ST758: Computation for Statistical Research

Tue/Thu 10:15am-11:30am, SAS Hall 1108

Instructor: Dr Hua Zhou, hua_zhou@ncsu.edu

1 Lecture 1: Aug 21

Today

e Introduction and course logistics
e Computer storage and arithmetic
e If you never used R before, go through Appendix A “A Sample Session” of the

R manual on your computer

How Gauss became famous?
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I Planets

1801, Dr Carl Friedrich Gauss, 24; proved Fundamental Theorem of Algebra;
wrote the book Disquisitiones Arithmetic, which is still being studied today

1801, Jan 1 - Feb 11 (41 days), astronomer Piazzi observed Ceres (a dwarf

planet), which was then lost behind sun
1801, Aug — Sep, futile search by top astronomers; Laplace claimed it unsolvable
1801, Oct — Nov, Gauss did calculations by method of least squares

1801, Dec 31, astronomer von Zach relocated Ceres according to Gauss’ calcu-

lation

1802, Summarische Ubersicht der Bestimmung der Bahnen der beiden neuen

Hauptplaneten angewandten Methoden, considered the origin of linear algebra

1807, Professor of Astronomy and Director of Géttingen Observatory in remain-
der of his life

1809, Theoria motus corporum coelestium in sectionibus conicis solem ambien-
tum (Theory of motion of the celestial bodies moving in conic sections around
the Sun); birth of the Gaussian (normal) distribution, as an attempt to ratio-

nalize the method of least squares

1810, Laplace consolidated importance of Gaussian distribution by proving the

central limit theorem



e 1829, Gauss-Markov Theorem. Under Gaussian error assumption (actually only
uncorrelated and homoscedastic needed), least square solution is the best linear
unbiased estimate (BLUE), i.e., it has the smallest variance and thus MSE
among all linear unbiased estimators. Note other estimators such as the James-

Stein estimator may have smaller MSE, but they are nonlinear.

For more details

e http://www.keplersdiscovery.com/Asteroid.html

e Teets and Whitehead| (1999)

ARTICLES

The Discovery of Ceres:
How Gauss Became Famous

DONALD TEETS

KAREN WHITEHEAD

South Dakota School of Mines and Technology
Rapid City, SD 57701

“The Duke of Brunswick has discovered more in his country than a planet: a
super-terrestrial spirit in a human body.”

These words, attributed to Laplace in 1801, refer to the accomplishment of Carl
Friedrich Gauss in computing the orbit of the newly discovered planetoid Ceres
Ferdinandea from extremely limited data. Indeed, although Gauss had already achieved
some fame among mathematicians, it was his work on the Ceres orbit that “made
Gauss a European celebrity—this a consequence of the popular appeal which
astronomy has always enjoyed...” [2]. The story of Gauss’s work on this problem is a
good one and is often told in biographical sketches of Gauss (e.g., [2], [3], [6]), but the
mathematical details of how he solved the problem are invariably omitted from such
hictarical winrke We are left tn wonder how did he da #? Tust homn did Clanes

Gauss’ story

e Motivated by a real problem.

Heuristic solution: method of least squares.

Solution readily verifiable: Ceres was re-discovered!

Algorithmic development: linear algebra, Gaussian elimination, FFT (fast Fourier

transform).

Theoretical justification: Gaussian distribution, Gauss-Markov theorem.


http://www.keplersdiscovery.com/Asteroid.html

A sampler by Marc Coram
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NOBLER 1IN THE MIND TO SUFFER THE SLINGS AND ARROWS UF OUTRAGEOUS
FORTUNE OR TO TAKE ARMS AGAINST A SEA OF TROUBLES AND BY OPPUSINC END

“?o ER ENONDLAE OHDLO UOZEOUNORU O VOZED HD 0ITO
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400 ES ELOHINME OHIND UOVEOULOSU 0 UOVED HI DATO HEDQRET AUSOVHE HELO zmmm
500 ES ELOHINME DHINO UDDEQULOSU 0 UODED HI DATD HEDQRET AUSOWHE HELO Amms:m
600 ES ELOHINME OBIND UODEUULOSU 0 UODED HI DATO HEDQRET AUSOWHE HELO - iy
900 ES ELOHANME OHAND UODEDULOSU O UODED HA DITD HEOQRET TUSOWHE HELD praiin
1000 18 ;n,nm.mﬂ UHANO RODIORLOSR .0 RODIO HA UETO HIOQUIT ERSOWHI HILD gasm}m
1100 “ISTILOHANBITOHANDT 0DI0 LoS TOT ODIOTHATOEROTHIOQUIRTE SOVHITHILD o
1200 ISTILOHANMITOHANOT ODID LOS TOT ODIOTHATOEROTHIOGQUIRTE sumzmnmmus g
1300 ISTILOHARMITOBAROT 0DIO0 LOS TOT ODIOTHATUENUTHIOQUINTE SOVHITHTLOTEN iy
1400 ISTILOHAMRITOMANOT OFIO0 LOS TOT OFIOTHATOENOTHIDQUINTE SOWRITHILI s
1600 ESTEL HAMRET HAX TO CE OL SOT TD CE TEAT IN THE QUENTIOS mv;‘gms i
1700 ESTEL HAMRET HAM TO BE OL SOT T0 BE THAT IN THE QUENTIOS WHETHEL TIN s
1800 ESTER HAMLET HAM TO EE OR 50T TO BE TEAT IN THE QUENTIOS WHETHER TTH pe,
1900 ENTER HAMLET HAX TO BE DR NOT TO BE THAT IS THE QUESTION' WHETHER T1§ e
2000 ENTER HAMLET HAM TO BE OR NOT TO BE THAT 1S THE QUESTION WHETHER TI§ :EEE

to bat-rb. con todo mi respeto. i vas sitting down playing chess with
danny de emf and boxer de el centro vas sitting next to us. boxer was
making loud and loud veices so i tell him por favor cam you kick back
bomie cause im playing chess a minute later the vato starts back up again
so this time i tell him con respecto homie can you kick back, the vate
stop for a minute and he starts up again so i tell him check this out szhut
the £*9k Up cause im tired of your voice and if you got a problem with it
we can Eo to celda and handle it. i really felt disrespected thats vhy i
told him, anyways after i tell him that the next thing I kmow that vato
slashes me and leaves. dy the time i figure im hit i try to get away but
the c.o. is valking in my direction and he gets me right dy a celda. s0 i
go to the hole. when im in the hele my home boys hit doxer so now "B is
also in the hole. vhile im in the hole im getting schoold wrong and

e Consulting project by Marc Coram (then a graduate student in statistics at

Stanford); customer is a professor in political science.

e Marc modeled letter sequence by a Markov chain (26 x 26 transition matrix)

and estimated transition probabilities from War and Peace.

e Now each mapping o yields a likelihood f(o) of the symbol sequence.
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e Find the ¢ that maximizes f. Sample space is at least 26! = 4.0329 x 10%.

Combinatorial optimization — hard!

e Metropolis sampling: At each iteration, generate a new ¢’ by random transpo-

sition of two letters; accept ¢’ with probability min {J}((C:))v 1}
Marc Coram’s story
e Motivated by a real problem.
e Solution readily verifiable: we can read it!

e Algorithm: Metropolis is one of top 10 algorithms in the 20th century.

e Read Diaconis| (2009) for more details.

What is this course about?

e Not a course on “packages and languages for data analysis”. It does not answer

questions such as “How to fit a linear mixed model in SAS or R?”

e Not a programming course, although it is extremely important and we do home-

work and projects in R.

e This course is about “numerical methods in statistics”. Our focus is on algo-

rithms.

The form of a mathematical expression and the way the expression

should be evaluated in actual practice may be quite different.

For a common numerical task in statistics, say solving the normal equation
X"XB = X'y, we need to know which methods/algorithms are there and
what are their advantages and disadvantages. You will automatically fail this

course if you use

solve(t(X) %*% X) %*% t(X) %% y



Sclea 287 #7454, &b 4 2eee, pHS

Algorithms for the Ages

“Great algorithms are the poetry of computation,” says Francis Sullivan of the Institute for Defense
Analyses' Center for Computing Sciences in Bowie, Maryland. He and Jack Dongarra of the University of
Tennessee and Oak Ridge National Labaratory have put together a sampling that might have made
Robert Frost beam with pride—had the poet been a computer jock. Their list of 10 algorithms having
“the greatest influence on the development and practice of science and engineering in the 20th
century” appears in the January/February issue of Computing in Science & Engineering. If you use a
computer, some of these algorithms are no doubt crunching your data as you read this. The drum roll,
please:

1946: The Metropolis Algorithm for Monte Carlo. Through the use of random processes, this
algorithm offers an efficient way to stumble toward answers to problems that are too complicated to

solve exactly.

1947: Simplex Method for Linear Programming. An elegant solution to a common problem in planning
and decision-making.

1950: Krylov Subspace Iteration Method. A technique for rapidly solving the linear equations that
abound in scientific computation.

1951: The Decompositional Approach to Matrix Computations. A suite of techniques for numerical
linear algebra.

1957: The Fortran QOptimizing Compiler. Turns high-level code into efficient computer-readable code.

1959: QR Algorithm for Computing Eigenvalues. Another crucial matrix operation made swift and
practical.

1962: Quicksort Algorithms for Sorting. For the efficient handling of large databases.

1965; Fast Fourier Transform, Perhaps the most ubiquitous algorithm in use today, it breaks down
waveforms (like sound) into periodic components.

1977 Integer Relation Detection. A fast method for spotting simple equations satisfied by collections
of seemingly unrelated numbers.

1987: Fast Multipole Method. A breakthrough in dealing with the complexity of n-body calculations,
applied in problems ranging from celestial mechanics to protein folding.

