ST552, Homework 4

Due Wednesday, Oct 9, 2013 (extended to Oct 16)

- 1. Fill out the missing steps in our derivation of the best (minimum variance) affine unbiased estimator (MVAUE) for the Aiken model: $E(\boldsymbol{y}) = \boldsymbol{X}\boldsymbol{b}$, $Cov(\boldsymbol{y}) = \sigma^2 \boldsymbol{V}$, assuming \boldsymbol{V} is positive definite.
 - (a) Show that if V is positive definite, then V^{-1} is positive definite.
 - (b) If V is positive definite, show that $\mathcal{C}(X^T V^{-1} X) = \mathcal{C}(X^T)$.
 - (c) Prove that the minimum trace affine unbiased estimator (MTAUE) is unique by showing that

$$A = \Lambda (X^T V^{-1} X)^- X^T V^{-1}$$

is invariant to the choice of the generalized inverse $(X^T V^{-1} X)^-$. (Hint: you may use the fact there exists a positive definite matrix $V^{1/2}$ such that $V = V^{1/2} V^{1/2}$.)

- 2. Fill out the missing steps in our derivation of the best (minimum variance) affine unbiased estimator (MVAUE) for the Aiken model with linear constraints $\mathbf{Rb} = \mathbf{r}$. We assume $\mathbf{V} \succ \mathbf{0}_{n \times n}$ and let $\mathbf{G} = \mathbf{X}^T \mathbf{V}^{-1} \mathbf{X} + \mathbf{R}^T \mathbf{R}$.
 - (a) Show that **G** is positive semidefinite and $\mathcal{C}(\mathbf{G}) \supset \mathcal{C}(\mathbf{X}^T) \cup \mathcal{C}(\mathbf{R}^T)$.
 - (b) Show that $\mathcal{C}(RG^{-}R^{T}) \supset \mathcal{C}(RG^{-}X^{T})$ and thus $RG^{-}R^{T}(RG^{-}R^{T})^{-}RG^{-}\Lambda^{T} = RG^{-}\Lambda^{T}$.
 - (c) Check that the variance of the MTAUE is

$$\operatorname{Cov}(\widehat{\Lambda b}) = \sigma^2 \Lambda G^- \Lambda^T - \sigma^2 \Lambda G^- R^T (RG^- R^T)^- RG^- \Lambda^T.$$

- (d) Show that the MTAUE is also the MVAUE.
- 3. Let A and B be two matrices of same number of rows. Show that the following statements are equivalent. (Hint: I followed the route $(b) \rightarrow (a) \rightarrow (h), (i) \rightarrow (d), (f) \rightarrow (c), (e) \rightarrow (g) \rightarrow (b).$)
 - (a) $\mathcal{C}(\mathbf{A}) \cap \mathcal{C}(\mathbf{B}) = \{\mathbf{0}\}$
 - (b) $\operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^T + \boldsymbol{B}\boldsymbol{B}^T) = \operatorname{rank}(\boldsymbol{A}) + \operatorname{rank}(\boldsymbol{B})$
 - (c) $A^T (AA^T + BB^T)^- A$ is idempotent
 - (d) $\boldsymbol{A}^T (\boldsymbol{A} \boldsymbol{A}^T + \boldsymbol{B} \boldsymbol{B}^T)^- \boldsymbol{A} = \boldsymbol{A}^- \boldsymbol{A}$
 - (e) $\boldsymbol{B}^T (\boldsymbol{A} \boldsymbol{A}^T + \boldsymbol{B} \boldsymbol{B}^T)^- \boldsymbol{B}$ is idempotent
 - (f) $\boldsymbol{B}^T (\boldsymbol{A}\boldsymbol{A}^T + \boldsymbol{B}\boldsymbol{B}^T)^- \boldsymbol{B} = \boldsymbol{B}^- \boldsymbol{B}$
 - (g) $\boldsymbol{A}^T (\boldsymbol{A} \boldsymbol{A}^T + \boldsymbol{B} \boldsymbol{B}^T)^- \boldsymbol{B} = \boldsymbol{0}$
 - (h) $(\mathbf{A}\mathbf{A}^T + \mathbf{B}\mathbf{B}^T)^-$ is a generalized inverse of $\mathbf{A}\mathbf{A}^T$
 - (i) $(AA^T + BB^T)^-$ is a generalized inverse of BB^T

