
ST758: Computation for Statistical Research

Tue/Thu 10:15am-11:30am, SAS Hall 1108

Instructor: Dr Hua Zhou, hua_zhou@ncsu.edu

1 Lecture 1: Aug 21

Today

• Introduction and course logistics

• Computer storage and arithmetic

• If you never used R before, go through Appendix A “A Sample Session” of the

R manual on your computer

How Gauss became famous?

1

hua_zhou@ncsu.edu

• 1801, Dr Carl Friedrich Gauss, 24; proved Fundamental Theorem of Algebra;

wrote the book Disquisitiones Arithmetic, which is still being studied today

• 1801, Jan 1 - Feb 11 (41 days), astronomer Piazzi observed Ceres (a dwarf

planet), which was then lost behind sun

• 1801, Aug – Sep, futile search by top astronomers; Laplace claimed it unsolvable

• 1801, Oct – Nov, Gauss did calculations by method of least squares

• 1801, Dec 31, astronomer von Zach relocated Ceres according to Gauss’ calcu-

lation

• 1802, Summarische Übersicht der Bestimmung der Bahnen der beiden neuen

Hauptplaneten angewandten Methoden, considered the origin of linear algebra

• 1807, Professor of Astronomy and Director of Göttingen Observatory in remain-

der of his life

• 1809, Theoria motus corporum coelestium in sectionibus conicis solem ambien-

tum (Theory of motion of the celestial bodies moving in conic sections around

the Sun); birth of the Gaussian (normal) distribution, as an attempt to ratio-

nalize the method of least squares

• 1810, Laplace consolidated importance of Gaussian distribution by proving the

central limit theorem

2

• 1829, Gauss-Markov Theorem. Under Gaussian error assumption (actually only

uncorrelated and homoscedastic needed), least square solution is the best linear

unbiased estimate (BLUE), i.e., it has the smallest variance and thus MSE

among all linear unbiased estimators. Note other estimators such as the James-

Stein estimator may have smaller MSE, but they are nonlinear.

For more details

• http://www.keplersdiscovery.com/Asteroid.html

• Teets and Whitehead (1999)

Gauss’ story

• Motivated by a real problem.

• Heuristic solution: method of least squares.

• Solution readily verifiable: Ceres was re-discovered!

• Algorithmic development : linear algebra, Gaussian elimination, FFT (fast Fourier

transform).

• Theoretical justification: Gaussian distribution, Gauss-Markov theorem.

3

http://www.keplersdiscovery.com/Asteroid.html

A sampler by Marc Coram

• Consulting project by Marc Coram (then a graduate student in statistics at

Stanford); customer is a professor in political science.

• Marc modeled letter sequence by a Markov chain (26 × 26 transition matrix)

and estimated transition probabilities from War and Peace.

• Now each mapping σ yields a likelihood f(σ) of the symbol sequence.

4

• Find the σ that maximizes f . Sample space is at least 26! = 4.0329 × 1026.

Combinatorial optimization – hard!

• Metropolis sampling : At each iteration, generate a new σ′ by random transpo-

sition of two letters; accept σ′ with probability min
{
f(σ′)
f(σ)

, 1
}

Marc Coram’s story

• Motivated by a real problem.

• Solution readily verifiable: we can read it!

• Algorithm: Metropolis is one of top 10 algorithms in the 20th century.

• Read Diaconis (2009) for more details.

What is this course about?

• Not a course on “packages and languages for data analysis”. It does not answer

questions such as “How to fit a linear mixed model in SAS or R?”

• Not a programming course, although it is extremely important and we do home-

work and projects in R.

• This course is about “numerical methods in statistics”. Our focus is on algo-

rithms.

The form of a mathematical expression and the way the expression

should be evaluated in actual practice may be quite different.

For a common numerical task in statistics, say solving the normal equation

XTXβ = XTy, we need to know which methods/algorithms are there and

what are their advantages and disadvantages. You will automatically fail this

course if you use

solve(t(X) %*% X) %*% t(X) %*% y

5

Syllabus

Check course website frequently for updates and announcements.

http://hua-zhou.github.io/teaching/st758-2014fall/

Lecture notes will be updated and posted after each lecture.

6

http://hua-zhou.github.io/teaching/st758-2014fall/

2 Lecture 2, Sep 2

Announcements

• TA office hours, Wed @ 10A-12P?

• HW1 posted; due Sep 11 in class.

Last time

• Introduction. Gauss (least squares to find Ceres) – optimization, Marc Coram

(decipher a note circulating in jail) – sampling. Two major modes of statistical

computing.

• Course content, logistics.

Today

• Computer representation of characters, integers, and real numbers.

Computer storage and arithmetic

Elementary units of computer storage: bit = “binary” + “digit” (coined by John

Tukey), byte = 8 bits, kB = kilobyte = 103 bytes, MB = megabytes = 106 bytes, GB

= gigabytes = 109 bytes, TB = terabytes = 1012 bytes, PB = petabytes = 1015 bytes,

...

7

Storage of characters

• Plain text files are stored in the form of characters: .r, .c, .cpp, .tex, .html,

...

• ASCII (American Code for Information Interchange): 7 bits, only 27 = 128

characters, “Hua” corresponds to “48 75 61 (Hex) = 72 117 97 (Dec) = 1001000

1110101 1100001”.

• Extended ASCII: 8 bits, 28 = 256 characters.

• Unicode: UTF-8, UTF-16 and UTF-32 support many more characters includ-

ing foreign characters; last 7 digits conform to ASCII. UTF-8 is the current

dominant character encoding on internet.

Fixed-point number system

Fixed-point number system I is a computer model for integers Z. One storage unit

may be M = 8/16/32/64 bit.

• The number of bits and method of representing negative numbers vary from

system to system. Matlab has (u)int8, (u)int16, (u)int32, (u)int64. The

integer type in R has M = 32 bits.

8

• First bit indicates sign: 0 for nonnegative numbers, 1 for negative numbers.

• “two’s complement representation” for negative numbers. (i) Sign bit is set to

1, (ii) remaining bits are set to opposite values, (iii) 1 is added to the result.

• Range of representable integers by M -bit storage unit is [−2M−1, 2M−1 − 1]

(don’t need to represent 0 anymore so could have capacity for 2M−1 negative

numbers).

• For M = 8, [−128, 127]. For M = 16, [−65536, 65535].

For M = 32, [−2147483648, 2147483647].

• Following code snippet shows that the smallest integer in R is −231 + 1 =

−2147483647.

9

• For unsigned integers such as in Matlab, the range is [0, 2M − 1].

10

• An integer −i in the interval [−2M−1,−1] would be represented by the same

bit pattern by which the nonnegative integer 2M − i is represented, treat-

ing the sign bit as a regular numeric bit. For example, (-18) = 11101110,

(28) − (18)=(238)=11101110. Two’s complement is subtracting the nonnega-

tive integer i from 1 . . . 1 + 1 = 10 . . . 0 = (2M).

• Addition and subtraction are much simpler in two’s complement representation.

Why? it respects modular arithmetic nicely (look at the diagram). E.g., (3)+(4)

= 0011 + 0100 = 0111 = (7). Need to keep track of crossing two boundaries

10...0 and 00...0. Cross boundary 10...0 once, we add 2M , e.g., (6) + (7) =

0110 + 0111 = 1101 = (−3) + (24) = (13). Cross boundary 00...0, we subtract

11

2M , e.g., (−6) + (−7) = 1010 + 1001 = 0011 = (3) − (24) = (−13). Crossing

both boundaries is fine, e.g., (-3)+(-4) = 1101 + 1100 = 1001 = (-7).

• Keep track of overflow and underflow. If the result of a summation is R, which

must be in the set [−2M−1, 2M−1 + 1], there are only three possibilities for the

true sum: R, R + 2M (overflow), or R− 2M (underflow).

– When adding two nonnegative integers: 0XX...X + 0YY...Y, where X and

Y are arbitrary binary digits, we only need to keep track of overflow in

this case. If the resulting binary number has a leading bit of 1, we know

overflow occurs since the sum cannot be negative. We should treat that

sign bit as a regular numeric bit. In other words, we crossed the upper

boundary 100 and should add 2M to the result. If the resulting binary

number has a leading bit of 0, no overflow occurs.

– When adding two negative integers: 1XX...X + 1YY...Y, where X and

Y are arbitrary binary digits, we only need to keep track of underflow in

this case. If the resulting binary number has a leading bit of 0, we know

underflow occurs since the sum cannot be positive. We crossed the lower

boundary 000 and should subtract 2M from the result. If the resulting

binary number has a leading bit of 1, no underflow occurs.

– When adding a negative integer and a nonnegative integer: 1XX...X +

0YY...Y, the result is always between the two summands. No overflow or

underflow could happen.

12

Floating-point number system

Floating-point number system F is a computer model for real numbers R.

• A real is represented by ±d0.d1d2 · · · dp × be (scientific notation).

• Parameters for a floating-point number system: base (or radix), range of fraction

(or mantissa, significand), range of exponent.

• Non-uniqueness of representation. normalized/denormalized significant digits.

E.g., +18 = +1.0010× 24(normalied) = +0.10010× 25(denormalized).

• Bias (or excess): actual exponent is obtained by subtracting bias from the value

of exponent evaluated regardless of sign digit.

• IEEE 754-1985 and IEEE 754-2008.

– Single precision (32 bit): base 2, p = 23 (23 significant bits), emax = 127,

emin = −126 (8 exponent bits), bias=127. emin−1 and emax+1 are reserved

for special numbers. This implies a maximum magnitude of log10(2127) ≈
38 and precision to log10(223) ≈ 7 decimal point. ±10±38.

– Double precision (64 bit): base 2, p = 52 (52 significant bits), emax = 1023,

emin = −1022 (11 exponent bits), bias=1023. This implies a maximum

magnitude of log10(21023) ≈ 308 and precision to log10(252) ≈ 16 decimal

point. ±10±308.

13

• “(+18) = (24 + 21) = +1.0010× 24 in single precision

(0)(10000011)(0010000000000000000000).

First is sign bit. Next 8 bits are exponent 131 in ordinary base 2 with a bias

of 127. Remaining 23 bits represent the fraction beyond the leading bit, known

to be 1. In summary it represents (+18) as +1.0010× 24 in the binary format.

(−18) is represented by the same bits except changing the sign bit to 1.

• Special floating-point numbers:

– Exponent emax + 1 plus a mantissa of 0 means ±∞.

– Exponent emax + 1 plus a nonzero mantissa means NaN. NaN could be

produced from 0/0, 0*Inf, ... In general NaN 6= NaN .

– Exponent emin − 1 with a mantissa of all 0s represents the real number 0.

– Exponent emin−1 with a nonzero mantissa are for numbers less than bemin .

Numbers are de-normalized in the range (0, bemin) – “graceful underflow”.

• F is not a subset of R, although I ⊂ Z.

• R only uses double (64-bit) and 32-bit integer. It can be a downside when

dealing with big data.

To summarize

• Single precision: ±10±38 with precision up to 7 decimal digits.

• Double precision: ±10±308 with precision up to 16 decimal digits.

• Irrational numbers such as π do not exist in F.

• Exercise: what is the floating point representation of the number 0.1?

• The floating-point numbers do not occur uniformly over the real number line.

14

2.2 The Floating-Point Number System 91

As mentioned above, the set of floating-point numbers is not uniformly
distributed over the ordered set of the reals. (Exercise 2.9a and its partial
solution on page 677 may help you to see how the spacing varies.) There
are the same number of floating-point numbers in the interval [bi, bi+1] as in
the interval [bi+1, bi+2] for any integer emin ≤ i ≤ emax − 2, even though the
second interval is b times as long as the first. Figures 2.4 through 2.6 illustrate
this. The fixed-point numbers, on the other hand, are uniformly distributed
over their range, as illustrated in Figure 2.7.

. . .

0 2−2 2−1 20 21

Fig. 2.4. The Floating-Point Number Line, Nonnegative Half

. . .

0−2−2−2−1−20−21

Fig. 2.5. The Floating-Point Number Line, Nonpositive Half

. . .
0 4 8 16 32

Fig. 2.6. The Floating-Point Number Line, Nonnegative Half; Another View

. . .
0 4 8 16 32

Fig. 2.7. The Fixed-Point Number Line, Nonnegative Half

The density of the floating-point numbers is generally greater closer to
zero. Notice that if floating-point numbers are all normalized, the spacing be-
tween 0 and bemin is bemin (that is, there is no floating-point number in that
open interval), whereas the spacing between bemin and bemin+1 is bemin−p+1.
Most systems do not require floating-point numbers less than bemin in mag-
nitude to be normalized. This means that the spacing between 0 and bemin

can be bemin−p, which is more consistent with the spacing just above bemin .
When these nonnormalized numbers are the result of arithmetic operations,
the result is called “graceful” or “gradual” underflow.

• Machine epsilons are the spacings of numbers around 1. εmin = b−p and εmax =

b1−p.

• The variable .Machine in R contains numerical characteristics of the machine.

• How to test inf and nan? In R, is.nan(), is.finite(), is.infinite(). In

Matlab, isinf(), isnan().

15

3 Lecture 3, Sep 4

Announcements

• TA office hours: Wed @ 1P-3P or Wed @ 10A-12P?

Last time

• Computer representation of characters

• Fixed-point number system for integers

• Floating-point number system (IEEE 754 standards for single/double precision)

Today

• Consequences of compute storage/arithmetic

• Algorithms

• Computer languages

Consequences of computer storage/arithmetic

• Be memory conscious when dealing with big data. E.g., human genome has

about 3× 109 bases, each of which belongs to {A,C, T,G}. How much storage

if we store 106 SNPs (single nucleotide polymorphisms) of 1000 individuals

(1000 Genome Project) as characters (1GB), single (4GB), double (8GB), int32

(4GB), int16 (2GB), int8 (1GB), PLINK binary format 2bit/SNP (250MB)?

• Know the limit. Overflow and Underflow. For double precision, ±10±308. In

most situations, underflow is preferred over overflow. Overflow often causes

crashes. Underflow yields zeros. E.g., in logistic regression, pi =
exp(xT

iβ)

1+exp(xT
iβ)

=
1

1+exp(−xT
iβ)

. The former expression can easily lead to ∞/∞ = NaN , while the

latter expression leads to graceful underflow.

• Be aware of non-uniform distribution of floating-point numbers, in contrast to

fixed-point numbers. There are the same number of floating-point numbers in

16

[bi, bi+1] and [bi+1, bi+2] for emin ≤ i ≤ emax − 2. It is more dense when closer to

zero.

• “Catastrophic cancellation 1”. Addition or subtraction of two numbers of widely

different magnitudes: a + b or a − b where a � b or a � b. We loose the

precision in the number of smaller magnitude. Consider a = x.xxx...× 20 and

b = y.yyy... × 2−53. What happens when computer calculates a + b? We get

a+ b = a!

• Another example: What happens when compute
∑∞

x=1 x in order? Will the

partial sum reach Inf? “A divergent series converges.”

• Always try to add numbers of similar magnitude. Rule 1: add small numbers

together before adding larger ones. Rule 2: add numbers of like magnitude

together (paring). When all numbers are of same sign and similar magnitude,

add in pairs so each stage the summands are of similar magnitude.

• “Catastrophic cancellation 2”. Subtraction of two nearly equal numbers elimi-

nates significant digits. a− b where a ≈ b. Consider a = x.xxxxxxxxxx1ssss,

b = x.xxxxxxxxxx0tttt. The result is 1.vvvvu...u where u are unassigned digits.

• Violation of associative law and distributive law.

More about cancellation

• Evaluating e−20 by Taylor series

e−x = 1− x+ x2/2!− x3/3! + · · ·

gets 6.138e-09, while the true value is about 2.061e-09. Many cancellations

accumulate. Anyway, it’s not the way to evaluate ex!

17

• Sometimes catastrophic cancellation can be avoided. Roots of the quadratic

function ax2 + bx+ c are

x =
−b±

√
b2 − 4ac

2a
.

When one root is close to 0, cancellation can happen. We may evaluate one of

the root (away from 0) by the formula and then compute the other by relation-

ship x1x2 = c/a.

Algorithms

• Algorithm is loosely defined as a set of instructions for doing something. Input

→ Output.

• Knuth (2005): (1) finiteness, (2) definiteness, (3) input, (4) output, (5) effec-

tiveness

• Basic unit for measuring efficiency is flop. A flop (floating point operation)

consists of a floating point multiply (or divide) and the usually accompanying

addition, fetch and store. Some books such as Lange (2010) and Golub and

Van Loan (2013) consider addition as a separate flop.

• How to measure efficiency of an algorithm? Big O notation. If n is the size

of a problem, an algorithm has order O(f(n)) if, as n → ∞, the number of

computations → cf(n), where c is some constant that does not depend on n.

• E.g., matrix-vector multiplication A%*%b, where A ∈ Rm×n and b ∈ Rn, takes

O(mn) flops. Matrix-matrix multiplication A%*%B, where A ∈ Rm×n and B ∈
Rn×p, takes O(mnp) flops.

• Exponential orderO(bn) (NP-hard=“horrible”), polynomial orderO(nq) (doable),

O(n log n) (fast), linear order O(n) (fast), log order O(log n) (fast).

• One goal of this course is to get familiar with the flop counts for common

numerical tasks in statistics.

The form of a mathematical expression and the way the expression

should be evaluated in actual practice may be quite different.

18

• Compare flops of the following two expressions:

G %*% Xt %*% y

G %*% (Xt %*% y)

where G ∈ Rp×p, Xt ∈ Rp×n, and y ∈ Rn. “Matrix multiplication is expensive.”

• Hardware advancement, e.g., CPU clock rate, only affects constant c. Unfortu-

nately, data size n is increasing too and often at a faster rate.

• Classification of data sets by Huber (1994, 1996).

Data Size Bytes Storage Mode

Tiny 102 Piece of paper

Small 104 A few pieces of paper

Medium 106 (megabyte) A floppy disk

Large 108 Hard disk

Huge 109 (gigabytes) Hard disk(s)

Massive 1012 (terabytes) RAID storage

• It is an era of “big data”: wiki, WSJ, white house, McKinsey report, ..., meaning

great opportunities for statisticians. However we should be aware of the gap

between classical statistics curriculum and reality.

• Difference of O(n2) and O(n log n) on massive data. Suppose we have a teraflop

supercomputer – capable of doing 1012 flops per second. For a problem of size

n = 1012, O(n log n) algorithm takes about 1012 log(1012)/1012 ≈ 27 seconds.

O(n2) algorithm takes about 1012 seconds, which is approximately 31710 years!

• QuickSort and FFT are celebrated algorithms that turn O(n2) operations into

O(n log n). “Divide-and-conquer” is a powerful technique. Another example is

the Strassen’s method, which turns O(n3) matrix multiplication into O(nlog2 7).

19

http://en.wikipedia.org/wiki/Big_data
http://online.wsj.com/article/SB10001424127887323751104578147311334491922.html
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf
http://www.slideshare.net/fred.zimny/mckinsey-quarterlys-2011-report-the-challenge-and-opportunityof-big-data

Computer languages

Compiled versus interpreted languages.

• Compiled languages: C/C++, Fortran, ... Directly compiled to machine code

that is executed by CPU. Advantage: fast, take less memory. Disadvantage:

relatively longer development time, hard to debug.

• Interpreted language: R, Matlab, SAS IML, ... Interpreted by interpreter.

Advantage: fast for prototyping. Disadvantage: excruciatingly slow for loops.

• Mixed (compiled and then interpreted by virtual machine): Python, JAVA.

Advantage: extremely convenient for data preprocessing and manipulation; rel-

atively short development time. Disadvantage: not as fast as compiled language.

20

• Scripting: Unix/Linux scripts, Perl, Python. Extremely useful for data pre-

processing and manipulation. E.g., massage the Yelp (http://www.yelp.com/

dataset_challenge) data before analysis

• Database language: SQL, Hadoop. Data analysis never happens if we do not

know how to retrieve data from databases.

21

http://www.yelp.com/dataset_challenge
http://www.yelp.com/dataset_challenge

4 Lecture 4, Sep 9

Announcements

• TA office hours. Fri @ 10A-12P, Wed @ 1P-3P, Wed @ 10A-12P, or Thu @

1P-2P?

• Some resources for R programming:

– Dr. John Monahan’s class (2013 fall) on R: http://www.stat.ncsu.edu/

people/monahan/courses/ST610/

– Code school: http://tryr.codeschool.com/levels/1/challenges/1

– Advanced R by Hadley Wickham: http://adv-r.had.co.nz/

Last time

• Consequences of computer storage/arithmetics (overflow, underflow, catastrophic

cancellation, ...)

• Algorithms, flops, big O notation

• Computer languages (compiled, interpreted, mixed, scripting)

Today

• Review of linear algebra (self-study and do HW2)

• Numerical linear algebra: preliminaries

More about computer languages

• To improve efficiency of interpreted languages such as R or Matlab code, avoid

loops as much as possible. Aka, vectorize code.

• For some tasks where looping is necessary (cannot vectorize code), consider

coding in C/C++ or Fortran. It is convenient to incorporate compiled code

into R or Matlab.

22

http://www.stat.ncsu.edu/people/monahan/courses/ST610/
http://www.stat.ncsu.edu/people/monahan/courses/ST610/
http://tryr.codeschool.com/levels/1/challenges/1
http://adv-r.had.co.nz/

• To be versatile in dealing with big data, master at least one language in each

category. Take advantage of the resource in the department. E.g., check out

Chris’s class on Python, John’s class on R programming, ...

• Don’t reinvent wheels. Make good use of libraries blas, lapack/linpack,

boost, SciPy, NumPy, ...

• One example of my recent pedigree GWAS project, which fits large variance

components model on n ∼ 103 persons and ∼ 106 SNPs. Mendel implements

the method using Fortran, takes advantage of problem structure, and is flop

frugal. GWAF (an R package) uses the canned routine in R for fitting variance

component, which does not scale up.

Many aspects could contribute to this dramatic difference in efficiency: loop-

ing, compiled vs interpreted language, problem structure, choice of data types

(remember R only does double precision), memory management,

• Distinction between compiled language and interpreted language is getting blurred.

JIT (just-in-time) compilation technology in Matlab since 2002 (v6.5). com-

piler package in R for JIT compiling since 2012.

Numerical linear algebra

• The first big chunk of this course is numerical linear algebra.

• Topics in numerical algebra: BLAS, solve linear equations Ax = b, regression

computations XTXβ = XTy, eigen-problems Ax = λx and generalized eigen-

problems Ax = λBx, singular value decompositions A = UΣV T , ...

23

• We start with review of some linear algebra facts (review by yourself and do

HW2).

Vector and matrix norms

KL chapter 6. Norm measures the “size”.

• Vector norm ‖ · ‖ : Rn → R. (a) ‖x‖ ≥ 0, (b) ‖x‖ = 0 if and only if x = 0, (c)

‖cx‖ = c‖x‖ (homogeneity), (d) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

• `p norm. ‖x‖p = (
∑

i |xi|p)1/p, p ∈ [1,∞]. `1 is the Manhattan norm. `2 is the

Euclidean norm. `∞ is the sup norm.

• For matrix norm ‖ · ‖ : Rm×n → R, we further require (e) ‖AB‖ ≤ ‖A‖‖B‖.

• Frobenius norm ‖A‖F = (
∑

i

∑
j a

2
ij)

1/2. Properties of (e) is checked by Cauchy-

Schwartz inequality.

• Induced matrix norm (or operator norm): ‖A‖ = supx6=0
‖Ax‖
‖x‖ = sup‖x‖=1 ‖Ax‖

for any fixed vector norm. To check property (e), let y = Bx, then ‖AB‖ =

supx6=0
‖Ay‖
‖y‖

‖Bx‖
‖x‖ ≤ ‖A‖ supx6=0

‖Bx‖
‖x‖ = ‖A‖‖B‖.

• Matrix-1 norm, ‖A‖1 = maxj
∑

i |aij|.
Matrix-2 norm, ‖A‖2 =

√
ρ(ATA) = max‖u‖2=1,‖v‖2=1 u

TAv, which reduces to

ρ(A) if A is symmetric. ρ is the spectral radius of a matrix, the absolute value

of the dominant eigenvalue.

Matrix-∞ norm, ‖A‖∞ = maxi
∑

j |aij|.

• When A is a column vector, these matrix induced norms reduce to the original

vector norm.

• ρ(A) ≤ ‖A‖ for any induced matrix norm. For any A and ε > 0, there exists

an induced matrix norm such that ‖A‖ ≤ ρ(A) + ε.

Rank

Assume A ∈ Rm×n .

• rank(A) is the maximum number of linearly independent rows (or columns) of

a matrix.

24

• rank(A) ≤ min{m,n}.

• A matrix is full rank if rank(A) = min{m,n}. It is full row rank if rank(A) = m.

It is full column rank if rank(A) = n.

• A square matrix A ∈ Rn×n is singular if rank(A) < n and non-singular if

rank(A) = n.

• rank(AB) ≤ min{rank(A), rank(B)}. “Matrix multiplication cannot increase

the rank.”

• rank(A) = rank(AT) = rank(ATA) = rank(AAT).

• rank(AB) = rank(A) if B has full row rank.

• rank(AB) = rank(B) if A has full column rank.

• rank(A+B) ≤ rank(A) + rank(B).

Trace

A ∈ Rn×n a square matrix.

• tr(A) =
∑n

i=1 aii

• tr(A+B) = tr(A) + tr(B)

• tr(λA) = λtr(A) where λ is a scalar

• tr(AT) = tr(A)

• Invariance under cycle permutation: tr(AB) = tr(BA). In general, tr(A1 · · ·Ak) =

tr(Aj+1 · · ·AkA1 · · ·Aj).

Orthogonality and orthogonalization

• v1 is orthogonal to v2, written v1 ⊥ v2, if 〈v1,v2〉 = vT
1v2 = 0. They are

orthonormal if v1 ⊥ v2 and ‖vi‖2 = 1, i = 1, 2.