Syllabus

Check course website frequently for updates and announcements.
http://hua-zhou.github.io/teaching/st758-2014fall/

Lecture notes will be updated and posted after each lecture.


http://hua-zhou.github.io/teaching/st758-2014fall/

2 Lecture 2, Sep 2

Announcements

e TA office hours, Wed @ 10A-12P?

e HW1 posted; due Sep 11 in class.

Last time

e Introduction. Gauss (least squares to find Ceres) — optimization, Marc Coram
(decipher a note circulating in jail) — sampling. Two major modes of statistical

computing.

e Course content, logistics.

Today

e Computer representation of characters, integers, and real numbers.

Computer storage and arithmetic

Elementary units of computer storage: bit = “binary” + “digit” (coined by John
Tukey), byte = 8 bits, kB = kilobyte = 10% bytes, MB = megabytes = 10° bytes, GB
= gigabytes = 10? bytes, TB = terabytes = 10'? bytes, PB = petabytes = 10'® bytes,



Storage of characters

ASCIl control ASCIl printable Extended ASCII
characters characters characters

00 NULL  (Null character) 32 space 64 @ @ 96 : 128 ¢ (160 a (192 L 224 0O
01 SOH  (Startof Header) 33 ! 65 A 97 a 129 0 181 i 193 L1 225 &
02 STX  (Startof Text) 34 - 6 B 98 b 130 & (162 6 | 194 226 0O
03 ETX (End of Text) 35 # 67 € 98 131 a4 (183 u | 195 -|: 227 0O
04 EOT  (EndofTrans,) 3B S 68 D (100 d 132 & (164 A (1968 — 228 @
05 ENQ (Enauiry) 7 69 E 101 e 133 a 165 N 197 4+ 223 0O
06 ACK (Acknowledgement) 3B & 70 F 102 f 134 4 (166 * (198 & 230 p
07 BEL (Bell) 39 ' 716 103 g 135 ¢ (167 ° 199 A 231 b
08 BS (Backspace) 40 ( 72 H (104 h 136 & 168 4 200 L 232 B
08  HT  (Horizontal Tab) 41 ) 73 1 105 i BT & |19 @ (200 (233 u
10 LF (Line feed) 42 - 74 4 106 ] 138 & (170 -~ 202 £ 234 O
1M VT {Vertical Tab) a3+ 7K 107 Kk 139 0 171 % 203 5 235 U
12 FF (Form feed) 44 , 76 L 108 | 140 1 (172 % | 204 ]% 236y
13 CR (Carriage return) 45 - 77 M 109 m 141 i 173 i 205 = 237 Y
14 SO (Shift Out) 48 . 78 N 110 n 142 A 174 « 206 § |238
15 sl (Shift In) 47 ! 790 11 e 143 A 175 w207 = 239
16 DLE  (Datalink escape) 48 0 80 P 112 p 144 E 176 208 o 240 =
17 DC1  (Device contral 1) 48 1 81 Q@ (113 q 145 @ (177 = 209 B 241 %
18 DC2  (Device control 2) 50 2 82 R 114 r 146 &£ 178 210 E 242 _
19  DC3  (Device control 3) 51 3 83 8§ (115 s 147 & 179 211 B 243 %
20 DC4 (Device control 4) 52 4 84 T (116 t 148 & | 180 212 E 244 9
21 NAK (Negative acknowl) 53 5 85 U M7 w 149 & 181 213 1 (245 §
22 SYN (Synchronous idle) 54 6 8 V118 v 150 a (182 A 214 1 246 +
23 ETB (End of trans. block) 55 7 87 W 119w 151 o 183 A 215 1 247 |
24 CAN {Cancal) 56 8 8 X (120 «x 152§ (184 @ (216 1 248 °
25 EM  (End of madium) 57 9 89 Y 121y 153 6 185 4 217 4 249 -
26 SUB (Substitute) 58 8 90 z 122 oz 154 0 186 ]\ 218 250
27 ESC (Escape) 59 ; 91 [ 123 { 1% e (187 9 219 i 251 °
28 F5  (File separator) 60 < 9z Vo124 156 € (188 4 (220 g |252 *
29 G5 (Group separator) 61 = 93 1 125 } 157 a 189 ¢ 221 1 253 ®
30 RS (Record separator) 62 > 94 A 126 = 158 % (190 ¥ (222 | 254 =
31 US  (Unitseparator) 63 7 95 _ 159 f 191 4 223 ™ 1255 nbsp
127 DEL (Delete)

e Plain text files are stored in the form of characters: .r, .c, .cpp, .tex, .html,

e ASCII (American Code for Information Interchange): 7 bits, only 27 = 128
characters, “Hua” corresponds to “48 75 61 (Hex) = 72 117 97 (Dec) = 1001000
1110101 11000017

e Extended ASCII: 8 bits, 28 = 256 characters.

e Unicode: UTF-8, UTF-16 and UTF-32 support many more characters includ-
ing foreign characters; last 7 digits conform to ASCII. UTF-8 is the current

dominant character encoding on internet.

Fixed-point number system

Fixed-point number system I is a computer model for integers Z. One storage unit
may be M = 8/16/32/64 bit.

e The number of bits and method of representing negative numbers vary from
system to system. MATLAB has (u)int8, (u)intl6, (u)int32, (u)int64. The
integer type in R has M = 32 bits.



e First bit indicates sign: 0 for nonnegative numbers, 1 for negative numbers.

e “two’s complement representation” for negative numbers. (i) Sign bit is set to

1, (ii) remaining bits are set to opposite values, (iii) 1 is added to the result.

00010010

Signbitis0 Binary equivalent of +18
Signed 1 QU L U_D 1 0..

magnitude !
representation | Signbitis 1 Binary equivalent of +18

SURUEY 11101101

complement

|
-1 representation

Sign bit is 1 1's complement of +18
Signed 2's

complement _1 1 101110

representation 2N Y :

Signbit is 1 2's complement of +18

e Range of representable integers by M-bit storage unit is [-2M~1 2M=1 _ 1]

2M71

(don’t need to represent 0 anymore so could have capacity for negative

numbers).

e For M =8, [~128,127]. For M = 16, [—65536, 65535).
For M = 32, [~2147483648, 2147483647].

e Following code snippet shows that the smallest integer in R is —231 + 1 =
—2147483647.



# .Machine variable
.Machine$integer.max

[1] 2147483647

# integer type in R uses M=32 bits
M<- 32

big <- 2A(M-1) - 1

small <- - 2A(M-1)

as.integer(big)

[1] 2147483647

as.integer(big+1)

Warning: NAs introduced by coercion
[1] NA

as.integer(small+1)

[1] -2147483647

as.integer(small)

Warning: NAs introduced by coercion

[1] NA

e For unsigned integers such as in MATLAB, the range is (0,2 — 1].
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Two's Complement representation using 4 bit binary strings

=1 1
1111 o 0001
-2 2
1110 0010
-3 5
1101 0011
-4 4
1100 0100
-5 5
1011 0101
-6 6
1010 0110
= 7
-8
1001 1000 0111

e An integer —i in the interval [—2M~1 —1] would be represented by the same
bit pattern by which the nonnegative integer 2™ — i is represented, treat-
ing the sign bit as a regular numeric bit. For example, (-18) = 11101110,
(2%) — (18)=(238)=11101110. Two’s complement is subtracting the nonnega-
tive integer ¢ from 1...1+1=10...0 = (2M).

e Addition and subtraction are much simpler in two’s complement representation.
Why? it respects modular arithmetic nicely (look at the diagram). E.g., (3)+(4)
= 0011 4+ 0100 = 0111 = (7). Need to keep track of crossing two boundaries
10...0 and 00...0. Cross boundary 10...0 once, we add 2¥  e.g., (6) + (7) =
0110 + 0111 = 1101 = (=3) + (2%) = (13). Cross boundary 00...0, we subtract

11



2M e.g., (—=6) + (—7) = 1010 + 1001 = 0011 = (3) — (2*) = (—13). Crossing
both boundaries is fine, e.g., (-3)4(-4) = 1101 4+ 1100 = 1001 = (-7).

e Keep track of overflow and underflow. If the result of a summation is R, which
must be in the set [—2M~1 2M=1 4 1]  there are only three possibilities for the

true sum: R, R+ 2 (overflow), or R — 2™ (underflow).

— When adding two nonnegative integers: 0XX...X + 0YY...Y, where X and
Y are arbitrary binary digits, we only need to keep track of overflow in
this case. If the resulting binary number has a leading bit of 1, we know
overflow occurs since the sum cannot be negative. We should treat that
sign bit as a regular numeric bit. In other words, we crossed the upper
boundary 100 and should add 2™ to the result. If the resulting binary

number has a leading bit of 0, no overflow occurs.

— When adding two negative integers: 1XX..X 4 1YY...Y, where X and
Y are arbitrary binary digits, we only need to keep track of underflow in
this case. If the resulting binary number has a leading bit of 0, we know
underflow occurs since the sum cannot be positive. We crossed the lower
boundary 000 and should subtract 2" from the result. If the resulting

binary number has a leading bit of 1, no underflow occurs.

— When adding a negative integer and a nonnegative integer: 1XX.. X +
0YY...Y, the result is always between the two summands. No overflow or

underflow could happen.

12



Floating-point number system

Single Precision
s exp mantissa

o |
R 2 -

I+ 32 bits

s exp mantissa
[

[
—FF}- " | 52 >
e

64 bits

Double Precision

Floating-point number system F is a computer model for real numbers R.

e A real is represented by +dy.dids - - - d, x b° (scientific notation).

Parameters for a floating-point number system: base (or radizx), range of fraction

(or mantissa, significand), range of exponent.

e Non-uniqueness of representation. normalized/denormalized significant digits.
E.g., +18 = +1.0010 x 2*(normalied) = +0.10010 x 2°(denormalized).

