C} \boldsymbol{A}^{\top}$.
(f) $\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{B}=\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{C}$ if and only if $\boldsymbol{A} \boldsymbol{B}=\boldsymbol{A} \boldsymbol{C}$.
(g) For any generalized inverse $\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-},\left[\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-}\right]^{\top}$ is also a generalized inverse of $\boldsymbol{A}^{\top} \boldsymbol{A}$. Note $\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-}$is not necessarily symmetric.
(h) $\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-} \boldsymbol{A}^{\top}$ is a generalized inverse of \boldsymbol{A}.
(i) $\boldsymbol{A} \boldsymbol{A}^{+}=\boldsymbol{A}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-} \boldsymbol{A}^{\top}$, where \boldsymbol{A}^{+}is the Moore-Penrose inverse of \boldsymbol{A}.
(j) Let $\boldsymbol{P}_{\boldsymbol{A}}=\boldsymbol{A}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-} \boldsymbol{A}^{\top}$. Show that $\boldsymbol{P}_{\boldsymbol{A}}$ is symmetric, idempotent, invariant to the choice of generalized inverse $\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-}$, and projects onto $\mathcal{C}(\boldsymbol{A})$.
4. (a) Show the Sherman-Morrison formula

$$
\left(\boldsymbol{A}+\boldsymbol{u} \boldsymbol{u}^{\top}\right)^{-1}=\boldsymbol{A}^{-1}-\frac{1}{1+\boldsymbol{u}^{\top} \boldsymbol{A}^{-1} \boldsymbol{u}} \boldsymbol{A}^{-1} \boldsymbol{u} \boldsymbol{u}^{\top} \boldsymbol{A}^{-1}
$$

where $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is a nonsingular matrix and $\boldsymbol{u} \in \mathbb{R}^{n}$. This formula supplies the inverse of the symmetric, rank-one perturbation of \boldsymbol{A}.
(b) Show the Woodbury formula

$$
\left(\boldsymbol{A}+\boldsymbol{U} \boldsymbol{V}^{\top}\right)^{-1}=\boldsymbol{A}^{-1}-\boldsymbol{A}^{-1} \boldsymbol{U}\left(\boldsymbol{I}_{m}+\boldsymbol{V}^{\top} \boldsymbol{A}^{-1} \boldsymbol{U}\right)^{-1} \boldsymbol{V}^{\top} \boldsymbol{A}^{-1}
$$

where $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is nonsingular, $\boldsymbol{U}, \boldsymbol{V} \in \mathbb{R}^{n \times m}$, and \boldsymbol{I}_{m} is the $m \times m$ identity matrix. In many applications m is much smaller than n. Woodbury formula generalizes ShermanMorrison and is valuable because the smaller matrix $\boldsymbol{I}_{m}+\boldsymbol{V}^{\top} \boldsymbol{A}^{-1} \boldsymbol{U}$ is typically much easier to invert than the larger matrix $\boldsymbol{A}+\boldsymbol{U} \boldsymbol{V}^{\top}$.
(c) Show the binomial inversion formula

$$
\left(\boldsymbol{A}+\boldsymbol{U} \boldsymbol{B} \boldsymbol{V}^{\top}\right)^{-1}=\boldsymbol{A}^{-1}-\boldsymbol{A}^{-1} \boldsymbol{U}\left(\boldsymbol{B}^{-1}+\boldsymbol{V}^{\top} \boldsymbol{A}^{-1} \boldsymbol{U}\right)^{-1} \boldsymbol{V}^{\top} \boldsymbol{A}^{-1}
$$

where \boldsymbol{A} and \boldsymbol{B} are nonsingular.
(d) Show the identity

$$
\operatorname{det}\left(\boldsymbol{A}+\boldsymbol{U} \boldsymbol{V}^{\boldsymbol{\top}}\right)=\operatorname{det}(\boldsymbol{A}) \operatorname{det}\left(\boldsymbol{I}_{m}+\boldsymbol{V}^{\boldsymbol{\top}} \boldsymbol{A}^{-1} \boldsymbol{U}\right)
$$

This formula is useful for evaluating the density of a multivariate normal with covariance matrix $\boldsymbol{A}+\boldsymbol{U} \boldsymbol{U}^{\top}$.