25

• Gram-Schmidt transformation orthonormalizes two non-zero vectors x1 and x2.

x̃1 =
1

‖x1‖2

x1

x̃2 =
1

‖x2 − 〈x̃1,x2〉x̃1‖2

(x2 − 〈x̃1,x2〉x̃1)

• A set of nonzero, mutually orthogonal vectors are linearly independent.

• A real square matrixA ∈ Rn×n is orthogonal ifATA = In, i.e., its rows/columns

are orthonormal. Orthogonal matrix is of full rank, thus AT = A−1 and AAT =

In.

Positive (semi)definite matrix

Assume A ∈ Rn×n is symmetric.

• A real symmetric matrix A ∈ Rn×n is positive semidefinite (or nonnegative

definite) if xTAx ≥ 0 for all x. Notation: A � 0n×n.

• E.g., the Gramian matrix XTX or XXT .

• If inequality is strict for all x 6= 0, then A is positive definite. Notation:

A � 0n×n.

• A � B means A−B � 0n×n.

26

• If A � B, then det(A) ≥ det(B) with equality if and only if A = B.

• A ∈ Rn×n is positive semidefinite if and only if A is a covariance matrix of a

random vector in Rn.

Matrix inverses

Assume A ∈ Rm×n .

• The Moore-Penrose inverse of A is a matrix A+ ∈ Rn×m with following prop-

erties

(a) AA+A = A. (Generalized inverse, g1 inverse, or inner pseudo-inverse)

(b) A+AA+ = A+. (Outer pseudo-inverse. Any g1 inverse that satisfies

this condition is called a g2 inverse, or reflexive generalized inverse and is

denoted by A∗.)

(c) A+A is symmetric.

(d) AA+ is symmetric.

• A+ exists and is unique for any matrix A.

• Generalized inverse (or g1 inverse, denoted by A− or Ag): property (a).

• g2 inverse (denoted by A∗): properties (a)+(b).

• Moore-Penrose inverse (denoted by A+): properties (a)+(b)+(c)+(d).

• If A is square and full rank, then the generalized inverse is unique and denoted

by A−1 (inverse).

• In practice, the Moore-Penrose inverse A+ is easily computed from the singular

value decomposition (SVD) of A.

• (A−)T is a generalized inverse of AT .

• C(A) = C(AA−) and C(AT) = C((A−A)T).

rank(A) = rank(AA−) = rank(A−A).

“Multiplication by generalized inverse does not change rank.”

• rank(A−) ≥ rank(A). “Generalized inverse has equal or a larger rank than the

original matrix.”

27

System of linear equations

Ax = b where A ∈ Rm×n , x ∈ Rn , b ∈ Rm .

• When is there a solution? The following statements are equivalent.

1. The linear system Ax = b has a solution (consistent)

2. b ∈ C(A).

3. rank((A, b)) = rank(A).

4. AA−b = b.

The last equivalence gives intuition why A− is called an inverse.

• What are the solutions to a homogeneous system Ax = 0?

N (A) = C(In −A−A).

• If Ax = b is consistent, then x̃ is a solution to Ax = b if and only if

x̃ = A−b+ (In −A−A)q

for some q ∈ Rn .

Interpretation: “a specific solution” + “a vector in the null space of A”.

• Ax = b is consistent for all b if and only if A has full row rank.

• If a system is consistent, its solution is unique if and only if A has full column

rank.

• If A has full row and column rank, then A is non-singular and the unique

solution is A−1b.

Gramian matrix ATA

• ATA is symmetric and positive semidefinite.

• rank(A) = rank(AT) = rank(ATA) = rank(AAT).

• ATA = 0 if and only if A = 0.

• BATA = CATA if and only if BAT = CAT.

28

• ATAB = ATAC if and only if AB = AC.

• For any generalized inverse (ATA)−, [(ATA)−]T is also a generalized inverse of

ATA. Note (ATA)− is not necessarily symmetric.

• (ATA)−AT is a generalized inverse of A.

• AA+ = A(ATA)−AT, where A+ is the Moore-Penrose inverse of A.

• PA = A(ATA)−AT is symmetric, idempotent, invariant to the choice of gener-

alized inverse (ATA)−, and projects onto C(A).

Idempotent matrix and projection

Assume P ∈ Rn×n.

• A matrix P ∈ Rn×n is idempotent if and only if P 2 = P .

• A matrix P is a projection on a vector space V if (a) P is idempotent, (b)

Px ∈ V for all x, and (c) Pz = z for all z ∈ V .

• An idempotent matrix P is a projection onto C(P).

• For a general matrix A ∈ Rm×n, the matrices AA− are projections onto C(A)

and In −A−A are projections onto N (A).

29

Symmetric idempotent matrix and orthogonal projection

Assume A ∈ Rn×n.

• A symmetric, idempotent matrix is called an orthogonal projection.

• An orthogonal projection P satisfies y − Py ⊥ v for all v ∈ C(P).

• The orthogonal projection onto a vector space is unique.

• If a symmetric, idempotent matrix P projects onto V , then I−P projects onto

the orthogonal complement V⊥.

• Pythagorean theorem: For P an orthogonal projection,

‖y‖2
2 = ‖Py‖2

2 + ‖(I − P)y‖2
2.

• Many books use the term “projection” in the sense of of orthogonal projection.

30

Method of least squares

• Goal: Approximate y ∈ Rn by a linear combination of columns of X ∈ Rn×p.

• Least squares criterion: minQ(b) = ‖y −Xb‖2
2.

• Any solution to the normal equation XTXb = XTy (always consistent) is a

minimizer of the least squares criterion Q(b).

• Solutions to the normal equation:

b̂ = (XTX)−XTy + (Ip − (XTX)−XTX)q,

where q ∈ Rq is arbitrary.

• (XTX)−XT is a generalized inverse of X. Therefore the least squares solution

applies even when the system Xb = y is consistent.

• Least squares solution is unique if and only if X has full column rank.

• PX = X(XTX)−XT is the orthogonal projection onto C(X).

• Geometry: The fitted value from the least squares solution ŷ = PXy is the

orthogonal projection of the response vector y onto the column space C(X).

• In − PX is the orthogonal projection onto N (XT).

31

• Decomposition of y:

y = PXy + (In − PX)y = ŷ + ê,

where ŷ ⊥ ê and

‖y‖2
2 = ‖ŷ‖2

2 + ‖ê‖2
2.

Eigenvalues and eigenvectors

KL chapter 8. Assume A ∈ Rn×n a square matrix.

• Eigenvalues are defined as roots of the characteristic equation det(λIn−A) = 0.

• If λ is an eigenvalue of A, then there exist non-zero x,y ∈ Rn such that

Ax = λx and yTA = λyT . x and y are called the (column) eigenvector and

row eigenvector of A associated with the eigenvalue λ.

• A is singular if and only if it has at least one 0 eigenvalue.

• Eigenvectors associated with distinct eigenvalues are linearly independent.

• Eigenvalues of an upper or lower triangular matrix are its diagonal entries:

λi = aii.

• Eigenvalues of an idempotent matrix are either 0 or 1.

• Eigenvalues of an orthogonal matrix have complex modulus 1.

• In most statistical applications, we deal with eigenvalues/eigenvectors of sym-

metric matrices.

The eigenvalues and eigenvectors of a real symmetric matrix are real.

• Eigenvectors associated with distinct eigenvalues of a symmetry matrix are or-

thogonal.

• Eigen-decompostion of a symmetric matrix: A = UΛU T, where

– Λ = diag(λ1, . . . , λn)

– columns of U are the eigenvectors which are (or can be chosen to be)

mutually orthonormal

32

• A real symmetric matrix is positive semidefinite (positive definite) if and only

if all eigenvalues are nonnegative (positive).

• Spectral radius ρ(A) = maxi |λi|.

• A ∈ Rn×n a square matrix (not required to be symmetric), then tr(A) =
∑

i λi

and |A| =
∏

i λi.

Singular value decomposition

KL chapter 9. Assume A ∈ Rm×n and p = min{m,n}.

• Singular value decomposition (SVD): A = UΣV T, where

– U = (u1, . . . ,um) ∈ Rm×m is orthogonal

– V = (v1, . . . ,vn) ∈ Rn×n is orthgonal

– Σ = diag(σ1, . . . , σp) ∈ Rm×n , σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

σi are called the singular values, ui are the left singular vectors, and vi are the

right singular vectors.

• Avi = σiui and ATui = σivi for i = 1, . . . , p.

• Thin SVD. Assume m ≥ n. A can be factored as A = UΣV T, where

– U ∈ Rm×n , U TU = In

– V ∈ Rn×n , V TV = In

– Σ = diag(σ1, . . . , σn)

• Relation to eigen-decomposition. Using thin SVD,

ATA = V ΣU TUΣV T = V Σ2V T

AAT = UΣV TV ΣU T = UΣ2U T.

• Another relation to eigen-decomposition. Using thin SVD,(
0n×n AT

A 0m×m

)
=

1√
2

(
V V

U −U

)(
Σ 0n×n

0n×n −Σ

)
1√
2

(
V T U T

V T −U T

)
.

Hence any symmetric eigen-solver can produce the SVD of a matrix A without

forming AAT or ATA.

33

• Yet another relation to eigen-decomposition: If the eigendecomposition of a real

symmetric matrix is A = WΛW T = Wdiag(λ1, . . . , λn)W T , then

A = WΛW T = W

|λ1|
. . .

|λn|


sgn(λ1)

. . .

sgn(λn)

W T

is the SVD of A.

• Relation to the Moore-Penrose (MP) inverse: Using thin SVD,

A+ = V Σ+U T,

where Σ+ = diag(σ−1
1 , . . . , σ−1

r , 0, . . . , 0), r = rank(A).

• Denote σ(A) = (σ1, . . . , σp). Then

– rank(A) = # nonzero singular values = ‖σ(A)‖0

– A = UrΣrV
T
r =

∑r
i=1 σiuiv

T
i

– ‖A‖F = (
∑p

i=1 σ
2
i)

1/2 = ‖σ(A)‖2

– ‖A‖2 = σ1 = ‖σ(A)‖∞

• Assume rank(A) = r and partition U = (Ur, Ũr) ∈ Rm×m and V = (Vr, Ṽr) ∈
Rn×n, then

– C(A) = span{u1, . . . ,ur}, N (AT) = span{ur+1, . . . ,um}

– N (A) = span{vr+1, . . . ,vn}, C(AT) = span{v1, . . . ,vr}

– UrU
T
r is the orthogonal projection onto C(A)

– ŨrŨ
T
r is the orthogonal projection onto N (AT)

– VrV
T
r is the orthogonal projection onto C(AT)

– ṼrṼ
T
r is the orthogonal projection onto N (A)

Preliminaries of numerical linear algebra

Numerical linear algebra concerns how matrix/vector computations are done in com-

puter. We first look at some basic linear algebra operations.

34

Flop counts of some basic linear algebra subroutines (BLAS)

See http://www.netlib.org/blas/ for a complete listing of BLAS functions.

Level Operation Name Dimension Flops

1 α← xTy dot product x,y ∈ Rn n

y ← y + ax saxpy a ∈ R, x,y ∈ Rn n

2 y ← y +Ax gaxpy A ∈ Rm×n, x ∈ Rn, y ∈ Rm mn

A← A+ yxT rank one update A ∈ Rm×n, x ∈ Rn, y ∈ Rm mn

3 C ← C +AB matrix multiplication A ∈ Rm×p, B ∈ Rp×n, C ∈ Rm×n mnp

A← AD column scaling A ∈ Rm×n, D = diag(d1, . . . , dn) mn

A←DA row scaling A ∈ Rm×n, D = diag(d1, . . . , dm) mn

• Go over the “mxmult” session in R. Also read JM 3.8.

http://hua-zhou.github.io/teaching/st758-2014fall/mxmult.html

Different ways to compute XTW−1X, such as in the weighted least squares.

X ∈ Rn×p, W = diag(w1, . . . , wn) ∈ Rn×n.

1. t(X) %*% solve(W) %*% X: O(n3 + n2p+ np2) flops, why need to do the

expensive matrix inversion?

2. t(X) %*% diag(1 / w) %*% X: O(n2p + np2) flops, why need to save a

diagonal matrix and do an extra matrix multiplication?

3. (t(X) / w) %*% X: wrong! w recycled incorrectly

4. t(X) %*% (X / w): O(np2 + np) = O(np2) flops

5. crossprod(X, X / w): same as 4, skip the transpose operation

• Another example: Fisher information matrix of a generalized linear model

(GLM): XTWX, where X ∈ Rn×p and W = diag(w1, . . . , wn) are the ob-

servation weights.

• Bottom line: Always be flop-aware when writing code.

The form of a mathematical expression and the way the expression

should be evaluated in actual practice may be quite different.

35

http://www.netlib.org/blas/
http://hua-zhou.github.io/teaching/st758-2014fall/mxmult.html

• But, for high-performance matrix commutations, it is not enough to minimize

flops. Pipelining, effective use of memory hierarchy, data layout in memory, ...

play important role too.

Vector computer

• Most modern computers are vector machines, which perform vector calculations

(saxpy, inner product) fast.

• Vector processing by pipelining. E.g., vector addition z = x+ y

• One implication of the pipelining technology is that we need to ship vectors to

the pipeline fast enough to keep the arithmetic units (ALU) busy and maintain

high throughput.

36

Computer architecture

• Memory hierarchy:

37

Upper the hierarchy, faster the memory accessing speed, and more expensive

the memory units.

Key to high performance is effective use of memory hierarchy. True

on all architectures.

• Can we keep the super fast arithmetic units busy with enough deliveries of

matrix data and ship the results to memory fast enough to avoid backlog?

Answer: use high-level BLAS as much as possible

• Why high-level BLAS?

BLAS Dimension Mem Refs Flops Ratio

Level 1: y ← y + ax x,y ∈ Rn 3n n 3:1

Level 2: y ← y +Ax x,y ∈ Rn,A ∈ Rn×n n2 n2 1:1

Level 3: C ← C +AB A,B,C ∈ Rn×n 4n2 n3 4:n

• BLAS 1 tend to be memory bandwidth-limited. E.g., Xeon X5650 CPU has a

theoretical throughput of 128 DP GFLOPS but a max memory bandwidth of

32GB/s.

• Higher level BLAS (3 or 2) make more effective use of ALUs (keep them busy).

38

• Message: Although we state many algorithms (solving linear equations, least

squares, eigen-decomposition, SVD, ...) in terms of inner product and saxpy,

the actual implementation may be quite different.

• A distinction between LAPACK and LINPACK is that LAPACK makes use

of higher level BLAS as much as possible (usually by smart partitioning) to

increase the so-called level-3 fraction.

39

5 Lecture 5, Sep 11

Announcements

• TA office hours: Fri @ 10A-12P

• HW1 due today. Submit hardcopy and email R or Rmd code

• HW2 posted, due Tue Sep 23

Last time

• Flop counts of some BLAS subroutines

• Memory hierarchy and its implication for implementation of BLAS

Today

• Numerical linear algebra preliminaries: effects of data layout

• Numerical linear algebra: GE, LU

Effect of data layout

• Data layout in memory effects execution speed too. It is much faster to move

chunks of data in memory than retrieving/writing scattered data.

• Storage mode: column-major (Fortran, Matlab, R) vs row-major (C/C++).

• Take matrix multiplication as an example. Assume the storage is column-major,

such as in Fortran. C ← C +AB, where A ∈ Rm×n, B ∈ Rn×p, C ∈ Rm×p.

There are 6 variants of the algorithms according to the order in the triple loops.

We pay attention to the innermost loop, where the vector calculation occurs,

40

and the associated stride when accessing the three matrices in memory (assum-

ing column-major storage)

Apparently the variants jki or kji are preferred.

• Message: data storage mode effects algorithm implementation too.

Solving linear equations

We consider algorithms for solving linear equations Ax = b, a ubiquitous task in

statistics. Idea: turning original problem into an “easy” one, e.g., triangular system.

Triangular system

• Forward substitution to solve Lx = b, where L ∈ Rn×n is lower triangular

41

n2/2 flops (n2/2 multiplications/divisions and n2/2 additions/substractions)

and L is accessed by row.

• Back substitution to solve Ux = b where U ∈ Rn×n is upper triangular

n2/2 flops (n2/2 multiplications/divisions and n2/2 additions/substractions)

and U is accessed by row.

• Column version: reverse the order of looping.

• BLAS level 2 function: ?trsv (triangular solve with one right hand side)

• BLAS level 3 function: ?trsm (matrix triangular solve, i.e., multiple right hand

sides)

42

• In R, forwardsolve() and backsolve() (wrappers of dtrsm)

• Eigenvalues of L are diagonal entries λi = `ii. det(L) =
∏

i `ii.

• A unit triangular matrix is a triangular matrix with all diagonal entries being

1.

• The algebra of triangular matrices (HW2)

– The product of two upper (lower) triangular matrices is upper (lower)

triangular.

– The inverse of an upper (lower) triangular matrix is upper (lower) trian-

gular.

– The product of two unit upper (lower) triangular matrices is unit upper

(lower) triangular.

– The inverse of a unit upper (lower) triangular matrix is unit upper (lower)

triangular.

43

Gaussian elimination and LU decomposition

• Solve Ax = b for a general matrix A ∈ Rm×n.

• An important contribution by Gauss. No linear algebra in 1800!

• Idea: a series of elementary operations that turn A into a triangular system.

• We consider the square A case first.

44

• Elementary operator matrix Ejk(c) is the identity with the 0 in position (j, k)

replaced by c. For any vector x,

Ejk(c)x = (x1, . . . , xj−1, xj + cxk, xj+1, . . . , xn)T.

Applying Ejk(c) to both sides of the system Ax = b replaces the j-th equation

aT
j∗x = bj by aT

j∗x + caT
k∗x = bj + cbk. For j > k, Ejk(c) = I + ceje

T
k is unit

lower triangular and full rank. E−1
jk (c) = Ejk(−c).

• Zeroing the first column

E21(c
(1)
2)Ax = E21(c

(1)
2)b

E31(c
(1)
3)E21(c

(1)
2)Ax = E31(c

(1)
3)E21(c

(1)
2)b

...

En1(c(1)
n) · · ·E31(c

(1)
3)E21(c

(1)
2)Ax = En1(c(1)

n) · · ·E31(c
(1)
3)E21(c

(1)
2)b

where c
(1)
i = −ai1/a11. Denote M1 = En1(c

(1)
n) · · ·E31(c

(1)
3)E21(c

(1)
2).

• Then zero the k-th column for k = 2, . . . , n − 1 sequentially. This results in

a transformed linear system Ux = b̃, where U = Mn−1 · · ·M1A is upper

triangular and b̃ = Mn−1 · · ·M1b. Mk has the shape

Mk = E
(k)
n,k · · ·E

(k)
k+1,k =



1
. . .

1

c
(k)
k+1 1
...

. . .

c
(k)
n 1


,

where c
(k)
i = −ã(k−1)

ik /ã
(k−1)
kk . Mk is unit lower triangular and full rank. Mk are

called the Gauss transformations.

• Let L = M−1
1 · · ·M−1

n−1. We have the decomposition

A = LU .

Mk is unit upper triangular, so M−1
k and thus L is unit lower triangular.

45

• Where is L? NoteMk = I+(0, . . . , 0, c
(k)
k+1, . . . , c

(k)
n)TeT

k. By Sherman-Morrison,

M−1
k = I − (0, . . . , 0, c

(k)
k+1, . . . , c

(k)
n)TeT

k. So the entries of L are simply `ik =

−c(k)
i , i > k, the negative of multipliers in GE.

• The whole LU procedure is done in place, i.e., A is overwritten by L and U .

• Implementation: outer product LU (kij loop), block outer product LU (higher

level-3 fraction), Crout’s algorithm (jki loop), ...

• LU decomposition exists if the principal sub-matrix A(1 : k, 1 : k) is non-

singular for k = 1, . . . , n − 1. If the LU decomposition exists and A is non-

singular, then the LU decomposition is unique and det(A) =
∏n

i=1 uii.

• This forward elimination or LU decomposition costs (n−1)2+(n−2)2+· · ·+12 ≈
1
3
n3 flops (n3/3 multiplications and n3/3 additions).

• Given LU, one right hand side costs n2 flops (one backward substitution and

then forward substitution).

• For inversion, there are n right hand sides ei. However, taking advantage of

zeros reduces n3 flops to 2
3
n3 (see JM exercise 3.2). So matrix inversion costs

1
3
n3 + 2

3
n3 = n3 flops in total.

• We do not compute matrix inverse unless (i) it is absolutely necessary to com-

pute s.e., (2) number of right hand sides is much larger than n, (3) n is small.

46

• LU decomposition of a rectangular matrix A ∈ Rm×n exists if A(1 : k, 1 : k) is

non-singular for k = min{m,n}. For example,1 2

3 4

5 6

 =

1 0

3 1

5 2

(1 2

0 −2

)

and (
1 2 3

4 5 6

)
=

(
1 0

4 1

)(
1 2 3

0 −3 −6

)
.

Slight modification to the algorithm.

47

6 Lecture 6, Sep 16

Announcements

• HW1 returned:

– Change of code naming convention for later homework: LastFirstHW2.R

or LastFirstHW2.Rmd, e.g., ZhouHuaHW2.Rmd

– Identify yourself in your code

– Submit code on time: late penalty 5pts/day (?)

– Style: indenting, no more 80 characters per line, space around binary

operators, space after comma, ...

– Q1: work out the computer arithmetic on at least one case, so you’re

clear about what’s happening with rounding, losing significant digits when

matching exponents, normalization, ...

– Q4: crossprod(), tcrossprod(), outer(), row(), col(), rowSums(),

colSums() functions in R, subsetting in R, ...

– Q5: vectorize code, determinant from Cholesky decomposition

– Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/

hw01sol.html

Last time

• Effect of data layout (column-major vs row-major)

• Triangular system: n2/2 flops for forward substitution or backward substitution

• GE and LU decomposition (JM 3.4)

Today

• GE and LU: pivoting

• Cholesky decomposition (KL 7.7 and JM 3.5)

48

http://hua-zhou.github.io/teaching/st758-2014fall/hw01sol.html
http://hua-zhou.github.io/teaching/st758-2014fall/hw01sol.html

Pivoting for LU

• What if we encounter a pivot ã
(k−1)
kk being 0 or close to 0 due to underflow?

• Think about A =

(
0 1

1 0

)
. Does it have a solution for arbitrary b? Does GE

work?

• Work on the example

0.0001x1 + x2 = 1

x1 + x2 = 2,

which has solution x1 = 1.0001 and x2 = 0.9999. Suppose we have 3 digits

of precision. After first step of elimination, we have (catastrophic cancellation

happens)

0.0001x1 + x2 = 1

−10, 000x2 = −10, 000

and the solution by back substitution is x2 = 1.000 and x1 = 0.000.

• Message: zero or very small pivots cause trouble.

Solution: pivoting.

• Partial pivoting: at the k-th stage the equation with maxni=k |ã
(k−1)
ik | is moved

into the k-th row. Thus we have Mn−1Pn−1 · · ·M1P1A = U .

• With partial pivoting, it can be shown that

PA = LU ,

where P = Pn−1 · · ·P1, L is unit lower triangular with |`ij| ≤ 1, and U is upper

triangular.

• det(P) det(A) = det(U) =
∏n

i=1 uii.

• To solve Ax = b, we solve two triangular systems

Ly = Pb and Ux = y,

costing n2 flops.

49

• Complete pivoting: Do both row and column interchanges so that the largest

entry in the sub matrix A(k : n, k : n) is permuted to the (k, k)-th entry. This

yields the decomposition PAQ = LU , where |`ij| ≤ 1.

• Warning: In actual implementation, we do not really need to interchange

rows/columns for pivoting. Just keep track of the indices we have interchanged.

• Gaussian elimination with partial pivoting is one of the most commonly used

methods for solving general linear systems. Complete pivoting is stable but

costs more computation. Partial pivoting is stable most of times.

• LAPACK: ?GETRF does PA = LU (LU decomposition with partial pivoting).

• In R, solve() implicitly performs LU decomposition (wrapper of LAPACK

routine DGESV). solve() allows specifying a single or multiple right hand sides.

If none, it computes the matrix inverse. The matrix package contains lu()

function.

Cholesky decomposition (symmetric LU)

JM 3.5 and KL 7.7

50

• A basic tenet in numerical analysis:

The structure should be exploited whenever solving a problem.

Common structures include: symmetry, definiteness, sparsity, Kronecker prod-

uct, low rank, ...

• Consider solving the normal equationXTXβ = XTy for linear regression. The

coefficient matrix XTX is symmetric and positive semidefinite, how to exploit

this structure?

• Theorem: Let A ∈ Rn×n be symmetric and positive definite. Then A = LLT

where L is lower triangular with positive diagonal entries and is unique.

Proof by induction. If n = 1, then ` =
√
a. For n > 1, the block equation(

a11 aT

a A22

)
=

(
`11 0T

n−1

l L22

)(
`11 lT

0n−1 LT
22

)
.

has solution

`11 =
√
a11

l = `−1
11 a

L22L
T

22 = A22 − llT = A22 − a−1
11 aa

T.

Now a11 > 0 (why?), so `11 and l are uniquely determined. A22 − a−1
11 aa

T is

positive definite becauseA is positive definite (why?). By induction hypothesis,

L22 exists and is unique.

• The constructive proof completely specifies the algorithm.

51

• Computational cost: 1
2
[(n− 1)2 + (n− 2)2 + · · ·+ 12] ≈ 1

6
n3 (half the cost of LU

decomposition due to symmetry) plus n square roots.

• Avoid square roots: LDLT decomposition.

• Pivoting? In general Cholesky decomposition is very stable. Failure of the

decomposition simply means A is not positive definite. It is an efficient way to

test positive definiteness.

If zero pivots ãii = 0 are encountered, we can still continue the algorithm by

setting `ii = 0 and l = 0. A better alternative is to use Cholesky decomposition

with symmetric pivoting.