Bias (or excess): actual exponent is obtained by subtracting bias from the value

of exponent evaluated regardless of sign digit.
e [EEE 754-1985 and IEEE 754-2008.

— Single precision (32 bit): base 2, p = 23 (23 significant bits), ep.x = 127,
emin = —126 (8 exponent bits), bias=127. ey, — 1 and ey, + 1 are reserved
for special numbers. This implies a maximum magnitude of log,,(2'*7) ~

38 and precision to log;,(2?%) ~ 7 decimal point. £10%3%.

— Double precision (64 bit): base 2, p = 52 (52 significant bits), emax = 1023,
emin = —1022 (11 exponent bits), bias=1023. This implies a maximum

21023)

magnitude of log;,( ~ 308 and precision to log;;(2°?) ~ 16 decimal

point. £10+308,

13



o “(+18) = (2* +2!) = +1.0010 x 2* in single precision
(0)(10000011)(0010000000000000000000).

First is sign bit. Next 8 bits are exponent 131 in ordinary base 2 with a bias
of 127. Remaining 23 bits represent the fraction beyond the leading bit, known
to be 1. In summary it represents (+18) as +1.0010 x 2% in the binary format.
(—18) is represented by the same bits except changing the sign bit to 1.

e Special floating-point numbers:

Exponent e, + 1 plus a mantissa of 0 means 4oc.

Exponent e,., + 1 plus a nonzero mantissa means NaN. NaN could be
produced from 0/0, O*Inf, ... In general NaN # NaN.

— Exponent e,;, — 1 with a mantissa of all Os represents the real number 0.

— Exponent e, — 1 with a nonzero mantissa are for numbers less than p¢mir,

Numbers are de-normalized in the range (0, b°mi») — “graceful underflow”.
e [ is not a subset of R, although I C Z.

e R only uses double (64-bit) and 32-bit integer. It can be a downside when
dealing with big data.

To summarize

O:|:38

e Single precision: +1 with precision up to 7 decimal digits.

0:|:308

Double precision: +1 with precision up to 16 decimal digits.

Irrational numbers such as © do not exist in F.

e Exercise: what is the floating point representation of the number 0.17

The floating-point numbers do not occur uniformly over the real number line.

14



0 2—2  2—1 20 21

Fig. 2.4. The Floating-Point Number Line, Nonnegative Half

—21 —20 —2—1 —272 0

Fig. 2.5. The Floating-Point Number Line, Nonpositive Half

0 4 8 16 32
Fig. 2.6. The Floating-Point Number Line, Nonnegative Half; Another View

0 4 8 16 32
Fig. 2.7. The Fixed-Point Number Line, Nonnegative Half

e Machine epsilons are the spacings of numbers around 1. €,;, = b™P and €. =
bi—>.

€min l
T

|
1
L 1 2

o
[ L

Fig. 2.8. Relative Spacings at 1: “Machine Epsilons”

e The variable .Machine in R contains numerical characteristics of the machine.

e How to test inf and nan? In R, is.nan(), is.finite(), is.infinite(). In

MATLAB, isinf (), isnan().
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3 Lecture 3, Sep 4

Announcements

e TA office hours: Wed @ 1P-3P or Wed @ 10A-12P7

Last time

e Computer representation of characters
e Fixed-point number system for integers

e Floating-point number system (IEEE 754 standards for single/double precision)

Today

e Consequences of compute storage/arithmetic
e Algorithms

e Computer languages

Consequences of computer storage/arithmetic

e Be memory conscious when dealing with big data. E.g., human genome has
about 3 x 10° bases, each of which belongs to {A,C,T,G}. How much storage
if we store 105 SNPs (single nucleotide polymorphisms) of 1000 individuals
(1000 Genome Project) as characters (1GB), single (4GB), double (8GB), int32
(4GB), int16 (2GB), int8 (1GB), PLINK binary format 2bit/SNP (250MB)?

e Know the limit. Overflow and Underflow. For double precision, £10%3%. In

most situations, underflow is preferred over overflow. Overflow often causes

. . .. . o exp(m;rﬁ) i
crashes. Underflow yields zeros. E.g., in logistic regression, p; = TrereB) —
——L . The former expression can easily lead to co/oc = NaN, while the

1+exp(7:c;-rﬁ) )
latter expression leads to graceful underflow.

e Be aware of non-uniform distribution of floating-point numbers, in contrast to

fixed-point numbers. There are the same number of floating-point numbers in

16



(b1, 6] and [b"T, b12] for epin < @ < emax — 2. It is more dense when closer to

Zero.

e “Catastrophic cancellation 1”. Addition or subtraction of two numbers of widely
different magnitudes: a + b or a — b where a > b or a < b. We loose the
precision in the number of smaller magnitude. Consider a = z.zzz... x 2° and
b = y.yyy... x 2753, What happens when computer calculates a + b? We get
a+b=al

e Another example: What happens when compute > >~ z in order? Will the

partial sum reach Inf? “A divergent series converges.”

e Always try to add numbers of similar magnitude. Rule 1: add small numbers
together before adding larger ones. Rule 2: add numbers of like magnitude
together (paring). When all numbers are of same sign and similar magnitude,

add in pairs so each stage the summands are of similar magnitude.

sgl) =T+ T2 |s£,1) =x3+ T4|... séﬂ_l = T4m—3 +$4m_2‘séﬁ =|...
352) = sgl) + sgl) e siﬁ) = sgnl_l + sgln)}
\ !

s§3) = sﬁ” + 352)

e “Catastrophic cancellation 2”. Subtraction of two nearly equal numbers elimi-
nates significant digits. a — b where a ~ b. Consider a = r.xrrrrrrrrrlssss,

b = x.xrzrxrxxrxrrxOtttt. The result is 1.vvvvu...u where v are unassigned digits.

e Violation of associative law and distributive law.

More about cancellation

e Evaluating e=2° by Taylor series
et =1—a+a2*/2 —2*/3 4 ...

gets 6.138e-09, while the true value is about 2.061e-09. Many cancellations

accumulate. Anyway, it’s not the way to evaluate e*!

17



Sometimes catastrophic cancellation can be avoided. Roots of the quadratic

function az? + bx + ¢ are

_ —b=E Vb? — 4dac

2a

T

When one root is close to 0, cancellation can happen. We may evaluate one of
the root (away from 0) by the formula and then compute the other by relation-

ship z129 = ¢/a.

Algorithms

Algorithm is loosely defined as a set of instructions for doing something. Input
— Output.

Knuth| (2005): (1) finiteness, (2) definiteness, (3) input, (4) output, (5) effec-

tiveness

Basic unit for measuring efficiency is flop. A flop (floating point operation)
consists of a floating point multiply (or divide) and the usually accompanying
addition, fetch and store. Some books such as Lange| (2010) and |Golub and

Van Loan| (2013) consider addition as a separate flop.

How to measure efficiency of an algorithm? Big O notation. If n is the size
of a problem, an algorithm has order O(f(n)) if, as n — oo, the number of

computations — c¢f(n), where ¢ is some constant that does not depend on n.

E.g., matrix-vector multiplication A%*%b, where A € R™*™ and b € R", takes
O(mn) flops. Matrix-matrix multiplication A%*%B, where A € R™*" and B €
R™? takes O(mnp) flops.

Ezponential order O(b™) (NP-hard=*“horrible”), polynomial order O(n?) (doable),
O(nlogn) (fast), linear order O(n) (fast), log order O(logn) (fast).

One goal of this course is to get familiar with the flop counts for common

numerical tasks in statistics.

The form of a mathematical expression and the way the expression

should be evaluated in actual practice may be quite different.

18



e Compare flops of the following two expressions:

G %% Xt %*% y
G %*h (Xt %x%h y)

where G € RP*P_ Xt € RP*" and y € R". “Matrix multiplication is expensive.”

e Hardware advancement, e.g., CPU clock rate, only affects constant c¢. Unfortu-

nately, data size n is increasing too and often at a faster rate.

e Classification of data sets by Huber| (1994, 1996).

Data Size Bytes Storage Mode

Tiny 102 Piece of paper

Small 104 A few pieces of paper
Medium  10° (megabyte) A floppy disk

Large 108 Hard disk

Huge 107 (gigabytes) Hard disk(s)

Massive  10'? (terabytes) RAID storage

e [t is an era of “big data”: wiki,[WSJ, white house, McKinsey report, ..., meaning
great opportunities for statisticians. However we should be aware of the gap

between classical statistics curriculum and reality.

e Difference of O(n?) and O(nlogn) on massive data. Suppose we have a teraflop
supercomputer — capable of doing 10'2 flops per second. For a problem of size
n = 10", O(nlogn) algorithm takes about 10'?log(10'?)/10' =~ 27 seconds.
O(n?) algorithm takes about 10'? seconds, which is approximately 31710 years!

e QuickSort and FFT are celebrated algorithms that turn O(n?) operations into
O(nlogn). “Divide-and-conquer” is a powerful technique. Another example is

the Strassen’s method, which turns O(n?®) matrix multiplication into O(n'°&27).

19


http://en.wikipedia.org/wiki/Big_data
http://online.wsj.com/article/SB10001424127887323751104578147311334491922.html
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf
http://www.slideshare.net/fred.zimny/mckinsey-quarterlys-2011-report-the-challenge-and-opportunityof-big-data

Computer languages

C, C++, COBOL, etc.

dBASE, BASIC, etc.
(compiled)

{(interpreted)

Java, Visual Basic
{(interpreted)

Wiite
source

Write
source
code

Wiite
source

code code

Text Text 0s Text

o editor o editor editor
Source Source Source
code code code
Compiler Compiler

Machine
Bytecode language
Run

0s 0S | | Source os | | Machine
Bytecode code language
Interpreter Interpreter

Compiled versus interpreted languages.

e Compiled languages: C/C++, Fortran, ... Directly compiled to machine code
that is executed by CPU. Advantage: fast, take less memory. Disadvantage:

relatively longer development time, hard to debug.

e Interpreted language: R, Matlab, SAS IML, ... Interpreted by interpreter.