4. In class we showed that the MVAUE for Aitken model (non-singular V) with linear constraints Rb = r is

$$\widehat{\boldsymbol{\Lambda b}} = \boldsymbol{\Lambda G}^{-} \boldsymbol{X}^{T} \boldsymbol{V}^{-1} \boldsymbol{y} + \boldsymbol{\Lambda G}^{-} \boldsymbol{R}^{T} (\boldsymbol{R} \boldsymbol{G}^{-} \boldsymbol{R}^{T})^{-} (\boldsymbol{r} - \boldsymbol{R} \boldsymbol{G}^{-} \boldsymbol{X}^{T} \boldsymbol{V}^{-1} \boldsymbol{y})$$

where $\boldsymbol{G} = \boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X} + \boldsymbol{R}^T \boldsymbol{R}$, and has variance

$$\operatorname{Cov}(\widehat{\Lambda b}) = \sigma^2 \Lambda G^- \Lambda^T - \sigma^2 \Lambda G^- R^T (RG^- R^T)^- RG^- \Lambda^T$$

Show that in the special case $\mathcal{C}(\mathbf{X}^T) \cap \mathcal{C}(\mathbf{R}^T) = \{\mathbf{0}\}$, the MVAUE simplifies to

$$\widehat{\boldsymbol{\Lambda b}} = \boldsymbol{\Lambda G}^{-}(\boldsymbol{X}^{T}\boldsymbol{V}^{-1}\boldsymbol{y} + \boldsymbol{R}^{T}\boldsymbol{r}),$$

with variance matrix

$$\operatorname{Cov}(\widehat{\boldsymbol{\Lambda b}}) = \sigma^2 \boldsymbol{\Lambda} \boldsymbol{G}^{-} \boldsymbol{\Lambda}^{T} - \sigma^2 \boldsymbol{\Lambda} \boldsymbol{G}^{-} \boldsymbol{R}^{T} \boldsymbol{R} \boldsymbol{G}^{-} \boldsymbol{\Lambda}^{T}.$$

(Hint: Use Q3 with $\boldsymbol{A} = \boldsymbol{X}^T \boldsymbol{V}^{-1/2}$ and $\boldsymbol{B} = \boldsymbol{R}^T$.)

- 5. (Generalized inverse of bordered Gramian matrix) Let $A \in \mathbb{R}^{n \times n}$ be a positive semidefinite matrix and $B \in \mathbb{R}^{n \times m}$. Let $N = A + BB^T$ and $C = B^T N^- B$. Show the following facts.
 - (a) $\mathcal{C}(\mathbf{A}) \subset \mathcal{C}(\mathbf{N}), \mathcal{C}(\mathbf{B}) \subset \mathcal{C}(\mathbf{N}), \mathcal{C}(\mathbf{N}) = \mathcal{C}((\mathbf{A}, \mathbf{B}))$
 - (b) $NN^{-}A = A$, $NN^{-}B = B$
 - (c) $\mathcal{C}(\boldsymbol{B}^T) = \mathcal{C}(\boldsymbol{C}), \operatorname{rank}(\boldsymbol{B}) = \operatorname{rank}(\boldsymbol{C})$
 - (d) A generalized inverse of the bordered Gramian matrix

$$m{Z} = egin{pmatrix} m{A} & m{B} \ m{B}^T & m{0} \end{pmatrix}$$

is

$$Z^- = egin{pmatrix} N^- & N^-BC^-B^TN^- & N^-BC^- \ C^-B^TN^- & -C^-+CC^- \end{pmatrix},$$

where $N = A + BB^T$ and $C = B^T N^- B$, and

$$oldsymbol{Z} oldsymbol{Z}^- = egin{pmatrix} NN^- & 0 \ 0 & CC^- \end{pmatrix}.$$

(e) In the special case, $\mathcal{C}(B) \subset \mathcal{C}(A)$, the generalized inverse in (d) takes a simpler form

$$oldsymbol{Z}^- = egin{pmatrix} oldsymbol{A}^- & oldsymbol{A}^- oldsymbol{B}^T oldsymbol{A}^- & oldsymbol{A}^- oldsymbol{B}^T oldsymbol{A}^- & oldsymbol{A}^- oldsymbol{A}^- \ oldsymbol{\Lambda}^- oldsymbol{B}^T oldsymbol{A}^- & oldsymbol{-\Lambda}^- \end{pmatrix},$$

where $\mathbf{\Lambda} = \mathbf{B}^T \mathbf{A}^- \mathbf{B}$, and

$$oldsymbol{Z} oldsymbol{Z}^- = egin{pmatrix} AA^- & 0 \ 0 & B^-B \end{pmatrix}.$$

(Hint: it's easier to verify directly instead of deriving from (d).)