• Any matrix X ∈ Rn×n is a square root of A � 0n×n if A = XX. Note that

Cholesky factor is not a square root of A unless A is diagonal.

52

7 Lecture 7, Sep 18

Announcement

• HW2 hints: http://hua-zhou.github.io/teaching/st758-2014fall/st758fall2014/

2014/09/16/hw2-hints.html

• HW3 will be posted today. Due Tue Sep 30.

Last time

• LU with partial pivoting: PA = LU (still n3/3 flops)

• Cholesky decomposition A = LLT , A p.d.: n3/6 flops taking advantage of

symmetry

Today

• Cholesky decomposition for A p.s.d.: symmetric pivoting

• Linear regression by Cholesky (JM 3.5, KL 7.7)

• QR decomposition (JM 5.4-5.8, KL 7.8-7.9)

Cholesky with symmetric pivoting

A � 0n×n (p.s.d.)

• When A does not have full rank, e.g., XTX with a non-full column rank X,

we encounter ãkk = 0 during the procedure.

• Symmetric pivoting. At each stage k, we permute both row and column such

that maxni=k ãkk becomes the pivot. If we encounter maxni=k ãkk = 0, then A(k :

n, k : n) = 0 (why?) and the algorithm terminates.

• With symmetric pivoting: PAP T = LLT , where P is a permutation matrix

and L ∈ Rn×r, r = rank(A).

• In R, chol() is a wrapper function for LAPACK routines DPOTRF (p.d.) and

DPSTRF (p.s.d. with pivoting).

53

http://hua-zhou.github.io/teaching/st758-2014fall/st758fall2014/2014/09/16/hw2-hints.html
http://hua-zhou.github.io/teaching/st758-2014fall/st758fall2014/2014/09/16/hw2-hints.html

– Option pivot = FALSE calls DPOTRF. It does A = RTR and gives error

message if A is not full rank.

– Option pivot = TRUE calls DPSTRF. It does symmetric pivoting PAP T =

RTR and yields rank and pivot.

– Option tol passes the tolerance to LAPACK for deciding zero pivots.

Default is n ·machine epsilon ·max(diag(A)).

Applications of Cholesky decomposition

There are numerous applications of Cholesky decomposition.

• No inversion mentality: Whenever we see matrix inverse, we should think in

terms of solving linear equations. If the matrix is positive semidefinite, Cholesky

decomposition applies.

• Example: multivariate normal density Nn(µ,Σ), Σ is p.d.

−n
2

ln(2π)− 1

2
ln det Σ− 1

2
(y − µ)TΣ−1(y − µ).

– Method 1: (a) compute explicit inverse Σ−1 (n3 flops), (b) compute quadratic

form (n2 + n flops), (c) compute determinant (n3/3 flops).

– Method 2: (a) Cholesky decomposition Σ = LLT (n3/6 flops), (b) Solve

Lx = y − µ by forward substitutions (n2/2 flops), (c) compute quadratic

form xTx (n flops), and (d) compute determinant from Cholesky factor (n

flops).

Which method is better?

• Compute Moore-Penrose inverse A+. (HW3)

• Linear regression.

Linear regression by Cholesky (method of normal equations)

Assume X ∈ Rn×p has full column rank. (For rank deficient X, use Cholesky with

symmetric pivoting.)

54

• It is easier to work on the augmented matrix(
XTX XTy

yTX yTy

)
=

(
L 0

lT d

)(
LT l

0T d

)
=

(
LLT Ll

lTLT ‖l‖2
2 + d2

)
.

Normal equation implies the equation

XTXβ = LLTβ = XTy = Ll or LTβ = l,

which we can solve for β in p2/2 flops. Since l = L−1XTy, we have

lTl = yX(LLT)−1XTy = yTX(XTX)−1XTy = yTPXy = ‖ŷ‖2
2

and

d2 = yTy − lTl = yT(I − PX)y = ‖y − ŷ‖2
2 = SSE.

If standard errors are needed, we do inversion (XTX)−1 = (LLT)−1 = L−TL−1.

Use chol2inv() in R function for this purpose.

• In summary, linear regression by Cholesky, aka the method of normal equations:

– Form the lower triangular part of (X,y)T (X,y) (n(p+ 1)2/2 flops)

– Cholesky decomposition of the augmented system

(
XTX XTy

yTX yTy

)
((p +

1)3/6 flops)

– Solve LTβ = l for regression coefficients β̂ (p2/2 flops)

– If want standard errors, estimate σ2 by σ̂2 = d2/(n − p) and compute

σ̂2(XTX)−1 = σ̂2(LLT)−1 (2p3/3 flops)

Total cost is p3/6 +np2/2 flops (without s.e.) or 5p3/6 +np2/2 flops (with s.e.).

QR decomposition and linear regression

Assume X ∈ Rn×p has full column rank.

• QR decomposition: X = QR, where Q ∈ Rn×n , QTQ = In, and R ∈ Rn×p .

– first p columns of Q form an orthonormal basis of C(X)

– last n− p columns of Q form an orthonormal basis of N (XT)

55

• (Thin/Skinny QR) ThenX = Q1R1 whereQ1 ∈ Rn×p has orthogonal columns,

QT
1Q1 = Ip, and R1 ∈ Rp×p is an invertible upper triangular matrix with

positive diagonal entries.

• For linear regression, we only need skinny QR.

Note XTX = RT
1R1 yields the Cholesky decomposition of XTX.

• Better to perform (skinny) QR on the augmented matrix(
X y

)
=
(
Q q

)(R r

0T
p d

)
=
(
QR Qr + dq

)
.

Normal equation XTXβ = XTy implies

Rβ = R−TXTy = R−TRTQTy = QTy = r,

which is easy to solve for β. The fitted value is ŷ = Xβ̂ = QRR−1r = Qr.

The residual is

ê = y −Xβ̂ = y −Qr = dq

and SSE = ‖ê‖2
2 = d2. The projection matrix is

X(XTX)−1X = QR(RTR)−1RTQT = QQT.

• Three numerical methods to compute QR: (modified) Gram-Schmidt, House-

holder transform, (fast) Givens transform

QR by (modified) Gram-Schmidt

56

Assume X = (x1, . . . ,xp) ∈ Rp has full column rank.

• Gram-Schmidt algorithm produces the skinny QR.

• Gram-Schmidt algorithm orthonormalizes a set of non-zero, linearly independent

vectors x1, . . . ,xp. Initialize q1 = x1/‖x1‖2; then for k = 2, . . . , p,

vk = xk − PC{q1,...,qk−1}xk = xk −
k−1∑
j=1

〈xk, qj〉qj

qk = vk/‖vk‖2

• For j = 1, . . . , p, C{x1, . . . ,xj} = C{q1, . . . , qj} and qj ⊥ C{x1, . . . ,xj−1}.

• Collectively, we have X = QR (skinny QR), where

– Q ∈ Rn×p has orthonormal columns qk and thus QTQ = Ip.

– What’s R? R = QTX ∈ Rp×p has entries rjk = 〈qj,xk〉, which are

available from the algorithm. Note rjk = 0 for j > k. Thus R is upper

triangular.

• X is over-written by Q and R is stored in a separate array.

• The regular Gram-Schmidt is unstable (we loose orthogonality due to roundoff

errors) when columns of X are collinear.

• Modified Gram-Schmidt (MGS): after each normalization step of vk, we replace

x̃j, j > k, by its residual.

57

• Why MGS is better than GS? Read http://cavern.uark.edu/~arnold/4353/

CGSMGS.pdf

• Computational cost of GS and MGS is
∑p

k=1 2n(k − 1) ≈ np2.

58

http://cavern.uark.edu/~arnold/4353/CGSMGS.pdf
http://cavern.uark.edu/~arnold/4353/CGSMGS.pdf

8 Lecture 8, Sep 23

Announcements

• HW2 due today. Submit both hardcopy and R code (LastFirstHW2.R or

LastFirstHW2.Rmd)

• HW3 due next Tue.

Last time

• Cholesky decomposition with symmetric pivoting: PAP T = LLT

• Linear regression by Cholesky

• QR and linear regression

• QR by (modified) Gram-Schmidt: np2 flops to get X = Q1R1 (thin QR)

Today

• QR by Householder

• QR by Givens

QR by Householder

59

Assume X = (x1, . . . ,xp) ∈ Rn×p has full column rank.

• Idea: Hp · · ·H2H1X =

(
R1

0

)
, where Hj ∈ Rn×n are the Householder trans-

formation matrix. It yields the full QR where Q = H1 · · ·Hp ∈ Rn×n. Recall

GS/MGS only produces the thin QR decomposition.

• For arbitrary v,w ∈ Rn with ‖v‖2 = ‖w‖2, we can construct a Householder

matrix H = In − 2uuT, u = − 1
‖v−w‖2 (v −w), that carries v to w:

Hv = w.

H is symmetric and orthogonal. Calculation of Householder vector u costs 2n

flops.

• Now choose H1 to zero the first column of X below diagonal

H1x1 =


‖x1‖2

0
...

0

 .

Take H2 to zero the second column below diagonal; ...

60

In general, choose the j-th Householder transform Hj = In − 2uju
T
j , where

uj =

(
0j−1

ũj

)
, ũj ∈ Rn−j+1, to zero the j-th column below diagonal. Hj takes

the form

Hj =

(
Ij−1

In−j+1 − 2ũjũ
T
j

)
=

(
Ij−1

H̃j

)
.

• Applying a Householder transform H = I − 2uuT to a matrix X ∈ Rn×p

HX = X − 2u(uTX)

costs 2np flops. We never explicitly form the Householder matrices.

Note applying Hj to X only needs 2(n− j + 1)(p− j + 1) flops.

• QR by Householder: Hp · · ·H1X =

(
R1

0

)
.

• The process is done in place. Upper triangular part of X is overwritten by

R1 and the essential Householder vectors (ũj1 is normalized to 1) are stored in

X(j : n, j).

• At j-th stage

1. computing the Householder vector ũj costs 2(n− j + 1) flops

2. applying the Householder transform H̃j to the X(j : n, j : p) block costs

2(n− j + 1)(p− j + 1) flops

In total we need
∑p

j=1[2(n− j + 1) + 2(n− j + 1)(p− j + 1)] ≈ np2− 1
3
p3 flops.

61

• Where is Q? Q = H1 · · ·Hp.

In some applications, it’s necessary to form the orthogonal matrix Q.

Accumulating Q costs another np2 − 1
3
p3 flops.

• When computing QTv or Qv as in some applications (e.g., solve linear equation

using QR), no need to form Q. Simply apply Householder transforms succes-

sively.

qr.qy() and qr.qty() in R do this.

• Computational cost of Householder QR for linear regression: np2− 1
3
p3 (regres-

sion coefficients and σ̂2) or more (fitted values, s.e., ...).

Rank deficient X: Householder QR with column pivoting

X ∈ Rn×p may not have full column rank.

• Idea (due to Businger and Golub 1965): at the j-th stage, swap the column in

X(j : n, j : p) with maximum `2 norm to be the pivot column. If the maximum

`2 norm is 0, it stops, ending with

XΠ = Q

(
R11 R12

0(n−r)×r 0(n−r)×(p−r)

)
,

where Π ∈ Rp×p is a permutation matrix and r is the rank of X. QR with

column pivoting is rank revealing.

• The overhead of re-computing the column norms can be reduced by the property

Qz =

(
α

ω

)
⇒ ‖ω‖2

2 = ‖z‖2
2 − α2

for any orthogonal matrix Q.

• In R, the qr() function is a wrapper for various LINPACK (default) and LA-

PACK routines. It performs Householder QR with column pivoting and returns

– $qr: a matrix of same size as input matrix

– $rank: rank of the input matrix

62

– $pivot: pivot vector

– $aux: normalizing constants of Householder vectors

Auxiliary functions qr.coef(), qr.resid(), qr.qy(), qr.qty(), qr.solve(),

... are very helpful.

QR by Givens rotation (JM 5.7-5.8)

• Householder transform Hj introduces batch of zeros into a vector.

• Givens transform (aka Givens rotation, Jacobi rotation, plane rotation) selec-

tively zeros one element of a vector.

• Overall QR by Givens rotation is less efficient than the Householder method,

but is better suited for matrices with structured patterns of nonzero elements.

• Givens/Jacobi rotations:

G(i, k, θ) =



1 0 0 0
...

. . .
...

...
...

0 c s 0
...

...
. . .

...
...

0 −s c 0
...

...
...

. . .
...

0 0 0 1


,

where c = cos(θ) and s = sin(θ). G(i, k, θ) is orthogonal.

63

• Pre-multiplication by G(i, k, θ)T rotates counterclockwise θ radians in the (i, k)

coordinate plane. If x ∈ Rn and y = G(i, k, θ)Tx, then

yj =


cxi − sxk j = i

sxi + cxk j = k

xj j 6= i, k

.

Apparently if we choose tan(θ) = −xk/xi, or equivalently,

c =
xi√

x2
i + x2

k

, s =
−xk√
x2
i + x2

k

,

then yk = 0.

• Pre-applying Givens transform G(i, k, θ)T ∈ Rn×n to a matrix A ∈ Rn×m only

effects two rows of A:

A([i, k], :)←

(
c s

−s c

)T

A([i, k], :),

costing 2m flops.

• Post-applying Givens transform G(i, k, θ) ∈ Rm×m to a matrix A ∈ Rn×m only

effects two columns of A:

A(:, [i, k])← A(:, [i, k])

(
c s

−s c

)
,

costing 2n flops.

• QR by Givens: GT
t · · ·GT

1X =

(
R1

0

)

64

• Zeros in X can also be introduced row-by-row.

• If X ∈ Rn×p, the total cost is (3/2)np2 − p3/2 flops and O(np) square roots.

• Note each Givens transform can be summarized by a single number, which is

stored in the zeroed entry of X.

• Fast Givens transform avoids taking square roots.

65

9 Lecture 9, Sep 25

Announcements

• HW2 returned. Feedback:

– Only Q2, Q4, and Q5 are graded. Maximum points 60.

– Code style penalty doubles.

– Late penalty: 5 pts/day.

– Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/

hw02sol.html. Please compare to your code carefully and understand why.

• HW3 due next Tue. FAQs at http://hua-zhou.github.io/teaching/st758-2014fall/

st758fall2014/2014/09/24/hw3-hints.html

• HW4 posted. Due Oct 14.

• Answer to Susheela’s questions:

– Backward accumulation algorithm for accumulating Q = H1 · · ·Hp from

Householder vectors stored in the Household QR output costs about 2(n2p−
np2 + p3/3) flops. See Golub and Van Loan (1996, p213).

– Computing QTY , Y ∈ Rn×r (r right hand sides), costs about (2np− p2)r

flops. See Golub and Van Loan (1996, p212).

• Answer to Meng’s question: Why (how) normalize Householder vector such that

the 1st element is 1? See Golub and Van Loan (1996, Algorithm 5.1.1, p212).

Last time

• QR by Householder

• QR by Givens

Today

• Sweep operator (KL 7.4-7.6, JM 5.12)

66

http://hua-zhou.github.io/teaching/st758-2014fall/hw02sol.html
http://hua-zhou.github.io/teaching/st758-2014fall/hw02sol.html
http://hua-zhou.github.io/teaching/st758-2014fall/st758fall2014/2014/09/24/hw3-hints.html
http://hua-zhou.github.io/teaching/st758-2014fall/st758fall2014/2014/09/24/hw3-hints.html

Sweep operator

Assume A � 0n×n.

• KL 7.4-7.6; JM 5.12; Also see “A tutorial on the SWEEP operator” by James

H. Goodnight. http://www.jstor.org/stable/2683825

• Note the (anti-symmetric) version in JM is different from the (symmetric) ver-

sion in KL. I follow the convention in KL.

• Sweep on the k-th diagonal entry akk 6= 0 yields Â with entries

âkk = − 1

akk

âik =
aik
akk

âkj =
akj
akk

âij = aij −
aikakj
akk

, i 6= k, j 6= k.

n2/2 flops (taking into account of symmetry).

• Inverse sweep sends A to Ǎ with entries

ǎkk = − 1

akk

ǎik = − aik
akk

ǎkj = −akj
akk

ǎij = aij −
aikakj
akk

, i 6= k, j 6= k.

n2/2 flops (taking into account of symmetry).

• ˇ̂
A = A.

• Block form of sweep: Let the symmetric matrix A be partitioned as A =(
A11 A12

A21 A22

)
. If possible, sweep on the diagonal entries of A11 yields

Â =

(
−A−1

11 A−1
11A12

A21A
−1
11 A22 −A21A

−1
11A12

)
.

Order dose not matter.

67

http://www.jstor.org/stable/2683825

• Pd and determinant: A is pd if and only if each diagonal entry can be swept

in succession and is positive until it is swept. When a diagonal entry of a pd

matrix A is swept, it becomes negative and remains negative thereafter. Taking

the product of diagonal entries just before each is swept yields the determinant

of A.

• Linear regression by sweep. Sweep on

(
XTX XTy

yTX yTy

)
yields

(
−(XTX)−1 (XTX)−1XTy

yTX(XX)−1 yTy − yTX(XTX)−1XTy

)
=

(
− 1
σ2 Var(β̂) β̂

β̂
T

‖y − ŷ‖2
2

)
.

In total np2/2 + p3/2 flops.

• Sweep is useful for stepwise regression, (conditional) multivariate normal density

calculation, MANOVA, ...

• Warning: the sweep() function in R has nothing do to with the sweep operator

here.

• Demo code: http://hua-zhou.github.io/teaching/st758-2014fall/sweep.

html

68

http://hua-zhou.github.io/teaching/st758-2014fall/sweep.html
http://hua-zhou.github.io/teaching/st758-2014fall/sweep.html

10 Lecture 10, Sep 30

Announcements

• HW3 due today. Submit hard copy + code (LastFirstHW3.R or LastFirstHW3.Rmd)

• HW4 posted. Due Oct 14.

• TA office hours on Oct 8 @ 10AM-12PM?

• Some FAQs:

– (Maggie) If A ∈ Rn×p has full rank, Householder QR gives A = Q1R1 and

MGS gives A = Q2R2, where Q1,Q2 ∈ Rn×p, QT
1Q1 = QT

2Q2 = Ip, and

R1,R2 ∈ Rp×p are upper triangular with positive diagonal entries. How

do we know Q1 = Q2?

– (Meng) Block sweep simply means sweeping diagonal entries in that block

sequentially. Order does not matter.

– Check “80 character rule” in R Studio.

– (Liuyi) What exactly is that pivot from the output of qr() and chol()

(with pivot = TRUE) functions in R? See hints at http://hua-zhou.

github.io/teaching/st758-2014fall/st758fall2014/2014/09/24/hw3-hints.

html

Last time

• HW2 review

• Sweep operator (KL 7.4-7.6, JM 5.12)

Today

• Summary of numerical methods for linear regression

• Summary of solving linear equations: overdetermined system

• Condition number for solving linear equations

69

http://hua-zhou.github.io/teaching/st758-2014fall/st758fall2014/2014/09/24/hw3-hints.html
http://hua-zhou.github.io/teaching/st758-2014fall/st758fall2014/2014/09/24/hw3-hints.html
http://hua-zhou.github.io/teaching/st758-2014fall/st758fall2014/2014/09/24/hw3-hints.html

Summary of linear regression: Table on KL p105

Method Flops Remarks Software Stability

Sweep np2/2 + p3/2 (XTX)−1 available SAS less stable

Cholesky np2/2 + p3/6 less stable

QR by Householder np2 − p3/3 R

QR by MGS np2 Q1 available more stable

Table 1: Numerical methods for linear regression. In order of stability.

Remarks:

• When n� p, sweep and Cholesky are twice faster than QR and need less space.

But QR methods are more stable and produce numerically more accurate solu-

tion.

• Although sweep is slower than Cholesky, it yields standard errors and so on.

• Sweep is useful for stepwise regression, multivariate normal calculation, and

numerous other statistical applications.

• MGS appears slower than Householder, but it yields Q1.

“There is simply no such thing as a universal ‘gold standard’ when it

comes to algorithms”.

Summary of solving linear equations

Consider linear system Ax = b.

• We now know some good numerical methods for the least squares problem,

which is essentially “solving” an overdetermined system (a tall A).

• Table 2 compares the flops of some methods (in order of stability) for solving a

square (unstructured) A ∈ Rn×n.

70

Method Flops Stability

Gaussian elimination n3/3 less stable

QR by Householder (2/3)n3

QR by MGS n3

SVD 6n3 most stable

Table 2: Flops of different numerical methods for n×n square linear systems, assuming

availability of the right hand side at time of decomposition.

• Flop count is not everything. GE/LU has a higher memory traffic and vector-

ization overheads, and QR approach is comparable in efficiency. QR methods

are more stable.

• Solve an underdetermined system (a flat A ∈ Rm×n of full row rank) by QR –

71

version 1. First compute QR on AT

AT = QR = Q

(
R1

0(n−m)×m

)
.

Then Ax = b becomes

(QR)Tx =
(
RT

1 0m×(n−m)

)(z1

z2

)
= b,

where

QTx =

(
z1

z2

)
.

z1 is determined from RT
1 z1 = b. If we take z2 = 0n−m, then we obtain the

minimum norm solution (why?).

• Solve an underdetermined system (a flat A ∈ Rm×n of full row rank) by QR –

version 2. First compute QR with column pivoting on A

AΠ = Q
(
R1 R2

)
,

where R1 ∈ Rm×m is upper triangular and R2 ∈ Rm×(n−m). Thus Ax = b

transforms to (
R1 R2

)(z1

z2

)
= QTb,

where

ΠTx =

(
z1

z2

)
.

One solution is obtained by z1 = R−1
1 Q

Tb and z2 = 0n−m. It is not guaranteed

to be of minimum norm.

Condition number for linear equations (matrix inversion)

• Assume A ∈ Rn×n is nonsingular and consider the system of linear equation

Ax = b. The solution is x = A−1b. We want to know how the solution changes

with a small perturbation of the input b (or A).

72

• Let b̃ = b+ ∆b. Then x̃ = A−1(b+ ∆b) = x+ ∆x. Thus

‖∆x‖ = ‖A−1∆b‖ ≤ ‖A−1‖‖∆b‖.

Because b = Ax, 1
‖x‖ ≤ ‖A‖

1
‖b‖ . This results

‖∆x‖
‖x‖

≤ ‖A‖‖A−1‖‖∆b‖
‖b‖

.

• κ(A) = ‖A‖‖A−1‖ is called the condition number for inversion. It depends on

the matrix norm being used. κp means condition number defined from matrix-p

norm.

• Large condition number means “bad”.

• Some useful facts

κ(A) = κ(A−1)

κ(cA) = κ(A)

κ(A) ≥ 1

κ1(A) = κ∞(AT)

κ2(A) = κ2(AT) =
σ1(A)

σn(A)

κ2(ATA) =
λ1(ATA)

λn(ATA)
= κ2

2(A) ≥ κ2(A).

The last fact says that the condition number of ATA can be much larger than

that of A.

• The smallest singular value σn indicates the “distance to the trouble”.

• Condition number for the least squares problem is more complicated. Roughly

speaking, the method based on normal equation (Cholesky, sweep) has a con-

dition depending on κ2(X)2. QR for a “small residuals” least squares problem

has a condition depending on κ2(X).

• Numerically, consider the simple case

X =

 1 1

10−3 0

0 10−3

 .

73

Forming normal equation yields a singular Gramian matrix

XTX =

(
1 1

1 1

)

if executed with a precision of 6 digits.

• In R, the kappa() function (wrapper of DTRCON in LAPACK and DTRCO in LIN-

PACK) computes or approximates (default) the condition number of a matrix.

• In regression problems, standardizing the predictors could improve the condi-

tion. See demo on the Longley data http://hua-zhou.github.io/teaching/

st758-2014fall/longleycond.html.

• In design of experiments (DoE), people favor orthogonal design. Why?

74

http://hua-zhou.github.io/teaching/st758-2014fall/longleycond.html
http://hua-zhou.github.io/teaching/st758-2014fall/longleycond.html

11 Lecture 11, Oct 2

Announcements

• HW3 returned. Feedback:

– Only Q2(d) and Q3 are graded. Total points is 50.

– Style issues: penalty doubles.

– Late penalty: 5 pts/day.

– Q1, probabilistic proof?

– By default, qr() function does Householder QR with column pivoting !

Need to use the pivot vector to permute results.

– Make good use of crossprod() and tcrossprod() functions to compute

Grammian matrix, avoid unnecessary matrix transpose, and so on. Check

source code:

/R-3.1.1/src/main/names.c

/R-3.1.1/src/main/array.c

– How to generate rank deficient matrix?

– Efficient implementation of sweep operator?

– Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/

hw03sol.html. Please compare to your code carefully and understand why.

• HW4 due Oct 14.

• TA office hours on Wed Oct 8. No TA office hours on Fri Oct 10 (fall break).

• Caleb’s question: Nvidia Tesla vs Intel Xeon Phi

75

http://hua-zhou.github.io/teaching/st758-2014fall/hw03sol.html
http://hua-zhou.github.io/teaching/st758-2014fall/hw03sol.html

Our department has at least 2 servers each with 4 Nvidia Tesla M2070Q GPUs.

Each Tesla M2070Q has 6G memory (5.25G with ECC), 786K L2 cache, 448

cores @ 1.15GHz, and theoretical throughput of 1288 SP GFLOPS or 512 DP

GFLOPS.

76

Last time

• Summary of linear regressions

• Summary of numerical methods for solving linear equations: tall A (least

squares, over-determined system), square A, and flat A (underdetermined sys-

tem)

• Condition number for solving linear equations

Today

• Iterative solvers for linear systems

Iterative method for solving linear equations: introduction

• Direct method (flops fixed a priori) vs iterative methods:

77

– Direct method (GE/LU, Cholesky, QR, SVD): good for dense, small or

moderate sized, unstructured A

– Iterative methods (Jacobi, Gauss-Seidal, SOR, conjugate-gradient, GM-

RES): good for large, sparse, or structured linear system, parallel comput-

ing, warm start

• PageRank (HW4):

– A ∈ {0, 1}n×n the connectivity matrix with entries

aij =

1 if page i links to page j

0 otherwise
.

n ≈ 109 in Sep 2014.