Advantage: fast for prototyping. Disadvantage: excruciatingly slow for loops.

e Mixed (compiled and then interpreted by virtual machine): Python, JAVA.
Advantage: extremely convenient for data preprocessing and manipulation; rel-

atively short development time. Disadvantage: not as fast as compiled language.
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e Scripting: Unix/Linux scripts, Perl, Python. Extremely useful for data pre-
processing and manipulation. E.g., massage the Yelp (http://www.yelp.com/

dataset_challenge) data before analysis

800 [ yelp_phoenix_academic_dataset — bash — 111x34 I

hzhou3@zhou-lap2:yelp_phoenix_academic_dataset $ ls -all
total 452432

drwx—————- @ 9 hzhou3 staff 306 Mar 28 10:55 ./

drwxr-xr-x 7 hzhou3 staff 238 Apr 10 09:10 ../

—-rw-r-—r--@ 1 hzhou3 staff 6148 Mar 28 10:55 .DS_Store

—-rw-r-—r—-@ 1 hzhou3 staff 140579 Mar 26 18:44 READ_FIRST-Phoenix_Academic_Dataset_Agreement-3-11-13.pdf
-rw-r-—r-- 1 hzhou3 staff 421 Mar 26 17:10 notes.txt

—-rw-r-——r—-@ 1 hzhou3 staff 4287324 Mar 28 13:19 yelp_academic_dataset_business.json

—-rw-r-—r—— 1 hzhou3 staff 3519126 Mar 26 17:54 yelp_academic_dataset_checkin.json

-rw-r--r--@ 1 hzhou3 staff 216292386 Mar 28 13:30 yelp_academic_dataset_review.json

-rw-r-—r—— 1 hzhou3 staff 7374045 Mar 26 17:54 yelp_academic_dataset_user.json
hzhou3@zhou-lap2:yelp_phoenix_academic_dataset $ head yelp_academic_dataset_user.json
{"votes": {"funny": @, "useful": 7, "cool": @}, "user_id": "CR2y7yEm4X@35ZMzrTtN9Q", "name": "Jim", "average_st

ars": 5.0, "review_count": 6, "type": "user"}

{"votes": {"funny": @, "useful": 1, "cool": @}, "user_id": "_9GXoHhdxc30ujPaQwh6Ew", "name": "Kelle", "average_
stars": 1.0, “review_count": 2, "type": "user"}

{"votes": {"funny": @, “"useful": 1, "cool": @}, "user_id": "8mM-ngxjg6pT@4kwcjMbsw", "name": "Stephanie", "aver
age_stars": 5.8, "review_count": 2, "type": "user"}

{"votes": {"funny": @, "useful": 2, "cool": @}, "user_id": "Ch6CdTR2IVaVANr-RgMOg", '"name": "T", “average_star
s": 5.0, "review_count": 2, "type": "user"}

{"votes": {"funny": @, "useful": @, "cool": @}, "user_id": "NZrLmHRyiHmyT1JrfzkCOA", "name': "Beth", "average_s
tars": 1.8, "review_count": 1, "type": “user"}

{"votes": {"funny": 30, "useful": 45, "cool": 36}, "user_id": "mWx5Sxt_dx-sYBZg6RgJHQ", "name": "Amy", "average
_stars": 3.79, "review_count™: 19, "type": "user"}

{"votes": {"funny": 28, "useful": 13@, "cool": 31}, "user_id": "hryUDaRk7FLuDAYui2oldw", "name": “Beach", "aver
age_stars": 3.8300000000000001, "review_count": 207, "type": "user"}
{"votes": {"funny": 1, "useful": @, "cool": 1}, "user_id": "2t6fZNLtigqsihVme07zggg", "name": "christine", "aver

age_stars": 3.8, "review_count": 2, "type": "user"}
{"votes": {"funny": @, "useful": 3, "cool": 2}, "user_id": "mn6F-eP5WU37b-iLTop2mQ", "name": "Denis", "average_
stars": 4.5, “"review_count": 4, "type": "user"}

{"votes": {"funny": 5, "useful": 24, “cool": 9}, "user_id": "myXq7PFXKD_yfXT580SXMw", "name": "Shawn", "average
_stars": 3.8999999999999999, "review_count": 1@, "type": "user"}
hzhou3@zhou-lap2:yelp_phoenix_academic_dataset $ I

e Database language: SQL, Hadoop. Data analysis never happens if we do not

know how to retrieve data from databases.
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4 Lecture 4, Sep 9

Announcements

e TA office hours. Fri @ 10A-12P, Wed @ 1P-3P, Wed @ 10A-12P, or Thu @
1P-2P?

e Some resources for R programming:

— Dr. John Monahan’s class (2013 fall) on R: http://www.stat.ncsu.edu/
people/monahan/courses/ST610/

— Code school: http://tryr.codeschool.com/levels/1/challenges/1
— Advanced R by Hadley Wickham: http://adv-r.had.co.nz/

Last time

e Consequences of computer storage/arithmetics (overflow, underflow, catastrophic

cancellation, ...)
e Algorithms, flops, big O notation

e Computer languages (compiled, interpreted, mixed, scripting)

Today

e Review of linear algebra (self-study and do HW2)

e Numerical linear algebra: preliminaries

More about computer languages

e To improve efficiency of interpreted languages such as R or MATLAB code, avoid

loops as much as possible. Aka, vectorize code.

e For some tasks where looping is necessary (cannot vectorize code), consider
coding in C/C++ or FORTRAN. It is convenient to incorporate compiled code
into R or MATLAB.
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e To be versatile in dealing with big data, master at least one language in each
category. Take advantage of the resource in the department. E.g., check out

Chris’s class on PYTHON, John’s class on R programming, ...

e Don’t reinvent wheels. Make good use of libraries BLAS, LAPACK/LINPACK,
BOOST, SCIPY, NUMPY, ...

e One example of my recent pedigree GWAS project, which fits large variance
components model on n ~ 10% persons and ~ 10° SNPs. MENDEL implements
the method using FORTRAN, takes advantage of problem structure, and is flop
frugal. GWAF (an R package) uses the canned routine in R for fitting variance

component, which does not scale up.

# SNPs MENDEL GWAF-GEE GWAF-LMM

100 4.81 0.71 8.83
1,000 4.80 7.71 87.06
10,000 5.40 207.60 894.82
100,000 10.78 26,486.92 11,703.88

Table 1: Comparison of run times (in seconds). Run times are based on testing the first 100, 1000,
10000 and 100000 SNPs on chromosome 19. Trait values are from the same simulation replicate in
Figure 3.

Many aspects could contribute to this dramatic difference in efficiency: loop-
ing, compiled vs interpreted language, problem structure, choice of data types

(remember R only does double precision), memory management, ....

e Distinction between compiled language and interpreted language is getting blurred.
JIT (just-in-time) compilation technology in MATLAB since 2002 (v6.5). COM-
PILER package in R for JIT compiling since 2012.

Numerical linear algebra

e The first big chunk of this course is numerical linear algebra.

e Topics in numerical algebra: BLAS, solve linear equations Ax = b, regression
computations X7 X3 = X'y, eigen-problems Az = \x and generalized eigen-
problems Ax = A\Bz, singular value decompositions A = UXV7T, ...
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We start with review of some linear algebra facts (review by yourself and do
HW2).

Vector and matrix norms

KL chapter 6. Norm measures the “size”.

Vector norm || - || : R®* = R. (a) ||| > 0, (b) ||| = 0 if and only if z = 0, (c)
Jexl] = el (homogeneity), () &+ yl| < [lzl] + ]| (briangle incquality).

(, norm. |lz|, = (3, |z:[")Y/?, p € [1,00]. 1 is the Manhattan norm. /5 is the

Euclidean norm. /., is the sup norm.
For matrix norm || - || : R™*™ — R, we further require (e) ||[AB] < ||A||||B]|.

Frobenius norm || Al = (37, > a7;)!/?. Properties of (e) is checked by Cauchy-

Schwartz inequality.

Induced matrix norm (or operator norm): ||Al| = sup,_o % = SUD|4=1 || AZ||

for any fixed vector norm. To check property (e), let y = Bx, then ||AB|| =
A Bax |Bx

SUPg-£0 ”H ZﬂH ”||w ” < HAH SUPg-£0 |||;B|||| HAHHBH

Matrix-1 norm, [|Al|; = max; Y . |a;].

Matrix-2 norm, ||Alls = v/p(ATA) = max|y|,1,v|,=1 ¥ Av, which reduces to
p(A) if A is symmetric. p is the spectral radius of a matrix, the absolute value
of the dominant eigenvalue.

Matrix-0o norm, |[Alle = max; > |ag|-

When A is a column vector, these matrix induced norms reduce to the original

vector norm.

p(A) < ||A|| for any induced matrix norm. For any A and e > 0, there exists
an induced matrix norm such that | A|| < p(A) +e.

Rank

Assume A € R™*",

rank(A) is the maximum number of linearly independent rows (or columns) of

a matrix.
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e rank(A) < min{m,n}.

o A matrix is full rankif rank(A) = min{m,n}. Itis full row rank if rank(A) = m.

It is full column rank if rank(A) = n.

e A square matrix A € R™" is singular if rank(A) < n and non-singular if
rank(A) = n.

e rank(AB) < min{rank(A),rank(B)}. “Matrix multiplication cannot increase
the rank.”

e rank(A) = rank(AT) = rank(AT A) = rank(AAT).
e rank(AB) = rank(A) if B has full row rank.
e rank(AB) = rank(B) if A has full column rank.

e rank(A + B) < rank(A) + rank(B).

