ST552, Homework 3

Due Wednesday, Oct 2, 2013

- 1. JM 3.13 (p68)
- 2. JM 3.17 (p68)
- 3. If X and Y are two independent random variables, then they are uncorrelated. Give a concrete counter example to show that the converse is not true in general. That is to find two random variables X and Y such that they are uncorrelated but not independent. (Hint: it does not have to be complicated. An example where X and Y can take only three values suffices.)
- 4. Mutual independence implies pairwise independence. Give a concrete example to show that the converse is not true in general. Hint: let X and Y be uniformly distributed on $\{0, 1, 2\}$. You may consider random variables $Z_n = (X + nY) \mod 3$, n = 0, 1, 2. Show that Z_0, Z_1, Z_2 are pairwise independent but not mutually independent.
- 5. Under the Gauss-Markov model, the covariance matrix of the least squares estimator of an estimable function Λb is $\operatorname{Var}(\Lambda \hat{b}) = \sigma^2 \Lambda (X^T X)^- \Lambda^T$. Show that $\Lambda (X^T X)^- \Lambda^T$ is invariant to the choice of generalized inverse $(X^T X)^-$.
- 6. Let Ω_1 and Ω_2 be two positive semidefinite matrices.
 - (a) Prove that if $\Omega_2 \succeq \Omega_1$, then $\operatorname{tr}(\Omega_2) \ge \operatorname{tr}(\Omega_1)$.
 - (b) Is the converse true? That is, is it true that $tr(\Omega_2) \ge tr(\Omega_1)$ implies $\Omega_2 \succeq \Omega_1$?

This shows that any best (minimum variance) affine unbiased estimator is an affine minimumtrace unbiased estimator, but the converse is not true.

- 7. JM A.72 (p268)
- 8. JM 4.4 (p91). There is a typo in book. It should be Example 4.8, instead of Example 4.7.
- 9. JM 4.5 (p91)