– ri =
∑

j aij is the out-degree of page i.

– Imagine a random surfer wandering on internet according to following

rules:

∗ From a page i with ri > 0

· with probability p, (s)he randomly chooses a link on page i (uni-

formly) and follows that link to the next page

· with probability 1− p, (s)he randomly chooses one page from the

set of all n pages (uniformly) and proceeds to that page

∗ From a page i with ri = 0 (a dangling page), (s)he randomly chooses

one page from the set of all n pages (uniformly) and proceeds to that

page

The process defines a Markov chain on the space of n pages.

– Stationary distribution of this Markov chain gives the ranks (probabilities)

of each page.

– Stationary distribution is the top left eigenvector of the transition matrix

P corresponding to eigenvalue 1. Equivalently it can be cast as a linear

equation.

– Largest matrix computation in world (?).

78

– GE/LU will take (109)3/3/1012 ≈ 3.33 × 1014 seconds ≈ 1 × 107 years on

a tera-flop supercomputer!

– Iterative methods come to the rescue.

Jacobi method

Solve linear system Ax = b.

• Jacobi iteration:

x
(t+1)
i =

bi −
∑i−1

j=1 aijx
(t)
j −

∑n
j=i+1 aijx

(t)
j

aii
.

• Requires non-zero diagonal element!

• One round costs n2 flops with an unstructuredA. Gain over GE/LU if converges

in o(n) iterations. Saving is huge for sparse or structured A. By structured, we

mean the matrix-vector multiplication Av is fast.

• Splitting: A = L+D +U .

• Jacobi: Dx(t+1) = −(L+U)x(t) + b, i.e.,

x(t+1) = −D−1(L+U)x(t) +D−1b.

79

Gauss-Seidel

• Gauss-Seidel iteration:

x
(t+1)
i =

bi −
∑i−1

j=1 aijx
(t+1)
j −

∑n
j=i+1 aijx

(t)
j

aii
.

• With splitting, (D +L)x(t+1) = −Ux(t) + b, i.e.,

x(t+1) = −(D +L)−1Ux(t) + (D +L)−1b.

• GS converges for any x(0) for symmetric and pd A.

• Convergence rate of Gauss-Seidel is the spectral radius of the (D +L)−1U .

• Comparing Jacobi and GS, Jacobi is particularly attractive for parallel comput-

ing.

Successive over-relaxation (SOR)

• SOR: x
(t+1)
i = ω(bi −

∑i−1
j=1 aijx

(t+1)
j −

∑n
j=i+1 aijx

(t)
j)/aii + (1− ω)x

(t)
i , i.e.,

x(t+1) = (D + ωL)−1[(1− ω)D − ωU]x(t) + (D + ωL)−1(D +L)−1ωb.

• Need to pick ω ∈ [0, 1] beforehand, with the goal of improving convergence rate.

80

Conjugate gradient method

Solving Ax = b is equivalent to minimizing the quadratic function 1
2
xTAx − bTx.

To do later, when we study optimization. Conjugate gradient and its variants are the

top-notch iterative methods for solving huge, structured linear systems.

81

12 Lecture 12, Oct 7

Announcements

• HW4 due next Tue Oct 14

• HW5 will be posted this week

• TA office hours this week: Wed Oct 8 @ 10A-12P

• Dr. Zhou office hours this week: Tue Oct 7 @ 4P-5P, Thu Oct 9 by appointment

Last time

• HW3 review

• Iterative methods for solving linear equations

Today

• A catalog of “easy” linear systems – last topic in solving linear equations

• Eigen-decomposition and SVD

A list of “easy” linear systems

Consider Ax = b, A ∈ Rn×n. Or, consider matrix inverse (if you want). A can be

huge. Keep massive data in mind: 1000 Genome Project, NetFlix, Google PageRank,

finance, spatial statistics, ... We should be alert to many easy linear systems. Don’t

waste computing resources by bad choices of algorithms!

• Diagonal: n flops.

• Tridiagonal/banded: Band LU, band Cholesky, ... roughly O(n) flops

• Triangular: n2/2 flops

• Block diagonal: Suppose n =
∑

i ni. (
∑

i ni)
3/3 vs

∑
i n

3
i /3.

• Kronecker product: (A ⊗ B)−1 = A−1 ⊗ B−1, (CT ⊗ A)vecB = vec(ABC)

fits iterative method.

82

• Sparsity: iterative method, or sparse matrix decomposition.

Remark: Probably the easiest recognizable structure. Familiarize yourself with

the sparse matrix computation tools in Matlab, R (Matrix package), MKL

(sparse BLAS), ... as soon as possible.

• Easy plus low rank: U ∈ Rn×m, V ∈ Rn×m, m� n. Woodbury formula

(A+UV T)−1 = A−1 −A−1U(Im + V TA−1U)−1V TA−1.

Keep HW2 Q5 in mind.

• Easy plus border: For A pd and V full row rank,(
A V T

V 0

)−1

=

(
A−1 −A−1V T(V A−1V T)−1V A−1 A−1V T(V A−1V T)−1

(V A−1V T)−1V A−1 −(V A−1V T)−1

)
.

• Orthogonal: n2 flops at most. Permutation matrix, Householder matrix, Jacobi

matrix, ... take less.

• Toeplitz systems:

T =


r0 r1 r2 r3

r−1 r0 r1 r2

r−2 r−1 r0 r1

r−3 r−2 r−1 r0

 .

Tx = b, where T is pd and Toeplitz, can be solved in O(n2) flops. Durbin

algorithm (Yule-Walker equation), Levinson algorithm (general b), Trench al-

gorithm (inverse). These matrices occur in auto-regressive models and econo-

metrics.

• Circulant systems: Toeplitz matrix with wraparound

C(z) =


z0 z4 z3 z2 z1

z1 z0 z4 z3 z2

z2 z1 z0 z4 z3

z3 z2 z1 z0 z4

z4 z3 z2 z1 z0

 ,

DCT (discrete cosine transform) and DST (discrete sine transform).

FFT type algorithms.

83

• Vandermonde matrix: such as in interpolation and approximation problems

V (x0, . . . , xn) =


1 1 · · · 1

x0 x1 · · · xn
...

...
...

xn0 xn1 · · · xnn

 .

V x = b or V Tx = b can be solved in O(n2) flops.

• Cauchy-like matrices:

ΩA−AΛ = RST ,

where Ω = diag(ω1, . . . , ωn) and Λ = (λ1, . . . , λn). O(n) flops for LU and QR.

• Structured-rank problems: semiseparable matrices (LU and QR takes O(n)

flops), quasiseparable matrices, ...

• Fast multiple method (FMM) for kernel matrix.

• ...

Other computations such as matrix-vector multiplication with these “easy” matrices

are typically fast too.

Bottom line: Don’t blindly use solve().

Linear algebra review: eigen-decomposition

Our last topic on numerical linear algebra is eigen-decomposition and singular value

decomposition (SVD). We already saw the wide applications of QR decomposition

in least squares problem and solving square and under-determined linear equations.

Eigen-decomposition and SVD can be deemed as more thorough orthogonalization of

a matrix. We start with a brief review of the related linear algebra.

• Eigenvalues are defined as roots of the characteristic equation det(λIn−A) = 0.

• If λ is an eigenvalue of A, then there exist non-zero x,y ∈ Rn such that

Ax = λx and yTA = λyT . x and y are called the (column) eigenvector and

row eigenvector of A associated with the eigenvalue λ.

84

• A is singular if and only if it has at least one 0 eigenvalue.

• Eigenvectors associated with distinct eigenvalues are linearly independent.

• Eigenvalues of an upper or lower triangular matrix are its diagonal entries:

λi = aii.

• Eigenvalues of an idempotent matrix are either 0 or 1.

• Eigenvalues of an orthogonal matrix have complex modulus 1.

• In most statistical applications, we deal with eigenvalues/eigenvectors of sym-

metric matrices. The eigenvalues and eigenvectors of a real symmetric matrix

are real.

• Eigenvectors associated with distinct eigenvalues of a symmetry matrix are or-

thogonal.

• Eigen-decompostion of a symmetric matrix: A = UΛU T, where

– Λ = diag(λ1, . . . , λn)

– columns of U are the eigenvectors, which are (or can be chosen to be)

mutually orthonormal. That is U is an orthogonal matrix.

• A real symmetric matrix is positive semidefinite (positive definite) if and only

if all eigenvalues are nonnegative (positive).

• Spectral radius ρ(A) = maxi |λi|.

• A ∈ Rn×n a square matrix (not required to be symmetric), then tr(A) =
∑

i λi

and |A| =
∏

i λi.

85

13 Lecture 13, Oct 14

Announcements

• HW4 due today: hardcopy + email code (LastFirstHW4.R or LastFirstHW4.Rmd)

• HW5 posted, due next Tue Oct 21

Last time

• A list of “easy” linear system

• Linear algebra review: eigen-decomposition

Today

• Linear algebra review: SVD

• Applications of eigen-decomposition and SVD

• Algorithms for eigen-decomposition and SVD

Linear algebra review: SVD

• Singular value decomposition (SVD): For a rectangular matrix A ∈ Rm×n, let

p = min{m,n}, then we have the SVD

A = UΣV T,

where

– U = (u1, . . . ,um) ∈ Rm×m is orthogonal

– V = (v1, . . . ,vn) ∈ Rn×n is orthgonal

– Σ = diag(σ1, . . . , σp) ∈ Rm×n , σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

σi are called the singular values, ui are the left singular vectors, and vi are the

right singular vectors.

86

• Thin SVD. Assume m ≥ n. A can be factored as

A = UnΣnV
T =

n∑
i=1

σiuiv
T
i ,

where

– Un ∈ Rm×n , U T
nUn = In

– V ∈ Rn×n , V TV = In

– Σn = diag(σ1, . . . , σn) ∈ Rn×n, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

• Denote σ(A) = (σ1, . . . , σp)
T . Then

– r = rank(A) = # nonzero singular values = ‖σ(A)‖0

– A = UrΣrV
T
r =

∑r
i=1 σiuiv

T
i

– ‖A‖F = (
∑p

i=1 σ
2
i)

1/2 = ‖σ(A)‖2

– ‖A‖2 = σ1 = ‖σ(A)‖∞

• Assume rank(A) = r and partition U = (Ur, Ũr) ∈ Rm×m and V = (Vr, Ṽr) ∈
Rn×n, then

– C(A) = C(Ur), N (AT) = C(Ũr)

– N (A) = C(Ṽr), C(AT) = C(Vr)

– UrU
T
r is the orthogonal projection onto C(A)

– ŨrŨ
T
r is the orthogonal projection onto N (AT)

– VrV
T
r is the orthogonal projection onto C(AT)

– ṼrṼ
T
r is the orthogonal projection onto N (A)

• Relation to eigen-decomposition. Using thin SVD,

ATA = V ΣU TUΣV T = V Σ2V T

AAT = UΣV TV ΣU T = UΣ2U T.

• Another relation to eigen-decomposition. Using thin SVD,(
0n×n AT

A 0m×m

)
=

1√
2

(
V V

U −U

)(
Σ 0n×n

0n×n −Σ

)
1√
2

(
V T U T

V T −U T

)
.

87

Hence any symmetric eigen-solver can produce the SVD of a matrix A without

forming AAT or ATA.

• Yet another relation to eigen-decomposition: If the eigendecomposition of a real

symmetric matrix is A = WΛW T = Wdiag(λ1, . . . , λn)W T , then

A = WΛW T = W

|λ1|
. . .

|λn|


sgn(λ1)

. . .

sgn(λn)

W T

is the SVD of A.

Applications of eigen-decomposition and SVD

• Principal components analysis (PCA). X ∈ Rn×p is a centered data matrix.

Perform SVD X = UΣV T or equivalently XTX = V Σ2V T. The linear combi-

nations x̃i = Xvi are the principal components and have variance σ2
i . Usages:

1. Dimension reduction: reduce dimensionality p to q � p. Use top PCs

x̃1, . . . , x̃q in downstream analysis.

2. Use PCs to adjust for confounding – a serious issue in association studies

in large data sets.

88

• Low rank approximation, e..g, image/data compression.

Eckart-Young theorem:

min
rank(Y)=r

‖X − Y ‖2
F

is achieved by Y =
∑r

i=1 σiuiv
T
i with optimal value

∑r−1
i=1 σ

2
i , where (σi,ui,vi)

are singular values and vectors of X.

Gene Golub’s 2691×598 picture requires 2691×598×6 = 9, 655, 308 bytes (RGB

16 bit per channel). Rank 120 approximation requires 120× (2691 + 598)× 6 =

2, 368, 080 bytes. Rank 50 approximation requires 50 × (2691 + 598) × 6 =

986, 700 bytes. Rank 12 approximation requires 12×(2691+598)×8 = 236, 808

bytes.

• Least squares, ridge regression, least squares over a sphere, ...

• Moore-Penrose (MP) inverse: Using thin SVD,

A+ = V Σ+U T,

where Σ+ = diag(σ−1
1 , . . . , σ−1

r , 0, . . . , 0), r = rank(A). This is how the ginv()

function is implemented in MASS package.

• Read KL and JM and do HW5 for some more applications.

89

One eigen-pair - power method

Assume A ∈ Rn×n symmetric.

• Power method iterates according to

x(t) ← 1

‖Ax(t−1)‖2

Ax(t−1)

λ
(t)
1 ← x(t) TAx(t)

from an initial guess x(0) of unit norm.

• Suppose we arrange |λ1| > |λ2| ≥ · · · ≥ |λn| (the first inequality strict) with

corresponding eigenvectors ui, and expand x(0) = c1u1 + · · ·+ cnun, then

x(t) =
(
∑

i λ
t
iuiu

T
i) (
∑

i ciui)

‖ (
∑

i λ
t
iuiu

T
i) (
∑

i ciui) ‖2

=

∑
i ciλ

t
iui

‖
∑

i ciλ
t
iui‖2

=
c1u1 + c2(λ2/λ1)tu2 + · · ·+ cn(λn/λ1)tun
‖c1u1 + c2(λ2/λ1)tu2 + · · ·+ cn(λn/λ1)tun‖2

(
λ1

|λ1|

)t
.

Thus x(t) − c1u1

‖c1u1‖2

(
λ1
|λ1|

)t
→ 0 as t→∞. The convergence rate is |λ2|/|λ1|.

• x(t) TAx(t) converges to λ1.

• Inverse power method for finding the eigenvalue of smallest absolute value: Sub-

stitute A by A−1 in the power method. (E.g., pre-compute LU or Cholesky of

A).

• Shifted inverse power : Substitute (A−µI)−1 in the power method. It converges

to an eigenvalue close to the given µ.

• Initial guess of the desired eigenvalue can be obtain by Gerschgorin’s circle

theorem and so on.

• Power method also applies to asymmetric A, e.g., PageRank problem costs

O(n) per iteration.

90

Top r eigen-pairs - orthogonal iteration

Generalization of power method to higher dimensional invariant subspace.

• Orthogonal iteration: Initialize Q(0) ∈ Rn×r with orthonormal columns. For

t = 1, 2, . . .,

Z(t) ← AQ(t−1) (n2r flops)

Q(t)R(t) ← Z(t) (QR factorization, nr2 − r3/3 flops)

• Z(t) converges to the eigenspace of the largest r eigenvalues if they are real and

separated from remaining spectrum. The convergence rate is |λr+1|/|λr|.

(Impractical) full eigen-decomposition - QR iteration

Assume A ∈ Rn×n symmetric.

• take r = n in the orthogonal iteration. Then Q(t) converges to the eigenspace

U of A. This implies that

T (t) := Q(t) TAQ(t)

converges to a diagonal form Λ = diag(λ1, . . . , λn).

• Note how to compute T (t) from T (t−1)

T (t−1) = Q(t−1) TAQ(t−1) = Q(t−1) T (AQ(t−1)) = (Q(t−1) TQ(t))R(t)

T (t) = Q(t) TAQ(t) = Q(t) TAQ(t−1)Q(t−1) TQ(t) = R(t)(Q(t−1) TQ(t)).

• QR iteration: Initialize U (0) ∈ Rn×n orthogonal and set T (0) = U (0) TAU (0).

For t = 1, 2, . . .

U (t)R(t) ← T (t−1) (QR factorization)

T (t) ← R(t)U (t)

• QR iteration is expensive: O(n3) per iteration and linear convergence rate.

91

QR algorithm for symmetric eigen-decomposition

Assume A ∈ Rn×n symmetric.

• As done in LAPACK: eigen() in R, eig() in Matlab

• Idea: Tri-diagonalization (by Householder) + QR iteration on the tri-diagonal

system with implicit shift

– Step 1: Householder tri-diagonalization: 4n3/3 for eigenvalues only, 8n3/3

for both eigenvalues and eigenvectors. (Why can’t we apply Householder

to make it diagonal directly?)

– Step 2: QR iteration on the tridiagonal matrix. Implicit shift accelerates

convergence rate. On average 1.3-1.6 QR iteration per eigenvalue, ∼ 20n

flops per QR iteration. So total operation count is about 30n2. Eigenvec-

tors need an extra of about 6n3 flops.

Eigenvalue Eigenvector

Householder reduction 4n3/3 4n3/3

QR with implicit shift ∼ 30n2 ∼ 6n3

• Don’t request eigenvectors unless necessary: set only.values = TRUE when

calling eigen() in R.

• Remark: there are at least two alternative ways (other than QR with implicit

shift) to solve the symmetric tridiagonal eigenproblem

92

– Bisection: good when only selected portions of eigensystem are needed

– Divide and conquer: good for parallel implementation

• The unsymmetric QR algorithm obtains the real Schur decomposition of an

asymmetric matrix A.

93

14 Lecture 14, Oct 16

Announcements

• HW4 returned. Feedback:

– Key to the success of iterative methods is fast matrix-vector multiplication.

Here the structure in P T or I −P T is “sparse + low rank”. Say in power

method, if we first form the matrix P T and then iterate according to

x(t) ← P Tx(t−1), it costs n2 flops per iteration. If we keep the “sparse +

low rank” structure and iterate according to

x(t) ← AT (diag(r+)x(t−1)) + 1n(zTx(t−1)),

it costs 3n+ nnz(A)� n2 flops, where nnz(A) is the number of non-zero

elements in A.

– Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/

hw04sol.html

– Some run times in Matlab: using vs ignoring “sparse + low rank” struc-

ture.

Matrix Size Sparsity svt (fh input) svds

bfwb398 398 0.9816 0.0176(0.0011) 0.0408(0.0009)

rdb800l 800 0.9928 0.0240(0.0005) 0.2115(0.0014)

tols1090 1090 0.9970 0.0780(0.0009) 0.9396(0.0079)

mhd4800b 4800 0.9988 0.0471(0.0001) 5.6700(0.0166)

cryg10000 10000 0.9995 0.1909(0.0022) 44.2213(0.4373)

Table 3: Top 6 singular values and vectors of “sparse + low rank” matrices by svt

and svds. Structured matrices are formed by adding a random rank-10 matrix to

the original sparse test matrix. Reported are the average run time (in seconds) and

standard error (in parentheses) based on 10 simulation replicates.

• HW5 due next Tue Oct 21.

94

http://hua-zhou.github.io/teaching/st758-2014fall/hw04sol.html
http://hua-zhou.github.io/teaching/st758-2014fall/hw04sol.html

Last time

• Linear algebra review: SVD

• Applications of eigen-decomposition and SVD:

PCA, data/image compression, least squares and its variants, MP inverse, sta-

tionary distribution of Markov chains (Google PageRank), ...

• Answer to Caleb’s question: Following picture is from the article “Genes mirror

geography within Europe” by Novembre et al. (2008) published in Nature http:

//www.nature.com/nature/journal/v456/n7218/full/nature07331.html.

Use of PCA to adjust for confounding in modern genetic studies is proposed in

the paper “Principal components analysis corrects for stratification in genome-

wide association studies” by Price et al. (2006) published in Nature Genet-

ics http://www.nature.com/ng/journal/v38/n8/full/ng1847.html. It has

been cited 3346 times as of Oct 14, 2014.

• Algorithms for eigen-decomposition:

power method (top eigen-pair), orthogonal iteration (top r eigen-pairs), QR iter-

ation for full eigen-decomposition (O(n4) flops), Householder tri-diagonalization

+ QR iteration with implicit shift (O(n3) flops).

95

http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html
http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html
http://www.nature.com/ng/journal/v38/n8/full/ng1847.html

Today

• SVD algorithm

Algorithm for singular value decomposition (SVD)

Assume A ∈ Rm×n and we seek the SVD A = UDV T.

• “Golub-Kahan-Reinsch” algorithm:

– Stage 1: Transform A to an upper bidiagonal form B (by Householder).

96

– Stage 2: Apply implicit-shift QR step to the tridiagonal matrix BTB im-

plicitly.

• See Golub and Van Loan (1996, Section 8.6) for more details.

• 4m2n+ 8mn2 + 9n3 flops for a tall (m ≥ n) matrix.

• svd() in R and Matlab: wrapper of the GESVD subroutine in LAPACK.

97

15 Lecture 15, Oct 21

Announcements

• HW5 due today: submit hardcopy + email code

• Homework due date change to Thu?

• Spaces around “=” in function call?

Last time

• HW4 (PageRank algorithm). Ilse Ipsen’s slides

http://www4.ncsu.edu/~ipsen/ps/slides_imacs.pdf

• SVD (Golub-Kahan-Riensch) algorithm

Today

• Iterative methods (Lanszos and Arnoldi methods) for huge, structured A

• Jacobi method for eigen-decomposition (parallel computing)

• Generalized eigen-problem: Ax = λBx (PLS, SIR, CCA, ...)

• Variants of least squares problems (self-study)

• Concluding remarks for numerical linear algebra

Lanczos/Arnoldi iterative method for top eigen-pairs

• Motivation

– Consider the Google PageRank problem. We want to find the top left

eigenvector of the transition matrix

P = pR+A+ z1T

n,

where R = diag(r1, . . . , rn) and zj = (1− p)/n if ri > 0 and 1/n if ri = 0.

Suppose there are n ≈ 1 billion web pages.

98

http://www4.ncsu.edu/~ipsen/ps/slides_imacs.pdf

The (unsymmetric) QR algorithm will take order

(1× 109)3

1012
≈ 3.33× 1014 seconds ≈ 1× 107 years

on a tera-flop supercomputer!

– Consider adjusting for confounding by PCA in modern GWAS (genome-

wide association studies). We want to find the top singular values/vectors

of a genotype matrix X ∈ Rn×p, where n ∼ 103 and p ∼ 106.

• Krylov subspace methods are the state-of-art iterative method for obtaining the

top eigen-values/vectors or singular values/vectors of large sparse or structured

matrices.

• Lanczos method: top eigen-pairs of a large symmetric matrix.

• Arnoldi method: top eigen-pairs of a large asymmetric matrix.

• Both methods are also adapted to obtain top singular values/vectors of large

sparse or structured matrices.

• We will give a brief overview of these methods together with the conjugate

gradient method for solving large linear system.

• eigs() and svds() in Matlab are wrappers of the ARPACK package. No native

functions in R (?).

Jacobi method for symmetric eigen-decomposition (KL 8.2)

99

Assume A ∈ Rn×n is symmetric and we seek the eigen-decomposition A =

UΛUT .

• Idea: Systematically reduce off-diagonal entries

off(A) =
∑
i

∑
j 6=i

a2
ij

by Jacobi rotations.

• Jacobi/Givens rotations:

J(p, q, θ) =



1 0 0 0
...

. . .
...

...
...

0 cos(θ) sin(θ) 0
...

...
. . .

...
...

0 − sin(θ) cos(θ) 0
...

...
...

. . .
...

0 0 0 1


,

J(p, q, θ) is orthogonal.

• Consider B = JTAJ . B preserves the symmetry and eigenvalues of A.

Taking tan(2θ) = 2apq/(aqq − app) if app 6= aqq

θ = π/4 if app = aqq

forces bpq = 0.

• Since orthogonal transform preserves Frobenius norm, we have

b2
pp + b2

qq = a2
pp + a2

qq + 2a2
pq.

(Just check the 2-by-2 block)

• Since ‖A‖F = ‖B‖F, this implies that the off-diagonal part

off(B) = off(A)− 2a2
pq

is decreased whenever apq 6= 0.

100

• One Jacobi rotation costs O(n) flops.

• Classical Jacobi : search for the largest |aij| at each iteration.

• off(A) ≤ n(n− 1)a2
ij and off(B) = off(A)− 2a2

ij together implies

off(B) ≤
(

1− 2

n(n− 1)

)
off(A).

• In practice, cyclic-by-row implementation, to avoid the costly O(n2) search in

the classical Jacobi.

• Jacobi method attracts a lot recent attention because of its rich inherent par-

allelism.

• Parallel Jacobi : “merry-go-round” to generate parallel ordering.

101

Generalized eigen-problem

• Generalized eigen-problem: Ax = λBx, where A psd and B pd.

• Applications: partial least squares (PLS), sliced inverse regression (SIR), canon-

ical correlation analysis (CCA).

• Method 1: B−1Ax = λx. Non-symmetric eigen-problem /.

• Method 2: Cholesky B = LLT. Then L−1AL−Ty = λy where y = LTx.

• Method 3 (most numerically stable, B can be rank deficient): QZ algorithm.

• eig() and qz() in Matlab implement QZ. No native function in R?

Generalized singular value decomposition

• A ∈ Rm×n and B ∈ Rp×n. Then there exists orthogonal U ∈ Rm×m and

V ∈ Rp×p and an invertible X ∈ Rn×n such that

UTAX = C = diag(c1, . . . , cn), ci ≥ 0

V TBX = S = diag(s1, . . . , sq), si ≥ 0,

where q = min{p, n}.