Trace
A € R™"™ a square matrix.
o tr(A) =31, ai
o tr(A+ B) =tr(A) + tr(B)
e tr(AA) = Atr(A) where X is a scalar

o tr(A") =tr(A)

Invariance under cycle permutation: tr(AB) = tr(BA). In general, tr(A; - -+ Ay) =
tI‘(Aj_H s AkAl e AJ)

Orthogonality and orthogonalization

e vy is orthogonal to wve, written vy L vy, if (v1,v2) = vjvy = 0. They are

orthonormal if vi L vy and ||v;]la =1, 1 =1,2.
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e Gram-Schmidt transformation orthonormalizes two non-zero vectors x; and ;.

B 1
r = T——aI
||331||2
: ! (@2 — (&1, w2 1)
xXr = — — Lo — (L1, L9)L1
2 @2 — (T, 22)Z |2 ’

Xz

X1

projection onto
X

Fig. 2.2. Orthogonalization of z; and z»

e A set of nonzero, mutually orthogonal vectors are linearly independent.

e A real square matrix A € R™*" is orthogonal if ATA = I,,, i.e., its rows/columns
are orthonormal. Orthogonal matrix is of full rank, thus A" = A~! and AA™ =
I,

Positive (semi)definite matrix

Assume A € R™" is symmetric.

e A real symmetric matrix A € R™" is positive semidefinite (or nonnegative
definite) if " Az > 0 for all . Notation: A > 0,,x,.

e E.g., the Gramian matriz XX or X X7T.

e [f inequality is strict for all & # 0, then A is positive definite. Notation:
A =0,

e A> Bmeans A— B = 0,,«n,.
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o If A > B, then det(A) > det(B) with equality if and only if A = B.

e A € R™" is positive semidefinite if and only if A is a covariance matrix of a

random vector in R™.

Matrix inverses

Assume A € R™*",

e The Moore-Penrose inverse of A is a matrix AT € R™™ with following prop-

erties

(a) AATA = A. (Generalized inverse, g, inverse, or inner pseudo-inverse)

(b) ATAAT = A*. (Outer pseudo-inverse. Any g inverse that satisfies
this condition is called a g9 inverse, or reflexive generalized inverse and is

denoted by A*.)
(¢c) AT A is symmetric.
(d) AAT is symmetric.

AT exists and is unique for any matrix A.

Generalized inverse (or g; inverse, denoted by A~ or AY): property (a).

e g inverse (denoted by A*): properties (a)+(b).

Moore-Penrose inverse (denoted by A™): properties (a)+(b)+(c)+(d).

If A is square and full rank, then the generalized inverse is unique and denoted

by A™! (inverse).

In practice, the Moore-Penrose inverse A™ is easily computed from the singular
value decomposition (SVD) of A.

(A7)T is a generalized inverse of A”.

C(A)=C(AA™) and C(AT) =C((A~A)T).
rank(A) = rank(AA~) = rank(A~A).

“Multiplication by generalized inverse does not change rank.”

rank(A~) > rank(A). “Generalized inverse has equal or a larger rank than the

original matrix.”
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System of linear equations

Ax = b where A € R™*" x € R", b € R™.
e When is there a solution? The following statements are equivalent.

1. The linear system Ax = b has a solution (consistent)
2.beC(A).

3. rank((A, b)) = rank(A).

4. AA b=hb.

The last equivalence gives intuition why A~ is called an inverse.

e What are the solutions to a homogeneous system Ax = 07

N(A)=C(I,— A A).
o If Ax = b is consistent, then & is a solution to Ax = b if and only if
x=Ab+(I,— A A)gq

for some q € R".
Interpretation: “a specific solution” + “a vector in the null space of A”.

e Ax = b is consistent for all b if and only if A has full row rank.

e [f a system is consistent, its solution is unique if and only if A has full column

rank.
o If A has full row and column rank, then A is non-singular and the unique

solution is A~'b.

Gramian matrix A"A

e AT A is symmetric and positive semidefinite.
e rank(A) = rank(A") = rank(ATA) = rank(AA").
e ATA =0 if and only if A = 0.

e BATA=CA"A ifand only ift BAT=CA".
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e ATAB = ATAC if and only if AB = AC.

For any generalized inverse (A"A)~, [(ATA)"]|" is also a generalized inverse of

ATA. Note (A"A)~ is not necessarily symmetric.

(ATA)” AT is a generalized inverse of A.

AAT =A(ATA)" A", where AT is the Moore-Penrose inverse of A.

Py =A(ATA)” AT is symmetric, idempotent, invariant to the choice of gener-
alized inverse (ATA)~, and projects onto C(A).

Idempotent matrix and projection

Assume P € R™*".
e A matrix P € R™" is idempotent if and only if P? = P.

e A matrix P is a projection on a vector space V if (a) P is idempotent, (b)
Px cV for all ¢, and (c) Pz = z for all z € V.

e An idempotent matrix P is a projection onto C(P).

e For a general matrix A € R™*"  the matrices AA~ are projections onto C(A)

and I, — A~ A are projections onto N(A).
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(3,6)

{1.4,2.8)

Figure A.1: Three projections onto a column space.

Symmetric idempotent matrix and orthogonal projection

Assume A € R,

e A symmetric, idempotent matrix is called an orthogonal projection.

An orthogonal projection P satisfies y — Py L v for all v € C(P).

The orthogonal projection onto a vector space is unique.

If a symmetric, idempotent matrix P projects onto V, then I — P projects onto

the orthogonal complement V*.

Pythagorean theorem: For P an orthogonal projection,

lyllz = 1Pyl + (I — P)yll5.

Many books use the term “projection” in the sense of of orthogonal projection.
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Method of least squares

e Goal: Approximate y € R™ by a linear combination of columns of X € R™*?,

Least squares criterion: min Q(b) = ||y — Xb||3.

Any solution to the normal equation X7 Xb = X7y (always consistent) is a

minimizer of the least squares criterion Q(b).

Solutions to the normal equation:
b= (X"X)" X"y + (I, — (X"X)"X"X)q,

where g € R? is arbitrary.

(XTX)~ X7 is a generalized inverse of X. Therefore the least squares solution

applies even when the system Xb = y is consistent.

Least squares solution is unique if and only if X has full column rank.

o Px = X(XTX) X7 is the orthogonal projection onto C(X).

Geometry: The fitted value from the least squares solution y = Pxy is the

orthogonal projection of the response vector y onto the column space C(X).

X2

Z -—

e I, — Px is the orthogonal projection onto N (XT).
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Decomposition of y:
y=Pxy+ (I, - Pxly=9y+e,
where y L e and

lyllz = llgl3 + llell3-

Eigenvalues and eigenvectors

KL chapter 8. Assume A € R™*" a square matrix.

Figenvalues are defined as roots of the characteristic equation det(AI,, —A) = 0.

If X\ is an eigenvalue of A, then there exist non-zero x,y € R" such that
Az = Az and y' A = \y?. x and y are called the (column) eigenvector and

row eigenvector of A associated with the eigenvalue \.
A is singular if and only if it has at least one 0 eigenvalue.
Eigenvectors associated with distinct eigenvalues are linearly independent.

Eigenvalues of an upper or lower triangular matrix are its diagonal entries:

)\i = ;-
Eigenvalues of an idempotent matrix are either 0 or 1.
Eigenvalues of an orthogonal matrix have complex modulus 1.

In most statistical applications, we deal with eigenvalues/eigenvectors of sym-
metric matrices.

The eigenvalues and eigenvectors of a real symmetric matrix are real.

Eigenvectors associated with distinct eigenvalues of a symmetry matrix are or-
thogonal.
Eigen-decompostion of a symmetric matrix: A = UAUT, where

— A =diag(\i,. .., M)

— columns of U are the eigenvectors which are (or can be chosen to be)

mutually orthonormal
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e A real symmetric matrix is positive semidefinite (positive definite) if and only

if all eigenvalues are nonnegative (positive).
o Spectral radius p(A) = max; |\;|.

e A € R"™™ a square matrix (not required to be symmetric), then tr(A) = > .\

and |A| = T, Ar.

Singular value decomposition
KL chapter 9. Assume A € R™*™ and p = min{m, n}.
e Singular value decomposition (SVD): A = UXV", where
— U = (uy,...,u,) € R™™ is orthogonal

-V =(vy,...,v,) € R"" is orthgonal

— ¥ = diag(oy,...,0,) ER™" 0y >09>--->0,>0.

o; are called the singular values, u; are the left singular vectors, and wv; are the

right singular vectors.
o Av, =o,u; and ATu; =ov; fori =1,...,p.
e Thin SVD. Assume m > n. A can be factored as A = UX V", where
- UeR™ U'U =1,
- VeR>™" V'V =1,
— ¥ = diag(oy,...,0,)
e Relation to eigen-decomposition. Using thin SVD,
ATA = VIUUEV' =VEV'
AAT = USV'VIU =UXU".

e Another relation to eigen-decomposition. Using thin SVD,
On A"\ 1 [V V ¥ 0Ouwn\ 1 (VT U
A Om><m \/§ Uu -U 0n><n -3 \/é VT _UT .
Hence any symmetric eigen-solver can produce the SVD of a matrix A without
forming AAT or ATA.

33



e Yet another relation to eigen-decomposition: If the eigendecomposition of a real
symmetric matrix is A = WAWT = Wdiag(\y, ..., \,)WT, then

| A1] sgn (A1)
A=WAWT' =w w’
|An] sgn(A,)

is the SVD of A.

e Relation to the Moore-Penrose (MP) inverse: Using thin SVD,
At =VETUT,

where ¥ = diag(o;*,...,0.1,0,...,0), r = rank(A).

