ST552, Homework 8

Due Mon, Dec 2, 2013

1. Derive the score vector (gradient), observed information matrix, and expected (Fisher) information matrix for the variance components model

$$
\boldsymbol{y} \sim N(\boldsymbol{X} \boldsymbol{b}, \boldsymbol{V})
$$

where

$$
\boldsymbol{V}=\sum_{i=0}^{m} \sigma_{i}^{2} \boldsymbol{V}_{i}
$$

with all \boldsymbol{V}_{i} positive semidefinite and \boldsymbol{V} nonsingular.
2. Derive the MLE of the variance components for the balanced one-way ANOVA random effects model (JM 8.4 p203).
3. Derive the REML of the variance components for the balanced one-way ANOVA random effects model (JM 8.5 p203).
4. Derive the method of moment estimates for the unbalanced one-way ANOVA random effects model, and then specialize to the balanced case.
5. (This is a 2013 Basic Exam Question) Consider the following linear model for response $Y_{i j}$:

$$
Y_{i j}=\beta_{0}+\boldsymbol{I}(j=2) \beta_{1}+b_{i}+e_{i j}, \quad i=1, \ldots, n, j=1,2
$$

where β_{0} and β_{1} are constants, $b_{i} \sim N\left(0, \sigma_{b}^{2}\right)$, and $e_{i j} \sim N\left(0, \sigma_{e}^{2}\right)$ are independent to each other.
(a) Find the ordinary least squares (OLS) estimates of β_{0} and β_{1}. (Hint: Write the above model in matrix notation $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where $\boldsymbol{Y}=\left(Y_{11}, Y_{12}, Y_{21}, Y_{22}, \ldots, Y_{n 1}, Y_{n 2}\right)^{T}$. You need to be careful in defining $\boldsymbol{\epsilon}$.)
(b) Assuming σ_{b}^{2} and σ_{e}^{2} are known, will the OLS estimates of β_{0} and β_{1} have smallest variances among all linearly unbiased estimates of β_{0} and β_{1} ?
(c) Find the distributions of the OLS estimates β_{0} and β_{1} assuming σ_{b}^{2} and σ_{e}^{2} are known.
(d) Define $Z_{i}=Y_{i 2}-Y_{i 1}$. Find an unbiased estimate of σ_{e}^{2} based on Z_{i} s. Then construct a moment estimate of σ_{b}^{2}. (Hint: Express $E\left(Y_{i j}^{2}\right)$ in terms of σ_{b}^{2} and σ_{e}^{2}, with β_{0} and β_{1} replaced by their OLS estimates.)
6. (This is another 2013 Basic Exam Question) Consider the following linear model for response $Y_{i j}$:

$$
Y_{i j}=\alpha_{i}+\boldsymbol{I}(j=2) \gamma+e_{i j}, \quad i=1, \ldots, n, j=1,2
$$

where $\alpha_{i} \mathrm{~s}(i=1, \ldots, n)$ and γ are constants, and $e_{i j} \sim N\left(0, \sigma_{e}^{2}\right)$ are independent residual errors.
(a) Find the ordinary least squares (OLS) estimates of $\alpha_{i} \mathrm{~S}(i=1, \ldots, n)$ and γ. (Hint: Write the above model in matrix notation $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where you may define $\boldsymbol{Y}=$ $\left(Y_{11}, Y_{12}, Y_{21}, Y_{22}, \ldots, Y_{n 1}, Y_{n 2}\right)^{T}$.)
(b) Find the MLE of σ_{e}^{2}. It is acceptable to express the MLE in terms of the OLS estimates of $\alpha_{i} \mathrm{~s}, \gamma$, and the data.
(c) Find an unbiased estimator of σ_{e}^{2} based on the sums of squared OLS residuals.
(d) Find the limit of the ratio of the estimators in (b) and (c) as $n \rightarrow \infty$.