• Applications: quadratically inequality-constrained least squares problem (LSQI).

• gsvd() in Matlab implements generalized SVD. No native function in R?

In the zoo of least squares (self-study)

Weighted least squares

• In weighted least squares, we minimize
∑n

i=1wi(yi − xTi β)2, where wi > 0 are

observation weights.

• Let W = diag(w1, . . . , wn). Then the criterion is ‖W 1/2y−W 1/2Xβ‖2
2, which

can be solved by standard methods for least squares with ỹ = W 1/2y and

X̃ = W 1/2X.

102

General least squares

• In Aitken model: E(y) = Xβ, Cov(y) = σ2V , where V is a positive semidefi-

nite matrix. We minimize the generalized least squares criterion

(y −Xβ)TM−(y −Xβ),

where M ∈ Rn×n is some positive semidefinite matrix, e.g., M = V for non-

singular V or M = V +XXT for singular V .

• Let M = BBT for some B ∈ Rn×n (e.g., the Cholesky factor). One approach

is to minimize

‖B−1(y −Xβ)‖2
2.

Unfortunately, when B is poorly conditioned (or even not invertible), the pro-

cedure produces a poor solution.

• Paige’s method. The generalized least squares problem is equivalent to

minimize vTv

subject to Xβ +Bv = y.

To solve this problem, first compute the QR of X

X = (Q1,Q2)

(
R1

0

)
.

Compute another QR for the (flat) matrix QT
2B such that

QT
2B = (0,S)

(
ZT

1

ZT
2

)
,

where S is upper triangular and (Z1,Z2) ∈ Rn×n is orthogonal. Then the

constraint becomes(
R1

0

)
β +

(
QT

1BZ1 QT
1BZ2

0 S

)(
ZT

1 v

ZT
2 v

)
=

(
QT

1 y

QT
2 y

)
.

From the bottom half we can solve for v from the equation (how?)

SZT
2 v = QT

2 y.

Then we solve for β from the equation

R1β = QT
1 y − (QT

1BZ1Z
T
1 +QT

1BZ2Z
T
2)v = QT

1 y −QT
1BZ2(ZT

2 v).

103

• Paige’s method also works for singular X and B (using QR with column piv-

oting).

• Matlab’s lscov() function implements Paige’s method for singular covariance

V . No R implementation (?)

Ridge regression

• In ridge regression, we minimize

‖y −Xβ‖2
2 + λ‖β‖2

2,

where λ is a tuning parameter.

• Ridge regression by augmented linear regression. Ridge regression problem is

equivalent to ∥∥∥∥∥
(
y

0p

)
−

(
X√
λIp

)
β

∥∥∥∥∥
2

2

.

Therefore any methods for linear regression can be applied.

• Ridge regression by method of normal equation. The normal equation for the

ridge problem is

(XTX + λIp)β = XTy.

Therefore Cholesky or sweep can be used.

• Ridge regression by SVD. If we obtain the (thin) SVD of X

X = UΣp×pV
T .

Then the normal equation reads

(Σ2 + λIp)V
Tβ = ΣUTy

and we get

β̂(λ) =

p∑
i=1

σiu
T
i y

σ2
i + λ

vi =
r∑
i=1

σiu
T
i y

σ2
i + λ

vi, r = rank(X).

104

It is clear that

lim
λ→0

β̂(λ) = β̂OLS

and ‖β̂(λ)‖2 is monotone decreasing as λ increases.

• Only one SVD is needed for all λ (!), in contrast to the method of augmented

linear regression, Cholesky, or sweep.

Least squares over a sphere

• Ridge regression “shrinks” the solution via penalty. Alternatively we can simply

fit a least squares problem subject to the constraint that the solution lives in a

sphere

minimize ‖y −Xβ‖2
2

subject to ‖β‖2 ≤ α.

• Suppose we obtain the (thin) SVD X = UΣp×pV
T . If the ordinary least

squares solution

β̂OLS =
r∑
i=1

uTi y

σi
vi

has `2 norm less than α, then we are done. If not, we use the method of

Lagrangian multipliers

ψ(β, λ) =
1

2
‖y −Xβ‖2

2 +
λ

2
(‖β‖2

2 − α2).

Setting the gradient to 0, we have the shifted normal equation

(XTX + λIp)β = XTy,

which has solution

β̂(λ) =
r∑
i=1

σiu
T
i y

σ2
i + λ

vi.

We need to choose the λ such that ‖β̂(λ)‖2 = α. That is we need to find the

(unique) zero of the function

f(λ) = ‖β̂(λ)‖2
2 − α2 =

r∑
i=1

(
σiu

T
i y

σ2
i + λ

)2

− α2.

This is easily achieved by Newton’s or other methods.

105

Least squares with equality constraints

• In many applications, there are a priori constraints on the regression param-

eters. Let’s consider how to solve linear regression with equality constraints

(LSE)

minimize ‖y −Xβ‖2
2

subject to Bβ = d.

• LSE by QR. First compute QR of BT ∈ Rp×m

BT = Q

(
R

0

)
and set

XQ = (X1,X2) and QTβ =

(
β1

β2

)
.

Then the original minimization problem becomes

minimize ‖y −X1β1 −X2β2‖2
2

subject to RTβ1 = d.

Now β1 is determined from the constraint RTβ1 = d and β2 is solved from the

unconstrained least squares problem

minimize ‖(y −X1β1)−X2β2‖2
2.

Finally we recover the solution from

β = Q

(
β1

β2

)
.

• LSE by augmented system. Define the Lagrangian function

φ(β,λ) =
1

2
‖y −Xβ‖2

2 − λT (Bβ − d).

Setting gradient to zero yields

XTXβ −BTλ = XTy

Bβ = d,

106

suggesting the augmented system(
XTX BT

B 0

)(
β

−λ

)
=

(
XTy

d

)
.

This linear system is non-singular when X and B have full rank and can be

solved by Cholesky, sweep, and so on.

• LSE by generalized SVD.

Total least squares (TLS)

TLS considers the case both predictors and observations are subject to errors. It is

solved by SVD. Read KL 9.3.6 if interested.

Tikhonov regularization

Tikhonov regularization is an extension of the ridge regression

‖y −Xβ‖2
2 + λ‖Bβ‖2

2,

where B ∈ Rm×p is a fixed regularization matrix and λ is a tuning parameter. It is

solved by the generalized singular value decomposition (GSVD).

Least squares with quadratic inequality constraint (LSQI)

Least squares with quadratic inequality constraint (LSQI) minimizes the least squares

criterion over a hyper-ellipsoid:

minimize ‖y −Xβ‖2
2

subject to ‖Bβ‖2 ≤ α,

107

where B ∈ Rm×p is a fixed regularization matrix. It is solved by the generalized

singular value decomposition (GSVD). See Golub and Van Loan (1996, Section 2.1.1).

Concluding remarks on numerical linear algebra

• Numerical linear algebra forms the building blocks of most computation we do.

Most lines of our code are numerical linear algebra.

• Be flop and memory aware.

The form of a mathematical expression and the way the expression

should be evaluated in actual practice may be quite different.

• Be alert to problem structure and make educated choice of software/algorithm.

The structure should be exploited whenever solving a problem.

• Do not write your own matrix computation routines unless for good reason.

Utilize BLAS and LAPACK as much as possible!

• In contrast, for optimization, often we need to devise problem specific optimiza-

tion routines, or even “mix and match” them.

Some useful reference books on (numerical) linear algebra

• Linear algebra books: Magnus and Neudecker (1999), Horn and Johnson (1985),

Harville (1997), Gentle (2007)

108

• Golub and Van Loan (1996): “Bible” in numerical linear algebra.

109

• Lawson and Hanson (1987) and Björck (1996): classical monographs on solving

least squares problems.

• Saad (2003): standard reference for iterative methods

110

111

16 Lecture 16, Oct 23

Announcements

• HW5 returned. Feedback:

– What’s the likelihood of two independently written code looking like this?

Copying code from any source without acknowledgement is plagiarism.

First time, hw score is 0; second time, course grade is F.

– Q2 (ridge regression): avoid loops. Vectorize code (matrix/vector opera-

tion) > apply, sapply > for loop.

– Organize your code into functions.

– Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/

hw05sol.html

• HW6 posted and due Nov 6. Start early.

• ST790: Advanced Statistical Computing.

Last time

• Iterative methods (Lanszos and Arnoldi methods) for huge, structured A

112

http://hua-zhou.github.io/teaching/st758-2014fall/hw05sol.html
http://hua-zhou.github.io/teaching/st758-2014fall/hw05sol.html

• Jacobi method for eigen-decomposition (parallel computing)

• Generalized eigen-problem: Ax = λBx (PLS, SIR, CCA, ...) and generalized

singular value decomposition

• Variants of least squares problem

• Concluding remarks for numerical linear algebra

Today

• MLE

• General optimization theory

MLE (as a motivation for optimization)

A great idea due to Fisher in 20s, and made rigorous by Cramer and others in 40s.

• Notations:

– Density: f(x|θ), where θ ∈ Θ ⊂ Rp

– Log-likelihood function: L(θ) = ln f(x|θ)

– (Column) Gradient/score vector: ∇L(θ) ∈ Rp×1

– Differential: dL(θ) = [∇L(θ)]T ∈ R1×p

– Hessian: d2L(θ) = ∇2L(θ)

– Observed information matrix: −d2L(θ)

– Expected (Fisher) information matrix: I(θ) = Eθ[−d2L(θ)]

– Given iid observations x1, . . . ,xn from f(·|θ),

Ln(θ) =
n∑
i=1

ln f(xi|θ)

– Maximum likelihood estimator (MLE):

θ̂MLE = argmaxθ Ln(θ)

• Consistency of MLE

113

– Under the true parameter value θ0,

Mn(θ) =
1

n
[Ln(θ)− Ln(θ0)]

→ M(θ) = Eθ0
[ln f(X|θ)− ln f(X|θ0)]

for all θ almost surely.

– Note that M(θ) is the negative Kullback-Leibler divergence between dis-

tribution at θ and distribution at θ0.

Assuming identifiability, by the information inequality, M(θ) achieves max-

imum uniquely at θ0. We hope the MLE

θ̂n = argmaxθMn(θ)

converges to

θ0 = argmaxθM(θ).

– Need uniform convergence of Mn(θ) to M(θ), i.e.,

sup
Θ
|Mn(θ)−M(θ)|

converges to 0 in probability. A set of sufficient conditions for uniform

convergence:

∗ compactness of the parameter space Θ

∗ continuity of M(θ) in θ for any x

∗ M(θ) dominated by an integrable function

– Example of non-uniform convergence: fn(x) = 1{n,n+1} (or a triangle on

[n, n + 1] if we want fn to be continuous). fn → f ≡ 0 pointwise but not

uniformly.

• Asymptotic normality of MLE

– Assume θ̂n is consistent for θ0.

– Taylor expansion on 0p = 1
n
∇Ln(θ̂n) gives

0p =
1

n
∇Ln(θ0) +

[
1

n
d2Ln(θ0)

]
(θ̂n − θ0)

+
1

2
[Ip ⊗ (θ̂n − θ0)T]

[
1

n
Dd2Ln(θ̃n)

]
(θ̂n − θ0),

114

where θ̃n is somewhere between θ0 and θ̂n. If 1
n
Dd2Ln(θ̃n) = Op(1)

(bounded in probability), then the third term is op(1)(θ̂n − θ0) and

√
n(θ̂n − θ0) =

[
− 1

n
d2Ln(θ0) + op(1)

]−1 √
n

n
∇Ln(θ0).

Now

∗ − 1
n
d2Ln(θ0) + op(1) → Eθ0

[−d2L(θ0)] = I(θ0) almost surely by the

law of large number.

∗ n−1/2∇Ln(θ0) converges to a multivariate normal with mean 0p and

variance

Eθ0
[∇L(θ0)dL(θ0)],

which equals I(θ0) under exchangeability of integral and differentia-

tion.

Then by the Slutsky theorem,

√
n(θ̂n − θ0)

→ Np

(
0p, I

−1(θ0) · Eθ0
[∇ ln f(θ0)d ln f(θ0)] · I−1(θ0)

)
= Np

(
0p, I

−1(θ0)
)

in distribution.

– In practice, we can estimate the variance by

∗ Fisher information matrix I−1(θ̂),

∗ observed information matrix [−(1/n)d2Ln(θ̂)]−1, or

∗ the sandwich estimator

• Asymptotic efficiency of MLE.

“Cramer-Rao theorem” says the variance of any unbiased estimator is “at least”

(nI(θ0))−1 (the difference is psd). So MLE has the smallest asymptotic variance

within the class of unbiased estimators.

115

17 Lecture 17, Oct 28

Announcements

• No TA office hours this Friday.

• FAQs on HW6: http://hua-zhou.github.io/teaching/st758-2014fall/st758fall2014/

2014/10/26/hw6-hints.html

• Roadmap (to winter break!): HW7, HW8, simulation project, final or not?

Last time

• Review of HW5

• MLE

Today

• Newton and scoring algorithm

• Hierarchy of optimization problems

Newton’s method and Fisher’s scoring (KL Chapter 14)

Consider maximizing log-likelihood L(θ), θ ∈ Θ ⊂ Rp.

116

http://hua-zhou.github.io/teaching/st758-2014fall/st758fall2014/2014/10/26/hw6-hints.html
http://hua-zhou.github.io/teaching/st758-2014fall/st758fall2014/2014/10/26/hw6-hints.html

• Newton’s method was originally developed for finding roots of nonlinear equa-

tions f(θ) = 0 (KL 5.4).

• Newton’s method (aka Newton-Raphson method) is considered the gold stan-

dard for its fast (quadratic) convergence

‖θ(t+1) − θ∗‖
‖θ(t) − θ∗‖2

→ constant.

• Idea: iterative quadratic approximation.

• Taylor expansion around the current iterate θ(t)

L(θ) ≈ L(θ(t)) + dL(θ(t))(θ − θ(t)) +
1

2
(θ − θ(t))Td2L(θ(t))(θ − θ(t))

and then maximize the quadratic approximation.

• To maximize the quadratic function, we equate its gradient to zero

∇L(θ(t)) + [d2L(θ(t))](θ − θ(t)) = 0p,

which suggests the next iterate

θ(t+1) = θ(t) − [d2L(θ(t))]−1∇L(θ(t))

= θ(t) + [−d2L(θ(t))]−1∇L(θ(t)).

• Some issues with the Newton’s iteration

– Need to derive, evaluate, and “invert” the observed information matrix.

Remedies:

1. exploit structure in Hessian whenever possible,

2. numerical differentiation (works for small problems), or

3. quasi-Newton method (to be discussed later)

– Stability: Newton’s iterate is not guaranteed to be an ascent algorithm.

It’s equally happy to head uphill or downhill. Remedies:

1. approximate −d2L(θ(t)) by a positive definite A (if it’s not), and

2. line search (backtracking).

117

In summary, Newton’s method iterates according to

θ(t+1) = θ(t) + s[A(t)]−1∇L(θ(t)) = θ(t) + s∆θ(t)

where A(t) is a pd approximation of −d2L(θ(t)) and s is a step length.

Why? By first-order Taylor expansion,

L(θ(t) + s∆θ(t))− L(θ(t))

= dL(θ(t))s∆θ(t) + o(s)

= sdL(θ(t))[A(t)]−1∇L(θ(t)) + o(s).

For s sufficiently small, right hand side is strictly positive.

• Backtracking strategy: step-halving (s = 1, 1/2, . . .), golden section search,

cubic interpolation, Amijo rule, ...

• How to approximating −d2L(θ)? More of an art than science. Often requires

problem specific analysis.

• Taking A = I leads to the method of steepest ascent, aka gradient ascent.

• Fisher’s scoring method : replace −d2L(θ) by the expected Fisher information

matrix

I(θ) = E[−d2L(θ)] = E[∇L(θ)dL(θ)] � 0p×p,

which is psd under exchangeability of expectation and differentiation.

Therefore the Fisher’s scoring algorithm iterates according to

θ(t+1) = θ(t) + s[I(θ(t))]−1∇L(θ(t))

Hierarchy of optimization problems

Difficulty of optimization problems in general

Harder Easier

discrete (combinatorial) optimization continuous optimization

non-smooth smooth

non-convex convex

constrained un-constrained

inequality constraint equality constrained

118

18 Lecture 18, Oct 30

Announcements

• No TA office hours this Friday. Makeup office hours next Mon, Nov 3 @ 3P-5P.

Last time

• Newton and Fisher scoring method

• Hierarchy of optimization problems

Today

• Convex optimization

• Some fundamentals of optimization theory

Convex optimization

• Extremely important skill to recognize or transform to convex problems

– Examples: `∞ regression, `1 regression, quantile regression, and many

more.

119

http://www.stat.ncsu.edu/people/zhou/courses/st810/notes/lect24final.pdf
http://www.stat.ncsu.edu/people/zhou/courses/st810/notes/lect24final.pdf

– Convex Optimization by Boyd and Vandenberghe and accompanying slides

http://www.stanford.edu/~boyd/cvxbook/

– Lecture videos:

http://www.stanford.edu/class/ee364a/videos.html

http://www.stanford.edu/class/ee364b/videos.html

• Convex programming (LS, LP, QP, GP, SOCP, SDP) is almost becoming a

technology (Cplex, Gurobi, Mosek, cvx, Matlab, ...)

• Non-convex optimization still occurs in many natural statistical applications.

Statisticians have specialized tools to deal with them (Fisher scoring method,

EM algorithm, simulated annealing, ...)

120

http://www.stanford.edu/~boyd/cvxbook/
http://www.stanford.edu/class/ee364a/videos.html
http://www.stanford.edu/class/ee364b/videos.html

Unconstrained optimization (KL 11.2)

• Possible confusion:

– We (statisticians) talk about maximization: max Ln(θ).

– People talk about minimization in the optimization world: minx f(x).

• Fundamental questions: When does a function have minimum? How do we tell

whether a point is minimum?

• When does a function have a minimum?

(Weierstrass) A continuous function f(x) defined on a compact (closed and

bounded) set is bounded below and attains its minimum.

• None of the Weierstrass conditions can be taken out.

– f(x) = x, x ∈ (−∞,∞). Non-compact support.

– f(x) = tan(x), x ∈ (−π/2, π/2). Non-compact support.

– f(x) = x, x ∈ (−1, 1) and f(−1) = f(1) = 0. The minimum not attained

by the discontinuous function f .

• None of the Weierstrass conditions are necessary. f(x) = x, x ∈ [0, 2), f(x) = 1,

x ∈ (2,∞).

121

• Coercive function: {x ∈ U : f(x) ≤ f(y)} is compact for all y ∈ U .

Weierstrass theorem also holds for a coercive function defined on a possibly

open U .

• Necessary conditions for a local minimum.

Assume f has a local minimum at interior point y ∈ U .

– (Fermat) If f is differentiable, then ∇f(x) vanishes at y.

– If f is twice differentiable, then d2f(y) is psd.

• Points with ∇f(x) = 0 are called stationary points or critical points. Most

optimization algorithms try to find the stationary points of the function and

then check sufficient condition.

• Counter-examples to necessary conditions. (1) f(x) = x3 has zero gradient at

0, which is not local minimum. (2) f(x) = |x| has local minimum at 0, where

the gradient does not exist.

• (A first-order sufficient condition; first derivative test) Suppose f is differen-

tiable in a ball B(y) around an interior point y, and 〈∇f(x),x−y〉 ≥ 0 for all

x ∈ B(y), then y is a local minimum.

• (A second-order sufficient condition; second derivative test) If ∇f(y) = 0 and

d2(y) is pd, then y is a strict local minimum.

• Remark: In case d2f(y) is neither positive definite nor negative definite but

non-singular, y is a saddle point, i.e., a stationary point that is neither a local

minimum nor a local maximum. In case d2f(y) is singular, we cannot tell.

• Example: f1(x, y) = x4 + y4, f2(x, y) = −x4− y4, f3(x, y) = x3 + y3. Origin is a

stationary (critical) point and the Hessian d2fi(0, 0) = 02×2 is singular. Origin

is a minimum, maximum, and a saddle point respectively.

122

Convexity and global optima

• f : U 7→ R is convex if

– U is a convex set (λx+ (1− λ)y ∈ U for all x,y ∈ U and λ ∈ (0, 1)), and

– f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), for all x,y ∈ U and λ ∈ (0, 1).

f is strictly convex if the inequality if strict for all x 6= y ∈ U and λ.

• (Supporting hyperplane inequality) A differentiable function f is convex if and

only if f(x) ≥ f(y) + 〈∇f(y),x− y〉 for all x,y ∈ U .

• (Second-order condition for convexity) A twice differentiable function f is con-

vex if and only if d2f(x) is psd for all x ∈ U .

It is strictly convex if d2f(x) is pd for all x ∈ U .

• (Convexity and global optima) Suppose f is a convex function on a convex set

U .

1. Any stationary point y is a global minimum. (By supporting hyperplane

inequality, f(x) ≥ f(y) + 〈∇f(y),x− y〉 = f(y) for all x ∈ U .)

2. Any local minimum is a global minimum.

123

3. The set of (global) minima {x ∈ U : f(x) = f(y)} is convex.

4. If f is strictly convex, then the global minimum, if exists, is unique.

• Example: Least squares estimate. f(β) = 1
2
‖y−Xβ‖2

2 has Hessian d2f = XTX

which is psd. So f is convex and any stationary point (solution to the normal

equation) is a global minimum. When X is rank deficient, the set of solutions

is convex.

• (Jensen’s inequality) W a random variable taking values in U and h is convex

on U . Then

E[h(W)] ≥ h[E(W)],

provided both expectations exist. For a strictly convex h, equality holds if and

only if W = E(W) almost surely.

Proof: supporting hyperplane inequality taking x = W and y = E(W).

• (Information inequality) Let f and g be two densities with respect to a common

measure µ. h, g > 0 almost everywhere relative to µ. Then

Ef (ln f) ≥ Ef (ln g),

with equality if and only if f = g almost everywhere on µ.

Proof: Apply Jensen’s inequality to the convex function − ln(t) and random

variable W = g(x)/f(x).

Applications: M-estimation, EM algorithm.

124

19 Lecture 19, Nov 4

Announcements

• Answer to Caleb’s question: Why do people care about `∞ regression?

min
β
‖y −Xβ‖∞ = min

β
max
i
|yi − xTi β|.

Chebychev approximation, or minimax approximation

f(x) ∼
N∑
i=0

ciTi(x).

For fixed degree N , find the coefficients ci that minimize the worst possible

approximation error.

Last time

• Convex optimization

• Fundamentals of optimization theory: optimality conditions for unconstrained

optimization, convexity and global optima

Today

• Fundamentals of optimization theory (cont’d): optimality conditions for con-

strained optimization

• Application of Newton and Fisher scoring algorithm: GLM

Optimization with equality constraints (KL 11.3)

Consider the equality constrained minimization problem

minimize f(x)

subject to gi(x) = 0, i = 1, . . . ,m

x ∈ U ⊂ Rn.

125

We write

g(x) =

g1(x)
...

gm(x)

 ∈ Rm and Dg(x) =

dg1(x)

· · ·
dgm(x)

 ∈ Rm×n.

• Method of Lagrange multiplier. Lagrangian function

L(x,λ) = f(x) + λTg(x) = f(x) +
m∑
i=1

λigi(x).

Strategy for finding the equality constrained minimum: find the stationary point

(x∗,λ∗) of the Lagrangian,

∇xL(x,λ) = ∇f(x) +
m∑
i=1

λi∇gi(x) = 0n

g(x) = 0m.

• Intuition: Null space of the matrix Dg is the tangent space. Movement along

the tangent space does not change constraint function values. We need the ∇f
to be orthogonal to the tangent space. In other words, ∇f is in the column

space of [Dg]T .

• Intuition of the Lagrange multiplier method: Hill climb along a trail which is

a contour line of the constraint function. We feel effortless exactly when the

direction of our movement is perpendicular to the steepest ascent direction of

the hill. In other words, steepest ascent direction of the constraint function

aligns with that of the hill.

126

• (Necessary condition for a constrained local minimum) Assume conditions (i)

g(y) = 0m, (2) f and g are differentiable in some n-ball B(y), (iii) Dg(y) ∈
Rm×n is continuous at y, (iv) Dg(y) has full row rank, (v) f(x) ≥ f(y) for any

x ∈ B(y) satisfying g(x) = 0m (y a local minimum subject to constraints).

Then there exists λ ∈ Rm satisfying ∇f(y) +
∑m

i=1 λi∇gi(y) = 0n, i.e., (y,λ)

is a stationarity point of the Lagrangian L(x,λ). In other words, there exists

λ ∈ Rm , such that ∇L(y,λ) = 0m+n.

• (Sufficient condition for a constrained local minimum) (i) f twice differentiable

at y, (ii) g twice differentiable at y, (iii) the Jacobian matrix Dg(y) ∈ Rm×n

has full row rank m, (iv) it is a stationarity point of the Lagrangian at a given

λ ∈ Rm , (v) uTd2f(y)u > 0 for all u 6= 0n satisfying [Dg(y)]u = 0m (tangent

vectors). Then y is a strict local minimum of f under constraint g(y) = 0m.

• Check condition (v). Condition (v) is equivalent to the “bordered determinantal

criterion”

(−1)m det

(
0m×m Br

BT
r Arr

)
> 0

for r = m+ 1, . . . , n, where

– Arr is the top left r-by-r block of d2f(y) +
∑m

i=1 λid
2gi(y)

– Br ∈ Rm×r is the first r columns of the Dg(y).

127

• (Sufficient condition for a global constrained minimum) Lagrangian first order

condition + convexity of the Lagrangian on U .

• (Interpretation of the Lagrange multipliers λ). Consider min f(x) subject to

some resource constraint g(x) = b. Consider the solution x∗(b) as a function

of b. Then it can be shown that
∂f(x∗(b))

∂bj
= λj.