Y T o

e Denote 0(A) = (01,...,0,). Then

— rank(A) = # nonzero singular values = ||o(A)||o
- A=UZX V=" ouv!
= [lAlle = (327, 07)'2 = lo(A)]l2
= [|All2 = o1 = [lo(A)]ls
e Assume rank(A) = r and partition U = (U,,U,) € R™™ and V = (V,, V) €
R™ ™ then
— C(A) = span{uy, ..., u,}, N(AT) = span{w, 41, ..., Up}
— N(A) =span{v,;1,...,v,}, C(AT) = span{vy,...,v,}
— U, U is the orthogonal projection onto C(A)
— U, U is the orthogonal projection onto N'(A”)
V,V.I' is the orthogonal projection onto C(AT)
— V. VT is the orthogonal projection onto N'(A)

Preliminaries of numerical linear algebra

Numerical linear algebra concerns how matrix/vector computations are done in com-

puter. We first look at some basic linear algebra operations.
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Flop counts of some basic linear algebra subroutines (BLAS)

See http://www.netlib.org/blas/|for a complete listing of BLAS functions.

Level Operation Name Dimension Flops
1 a+zly dot product r,y € R” n
Yy < y+ax saxpy aceR x,yeR” n
2 Yy« y+Axr  gaxpy AeR™" zeR" yeR” mn
A+ A+ yx” rank one update AeR™" zeR" yeR” mn
3 C + C+ AB matrix multiplication A € R™*?, B € RP>*" C € R™"™ mnp

A<+ AD column scaling A e R™" D = diag(dy,...,d,) mn
A<+ DA row scaling A e Rm D = diag(dy, . ..,d,) mn

e (Go over the “mxmult” session in R. Also read JM 3.8.

http://hua-zhou.github.io/teaching/st758-2014fall/mxmult.html
Different ways to compute X7 W 1 X, such as in the weighted least squares.
X e R*? W = diag(wy, ..., w,) € R™".

1. t(X) %*% solve(W) %*% X: O(n® + n*p + np?) flops, why need to do the
expensive matrix inversion?

2. t(X) %% diag(1 / w) %% X: O(n’p + np?) flops, why need to save a

diagonal matrix and do an extra matrix multiplication?
3. (t(X) / w) Y% X: wrong! w recycled incorrectly
4. £(X) %% (X / w): O(np* + np) = O(np?) flops

5. crossprod(X, X / w): same as 4, skip the transpose operation

e Another example: Fisher information matrix of a generalized linear model

(GLM): XTW X, where X € R™? and W = diag(wy, ..., w,) are the ob-

servation weights.

e Bottom line: Always be flop-aware when writing code.

The form of a mathematical expression and the way the expression

should be evaluated in actual practice may be quite different.
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e But, for high-performance matrix commutations, it is not enough to minimize
flops. Pipelining, effective use of memory hierarchy, data layout in memory, ...

play important role too.

Vector computer

e Most modern computers are vector machines, which perform vector calculations

(saxpy, inner product) fast.

e Vector processing by pipelining. E.g., vector addition z = x + vy

xr— Adjust

y — Exponents Add Normalize }— 2

FI1G. 1.4.1 A 3-Cycle Adder

Adjust :
E . Add Normalize
e Tp —~ T -~ I
10 9 A Zr b zg -~
v Y10 — Yo Vs

Fi1G. 1.4.2 Pipelined Addition

e One implication of the pipelining technology is that we need to ship vectors to
the pipeline fast enough to keep the arithmetic units (ALU) busy and maintain
high throughput.
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Computer architecture

e Memory hierarchy:

central memory
store

%

output devices
such as
screen and printer

arithmetic unit
(= CPL)

ueue, Uncore
& 1/0

HEREET W

Shared E

— L3 Cache -
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Processor SUPER FAST
SUPER EXPENSIVE
. TINY CAPACITY

./ processor

REGISTER
J'  crucacHE '\ FASTER
EXPENSIVE
. EEENCIACIEI SMALL CAPACITY
y LEVEL 2 (L2) CACHE b
EDO, SD-RAM, DDR-SDRAM, RD-RAM PHYSICAL MEMORY FAST
y \ PRICED REASONABLY
and More... y RAMDOM ACCESS MEMORY (RAM) '\\ AVERAGE CAPACITY
y \'\.
S5D, Flash Drive SOLID STATE MEMORY AVERAGE SPEED
PRICED REASONABLY
AVERAGE CAPACITY

NON-VOLATILE FLASH-BASED MEMORY

Mechanical Hard Drives VIRTUAL MEMORY sLow

h CHEAP
LARGE CAPACTITY

y FILE-BASED MEMORY

A Simplified Computer Memory Hierarchy
lllustration: Ryan J. Leng

Upper the hierarchy, faster the memory accessing speed, and more expensive
the memory units.

Key to high performance is effective use of memory hierarchy. True

on all architectures.

e Can we keep the super fast arithmetic units busy with enough deliveries of
matrix data and ship the results to memory fast enough to avoid backlog?

Answer: use high-level BLAS as much as possible

e Why high-level BLAS?

BLAS Dimension Mem Refs Flops Ratio
Level 1: y «+ y + ax x,ycR" 3n n 3:1
Level 2: y < y+ Ax x,y € R", A c R™" n? n? 1:1
Level 3: C < C + AB A B,C € R™™" 4n? n? 4m

e BLAS 1 tend to be memory bandwidth-limited. E.g., Xeon X5650 CPU has a
theoretical throughput of 128 DP GFLOPS but a max memory bandwidth of
32GB/s.

e Higher level BLAS (3 or 2) make more effective use of ALUs (keep them busy).
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e Message: Although we state many algorithms (solving linear equations, least
squares, eigen-decomposition, SVD, ...) in terms of inner product and saxpy,

the actual implementation may be quite different.

e A distinction between LAPACK and LINPACK is that LAPACK makes use
of higher level BLAS as much as possible (usually by smart partitioning) to

increase the so-called level-3 fraction.
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5 Lecture 5, Sep 11

Announcements

e TA office hours: Fri @ 10A-12P
e HW1 due today. Submit hardcopy and email R or Rmd code

e HW2 posted, due Tue Sep 23

Last time

e Flop counts of some BLAS subroutines

e Memory hierarchy and its implication for implementation of BLAS

Today

e Numerical linear algebra preliminaries: effects of data layout

e Numerical linear algebra: GE, LU

Effect of data layout

e Data layout in memory effects execution speed too. It is much faster to move

chunks of data in memory than retrieving/writing scattered data.
e Storage mode: column-major (FORTRAN, MATLAB, R) vs row-major (C/C++).

e Take matrix multiplication as an example. Assume the storage is column-major,
such as in FORTRAN. C < C + AB, where A € R™*", B € R"*?, C € R"™*P,
There are 6 variants of the algorithms according to the order in the triple loops.

We pay attention to the innermost loop, where the vector calculation occurs,
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jki or kji: fori=1m
C(i, 5} = C(i,7) + A1, k) B(k, j)
end .
ikj or kij: for j =1in
C(i,5) = C(i, ) + A(i, k) B(k, 7)
end
ijk or jik: for k=1p
C(i,5) = C4,5) + A(z, k}B(k, j)
end

and the associated stride when accessing the three matrices in memory (assum-

ing column-major storage)

Variant | A Stride | B Stride | C Stride
jkior kji | Unit 0 Unit
ikj or kij 0 Non-Unit | Non-Unit
ijk or jik | Non-Unit Unit 0

Apparently the variants jki or kji are preferred.

e Message: data storage mode effects algorithm implementation too.

Solving linear equations

We consider algorithms for solving linear equations Ax = b, a ubiquitous task in

statistics. Idea: turning original problem into an “easy” one, e.g., triangular system.

Triangular system

o Forward substitution to solve Lx = b, where L € R"*" is lower triangular
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111 0 0 T (FJL
a1 das ... 0 TIa b?
Qynl @mn2 - Oym T h.lrr

r = }}1/!‘111

o (hg — (211 )/!’J‘.gg

rg = (hg — 3101 — 1’1.323?2}/1’133

Ly = E)m. = Q1 — Aypolia — .0 — a-r.':.,m.—lrm.—l)/am.m.

n?/2 flops (n?/2 multiplications/divisions and n?/2 additions/substractions)
and L is accessed by row.

e Back substitution to solve Ux = b where U € R"*" is upper triangular

ayy .. a1,m—1 Ll ] |- Iy ] |- by ]

0 Tp—1.m—1 Am—1.m Lyn—1 I.![)n;-.—l
0 0 Ly, Ty

1
Il
é’.‘}"‘

J’H bj’.‘!/a”!”!

Lip—1 ( dp—1 = Qgp—1.mLm /am—l m—1
- ( m—2 " Q-2 m—1Lmpm—1 — !’I.;J:.—E,r.l:.xm.)/am.—g,m.—g
ry = by = appx9 — 133 — ... = a1,,2,) /a1y

n?/2 flops (n?/2 multiplications/divisions and n?/2 additions/substractions)
and U is accessed by row.

e Column version: reverse the order of looping.
e BLAS level 2 function: ?trsv (triangular solve with one right hand side)

e BLAS level 3 function: ?trsm (matrix triangular solve, i.e., multiple right hand
sides)
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In R, forwardsolve() and backsolve() (wrappers of dtrsm)
Eigenvalues of L are diagonal entries \; = £;;. det(L) =[], 4.

A unit triangular matriz is a triangular matrix with all diagonal entries being
1.

The algebra of triangular matrices (HW2)
— The product of two upper (lower) triangular matrices is upper (lower)

triangular.

— The inverse of an upper (lower) triangular matrix is upper (lower) trian-

gular.

— The product of two unit upper (lower) triangular matrices is unit upper

(lower) triangular.

