ST552, Homework 1

Due Wednesday, Sep 4, 2013

Please make your proofs self-contained, without citing any corresponding theorem in the textbook or lecture notes

- 1. Show that for an arbitrary matrix A, the maximum number of linearly independent rows equals the maximum number of linearly independent columns. Therefore the rank can be defined either way.
- 2. Assume $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Show the following facts about the effect of matrix multiplication on the rank.
 - (a) $\operatorname{rank}(AB) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$ for any B.
 - (b) rank(AB) = rank(B) for any A of full column rank.
 - (c) rank(AB) = rank(A) for any B of full row rank.
 - (d) $\operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^T) = \operatorname{rank}(\boldsymbol{A}^T\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A})$. This is same as 3(c) below.
 - (e) $\operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{-}) = \operatorname{rank}(\boldsymbol{A}^{-}\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A}).$
- 3. Show the following facts about the *Gramian* matrix $A^{\mathsf{T}}A$.
 - (a) $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ is symmetric and positive semidefinite.
 - (b) $\mathcal{C}(\mathbf{A}) = \mathcal{C}(\mathbf{A}\mathbf{A}^{\mathsf{T}}).$
 - (c) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\mathsf{T}}) = \operatorname{rank}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \operatorname{rank}(\mathbf{A}\mathbf{A}^{\mathsf{T}}).$
 - (d) $A^{\mathsf{T}}A = \mathbf{0}$ if and only if $A = \mathbf{0}$.
 - (e) $BA^{\mathsf{T}}A = CA^{\mathsf{T}}A$ if and only if $BA^{\mathsf{T}} = CA^{\mathsf{T}}$.
 - (f) $A^{\mathsf{T}}AB = A^{\mathsf{T}}AC$ if and only if AB = AC.
 - (g) For any generalized inverse $(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-}$, $[(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-}]^{\mathsf{T}}$ is also a generalized inverse of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$. Note $(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-}$ is not necessarily symmetric.
 - (h) $(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-}\mathbf{A}^{\mathsf{T}}$ is a generalized inverse of \mathbf{A} .
 - (i) $AA^+ = A(A^{\mathsf{T}}A)^- A^{\mathsf{T}}$, where A^+ is the Moore-Penrose inverse of A.
 - (j) Let $P_A = A(A^{\mathsf{T}}A)^{-}A^{\mathsf{T}}$. Show that P_A is symmetric, idempotent, invariant to the choice of generalized inverse $(A^{\mathsf{T}}A)^{-}$, and projects onto $\mathcal{C}(A)$.
- 4. (a) Show the Sherman-Morrison formula

$$(A + uu^{\mathsf{T}})^{-1} = A^{-1} - \frac{1}{1 + u^{\mathsf{T}}A^{-1}u}A^{-1}uu^{\mathsf{T}}A^{-1},$$

where $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix and $u \in \mathbb{R}^n$. This formula supplies the inverse of the symmetric, rank-one perturbation of A.

(b) Show the Woodbury formula

$$(A + UV^{\mathsf{T}})^{-1} = A^{-1} - A^{-1}U(I_m + V^{\mathsf{T}}A^{-1}U)^{-1}V^{\mathsf{T}}A^{-1},$$

where $A \in \mathbb{R}^{n \times n}$ is nonsingular, $U, V \in \mathbb{R}^{n \times m}$, and I_m is the $m \times m$ identity matrix. In many applications m is much smaller than n. Woodbury formula generalizes Sherman-Morrison and is valuable because the smaller matrix $I_m + V^{\mathsf{T}} A^{-1} U$ is typically much easier to invert than the larger matrix $A + UV^{\mathsf{T}}$.

(c) Show the binomial inversion formula

$$(\boldsymbol{A} + \boldsymbol{U} \boldsymbol{B} \boldsymbol{V}^{\mathsf{T}})^{-1} = \boldsymbol{A}^{-1} - \boldsymbol{A}^{-1} \boldsymbol{U} (\boldsymbol{B}^{-1} + \boldsymbol{V}^{\mathsf{T}} \boldsymbol{A}^{-1} \boldsymbol{U})^{-1} \boldsymbol{V}^{\mathsf{T}} \boldsymbol{A}^{-1},$$

where \boldsymbol{A} and \boldsymbol{B} are nonsingular.

(d) Show the identity

$$\det(\boldsymbol{A} + \boldsymbol{U}\boldsymbol{V}^{\mathsf{T}}) = \det(\boldsymbol{A})\det(\boldsymbol{I}_m + \boldsymbol{V}^{\mathsf{T}}\boldsymbol{A}^{-1}\boldsymbol{U}).$$

This formula is useful for evaluating the density of a multivariate normal with covariance matrix $\mathbf{A} + \mathbf{U}\mathbf{U}^{\mathsf{T}}$.