That’s why the score test is classically called the Lagrange multiplier test.

• Example: Linearly constrained least squares solution. min 1
2
‖y−Xβ‖2

2 subject

to linear constrained V β = d. Form the Lagrangian

L(β,λ) =
1

2
‖y −Xβ‖2

2 + λT(V β − d).

Stationary condition says

XTXβ −XTy + V Tλ = 0p

V β = d

or equivalently (
XTX V T

V 0

)(
β

λ

)
=

(
XTy

d

)
,

which can be solved by say sweeping onXTX V T XTy

V 0 d

yXT dT yTy

 ,

or Cholesky or QR.

Optimization with both equality and inequality constraints

(KL 11.4)

Consider the constrained minimization problem

minimize f(x)

subject to gi(x) = 0, i = 1, . . . , p

hj(x) ≤ 0, i = 1, . . . , q

x ∈ U ⊂ Rn.

128

• Lagrangian function:

L(x,λ,µ) = f(x) +

p∑
i=1

λigi(x) +

q∑
j=1

µjhj(x).

• Karush-Kuhn-Tucker (KKT) necessary condition: If (1) y is a local constrained

minimum and (2) satisfies certain constraint qualifications (Kuhn-Tucker, Mangasarian-

Fromovitz), then

1. (Lagrangian stationarity condition) there exist λ ∈ Rp , µ ∈ Rq such that

∇f(y) +

p∑
i=1

λi∇gi(y) +

q∑
j=1

µj∇hj(y) = 0,

2. (Complementary slackness) µj = 0 if hj(y) < 0 and µj > 0 otherwise.

• Sufficient condition: KKT + second order condition.

• Global minimum: KKT conditions + convexity.

• Read KL Section 11.4 for more details. KKT is “one of the great triumphs of

20th century applied mathematics”.

129

Generalized linear model (GLM) (KL 14.7, JM 9.7)

Let’s consider a concrete example: logistic regression.

• You want to make a fame by participating the Capital One competition. The

goal is to predict whether a credit card transaction is fraud (yi = 1) or not

(yi = 0). Predictors (xi) include: time of transaction, last location, merchant,

...

• yi ∈ {0, 1}, xi ∈ Rp . Model yi ∼Bernoulli(pi).

130

• Logistic regression. Density

f(yi|pi) = pyii (1− pi)1−yi

= eyi ln pi+(1−yi) ln(1−pi)

= e
yi ln

pi
1−pi

+ln(1−pi),

where

E(yi) = pi =
ex

T
iβ

1 + ex
T
iβ

(mean function, inverse link function)

xTi β = ln

(
pi

1− pi

)
(logit link function).

• Given data (yi,xi), i = 1, . . . , n,

Ln(β) =
n∑
i=1

[yi ln pi + (1− yi) ln(1− pi)]

=
n∑
i=1

[
yix

T

iβ − ln(1 + ex
T
iβ)
]

∇Ln(β) =
n∑
i=1

(
yixi −

ex
T
iβ

1 + ex
T
iβ
xi

)

=
n∑
i=1

(yi − pi)xi = XT(y − p)

−d2Ln(β) =
n∑
i=1

pi(1− pi)xixT

i = XTWX,

where W = diag(w1, . . . , wn), wi = pi(1− pi)
In(β) = E[−d2Ln(β)] = −d2Ln(β).

• Newton’s method = Fisher’s scoring iteration:

β(t+1) = β(t) + s[−d2L(β(t))]−1∇L(β(t))

= β(t) + s(XTW (t)X)−1XT(y − p(t))

= (XTW (t)X)−1XTW (t)
[
Xβ(t) + s(W (t))−1(y − p(t))

]
= (XTW (t)X)−1XTW (t)z(t),

where

z(t) = Xβ(t) + s(W (t))−1(y − p(t))

131

are the working responses. A Newton’s iteration is equivalent to solving a

weighed least squares problem
∑n

i=1wi(zi − xT
iβ)2. Thus the name IRWLS

(iteratively re-weighted least squares).

Let’s consider the more general class of generalized linear models (GLM).

• Y belongs to an exponential family with density

p(y|θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
.

θ: natural parameter. φ > 0: dispersion parameter. GLM relates the mean

µ = E(Y |x) via a strictly increasing link function

g(µ) = η = xTβ, µ = g−1(η)

132

• Score, Hessian, information

∇Ln(β) =
n∑
i=1

(yi − µi)µ′i(ηi)
σ2
i

xi

−d2Ln(β) =
n∑
i=1

[µ′i(ηi)]
2

σ2
i

xix
T

i −
n∑
i=1

(yi − µi)θ′′(ηi)
σ2
i

xix
T

i

In(β) = E[−d2Ln(β)] =
n∑
i=1

[µ′i(ηi)]
2

σ2
i

xix
T

i = XTWX.

• Fisher scoring method

β(t+1) = β(t) + s[I(β(t))]−1∇Ln(β(t))

IRWLS with weights wi = [µi(ηi)]
2/σ2

i and some working responses zi.

• For canonical link, θ = η, the second term of Hessian vanishes and Hessian

coincides with Fisher information matrix. Convex problem ,

Fisher’s scoring = Newton’s method.

• Non-canonical link, non-convex problem /

Fisher’s scoring algorithm 6= Newton’s method.

Example: Probit regression (binary response with probit link). yi ∼ Bernoulli(pi)

and

pi = Φ(xTi β), ηi = xTi β = Φ−1(pi),

where Φ(·) is the cdf of a standard normal.

• glmfit() in R and Matlab implements the Fisher scoring method, aka IR-

WLS, for GLMs.

133

20 Lecture 20, Nov 6

Announcements

• HW6 due today. Submit hardcopy and email code to me (LastFirstHW6.R or

LastFirstHW6.Rmd)

• HW7 due date changed to Tue Nov 18

Last time

• Optimality conditions for constrained optimization (KKT)

• Application of Newton and Fisher scoring algorithm: GLM

Today

• Application of Newton and Fisher scoring algorithm: nonlinear regression

• EM algorithm

Nonlinear regression – Gauss-Newton method (KL 14.4-14.6,

JM 9.8)

• Now we finally get to the problem Gauss faced in 1800!

Relocate Ceres by fitting 41 observations to a 6-parameter (nonlinear) orbit.

• Nonlinear least squares (curve fitting):

minimize f(β) =
1

2

n∑
i=1

[yi − µi(xi,β)]2

For example, yi = dry weight of onion and xi = growth time, and we want to

fit a 3-parameter growth curve

µ(x, β1, β2, β3) =
β3

1 + e−β1−β2x
.

134

• “Score” and “information matrices”

∇f(β) = −
n∑
i=1

[yi − µi(β)]∇µi(β)

d2f(β) =
n∑
i=1

∇µi(β)dµi(β)−
n∑
i=1

[yi − µi(β)]d2µi(β)

I(β) =
n∑
i=1

∇µi(β)dµi(β) = J(β)TJ(β),

where J(β)T = [∇µ1(β), . . . ,∇µn(β)] ∈ Rp×n.

• Gauss-Newton (= “Fisher’s scoring algorithm”) uses I(β), which is always psd.

β(t+1) = β(t) + sI(β(t))−1∇L(β(t))

• Levenberg-Marquardt method, aka damped least squares algorithm (DLS), adds

a ridge term to the approximate Hessian

β(t+1) = β(t) + s[I(β(t)) + τIp]
−1∇L(β(t))

bridging between Gauss-Newton and steepest descent.

• Other approximation to Hessians: nonlinear GLMs.

See KL 14.4 for examples.

135

Which statistical papers are most cited?

Paper Citations Per Year

Kaplan-Meier (Kaplan and Meier, 1958) 44502 795

EM (Dempster et al., 1977a) 39167 1059

Cox model (Cox, 1972) 38036 906

Metropolis (Metropolis et al., 1953) 28093 461

FDR (Benjamini and Hochberg, 1995) 24093 1268

Unit root test (Dickey and Fuller, 1979) 15354 439

Lasso (Tibshirani, 1996) 11438 635

bootstrap (Efron, 1979) 10953 313

FFT (Cooley and Tukey, 1965) 10134 207

Gibbs sampler (Gelfand and Smith, 1990) 5901 246

• Citation counts from Google Scholar on 11/03/2014.

• EM is one of the most influential statistical ideas, finding applications in various

branches of science.

EM algorithm

• History: Dempster et al. (1977b).

Same idea appears in parameter estimation in HMM (Baum-Welch algorithm)

(Baum et al., 1970).

• Notations

136

– Y : observed data

– Z: missing data

– X = (Y ,Z): complete data

• Goal: maximize the log-likelihood of the observed data ln g(y|θ) (optimization!)

• Idea: choose Z such that MLE for the complete data is trivial.

• Let f(x|θ) = f(y, z|θ) be the density of complete data

• Iterative two step procedure

– E step: calculate the conditional expectation

Q(θ|θ(t)) = E
Z|Y =y,θ(t) [ln f(Y ,Z|θ) | Y = y,θ(t)]

– M step: maximize Q(θ|θ(t)) to generate the next iterate

θ(t+1) = argmaxθ Q(θ|θ(t))

• (Ascent property of EM algorithm) By the information inequality,

Q(θ | θ(t))− ln g(y|θ)

= E[ln f(Y ,Z|θ)|Y = y,θ(t)]− ln g(y|θ)

= E

{
ln

[
f(Y ,Z | θ)

g(Y | θ)

]
| Y = y,θ(t)

}
≤ E

{
ln

[
f(Y ,Z | θ(t))

g(Y | θ(t))

]
| Y = y,θ(t)

}
= Q(θ(t) | θ(t))− ln g(y|θ(t)).

Rearranging shows that (fundamental inequality of EM)

ln g(y | θ) ≥ Q(θ | θ(t))−Q(θ(t) | θ(t)) + ln g(y | θ(t))

for all θ and in particular

ln g(y | θ(t+1)) ≥ Q(θ(t+1) | θ(t))−Q(θ(t) | θ(t)) + ln g(y | θ(t))

≥ ln g(y | θ(t)).

137

Obviously we only need

Q(θ(t+1) | θ(t))−Q(θ(t) | θ(t)) ≥ 0

for this ascent property to hold (generalized EM).

• Intuition? Keep these pictures in mind

−3 −2 −1 0 1 2
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

← θ
(t)

← θ
(t+1)

ln g(θ)

Q(θ|θ
(t)

)+c
(t)

Q(θ|θ
(t+1)

)+c
(t+1)

• Under mild regularity conditions, θ(t) converges to a stationary point of ln g(y|θ).

• Numerous applications of EM:

finite mixture model, HMM (Baum-Welch algorithm), factor analysis, variance

components model aka linear mixed model (LMM), hyper-parameter estimation

in empirical Bayes procedure maxα
∫
f(y|θ)π(θ|α) dθ (e.g., HW6/7), missing

data, group/censorized/truncated model, ...

138

A canonical example: finite mixture models

• Gaussian finite mixture models: mixture density

h(y) =
k∑
j=1

πjhj(y | µj,Ωj), y ∈ Rd ,

where

hj(y | µj,Ωj) =

(
1

2π

)d/2
| det(Ωj)|−1/2e−

1
2

(y−µj)TΩ−1

j (y−µj)

are multivariate normals Nd(µj,Ωj).

• Given data y1, . . . ,yn, want to estimate parameters

θ = (π1, . . . , πk,µ1, . . . ,µk,Ω1, . . . ,Ωk).

(Incomplete) data log-likelihood is

ln g(y1, . . . ,yn|θ) =
n∑
i=1

lnh(yi) =
n∑
i=1

ln
k∑
j=1

πjhj(yi | µj,Ωj).

139

• Let zij = I{yi comes from group j}. Complete data likelihood is

f(y, z|θ) =
n∏
i=1

k∏
j=1

[πjhj(yi|µj,Ωj)]
zij

and thus complete log-likelihood is

ln f(y, z|θ) =
n∑
i=1

k∑
j=1

zij[lnπj + lnhj(yi|µj,Ωj)].

• E step: need to evaluate conditional expectation

Q(θ|θ(t))

= E

{
n∑
i=1

k∑
j=1

zij[lnπj + lnhj(yi|µj,Ωj) | Y = y,π(t),µ
(t)
1 , . . . ,µ

(t)
k ,Ω

(t)
1 , . . . ,Ω

(t)
k]

}
.

By Bayes rule, we have

w
(t)
ij := E[zij | y,π(t),µ

(t)
1 , . . . ,µ

(t)
k ,Ω

(t)
1 , . . . ,Ω

(t)
k]

=
π

(t)
j hj(yi|µ

(t)
j ,Ω

(t)
j)∑k

j′=1 π
(t)
j′ hj′(yi|µ

(t)
j′ ,Ω

(t)
j′)

.

So the Q function becomes

Q(θ|θ(t))

=
n∑
i=1

k∑
j=1

w
(t)
ij lnπj +

n∑
i=1

k∑
j=1

w
(t)
ij

[
−1

2
ln det Ωj −

1

2
(yi − µj)TΩ−1

j (yi − µj)
]
.

• M step: maximizer of the Q function gives the next iterate

π
(t+1)
j =

∑
iw

(t)
ij

n

µ
(t+1)
j =

∑n
i=1w

(t)
ij yi∑n

i=1w
(t)
ij

Ω
(t+1)
j =

∑n
i=1w

(t)
ij (yi − µ(t+1)

j)(yi − µ(t+1)
j)T∑

iw
(t)
ij

.

See KL Example 11.3.1 for multinomial MLE. See KL Example 11.2.3 for mul-

tivariate normal MLE.

140

• Compare these extremely simple updates to Newton type algorithms!

• Also note the ease of parallel computing with this EM algorithm. See, e.g.,

Suchard, M. A.; Wang, Q.; Chan, C.; Frelinger, J.; Cron, A. & West, M. Under-

standing GPU programming for statistical computation: studies in massively

parallel massive mixtures. Journal of Computational and Graphical Statistics,

2010, 19, 419-438.

• In general, EM/MM algorithms are particularly attractive for parallel comput-

ing. See, e.g.,

H Zhou, K Lange, & M Suchard. (2010) Graphical processing units and high-

dimensional optimization, Statistical Science, 25:311-324.

141

21 Lecture 21, Nov 11

Announcements

• HW6 returned. Sketch of solution: http://hua-zhou.github.io/teaching/

st758-2014fall/hw06sol.html

• HW7 due next Tue Nov 18

• HW8 due Nov 25

Last time

• Nonlinear regression (Gauss-Newton algorithm)

• EM algorithm

• Example: finite mixture model

Today

• MM algorithm

MM algorithm (KL Ch12)

• Recall our picture for understanding the ascent property of EM

142

http://hua-zhou.github.io/teaching/st758-2014fall/hw06sol.html
http://hua-zhou.github.io/teaching/st758-2014fall/hw06sol.html

−3 −2 −1 0 1 2
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

← θ
(t)

← θ
(t+1)

ln g(θ)

Q(θ|θ
(t)

)+c
(t)

Q(θ|θ
(t+1)

)+c
(t+1)

• EM as a minorization-maximization (MM) algorithm

– The Q function constitutes a minorizing function of the objective function

up to an additive constant

L(θ) ≥ Q(θ|θ(t)) + c(t) for all θ

L(θ(t)) = Q(θ(t)|θ(t)) + c(t)

– Maximizing the Q function generates an ascent iterate θ(t+1)

• Questions:

– Is EM principle only limited to maximizing likelihood model?

– Is there any other way to produce such surrogate function?

– Can we flip the picture and apply same principle to minimization problem?

These thoughts lead to a powerful tool – MM principle (Lange et al., 2000).

Lange, K., Hunter, D. R., and Yang, I. (2000). Optimization transfer using

surrogate objective functions. J. Comput. Graph. Statist., 9(1):159. With

discussion, and a rejoinder by Hunter and Lange.

• For maximization of f(θ) – minorization-maximization (MM) algorithm

– Minorization step: Construct a surrogate function g(θ|θ(t)) such that

f(θ) ≥ g(θ|θ(t)) (dominance condition)

f(θ(t)) = g(θ(t)|θ(t)) (tangent condition).

143

– Maximization step:

θ(t+1) = argmax g(θ|θ(t)).

• Ascent property of minorization-maximization algorithm

f(θ(t)) = g(θ(t)|θ(t)) ≤ g(θ(t+1)|θ(t)) ≤ f(θ(t+1)).

• EM is a special case of minorization-maximization (MM) algorithm.

• For minimization of f(θ) – majorization-minimization (MM) algorithm

– Majorization step: Construct a surrogate function g(θ|θ(t)) such that

f(θ) ≤ g(θ|θ(t)) (dominance condition)

f(θ(t)) = g(θ(t)|θ(t)) (tangent condition).

– Minimization step:

θ(t+1) = argmin g(θ|θ(t)).

• Similarly we have the descent property of majorization-minimization algorithm.

• Same convergence theory as EM.

144

• Rational of the MM principle for developing optimization algorithms

– Free the derivation from missing data structure.

– Avoid matrix inversion.

– Linearize an optimization problem.

– Deal gracefully with certain equality and inequality constraints.

– Turn a non-differentiable problem into a smooth problem.

– Separate the parameters of a problem (perfect for massive, fine-scale par-

allelization).

• Generic methods for majorization and minorization – inequalities

– Jensen’s (information) inequality – EM algorithms

– The Cauchy-Schwartz inequality - multidimensional scaling

– Supporting hyperplane property of a convex function

– Arithmetic-geometric mean inequality

– Quadratic upper bound principle - Böhning and Lindsay

– ...

• Numerous examples in KL chapter 12.

• History: the name MM algorithm originates from the discussion (by Xiaoli

Meng) and rejoinder of the Lange et al. (2000) paper.

Example: PET imaging

145

• Data: tube readings y = (y1, . . . , yd).

• Estimate: photon emission intensities (pixels) λ = (λ1, . . . , λp).

• Poisson Model:

Yi ∼ Poisson

(
p∑
j=1

cijλj

)
,

where cij is the (pre-calculated) cond. prob. that a photon emitted by j-th

pixel is detected by i-th tube.

• Log-likelihood:

L(λ|y) =
∑
i

[
yi ln

(∑
j

cijλj

)
−
∑
j

cijλj

]
+ const.

Essentially a Poisson regression with constraint λj ≥ 0.

• Which algorithm?

– Fisher scoring (IRWLS) = Newton.

Need to solve a large linear system at each iteration /

– EM algorithm: Lange and Carson (1984), Vardi et al. (1985)

λ
(t+1)
j = λ

(t)
j

∑
i

yicij∑
k cikλ

(t)
k

.

Scales well with data size. Converges to the global maximum under mild

conditions.

– Exercise: derive the EM algorithm. (Hint: missing data zij = # of photons

emitted from pixel i and received by detector j.)

• Issues: grainy image and slow convergence

146

• Regularized log-likelihood for smoother image:

L(λ|y)− µ

2

∑
{j,k}∈N

(λj − λk)2

=
∑
i

[
yi ln

(∑
j

cijλj

)
−
∑
j

cijλj

]
− µ

2

∑
{j,k}∈N

(λj − λk)2,

where µ ≥ 0 is a tuning constant.

• EM algorithm does not (or is hard to) apply to the regularization term. Let’s

derive an MM algorithm.

• Minorization step:

– By concavity of the ln s function

ln

(∑
j

cijλj

)
= ln

(∑
j

cijλ
(t)
j∑

j cij′λ
(t)
j′

·
∑

j′ cij′λ
(t)
j′

cijλ
(t)
j

· cijλj

)

≥
∑
j

cijλ
(t)
j∑

j cij′λ
(t)
j′

ln

(∑
j′ cij′λ

(t)
j′

cijλ
(t)
j

cijλj

)

=
∑
j

cijλ
(t)
j∑

j cij′λ
(t)
j′

lnλj + c(t).

Remark: this minorization depends on the positivity of both cij and λj.

– By concavity of the −s2 function

−(λj − λk)2 = −

(
2λj − λ(t)

j − λ
(t)
k

2
+
−2λk + λ

(t)
j + λ

(t)
k

2

)2

≥ −1

2
(2λj − λ(t)

j − λ
(t)
k)2 − 1

2
(2λk − λ(t)

j − λ
(t)
k)2.

– Combining minorizing terms gives an overall surrogate function

g(λ|λ(t)) =
∑
i

yi
∑
j

cijλ
(t)
j∑

j′ cij′λ
(t)
j′

lnλj −
∑
i

∑
j

cijλj

−µ
4

∑
{j,k}∈N

[(2λj − λ(t)
j − λ

(t)
k)2 + (2λk − λ(t)

j − λ
(t)
k)2].

147

• Maximization step:

– g(λ|λ(t)) is trivial to maximize because all λj are separated!

– Solving for the root of

∂

∂λj
g(λ|λ(t))

=

∑
i

yi
cijλ

(t)
j∑

j′ cijλ
(t)
j′

λ−1
j −

∑
i

cij − µ
∑
k∈Nj

(2λj − λ(t)
j − λ

(t)
k)

= 0

gives λ
(t+1)
j .

• MM algorithm for PET:

Initialize: λ
(0)
j = 1

repeat

z
(t)
ij = (yicijλ

(t)
j)/(

∑
k cikλ

(t)
k)

for j = 1 to p do

a = −2µ|Nj|, b = µ(|Nj|λ(t)
j +

∑
k∈Nj

λ
(t)
k)− 1, c =

∑
i z

(t)
ij

λ
(t+1)
j = (−b−

√
b2 − 4ac)/(2a)

end for

until convergence occurs

• Parameter constraints λj ≥ 0 are satisfied when start from positive initial values.

• The loop for updating pixels can be carried out independently – massive paral-

lelism.

• A simulation example with n = 2016 and p = 4096 (provided by Ravi Varadhan)

CPU: i7 @ 3.20GHZ (1 thread), implemented using BLAS in the GNU Scientific

Library (GSL)

GPU: NVIDIA GeForce GTX 580, implemented using cuBLAS

148

CPU GPU

Penalty µ Iters Time Function Iters Time Function Speedup

0 100000 11250 -7337.152765 100000 140 -7337.153387 80

10−7 24506 2573 -8500.082605 24506 35 -8508.112249 74

10−6 6294 710 -15432.45496 6294 9 -15432.45586 79

10−5 589 67 -55767.32966 589 0.8 -55767.32970 84

149

22 Lecture 22, Nov 13

Announcements

• HW7 due next Tue Nov 18

• HW8 due Nov 25

• HW9 (simulation project) will be posted this week. Due Dec 9, 2014 @ 11A.

Last time

• MM algorithm

• Example: PET imaging

Today

• HW6 review

• Principles of Monte carlo simulation studies

• EM/MM example: Netflix problem

Feedback on HW6

• Who cares?

150

• Bayesian approach to estimate a multinomial parameter p

– Data likelihood: x|p ∼ multinomial(p)

– Prior: p ∼ Dirichlet(α)

– Posterior: p|x ∼ Dirichlet(α+ x)

– Do estimation and inference of p based on the posterior distribution

But what value of α to use in the prior?

• Empirical Bayes idea:

– Estimate α from data, say by maximizing the marginal likelihood of

xi ∼ DirMult(α).

– Then estimate p by posterior mean p̂EB = (x+ α̂)/(|x|+ |α̂|).

For a celebrated binomial estimation problem (batting averages of major league

baseball players), see Efron and Morris (1973, 1977).

151

• The Bayes estimate (under certain conditions) enjoys both good asymptotic

and finite sample properties.

“borrow information across populations”, “shrinkage”, “learning from the ex-

perience of the others”

• Machine learning applications: Handwritten digit recognition, text mining,

email spam detection, ...

• In HW6/HW7, we estimate α by MLE.

• HW6 (Newton’s method)

152

– Check solution. It’s not optimal but you may learn things. http://

hua-zhou.github.io/teaching/st758-2014fall/hw06sol.html

– Implementation of density function: deal with ln Γ(0)−ln Γ(0) =∞−∞ =

NaN issue. Is the first formulation more efficient for computation (log

instead of log gamma evaluation)?

– Implementation of MLE function. Allowing observation weights is always

a good idea.

– Implementation of gradient/score function. Is the first formulation more

efficient (free of digamma evaluations)?

– Special structure in the observed information matrix

−d2L(α) = D − c11T ,

where D = diag(d1, . . . , dd) and

dj =
n∑
i=1

xij−1∑
k=0

1

(αj + k)2
, j = 1, . . . , d,

c =
n∑
i=1

|xi|∑
k=0

=
1

(|α|+ k)2
.

Is the first formulation more efficient (free of trigamma evaluations)?

– By Sherman-Morrison

[−d2L(α)]−1 = D−1 +
1

c−1 −
∑

i d
−1
i

(D−11)(1TD−1),

which is pd if and only if c−1 >
∑

i d
−1
i .

– Ad hoc approximation of Hessian: use c̃ = 0.95(
∑

i d
−1
i)−1 if it’s not satis-

fied.

– Newton’s direction is computed fast: O(d) flops. No need to store any

matrix! Why do I still see solve(D) or matrix-vector multiplication?

– How to calculate Fisher information matrix?

– Deal with boundary constraint. Choose initial step size s such that all

components of

α(t) + s∆α

are positive.

153

http://hua-zhou.github.io/teaching/st758-2014fall/hw06sol.html
http://hua-zhou.github.io/teaching/st758-2014fall/hw06sol.html

– What’s that damn MoM starting point? If P = (P1, . . . , Pd) is from Dirich-

let with parameter α, then

E(Pj) =
αj
|α|

, E(P 2
j) =

αj(αj + 1)

|α|(|α|+ 1)
.

Therefore ∑
j

E(P 2
j)

E(Pj)
=
|α|+ d

|α|+ 1
.