— The inverse of a unit upper (lower) triangular matrix is unit upper (lower)

triangular.
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Gaussian elimination and LU decomposition

Given a systemn of linear algebraic equations

a] a3 - a|[x| (&
@31 @37 ... apllxz _ by
@ml  %m2 - Zpm]||%m By

Step 1: Each row times a1 /ay,

then use row one to subtract other rows.

a|y @13 - ap|[A| (&
0 &9 ... dollx &
=, T T
(R R S | P I 9

Step 2: The second row and down multiply by &7 fdy7 ,

then use row two to subtract every row below.

ayy ay @3 - ap|[anl [a
0 dyy dy3 ... dyl|lx &y
=0 0 3 ... da||x|=|&
0 0 @z .. dpyll®m] |8

Step 3: Similar to the previous two steps, repeat until all
elements in the lower triangle of the matrix A

become zeros.

ar @y - a2
0 dyy ... dyy % b
= : : .. : Zl=] :
0 0 .. ™ |5,

e Solve Ax = b for a general matrix A € R™*".

An important contribution by Gauss. No linear algebra in 1800!

Idea: a series of elementary operations that turn A into a triangular system.

We consider the square A case first.

44



Elementary operator matriz E;;(c) is the identity with the 0 in position (j, k)

replaced by c. For any vector x,

Ej(c)x = (z1,...,2j_1,%j + CTh, Tjy1, ..., Tp)

Applying Ej;(c) to both sides of the system Ax = b replaces the j-th equation
aj,x = b; by aj,x + caj,x = b; + cby. For j >k, Ej.(c) = I + cejey is unit

lower triangular and full rank. Ej_kl(c) = Ej;(—c).

Zeroing the first column

Egl(Cgl))AiB = Egl(Cgl))b
Ey (N En () Az = By (V) Ex(d)b

En(c) - Esy (") Ex () Az = E(cl)- - Bai(cf”)Ex(ch)b
where cgl) = —a;1/ay. Denote M, = Enl(cg)) e Egl(cgl))Ezl(cgl)).

Then zero the k-th column for k = 2,...,n — 1 sequentially. This results in
a transformed linear system Ux = b, where U = M,_;--- M, A is upper
triangular and b= M, _,--- Mb. M, has the shape

1
(*) (k) 1
M, = En, "‘Ek+1,k = C(k) 1 )
k+1
cgﬁ) 1
where cl(-k) = —dgl,z_l) dg;_l). M, is unit lower triangular and full rank. M), are

called the Gauss transformations.

Let L= M,"---M," . We have the decomposition
A=1LU.

M, is unit upper triangular, so M, !'and thus L is unit lower triangular.
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e Whereis L? Note M, = I+(0,...,0, cgizl, e ,cglk))TeZ. By Sherman-Morrison,
M ' =1-(0,... ,O,cgfgl, . ,c%k))TeL. So the entries of L are simply £;, =
—C(k), i > k, the negative of multipliers in GE.

)

e The whole LU procedure is done in place, i.e., A is overwritten by L and U.

e Implementation: outer product LU (kij loop), block outer product LU (higher
level-3 fraction), Crout’s algorithm (jki loop), ...

Pivot
row/column

. Updated
entries

. Unused
entries

e LU decomposition exists if the principal sub-matrix A(1 : k,1 : k) is non-
singular for £ = 1,...,n — 1. If the LU decomposition exists and A is non-

singular, then the LU decomposition is unique and det(A) = [}, w;;.

e This forward elimination or LU decomposition costs (n—1)*+(n—2)%+---+12 ~

+n® flops (n®/3 multiplications and n®/3 additions).

e Given LU, one right hand side costs n? flops (one backward substitution and

then forward substitution).

e For inversion, there are n right hand sides e;. However, taking advantage of
zeros reduces n® flops to %n?’ (see JM exercise 3.2). So matrix inversion costs

1,3, 2.3 _ 3 :
zn° + 3n° = n° flops in total.

e We do not compute matrix inverse unless (i) it is absolutely necessary to com-

pute s.e., (2) number of right hand sides is much larger than n, (3) n is small.
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LU decomposition of a rectangular matrix A € R™* " exists if A(1:k,1: k) is

non-singular for & = min{m, n}. For example,

1 2 10

1 2
3 41=(3 1

0 -2
5 6 5 2

R F [t

Slight modification to the algorithm.

and
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6 Lecture 6, Sep 16

Announcements

e HW1 returned:
— Change of code naming convention for later homework: LastFirstHW2.R
or LastFirstHW2.Rmd, e.g., ZhouHuaHW2.Rmd
— Identify yourself in your code
— Submit code on time: late penalty 5pts/day (7)

— Style: indenting, no more 80 characters per line, space around binary

operators, space after comma, ...

— Q1: work out the computer arithmetic on at least one case, so you're
clear about what’s happening with rounding, losing significant digits when

matching exponents, normalization, ...

— Q4: crossprod(), tcrossprod(), outer(), row(), col(), rowSums(),

colSums () functions in R, subsetting in R, ...
— Q5: vectorize code, determinant from Cholesky decomposition

— Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/
hwOlsol.html

Last time

e Effect of data layout (column-major vs row-major)
e Triangular system: n?/2 flops for forward substitution or backward substitution

e GE and LU decomposition (JM 3.4)

Today

e GE and LU: pivoting

e Cholesky decomposition (KL 7.7 and JM 3.5)
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Pivoting for LU

What if we encounter a pivot d,(jg_l) being 0 or close to 0 due to underflow?
Think about A = (? (1)) Does it have a solution for arbitrary b7 Does GE
work?

Work on the example

T+ 19 = 2,

which has solution z; = 1.0001 and x5 = 0.9999. Suppose we have 3 digits
of precision. After first step of elimination, we have (catastrophic cancellation

happens)

—10,000xy = —10,000

and the solution by back substitution is x5 = 1.000 and x; = 0.000.

Message: zero or very small pivots cause trouble.

Solution: pivoting.

Partial pivoting: at the k-th stage the equation with max] , |d§,]§_1)| is moved
into the k-th row. Thus we have M,,_P,_;--- M, PLA =U.

With partial pivoting, it can be shown that
PA=LU,

where P = P,_; - -- Py, L is unit lower triangular with |/;;| < 1, and U is upper

triangular.

det(P) det(A) = det(U) =[]\, wi-

To solve Ax = b, we solve two triangular systems
Ly=Pb and Uz =y,

costing n? flops.
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e Complete pivoting: Do both row and column interchanges so that the largest
entry in the sub matrix A(k : n,k : n) is permuted to the (k, k)-th entry. This
yields the decomposition PAQ = LU, where |(;;] < 1.

e Warning: In actual implementation, we do not really need to interchange

rows/columns for pivoting. Just keep track of the indices we have interchanged.

e Gaussian elimination with partial pivoting is one of the most commonly used
methods for solving general linear systems. Complete pivoting is stable but

costs more computation. Partial pivoting is stable most of times.
e LAPACK: ?GETRF does PA = LU (LU decomposition with partial pivoting).

e In R, solve() implicitly performs LU decomposition (wrapper of LAPACK
routine DGESV). solve () allows specifying a single or multiple right hand sides.
If none, it computes the matrix inverse. The matrix package contains 1u()

function.

Cholesky decomposition (symmetric LU)
JM 3.5 and KL 7.7

SABILX

(° .
André-Louis Cholesky

Archives de I'Ecole p ique (Fonds A. Cholesky)
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e A basic tenet in numerical analysis:
The structure should be exploited whenever solving a problem.

Common structures include: symmetry, definiteness, sparsity, Kronecker prod-

uct, low rank, ...

e Consider solving the normal equation X7 X3 = X Ty for linear regression. The
coefficient matrix X7 X is symmetric and positive semidefinite, how to exploit

this structure?

e Theorem: Let A € R™™" be symmetric and positive definite. Then A = LL"

where L is lower triangular with positive diagonal entries and is unique.

Proof by induction. If n = 1, then £ = \/a. For n > 1, the block equation
a1 a’ . 511 0;71 811 Al
a AQQ B l L22 On—l L;Q '

= Vv a1l

LQQL;—Q = A22 — llT = A22 — al_llaaT.

has solution

Now a;; > 0 (why?), so £1; and I are uniquely determined. Ay — ajlaa’ is
positive definite because A is positive definite (why?). By induction hypothesis,

Ly, exists and is unique. O

e The constructive proof completely specifies the algorithm.
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(a)

Compute Cholesky
decomposition of Ly,
Update and
overwrite Lay

(d)

Computational cost: 3[(n—1)?+(n—2)%4---+1?] &~ +n? (half the cost of LU

decomposition due to symmetry) plus n square roots.
Avoid square roots: LDL" decomposition.

Pivoting? In general Cholesky decomposition is very stable. Failure of the
decomposition simply means A is not positive definite. It is an efficient way to

test positive definiteness.

If zero pivots a; = 0 are encountered, we can still continue the algorithm by
setting £; = 0 and I = 0. A better alternative is to use Cholesky decomposition

with symmetric pivoting.

Any matrix X € R™™" is a square root of A = 0,4, if A = X X. Note that

Cholesky factor is not a square root of A unless A is diagonal.
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7 Lecture 7, Sep 18

Announcement

e HW2 hints: http://hua-zhou.github.io/teaching/st7568-2014fall/st758fal12014/
2014/09/16/hw2-hints.html

e HW3 will be posted today. Due Tue Sep 30.