We estimate the left hand side by

ρ̂ :=
∑
j

∑
i(xij/|xi|)2∑
i(xij/|xi|)

and then solve for |α(0)| = (d− ρ̂)/(ρ̂− 1). Then we initialize

α
(0)
j = |α(0)|

∑
i xij∑
i |xi|

=

(
d− ρ̂
ρ̂− 1

)(∑
i xij∑
i |xi|

)
.

Is there any proof (d− ρ̂)/(ρ̂− 1) is always positive? Anyway we just need

a good starting point. Other heuristics should also work.

• HW7: EM/MM algorithm for maximizing

L(α) =
n∑
i=1

ln

(
|xi|
xi

)
+

n∑
i=1

d∑
j=1

xij−1∑
k=0

ln(αj + k)−
n∑
i=1

|xi|−1∑
k=0

ln(|α|+ k)

Hint: Apply Jensen’s inequality to ln(αj + k) and supporting hyperplane in-

equality to ln(|α|+ k).

• Examining Newton iterates, we are delighted to see its fast (quadratic) conver-

gence. In HW7, you might see another scenario (linear convergence) for MM

iterates. On the other hand, for machine learning problem, do we really need a

super-accurate solution?

• Main messages:

– basics of Newton’s method (pd approximation, line search)

– examine and exploit problem structure whenever possible

154

– EM and MM turn out to be different

– Comparing Newton versus MM: number of iterations, human efforts, effi-

ciency, ...

(Optimization is a) fascinating blend of theory and computation, heuristics

and rigor.

Roger Fletcher

There is simply no such thing as a universal ‘gold standard’ when it comes to

algorithms.

Unknown Reviewer

• Implementation details: lgamma, digamma, trigamma, psigamma in R are vector-

ized function, vectorize code (numerical linear algebra is preferred over apply()),

...

Some black-box optimization routines in R

155

156

23 Lecture 23, Nov 18

Announcements

• HW7 (EM/MM for Dirichlet-multinomial) due today: submit hardcopy + email

code (LastFirstHW7.R or LastFirstHW7.Rmd)

• HW8 (ranking MLB teams) due next Tue Nov 25

• HW9 (Monte Carlo simulation project, 100 pts) posted. Due Dec 9 @ 11A.

Send both your report (pdf) and code (R or Rmd) by email.

– Read posted course materials

– Start early and send me your questions or draft by Nov 30

– Discussion on Dec 2 (last lecture)

Last time

• HW6 review (Newton’s method in action)

Today

• Last EM/MM example: Netflix problem

Example: Netflix and matrix completion

• Snapshot of the kind of data collected by Netflix. Only 100,480,507 ratings

(1.2% entries of the 480K-by-18K matrix) are observed

157

• Netflix challenge: impute the unobserved ratings for personalized recommenda-

tion. http://en.wikipedia.org/wiki/Netflix_Prize

• Matrix completion problem. Observe a very sparse matrix Y = (yij). Want to

impute all the missing entries. It is possible only when the matrix is structured,

e.g., of low rank.

• Let Ω = {(i, j) : observed entries} index the observed entries and PΩ(M) denote

the projection of matrix M to Ω. The problem

min
rank(X)≤r

1

2
‖PΩ(Y)− PΩ(X)‖2

F =
1

2

∑
(i,j)∈Ω

(yij − xij)2

unfortunately is non-convex and difficult.

• Convex relaxation (Mazumder et al., 2010)

min
X

f(X) =
1

2
‖PΩ(Y)− PΩ(X)‖2

F + λ‖X‖∗,

where ‖X‖∗ = ‖σ(X)‖1 =
∑

i σi(X) is the nuclear norm.

158

http://en.wikipedia.org/wiki/Netflix_Prize

• Majorization step:

f(X) =
1

2

∑
(i,j)∈Ω

(yij − xij)2 +
1

2

∑
(i,j)/∈Ω

0 + λ‖X‖∗

≤ 1

2

∑
(i,j)∈Ω

(yij − xij)2 +
1

2

∑
(i,j)/∈Ω

(x
(t)
ij − xij)2 + λ‖X‖∗

=
1

2
‖X −Z(t)‖2

F + λ‖X‖∗

= g(X|X(t)),

where Z(t) = PΩ(Y)+PΩ⊥(X(t)). “fill in missing entries by current imputation”

• Minimization step:

Rewrite the surrogate function

g(X|X(t)) =
1

2
‖X‖2

F − tr(XTZ(t)) +
1

2
‖Z(t)‖2

F + λ‖X‖∗.

Let σi be the singular values of X and ωi be the singular values of Z(t). Observe

‖X‖2
F = ‖σ(X)‖2

2 =
∑
i

σ2
i

‖Z(t)‖2
F = ‖σ(Z(t))‖2

2 =
∑
i

ω2
i

and by the Fan-von Neuman’s inequality

tr(XTZ(t)) ≤
∑
i

σiωi

with equality achieved if and only if the left and right singular vectors of the

two matrices coincide. Thus we can choose X to have same singular vectors as

Z(t) and

g(X|X(t)) =
1

2

∑
i

σ2
i −

∑
i

σiωi +
1

2
ω2
i + λ

∑
i

σi

=
1

2

∑
i

(σi − ωi)2 + λ
∑
i

σi,

with minimizer given by σ
(t+1)
i = (ωi − λ)+. “Singular value thresholding”

• Algorithm for matrix completion:

159

Initialize X(0) ∈ Rm×n

repeat

Z(t+1) ← PΩ(Y) + PΩ⊥(X(t))

Compute SVD: Udiag(w)V T ← Z(t+1)

X(t+1) ← Udiag[(w − λ)+]V T

until objective value converges

• “Golub-Kahan-Reinsch” algorithm takes 4m2n+ 8mn2 + 9n3 flops for a m ≥ n

matrix and is not going to work for 480K-by-18K Netflix matrix.

Notice only top singular values are needed since low rank solutions are achieved

by large λ. Lanczos/Arnoldi algorithm is the way to go. Matrix-vector multi-

plication Z(t)v is fast (why?)

160

24 Lecture 24, Nov 20

Announcements

• HW7 (50pts) returned. Sketch of solution: http://hua-zhou.github.io/

teaching/st758-2014fall/hw07sol.html Feedback:

– Vectorize code by outer + apply or table + apply

– Pre-compute certain quantities sjk and rk

– Convergence criterion: relative change in objective values, or first oder

optimality condition

• HW8 (ranking MLB teams) due next Tue Nov 25.

• HW9 (simulation project) due Dec 9 @ 11A.

Last time

• EM/MM example: Netflix problem

Today

• Quasi-Newton method.

• Conjugate gradient method.

Quasi-Newton methods (KL 14.9)

• Quasi-Newton is probably the most successful “black-box” optimizers in use.

E.g., implemented in the general purpose optimization routine optim() in R.

• Consider the general Newton scheme for minimizing f(x), x ∈ X ⊂ Rp:

x(t+1) = x(t) − s[A(t)]−1∇f(x(t)),

where A(t) a pd approximation of the Hessian d2f(x(t)).

– Pros: fast (quadratic) convergence

161

http://hua-zhou.github.io/teaching/st758-2014fall/hw07sol.html
http://hua-zhou.github.io/teaching/st758-2014fall/hw07sol.html

– Cons: compute and store Hessian at each iteration (usually O(np2) cost

in statistical problems), solving a linear system (O(p3) cost in general),

human efforts (derive and implement gradient and Hessian, pd approxi-

mation, ...)

• Any pd A gives a descent algorithm – tradeoff between convergence rate and

cost per iteration.

• Setting A = I leads to the steepest descent algorithm. Picture: slow conver-

gence (zig-zagging) of steepest descent (with exact line search) for minimizing

a convex quadratic function (ellipse).

How many steps does the Newton’s method take for a convex quadratic f?

• Idea of Quasi-Newton: No analytical Hessian is required (still need gradient).

Update approximate Hessian A according to the secant condition

∇f(x(t−1))−∇f(x(t)) ≈ d2f(x(t))(x(t−1) − x(t)).

Instead of computing A from scratch at each iteration, we update an approx-

imation A to d2f(x) which satisfies (1) p.d., (2) the secant condition, and (3)

closest to the previous approximation.

162

– Super-linear convergence, compared to the quadratic convergence of New-

ton’s method. But each iteration only takes O(p2)!

• History: Davidon was a physicist at Argonne National Lab in 50s and proposed

the very first idea of quasi-Newton method in 1959. Later studied, implemented,

and popularized by Fletcher and Powell. Davidon’s original paper was not

accepted for publication /; 30 years later it appeared as the first article in the

first issue of SIAM Journal of Optimization (Davidon, 1991).

• Davidon-Fletcher-Powell (DFP) rank-2 update. Solve

minimize ‖A−A(t)‖F

subject to A = AT

A(x(t) − x(t−1)) = ∇f(x(t))−∇f(x(t−1))

for the next approximation A(t+1). The solution is a low rank (rank 1 or rank

2) update of A(t). The inverse is too thanks to Sherman-Morrison-Woodbury!

O(p2) operations. Need to store a p-by-p dense matrix. Positive definiteness is

guaranteed by the same trick you used in HW6! See KL 14.9 for details.

163

• Broyden-Fletcher-Goldfarb-Shanno (BFGS) rank 2 update is considered by many

the most effective among all quasi-Newton updates. BFGS imposes secant con-

dition on the inverse of Hessian H = A−1.

minimize ‖H −H(t)‖F

subject to H = HT

H [∇f(x(t))−∇f(x(t−1))] = x(t) − x(t−1).

Again H(t+1) is a rank two update of H(t). O(p2) operations. Still need to store

a dense p-by-p matrix.

• Limited-memory BFGS (L-BFGS). Only store the secant pairs. Particularly

useful for large scale optimization.

• L-BFGS-B: with box-constraints. Implemented in the general purpose opti-

mization routine optim() in R.

• How to set the initial approximation A(0)? Identity or Hessian (if pd) or Fisher

information matrix at starting point.

(Linear) Conjugate gradient method

• (Linear) Conjugate gradient is the top-notch iterative method for solving large,

structured linear systems Ax = b. Earlier we talked about Jacobi and Gauss-

Seidel as the more classical iterative solvers.

• Linear conjugate gradient method: for solving large linear systems of equations.

History: Hestenes and Stiefel in 50s.

164

• Solve linear equation Ax = b, where A ∈ Rn×n is pd, is equivalent to

minimize f(x) =
1

2
xTAx− bTx.

Note ∇f(x) = Ax− b =: r(x).

• Consider a simple idea: coordinate descent, that is to update xj alternatingly.

Same as the Gauss-Seidel iteration.

• A set of vectors {p(0), . . . ,p(l)} is said to be conjugate wrt A if

pT

iApj = 0, for all i 6= j.

• Conjugate direction method: Given a set of conjugate vectors {p(0), . . . ,p(l)},
at iteration t, we search along the conjugate direction p(t)

x(t+1) = x(t) + α(t)p(t),

where

α(t) = − r(t) Tp(t)

p(t) TAp(t)
.

• Theorem: x(t) converges to the solution in at most n steps.

Intuition: Look at graph.

165

• Conjugate gradient method. Idea: generate p(t) using only p(t−1)

p(t) = −r(t) + β(t)p(t−1),

where β(t) is determined by the conjugacy condition p(t−1) TAp(t) = 0

β(t) =
r(t) TAp(t−1)

p(t−1) TAp(t−1)
.

• CG algorithm (preliminary version):

Given x(0)

Initialize: r(0) ← Ax(0) − b, p(0) ← −r(0), t = 0

while r(0) 6= 0 do

α(t) ← − r(t) Tp(t)

p(t) TAp(t)

x(t+1) ← x(t) + α(t)p(t)

r(t+1) ← Ax(t+1) − b
β(t+1) ← r(t+1) TAp(t)

p(t) TAp(t)

p(t+1) ← −r(t+1) + β(t+1)p(t)

166

t← t+ 1

end while

• Theorem: With CG algorithm

1. r(t) are mutually orthogonal.

2. {r(0), . . . , r(t)} is contained in the Krylov subspace of degree t for r(0),

denoted by

K(r(0); t) = span{r(0),Ar(0),A2r(0), . . . ,Atr(0)}.

3. {p(0), . . . ,p(t)} is contained in K(r(0); t).

4. p(0), . . . ,p(t) are conjugate wrt A.

The iterates x(t) converge to the solution in at most n steps.

• CG algorithm (economical version): saves one matrix-vector multiplication.

Given x(0)

Initialize: r(0) ← Ax(0) − b, p(0) ← −r(0), t = 0

while r(0) 6= 0 do

α(t) ← r(t) Tr(t)

p(t) TAp(t)

x(t+1) ← x(t) + α(t)p(t)

r(t+1) ← r(t) + α(t)Ap(t)

β(t+1) ← r(t+1)r(t+1)

r(t)r(t)

p(t+1) ← −r(t+1) + β(t+1)p(t)

t← t+ 1

end while

• Computation cost per iteration is one matrix vector multiplication: Ap(t).

Consider PageRank problem, A has dimension n ≈ 1010 but is highly structured

(sparse + low rank). Each matrix vector multiplication takes O(n).

• Theorem: If A has r distinct eigenvalues, x(t) converges to solution x∗ in at

most r steps.

167

25 Lecture 25, Nov 25

Announcements

• HW8 (ranking MLB teams) due today. Submit hardcopy and email code

(LastFirstHW8.R or LastFirstHW8.Rmd).

• HW9 (simulation project) due Dec 9 @ 11A.

• No office hours this Thu and Fri (Thanksgiving).

Last time

• Quasi-Newton method.

– DFP: keep rank-2 updating inverse of approximate Hessian

– BFGS: keep rank-2 updating approximate Hessian inverse

• (Linear) conjugate gradient method for solving linear equation Ax = b.

Today

• Preconditioned conjugate gradient.

• (Nonlinear) conjugate gradient method.

• Concluding remarks on optimization.

Pre-conditioned conjugate gradient (PCG)

• Summary of conjugate gradient method for solving Ax = b or equivalently

minimizing 1
2
xTAx− bTx:

– Each iteration needs one matrix vector multiplication: Ap(t+1). For struc-

tured A, often O(n) cost per iteration.

– Guaranteed to converge in n steps.

168

• One example of using CG. Consider the Newton method implemented in HW8

for ranking teams. Suppose the number of teams/players p is huge (e.g. online

Chess). Most likely the Hessian is sparse. Then CG can be used to compute

the Newton direction.

Simulation setup in the following figure: p = 1000 or 2000, strengths of team

are λi = i+ (p/10), each player competes with about p/20 opponents.

0 1 2 3 4 5 6 7
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Time (seconds)

F
ir
s
t
O

rd
e
r

O
p
ti
m

a
lit

y

NM, p=1000

NM−CG, p=1000

NM, p=2000

NM−CG, p=2000

• Two important bounds for conjugate gradient algorithm:

Let λ1 ≤ · · · ≤ λn be the ordered eigenvalues of a pd A.

‖x(t+1) − x∗‖2
A ≤

(
λn−t − λ1

λn−t + λ1

)2

‖x(0) − x∗‖2
A

‖x(t+1) − x∗‖2
A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)t

‖x(0) − x∗‖2
A,

where κ(A) = λn/λ1 is the condition number of A.

169

• Messages:

– Roughly speaking, if the eigenvalues of A occur in r distinct clusters, the

CG iterates will approximately solve the problem after O(r) steps.

– A with a small condition number (λ1 ≈ λn) converges fast.

• Pre-conditioning : Change of variables x̂ = Cx via a nonsingular C and solve

(C−TAC−1)x̂ = C−Tb.

Choose C such that

– C−TAC−1 has small condition number, or

– C−TAC−1 has clustered eigenvalues

– Inexpensive solution of CTCy = r

170

• Preconditioned CG does not make use of C explicitly, but rather the matrix

M = CTC.

• Preconditioned CG (PCG) algorithm:

Given x(0), pre-conditioner M

r(0) ← Ax(0) − b
solve My(0) = r(0) for y(0)

p(0) ← −r(0), t = 0

while r(0) 6= 0 do

α(t) ← r(t) Ty(t)

p(t) TAp(t)

x(t+1) ← x(t) + α(t)p(t)

r(t+1) ← r(t) + α(t)Ap(t)

Solve My(t+1) ← r(t+1) for y(t+1)

β(t+1) ← r(t+1) Ty(t+1)

r(t) Tr(t)

p(t+1) ← −y(t+1) + β(t+1)p(t)

t← t+ 1

end while

Remark: Only extra cost in the pre-conditioned CG algorithm is the need to

solve the linear system My = r.

• Pre-conditioning is more like an art than science. Some choices include

– Incomplete Cholesky. A ≈ L̃L̃T , where L̃ is a sparse approximate Cholesky

factor. Then L̃−1AL̃−T ≈ I (perfectly conditioned) and My = L̃L̃Ty =

r is easy to solve.

– Banded pre-conditioners.

– Choose M as a coarsened version of A.

– Subject knowledge. Knowledge about the structure and origin of a problem

is often the key to devising efficient pre-conditioner. For example, see

recent work of Stein et al. (2012) for pre-conditioning large covariance

matrices. http://epubs.siam.org/doi/abs/10.1137/110834469

171

http://epubs.siam.org/doi/abs/10.1137/110834469

More buzzwords and softwares

Here are a few variants of CG that we should at least know the names and what they

are for (so we can Google later in need).

• MINRES (minimum residual method): symmetric indefinite A.

• Bi-CG (bi-conjugate gradient): unsymmetric A.

• Bi-CGSTAB (Bi-CG stabilized): improved version of Bi-CG.

• GMRES (generalized minimum residual method): current de facto method for

unsymmetric A. E.g., PageRank problem.

• Lanczos method: top eigen-pairs of a large symmetric matrix.

• Arnoldi method: top eigen-pairs of a large unsymmetric matrix.

• Lanczos bidiagonalization algorithm: top singular triples of large matrix.

Remark: For Lanczos/Arnoldi methods, the critical computation is still matrix

vector multiplication Av.

Softwares:

• Matlab:

– Iterative methods for solving linear equations:

pcg, bicg, bicgstab, gmres, ...

– Iterative methods for top eigen-pairs and singular pairs:

eigs, svds, ...

– Pre-conditioner:

cholinc, luinc, ...

Get familiar with the reverse communication interface (RCI) for utilizing iter-

ative solvers:

x = gmres(A, b)

x = gmres(@Afun, b)

eigs(A)

eigs(@Afun)

172

• Consider the PageRank problem. We want to find the top left eigenvector of

the transition matrix

P = pR+A+ z1T

n,

where R = diag(r1, . . . , rn) and zj = (1− p)/n if ri > 0 and 1/n if ri = 0. Size

of P can be huge: n ≈ 40 billion web pages. How to call the gmres or eigs

function?

• R: Try Google and good luck ...

(Nonlinear) Conjugate gradient method

• Linear conjugate gradient method is for solving linear system Ax = b, or

equivalently, minimizing 1
2
xTAx− bTx.

• Nonlinear conjugate gradient is for nonlinear optimization

minimize f(x).

• History: Fletcher and Reeves in 60s.

• Fletcher-Reeves CG for nonlinear minimization:

Given x(0)

Evaluate ∇f (0) = ∇f(x(0))

Set p(0) ← −∇f (0), t← 0

while ∇f (t) 6= 0 do

Compute α(t) and set x(t+1) ← x(t) + α(t)p(t)

Evaluate ∇f (t+1) = ∇f(x(t+1))

β(t+1) ← df (t+1)∇f (t+1)

df (t)∇f (t)

p(t+1) ← −∇f (t+1) + β(t+1)p(t)

t← t+ 1

end while

• Most cost is evaluation of objective function and its gradient. No matrix oper-

ations are needed. Appealing for large nonlinear optimization problems.

• Line search (choose α(t)) is necessary to get a descending algorithm.

173

Concluding remarks on optimization

• Nonlinear optimization algorithms

Algorithm Convergence Rate Per-iteration Cost Example

Newton quadratic high, usually O(np2) +O(p3) GLM with canonical link

Fisher Scoring super-linear high, usually O(np2) +O(p3) GLM with non-canonical link

Gauss-Newton super-linear high, usually O(np2) +O(p3) nonlinear GLM

Quasi-Newton super-linear moderate, usually O(np) +O(p2)

Conjugate gradient super-linear moderate, usually O(np) +O(p2)

Coordinate descent linear low

Steepest descent linear low

EM/MM linear low

There is simply no such thing as a universal ‘gold standard’ when it comes to

algorithms.

Unknown Reviewer

• Problem specific analysis is critical for developing a successful optimization al-

gorithm.

E.g., I don’t think any black-box procedure can beat our safe-guarded New-

ton’s method for the Dirichlet-Multinomial MLE problem (HW6/7) in terms of

efficiency.

• Use “black-box” for

– numerical linear algebra

– least squares

– convex programming (TODO in ST790-003 Advanced Statistical Comput-

ing). Current “technology” (Cplex, Gurobi, Mosek, cvx, Matlab, ..., R is

not here /) can deal with problem with up to 103 ∼ 104 variables and

constraints or even more with structure.

174

For example, the optimization problem in HW8 (ranking MLB teams)

minimize
∏
i,j

(
γi

γi + γj

)−yij
=
∏
i,j

γ
−yij
i (γi + γj)

yij

is recognized as a standard geometric programming (GP) problem. Using

the open source convex optimization software CVX (Grant and Boyd, 2012)

amounts to only 6 lines of Matlab code

p = size(Y, 1);

[rowidx, colidx, yvec] = find(Y);

cvx_begin gp

variable gamma(p)

minimize prod(((gamma(rowidx) + gamma(colidx)) ./ gamma(rowidx)) .^ yvec)

cvx_end

• First order methods (EM/MM, CD, steepest descent) is easier for parallel com-

puting.

Algorithm development goes hand in glove with hardware advancement.

Hua

• Reference books:

175

– Numerical Optimization (Nocedal and Wright, 2006)

– Convex Optimization (Boyd and Vandenberghe, 2004)

– The EM algorithm and Extensions (McLachlan and Krishnan, 2008)

– Numerical Analysis for Statisticians (Lange, 2010)

176

26 Lecture 26, Dec 2

Announcements

• HW8 (ranking MLB teams) returned. Feedback:

– Bradley-Terry model. KL 12.6 or David Hunter’s paper.

– Non-concavity of the log-likelihood in λ parameterization. Enough to find

a simple counter-example. However the negative log-likelihood is an ex-

ample of geometric program, a branch of convex programming.

– Vectorization of MM update: outer function.

– Concavity of the log-likelihood function in γ parameterization. “log-sum-

exp” terms are convex.

– Implementation of Newton’s method. Hessian is singular due to identifia-

bility. Setting γ1.

– Problem structure: sparsity in large league.

– Check David Hunter’s code for taking advantage of sparsity.

Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/

hw08sol.html

• HW9 (simulation project) due Dec 9 @ 11A.

• FAQs on HW9 (simulation project)

• Regular office hours this week: Tue (Hua), Thu (Hua) and Fri (William). No

office hours next week.

• Course evaluation!: https://classeval.ncsu.edu/

Last time

• Pre-conditioning for conjugate gradient (PCG) method.

• Nonlinear conjugate gradient for optimization.

• Concluding remarks on optimization.

177

http://hua-zhou.github.io/teaching/st758-2014fall/hw08sol.html
http://hua-zhou.github.io/teaching/st758-2014fall/hw08sol.html
https://classeval.ncsu.edu/

Today

• Introduction to Markov chains and MCMC.

• Fast algorithms: sorting, FFT.

• Take home messages.

Introduction to MCMC

Some topics I’ll briefly talk about.

• History of Markov chain

• History of Monte Carlo and birth of MCMC

• Convergence rate of Markov chain

Markov chains

• Markov chain is a stochastic process X0, X1, X2, . . . with the Markov property

P(Xt+1|Xt, Xt−1, . . . , X0) = P(Xt+1|Xt).

Given current state, the future is independent of the past.

• Stochastic analog of ordinary differential equations.

dx(t)

dt
= F (x(t))

L(Xt+1|Xt = x) = K(x, ·)

• Notations (for discrete time, finite Markov chains)

– a finite state space X

– transition matrix K(x, y), x, y ∈ X

– stationary distribution π on X , defined as a probability vector that satisfies

πTK = πT .

Existence of such π is guaranteed by the Perron-Frobenius theorem.

178

– K l(x, y) denotes the l-step transition probabilities

• Markov chains in early years:

– Fermat and Pascal (circa 1654): Gambler’s ruin.

– Bernoulli (1769) and Laplace (1812): Urn model.

– I. J. Bienaymé (1845), and later Sir Francis Galton and Watson (Educa-

tional Times, 1873): Branching process.

– Paul and Tatiana Ehrenfest (1906): Statistical physics.

– Poincaré (1912): Card shuffling. Calcul des Probabilités

– Markov’s contribution

∗ Markov, A. A. (1906)

Extension of the law of large numbers to dependent quantities [in

Russian], Izv. Fiz.-Matem. Obsch. Kazan Univ. (2nd Ser.)

∗ St. Petersburg School vs Moscow School.

∗ Example: 20,000 letters in Pushkin’s Eugene Onegin.

(vowel consonant

vowel 0.128 0.872

consonant 0.663 0.337

) (π

0.432

0.568

)

∗ See Seneta’s interesting account on the history (Seneta, 1996)

– Some other leading pioneers: Kolmogorov, Fréchet, and Doeblin.

• Why are Markov chains important in statistics?

179

– Modeling tool.

E.g., Marc Coram’s “jail message” example: Markov model for letter se-

quence; PageRank’s (imaginary) random web surfer; ...

– A methodology that revolutionized statistics: Markov Chain Monte Carlo

(MCMC).

∗ Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)

Equation of state calculation by fast computing machines, The Journal

of Chemical Physics, 21, 1087–1092.

∗ Want to sample from a distribution π(x) ∝ f(x).

Metropolis algorithm constructs a Markov chain that converges to π.

∗ Marc Coram’s “jail message” example.

Markov chain Monte Carlo (MCMC)

• Monte Carlo method is a generic name for “computational algorithms that rely

on repeated random sampling to obtain numerical results”. They are in contrast

to the deterministic algorithms. They have wide applications in

– integration

– drawing sample from a distribution. E.g., HW9 (simulation study).

– optimization (simulated annealing). E.g., Marc Coram’s “jail message”

example, traveling salesman, Soduku, ...

• Monte Carlo in early years

180

– Stanislaw Ulam conceived it in 1946 while playing solitaire in hospital bed.

He wanted to know the probability of getting a perfect solitaire hand, and

wondered whether computers can help answer this.

– John von Neumann was intrigued by the idea and developed a way to gener-

ate pseudorandom numbers (inversion, importance sampling, acceptance-

rejection sampling) on electronic digital computers (ENIAC) to realize

Ulam’s idea, for the neutron fission and diffusion problem.

181

May 21, 1947
Mr. Stan Ulam
Post Office Box 1663
Santa Fe
New Mexico

Dear Stan:

– Ulam and von Neumann, working on Manhattan Project, used the code

name Monte Carlo. It is a casino in Monaco where Ulam’s uncle fre-

quented.

– Nicholas Metropolis, fascinated by the Monte Carlo idea too, designed

and built computing devices (MANIAC) to handle such calculations. His

paper with Ulam in JASA (Metropolis and Ulam, 1949) formed the basis

of modern sequential Monte Carlo methods.

– Birth of MCMC (Metropolis et al., 1953):

∗ Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)

Equation of state calculation by fast computing machines, The Journal

of Chemical Physics, 21, 1087–1092.

∗ Want to sample from a distribution π(x) ∝ f(x).

Metropolis algorithm constructs a Markov chain that converges to π.

∗ Metropolis chain: From current state x, generate a new state x′ (from a

182

proposal distribution p(x, x′) such that p(x, x′) = p(x′, x)) and accept

x′ with probability min
{
f(x′)
f(x)

, 1
}

.

Fact: Metropolis chain has π as stationary distribution.

∗ Marc Coram’s “jail message” example.

• Given π, generic ways to construct a Markov chain K that has π as stationary

distribution:

– Metropolis algorithm: (Metropolis et al., 1953)

– Hastings algorithm: (Hastings, 1970)

– Gibbs sampler: Glauber dynamics (1963), Tanner and Wong (1987), Gelfand

and Smith (1990)

• See KL Ch25-27 and JM Ch13 for a general introduction, or take a Bayesian

course. A comprehensive textbook is (Robert and Casella, 2004).

183

Convergence rate of Markov chains

• Classical result: For finite, irreducible, and aperiodic Markov chains

lim
l→∞

K l(x, y) = π(y).

In practice, we often want to know how many steps to make the difference

between K l(x, ·) and π small?

• Example: “How many shuffles do I need to do to mix a deck of 52 cards?”

Consider riffle shuffle. Gilbert-Shannon-Reeds model: binomial(52, 0.5) cut +

cards drop according to probability L/(L+R), where L and R are the number

of cards in the left and right hand respectively.

184

• Example: ”How long do I need to run my Gibbs sampler?”

Consider the Beta-Binomial Gibbs sampler

– Likelihood f(x | p) ∼ Bin(n, p) and prior π(p) ∼ Beta(α, β)

– Want to sample from joint density f(x, p) = f(x | p)π(p)

– Gibbs sampler : Repeat the following

∗ Sample x from Bin(n, p)

∗ Sample p from Beta(x+ α, n− x+ β)

– (Xl, pl)l≥1 form a Markov chain on {0, 1, . . . , n} × [0, 1]

– Let K̃(x, p;x′, p′) be the transition density

– How many steps (obviously depending on n, α, β) does this Markov chain

converge to the stationary distribution?

• In a typical Bayesian course, we learn many convergence diagnostics that are

often heuristic. Is there anything rigorous we can say about convergence rate

of Markov chains?

• Distances between distributions:

– Total variation distance:

‖µ− π‖TV =
1

2

∑
x∈X

|µ(x)− π(x)|

= max
A⊂X
|µ(A)− π(A)|

=
1

2
sup
‖f‖∞≤1

|µ(f)− π(f)|.

– Lp distance wrt π:

Let f(x) = µ(x)
π(x)

and g(x) = ν(x)
π(x)

. For 1 ≤ p <∞,

dπ,p(µ, ν) = ‖f − g‖Lp(π) =

(∑
x∈X

|f(x)− g(x)|pπ(x)

)1/p

• The usual limit theorems are useless in practice:

“There exist constants A,B > 0, ρ ∈ (0, 1) such that ‖K l(x, ·) −
π‖TV ≤ AρBl.”

185

A, B, and ρ are some mysterious constants.

Can we get some more quantitative, useful bounds?

• Cutoff phenomenon (Diaconis, 1996)

– Riffle shuffle.

l 1 2 3 4 5 6 7 8 9 10

‖Kl − π‖TV 1.000 1.000 1.000 1.000 0.924 0.624 0.312 0.161 0.083 0.041

– Many more examples: Ehrenfest chain, random transposition, Gibbs sam-

pler, ...

“Cutoff phenomenon for XXX chain.”

– Not every Markov chain has a cutoff.

A chain without cutoff: simple random walk on the integers mod n.

• Generic methods for studying convergence rates:

– Algebraic methods (spectral analysis) - E.g, random walks on groups (shuf-

fling cards), some Gibbs samplers, ...

– Analytic methods - Geometric Inequalities.

– Probabilistic methods - Coupling and strong stationary times.

• Algebraic method

186

– Reversible Markov chains.

If π is a probability distribution on X and

π(x)K(x, y) = π(y)K(y, x), for all x, y ∈ X ,

then π is the unique stationary distribution of K. E.g., Metropolis chain.

– K operates on L2(π) = {f : X 7→ R,Eπ[f 2] <∞} by

Kf(x) =
∑
y∈X

K(x, y)f(y).

– Reversibility of K is equivalent to self-adjointness of the operator K.

– By standard spectral theorem for self-adjoint operators, K has eigen-

values 1 = β0 ≥ β1 ≥ · · · ≥ β|X |−1 ≥ −1 with (right) eigenfunctions

{φ0, . . . , φ|X |−1} that are orthonormal on L2(π)

< φi, φj >L2(π)=
∑
x∈X

φi(x)φj(x)π(x) = 1{i=j}.

– If we know all the spectral information (lucky!), then

d2
π,2(K l(x, ·), π) =

|X |−1∑
i=1

β2l
i φ

2
i (x).

– Usually the upper bound is tight.

‖K l(x, ·)− π‖TV ≤
1

2
dπ,2(K l(x, ·), π)

– When are we lucky? In presence of symmetry.

E.g., for random walks on groups, we only need eigenvalues, which can be

derived from the irreducible representations of the group.

Definite reference for this topic is the book Diaconis (1988)

• Algebraic method for analyzing the baby Gibbs sampler

– The joint chain K̃(x, p;x′, p′) is irreversible.

– The x-marginal chain K(x, x′) is reversible, with m ∼Beta-Bin(n, α, β) as

stationary distribution. And

‖K l
x −m‖TV ≤ ‖K̃ l

x,p − f‖TV ≤ ‖K l−1
x −m‖TV .

Thus sufficient to study convergence rate of the x-marginal chain.

187

– Some analysis (Diaconis et al., 2008) shows that K has

∗ eigenvalues: β0 = 1, βj = n[j]/(n+ α + β)(j), j = 1, . . . , n.

∗ eigen-functions: φj are the Hahn polynomials.

– Doing the summation gives

0.5βl1 ≤ ‖K̃ l
0,p − f‖TV ≤ 3β

l−1/2
1 .

– Cutoff phenomenon: n+α+β
2(α+β)

steps are necessary and sufficient for conver-

gence.

– Similar analysis can be carried out for all following conjugate pairs (see

KL 27.9)

• Analytic method

– Upper bound through spectral gap

4‖Kl(x, ·)− π‖TV ≤ d2π,2(Kl(x, ·), π) ≤ 1

π(x)
β2l
∗ ,

where β∗ = max{|β1|, |β|X |−1|}.

– Use some geometric inequalities to bound β∗.

– Where to look up the material? Lecture notes by Saloff-Coste (1997).

– (K, π) reversible on X (finite). Dirichlet form

ε(f, g) =< (I −K)f, g > .

188

Fact

ε(f, f) =
1

2

∑
x,y

[f(x)− f(y)]2π(x)K(x, y).

– Lemma

1− β1 = min
f 6=1

ε(f, f)

var(f)

1− β|X |−1 = max
f 6=0

ε(f, f)

var(f)
.

– Definition: Poincaré inequality

var(f) ≤ Aε(f, f), for all f ∈ L2(π).

– We can bound β1 by finding A

β1 ≤ 1− 1

A
.

– Theorem (Poincaré Ineq for Markov Chains (Diaconis and Stroock, 1991)):

β1 ≤ 1− 1

A
, where A = max

e

1

Q(e)

∑
γx,y3e

|γx,y|π(x)π(y).

– Apply Poincaré inequality to the baby Gibbs sampler gives a horrible

bound (something exponential ...)

– Other geometric inequalities: Cheeger, Nash, Log-Soblov inequalities (in a

series of papers by Diaconis and Saloff-Coste).

• Probabilistic methods

– By cleverness, we can get good bounds for convergence rate without using

all those analytic methods.

– Good starting point is the book (Diaconis, 1988) and the unpublished book

by Aldous and Fill (available on Aldous’ website).

– Coupling - Wolfgang Doeblin.

189

– For the baby Gibbs sampler, coupling gives an upper bound of order n lnn

(off by lnn).

– Yields useful bounds for hierarchical random effects model (Hobert and

Geyer, 1998).

– Let’s work on a simpler example: Borel’s Shuffle (random to top, random

to bottom, ...).

– Coupling : Two processes evolve until they are equal. Coupling time T .

Coupling inequality

‖K l
x − π‖TV ≤ P(T > l).

– For Borel’s shuffle, bound on coupon collector problem gives

‖K l
x − π‖TV ≤ n

(
1− 1

n

)l
.

Thus l = n lnn steps suffice.

190

• Summary

– Keep Markov chains in your toolbox - useful for modeling, simulation, and

combinatorial optimization.

– Convergence rate of Markov chains is an interesting applied probability

problem that often gives more insights into the chains.

– A lot remains to be done for analyzing many MCMC algorithms being

used.

Sorting algorithms (JM 14.3, KL 1.10)

• Applications: order statistics (median, quantiles), QQ-plot, multiple testing

(sorting p-values), Wilcoxon rank-sum test, ...

• Bubble sort : Locate maximum and put on top; find maximum in the (n − 1)

list and put on the top second position; ...

O(n2) average cost.

• Think about sorting massive data n = 1012. On a teraflop computer. n2 flops

take 1012 seconds ≈ 31710 years, while n lnn flops take 1012 log(1012)/1012 ≈ 27

seconds.

• Key idea: Divide and conquer.

• Merge sort : Recursively partition into two lists, sort them respectively, and

then merge. T (n) = 2T (n/2) +O(n). Solution is T (n) = O(n log2 n).

• Quick sort : Randomly select a pivot element, split into 3 lists, and do some

swaps so that the pivot is in the right position.

T (n) =
1

n

n−1∑
j=1

[T (j − 1) + T (n− j)] + n− 1 =
2

n

n−1∑
j=1

T (j) + n− 1.

Solution is O(n lnn).

• Sorting is a well-trodden area in computer science. Mature functions/libraries

in standard softwares. The “bible” on this topic is (of course) Knuth (2005).

191

Fast Fourier transform (FFT) (KL Chapter 20, JM 14.5)

• History: Cooley and Tukey (1965)

John Tukey: “bit”, box-plot, “learning from the experience of the others”,

multiple comparison, FFT, ...

Tukey conceived the FFT algorithm during meetings with President JFK’s Sci-

ence Advisory Committee. They need fast ways to analyze seismic waves to

detect nuclear weapon tests in Soviet Union. Richard Garwin of IBM immedi-

ately realize the potential of this fast algorithm and referred Tukey to Cooley

to implement it.

People also believe Gauss essentially used the same strategy when solving his

least squares problem!

• Applications in statistics: convolution, time series, branching process, ...

• Consider two independent random variables on {0, 1, . . . , N − 1}:

X ∼ {p0, . . . , pN−1}, Y ∼ {q0, . . . , qN−1}.

What’s the distribution of the sum Z = X + Y ?

192

– zk =
∑k

j=0 pjqk−j, k = 0, . . . , 2N − 2. O(N2) computation.

– Do DFT of both sequences, multiply together, and inverse DFT.

O(N lnN) computation!

• Discrete Fourier transform (DFT) of a vector x ∈ RN .

ak =
N−1∑
j=0

wjkxj, k = 0, . . . , N − 1.

where w = e−2π
√
−1/N . Note w is an N -th root of 1. DFT is essentially matrix-

vector multiplication

aT = xTW , W = (wjk),

which usually costs O(N2) flops.

• Suppose N = N1N2. Index rewriting:

– j ← j1N2 + j2 (fill out N1-by-N2 matrix in row major),

– k ← k2N1 + k1 (fill out N1-by-N2 matrix in column major),

– j1, k1 ∈ {0, . . . , N1 − 1}, j2, k2 ∈ {0, . . . , N2 − 1}.

Then

ak = ak2N1+k1 =
N−1∑
j=0

wjkxj

=

N1−1∑
j1=0

N2−1∑
j2=0

w(j1N2+j2)(k2N1+k1)xj1N2+j2

=

N1−1∑
j1=0

N2−1∑
j2=0

wj1k1N2+j2(k2N1+k1)xj1N2+j2

=

N2−1∑
j2=0

wj2(k2N1+k1)

N1−1∑
j1=0

(wN2)j1k1xj1N2+j2

=

N2−1∑
j2=0

(wN1)j2k2wj2k1
N1−1∑
j1=0

(wN2)j1k1xj1N2+j2 .

193

• Essentially we need to do N2 DFT of length-N1 sequences and then do N1 DFT

of length-N2 sequences. Total cost

T (N) = T (N1N2) = N2T (N1) +N1T (N2).

Suppose N is a power of 2. Then T (N) = (N/2)T (2)+2T (N/2) and the solution

is T (N) = O(N lnN)!.

• Inverse DFT. W−1 has entries w−jk/N . Then

xT = aTW−1.

• Variants for prime N : still O(N lnN). But always a good idea to pad with zero

to get N as a power of 2.

• Generalizations to 2D, 3D FFT available.

• Mature libraries/functions for both CPU and GPU.

• Galton-Watson process. Survival of families. Lotka data (Lotka, 1931a,b).

Using 1920 census data, the progeny generating function for a white male

P (s) = .4982 + .2103s+ .1270s2 + .0730s3 + .0418s4 + .0241s5

+.0132s6 + .0069s7 + 0.0035s8 + .0015s9 + .0005s10.

PGF for the first generation P1(s) = P (s). PGF for the second generation

P2(s) =
∑

k pkP (s)k = P (P (s)). In general, PGF for the i-th generation is

Pi(s) = P (· · ·P (s)) (i recursions).

Extinction probability of a family: limi→∞ Pi(0) = P (· · ·P (0)) = 0.88, or solv-

ing for P (s) = s.

What if we want to know the distribution of the i-th generation? Extend the

generating function Pi to unit circle Pi(w
k) =

∑
j pjw

jk, w = e−2π
√
−1/N , where

k = 0, . . . , N − 1 for N large. So Pi(w
k) is the DFT of distribution pj of i-th

generation. Then apply inverse DFT to retrieve pj. O(N logN) cost!

• Continuous-time branching process. Solve differential equation for Pt(w
j) at

any time t. Then apply inverse DFT.

• See JM 14.7 for more applications of FFT in statistics.

194

Take-home messages from this course

• Statistics, the science of data analysis, is the applied mathematics in the 21st

century

– Read the first and last few pages of Tukey (1962)’s Future of data analy-

sis. http://www.stat.ncsu.edu/people/zhou/courses/st810/notes/

Tukey61FutureDataAnalysis.pdf.

• Big data era: Challenges also mean opportunities for statisticians

– methodology: big p

– efficiency: big n and/or big p

– memory: big n, distributed computing via MapReduce (Hadoop), online

algorithms

195

http://www.stat.ncsu.edu/people/zhou/courses/st810/notes/Tukey61FutureDataAnalysis.pdf
http://www.stat.ncsu.edu/people/zhou/courses/st810/notes/Tukey61FutureDataAnalysis.pdf

• Being good at computing (both programming and algorithms) is a must for

today’s working statisticians.

• HPC (high performance computing) 6= abusing computers.

Always optimize your algorithms as much as possible before resorting to cluster

computing resources.

• Coding

– Prototyping: R, Matlab, Julia

– A “real” programming language: C/C++, Fortran, Python

– Scripting language: Python, Linux/Unix script, Perl, JavaScript

• Numerical linear algebra – building blocks of most computing we do. Use stan-

dard libraries (BLAS, LAPACK, ...)! Sparse linear algebra and iterative solvers

such as conjugate gradient methods are critical for exploiting structure in big

data.

• Optimization

– Convex programming (LS, LP, QP, GP, SOCP, SDP). To do in ST790-003.

Convex programming is becoming a technology, just like least squares (LS).

– Specialized optimization algorithms for modern statistical learning prob-

lems. To do in ST790-003.

– Generic nonlinear optimization tools: Newton, quasi-Newton, (nonlinear)

conjugate gradient, ...

– Specialized tools in statistics: EM/MM, Fisher scoring, Gauss-Newton,

simulated annealing, ...

196

– Combinatorial optimization techniques: divide-and-conquer, dynamic pro-

gramming, greedy algorithm, ...

• MCMC: take a Bayesian course!

197

References

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique

occurring in the statistical analysis of probabilistic functions of Markov chains.

Ann. Math. Statist., 41:164–171.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. Journal of the Royal Statistical

Society, Ser. B, 57:289–300.

Björck, Å. (1996). Numerical methods for least squares problems. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University

Press, Cambridge.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of

complex Fourier series. Math. Comp., 19:297–301.

Cox, D. R. (1972). Regression models and life-tables. J. Roy. Statist. Soc. Ser. B,

34:187–220. With discussion by F. Downton, Richard Peto, D. J. Bartholomew, D.

V. Lindley, P. W. Glassborow, D. E. Barton, Susannah Howard, B. Benjamin, John

J. Gart, L. D. Meshalkin, A. R. Kagan, M. Zelen, R. E. Barlow, Jack Kalbfleisch,

R. L. Prentice and Norman Breslow, and a reply by D. R. Cox.

Davidon, W. C. (1991). Variable metric method for minimization. SIAM J. Optim.,

1(1):1–17.

Dempster, A., Laird, N., and Rubin, D. (1977a). Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Soceity Series B., 39(1-

38).

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977b). Maximum likelihood from

incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B, 39(1):1–38.

With discussion.

Diaconis, P. (1988). Group representations in probability and statistics. Institute of

Mathematical Statistics Lecture Notes—Monograph Series, 11. Institute of Math-

ematical Statistics, Hayward, CA.

198

Diaconis, P. (1996). The cutoff phenomenon in finite Markov chains. Proc. Nat. Acad.

Sci. U.S.A., 93(4):1659–1664.

Diaconis, P. (2009). The Markov chain Monte Carlo revolution. Bull. Amer. Math.

Soc. (N.S.), 46(2):179–205.

Diaconis, P., Khare, K., and Saloff-Coste, L. (2008). Gibbs sampling, exponential

families and orthogonal polynomials. Statist. Sci., 23(2):151–200. With comments

and a rejoinder by the authors.

Diaconis, P. and Stroock, D. (1991). Geometric bounds for eigenvalues of Markov

chains. Ann. Appl. Probab., 1(1):36–61.

Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregres-

sive time series with a unit root. J. Amer. Statist. Assoc., 74(366, part 1):427–431.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist.,

7(1):1–26.

Efron, B. and Morris, C. (1973). Stein’s estimation rule and its competitors—an

empirical Bayes approach. J. Amer. Statist. Assoc., 68:117–130.

Efron, B. and Morris, C. (1977). Stein’s paradox in statistics. Scientific American,

236(5):119–127.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating

marginal densities. J. Amer. Statist. Assoc., 85(410):398–409.

Gentle, J. E. (2007). Matrix Algebra. Springer Texts in Statistics. Springer, New

York. Theory, computations, and applications in statistics.

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations. Johns Hopkins

Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,

MD, third edition.

Golub, G. H. and Van Loan, C. F. (2013). Matrix Computations. Johns Hopkins

Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,

MD, fourth edition.

199

Grant, M. and Boyd, S. (2012). CVX: Matlab software for disciplined convex pro-

gramming, version 2.0 beta. http://cvxr.com/cvx.

Harville, D. A. (1997). Matrix Algebra From a Statistician’s Perspectives. Springer-

Verlag, New York.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and

their applications. Biometrika, 57(1):97–109.

Hobert, J. P. and Geyer, C. J. (1998). Geometric ergodicity of Gibbs and block

Gibbs samplers for a hierarchical random effects model. J. Multivariate Anal.,

67(2):414–430.

Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge University

Press, Cambridge.

Huber, P. J. (1994). Huge data sets. In COMPSTAT 1994 (Vienna), pages 3–13.

Physica, Heidelberg.

Huber, P. J. (1996). Massive data sets workshop: The morning after. In Massive

Data Sets: Proceedings of a Workshop, pages 169–184. National Academy Press,

Washington.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete

observations. J. Amer. Statist. Assoc., 53:457–481.

Knuth, D. E. (2005). The Art of Computer Programming. Vol. 1. Fasc. 1. Addison-

Wesley, Upper Saddle River, NJ. MMIX, a RISC computer for the new millennium.

Lange, K. (2010). Numerical Analysis for Statisticians. Statistics and Computing.

Springer, New York, second edition.

Lange, K. and Carson, R. (1984). EM reconstruction algorithms for emission and

transmission tomography. J. Comput. Assist. Tomogr., 8(2):306–316.

Lange, K., Hunter, D. R., and Yang, I. (2000). Optimization transfer using surrogate

objective functions. J. Comput. Graph. Statist., 9(1):1–59. With discussion, and a

rejoinder by Hunter and Lange.

200

http://cvxr.com/cvx

Lawson, C. L. and Hanson, R. J. (1987). Solving Least Squares Problems. Classics in

Applied Mathematics. Society for Industrial Mathematics, new edition edition.

Lotka, A. (1931a). Population analysis - the extinction of families i. J. Wash. Acad.

Sci., 21:377–380.

Lotka, A. (1931b). Population analysis - the extinction of families ii. J. Wash. Acad.

Sci., 21:453–459.

Magnus, J. R. and Neudecker, H. (1999). Matrix Differential Calculus with Appli-

cations in Statistics and Econometrics. Wiley Series in Probability and Statistics.

John Wiley & Sons Ltd., Chichester.

Mazumder, R., Hastie, T., and Tibshirani, R. (2010). Spectral regularization al-

gorithms for learning large incomplete matrices. Journal of Machine Learning

Research, 11:2287–2322.

McLachlan, G. J. and Krishnan, T. (2008). The EM Algorithm and Extensions.

Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons],

Hoboken, NJ, second edition.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.

(1953). Equation of state calculations by fast computing machines. The Journal

of Chemical Physics, 21(6):1087–1092.

Metropolis, N. and Ulam, S. (1949). The Monte Carlo method. J. Amer. Statist.

Assoc., 44:335–341.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer Series in Op-

erations Research and Financial Engineering. Springer, New York, second edition.

Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton, A., Indap, A.,

King, K. S., Bergmann, S., Nelson, M. R., Stephens, M., and Bustamante, C. D.

(2008). Genes mirror geography within europe. Nature, 456(7218):98–101.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A.,

and Reich, D. (2006). Principal components analysis corrects for stratification in

genome-wide association studies. Nature Genetics, 38(8):904–909.

201

Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer

Texts in Statistics. Springer-Verlag, New York, second edition.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Society for Industrial

and Applied Mathematics, Philadelphia, PA, second edition.

Saloff-Coste, L. (1997). Lectures on finite Markov chains. In Lectures on probability

theory and statistics (Saint-Flour, 1996), volume 1665 of Lecture Notes in Math.,

pages 301–413. Springer, Berlin.

Seneta, E. (1996). Markov and the birth of chain dependence theory. International

Statistical Review, 64:255–263.

Stein, M., Chen, J., and Anitescu, M. (2012). Difference filter preconditioning for

large covariance matrices. SIAM Journal on Matrix Analysis and Applications,

33(1):52–72.

Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions

by data augmentation. J. Amer. Statist. Assoc., 82(398):528–550. With discussion

and with a reply by the authors.

Teets, D. and Whitehead, K. (1999). The discovery of Ceres: how Gauss became

famous. Math. Mag., 72(2):83–93.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist.

Soc. Ser. B, 58(1):267–288.

Tukey, J. W. (1962). The future of data analysis. Ann. Math. Statist., 33:1–67.

Vardi, Y., Shepp, L. A., and Kaufman, L. (1985). A statistical model for positron

emission tomography. J. Amer. Statist. Assoc., 80(389):8–37. With discussion.

202

	Lecture 1: Aug 21
	Lecture 2, Sep 2
	Lecture 3, Sep 4
	Lecture 4, Sep 9
	Lecture 5, Sep 11
	Lecture 6, Sep 16
	Lecture 7, Sep 18
	Lecture 8, Sep 23
	Lecture 9, Sep 25
	Lecture 10, Sep 30
	Lecture 11, Oct 2
	Lecture 12, Oct 7
	Lecture 13, Oct 14
	Lecture 14, Oct 16
	Lecture 15, Oct 21
	Lecture 16, Oct 23
	Lecture 17, Oct 28
	Lecture 18, Oct 30
	Lecture 19, Nov 4
	Lecture 20, Nov 6
	Lecture 21, Nov 11
	Lecture 22, Nov 13
	Lecture 23, Nov 18
	Lecture 24, Nov 20
	Lecture 25, Nov 25
	Lecture 26, Dec 2