Last time
e LU with partial pivoting: PA = LU (still n/3 flops)
e Cholesky decomposition A = LLT, A p.d.: n?/6 flops taking advantage of

symmetry

Today

e Cholesky decomposition for A p.s.d.: symmetric pivoting
e Linear regression by Cholesky (JM 3.5, KL 7.7)

e QR decomposition (JM 5.4-5.8, KL 7.8-7.9)

Cholesky with symmetric pivoting
A= 0,5, (p-s.d)

e When A does not have full rank, e.g., X7 X with a non-full column rank X,

we encounter ag, = 0 during the procedure.

e Symmetric pivoting. At each stage k, we permute both row and column such
that max!", agr becomes the pivot. If we encounter max!"_, axr = 0, then A(k :

n,k:n) =0 (why?) and the algorithm terminates.

e With symmetric pivoting: PAPT = LL", where P is a permutation matrix
and L € R™", r = rank(A).

e In R, chol() is a wrapper function for LAPACK routines DPOTRF (p.d.) and
DPSTRF (p.s.d. with pivoting).
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— Option pivot = FALSE calls DPOTRF. It does A = RTR and gives error

message if A is not full rank.

— Option pivot = TRUE calls DPSTRF. It does symmetric pivoting PAPT =
R’ R and yields rank and pivot.

— Option tol passes the tolerance to LAPACK for deciding zero pivots.

Default is n - machine epsilon - max(diag(A)).

Applications of Cholesky decomposition

There are numerous applications of Cholesky decomposition.

e No inversion mentality: Whenever we see matrix inverse, we should think in
terms of solving linear equations. If the matrix is positive semidefinite, Cholesky

decomposition applies.

e Example: multivariate normal density N, (u, X), X is p.d.

1 1
—g In(2m) — 5 Indet 2 — S (y — )= (y — ).

— Method 1: (a) compute explicit inverse X' (n? flops), (b) compute quadratic
form (n? + n flops), (¢) compute determinant (n®/3 flops).

— Method 2: (a) Cholesky decomposition ¥ = LLT (n3/6 flops), (b) Solve
Lx = y — p by forward substitutions (n?/2 flops), (c) compute quadratic
form 7z (n flops), and (d) compute determinant from Cholesky factor (n

flops).
Which method is better?
e Compute Moore-Penrose inverse AT. (HW3)

e Linear regression.

Linear regression by Cholesky (method of normal equations)

Assume X € R"*? has full column rank. (For rank deficient X, use Cholesky with

symmetric pivoting.)

o4



e [t is easier to work on the augmented matrix
(XTX XTy> _ <L 0) (LT l) _ (LLT Ll )
Yy X y'y I" d) \0" d UL™ |12+ d%)
Normal equation implies the equation
X'XB=LL'B=X"y=Llor L'B =1,
which we can solve for 3 in p?/2 flops. Since I = L™ Xy, we have
Ul=yX(LL)'X'y=y"X(X'X)"' X"y =y "Pxy = [y

and
d* =y'y -1l = y'(I - Px)y = |ly — g3 = SSE.

If standard errors are needed, we do inversion (X7 X)™! = (LLT)"' = L-TL~".

Use chol2inv() in R function for this purpose.

e In summary, linear regression by Cholesky, aka the method of normal equations:

Form the lower triangular part of (X, y)"(X,y) (n(p + 1)?/2 flops)

XX X7
Cholesky decomposition of the augmented system ( y) ((p+
1)3/6 flops)
— Solve LT3 =1 for regression coefficients 3 (p2/2 flops)

2

If want standard errors, estimate o2 by 62 = d?/(n — p) and compute

02(XTX)™ =62(LLY)™! (2p®/3 flops)

Total cost is p*/6 +np? /2 flops (without s.e.) or 5p3/6 +np? /2 flops (with s.e.).

QR decomposition and linear regression

Assume X € R"*? has full column rank.
e QR decomposition: X = QR, where Q € R"*", Q'Q = I,,, and R € R"*?P.

— first p columns of @ form an orthonormal basis of C(X)

— last n — p columns of @ form an orthonormal basis of N'(X7)
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e (Thin/Skinny QR) Then X = QR where Q; € R"*? has orthogonal columns,
QiQ: = I,, and R, € RP*? is an invertible upper triangular matrix with

positive diagonal entries.

e For linear regression, we only need skinny QR.
Note X'X = R{R, yields the Cholesky decomposition of X" X.

e Better to perform (skinny) QR on the augmented matrix

(x v) - (@ o) (3 7) - (or @re).

Normal equation X" X3 = X"y implies
R3=R"'X'y=R'R'Qy=Q'y=r,
which is easy to solve for 3. The fitted value is y = X3 =QRR'r = Qr.

The residual is
e=y-XB=y-Qr=dq
and SSE = ||é||5 = d?. The projection matrix is

X(X'X)'X=QR(RR)"'R'Q" = QQ".

e Three numerical methods to compute QR: (modified) Gram-Schmidt, House-

holder transform, (fast) Givens transform

QR by (modified) Gram-Schmidt

Erhard Schmidt

Jorgen Pedersen Gram in an undated &
photo
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X2

—

Y

X1

Assume X = (xy,...,x,) € R has full column rank.

Gram-Schmidt algorithm produces the skinny QR.

Gram-Schmidt algorithm orthonormalizes a set of non-zero, linearly independent

vectors &1, ..., x,. Initialize q; = @1 /||z1]|2; then for k =2,...,p,
k—1
Vp = Tk — PC{QL--‘,%A}"Bk =L — Z<J3k, qj>qj
j=1
a = vi/|lvell2

FOI‘j: 17...,p, C{a:l,...,:vj} :C{ql,...,Qj} and q; J_C{azl,...,mj_l}.
Collectively, we have X = QR (skinny QR), where

— Q € R™? has orthonormal columns g and thus Q7 Q = I,,.

— What’'s R? R = Q"X € RP*P has entries rj, = (q;, ), which are
available from the algorithm. Note rj; = 0 for 7 > k. Thus R is upper

triangular.
X is over-written by @Q and R is stored in a separate array.

The regular Gram-Schmidt is unstable (we loose orthogonality due to roundoff

errors) when columns of X are collinear.

Modified Gram-Schmidt (MGS): after each normalization step of vy, we replace
xj, j > k, by its residual.
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e Why MGS is better than GS? Read http://cavern.uark.edu/~arnold/4353/
CGSMGS . pdf

e Computational cost of GS and MGS is Y ¥_, 2n(k — 1) = np?.
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8 Lecture 8, Sep 23

Announcements

e HW2 due today. Submit both hardcopy and R code (LastFirstHW2.R or
LastFirstHW2.Rmd)

o HW3 due next Tue.

Last time

e Cholesky decomposition with symmetric pivoting: PAPT = LLT
e Linear regression by Cholesky

e QR and linear regression

e QR by (modified) Gram-Schmidt: np* flops to get X = QR (thin QR)

Today
e QR by Householder

e QR by Givens

QR by Householder

S

Photograph by Paul Halmos
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Assume X = (xy,...,x,) € R"*? has full column rank.

R
o Idea: H,--- H,H, X = < 01>7 where H; € R™™" are the Householder trans-

formation matrix. It yields the full QR where Q@ = H;--- H, € R"*". Recall
GS/MGS only produces the thin QR decomposition.

e For arbitrary v, w € R™ with ||v||s = ||w]|2, we can construct a Householder
matric H = I, — 2uu’, u = —mw — w), that carries v to w:
Hv =w.

H is symmetric and orthogonal. Calculation of Householder vector w costs 2n
flops.

“ span(u)*

Fa

FiG. 2.3.1. Reflection of a vector a in a hyperplane with normal u.

e Now choose H; to zero the first column of X below diagonal

212

0
H,x, =

0

Take H to zero the second column below diagonal; ...
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HzHlA =

cCoocooX
o oo X X
RE&&E X X
X X X X X X
X X X X X X

In general, choose the j-th Householder transform H; = I, — 2ujuj, where

0;_ . , , ,
u; = ( 7 1), u; € R"I to zero the j-th column below diagonal. H; takes

Uj
A _ (b ).
’ I ji1—2u;al H;

the form
Applying a Householder transform H = I — 2uu? to a matrix X € R"*?
HX =X —2u(u'X)

costs 2np flops. We never explicitly form the Householder matrices.

Note applying H; to X only needs 2(n —j +1)(p — j + 1) flops.

QR by Householder: H,--- H; X = <IZI> .

The process is done in place. Upper triangular part of X is overwritten by

R, and the essential Householder vectors (;; is normalized to 1) are stored in
X(j:n,j).

At j-th stage

1. computing the Householder vector @; costs 2(n — j + 1) flops

2. applying the Houscholder transform H; to the X (j : n,j : p) block costs
2n—j+1)(p—j+1) flops

In total we need >27_;[2(n —j+1) +2(n —j+ 1)(p— j +1)] = np® — 5p° flops.
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o Whereis Q? Q = H,---H,,.
In some applications, it’s necessary to form the orthogonal matrix Q.

Accumulating @ costs another np? — 3p* flops.

e When computing Qv or Qv as in some applications (e.g., solve linear equation
using QR), no need to form Q. Simply apply Householder transforms succes-
sively.

qr.qy() and qr.qty() in R do this.

e Computational cost of Householder QR for linear regression: np? — 3p* (regres-

sion coefficients and %) or more (fitted values, s.e., ...).

Rank deficient X: Householder QR with column pivoting

X € R"P may not have full column rank.

e Idea (due to Businger and Golub 1965): at the j-th stage, swap the column in
X (j :n,j:p) with maximum ¢, norm to be the pivot column. If the maximum

l5 norm is 0, it stops, ending with

XH_Q< Ry Ry )

O(n—r) T O(n—r) X (p—r)

where IT € RP*P is a permutation matrix and r is the rank of X. QR with

column pivoting is rank revealing.

e The overhead of re-computing the column norms can be reduced by the property

(6]
Qz = ( > = |lwll3 = [l2]55 — o
w

for any orthogonal matrix Q.

e In R, the qr() function is a wrapper for various LINPACK (default) and LA-

PACK routines. It performs Householder QR with column pivoting and returns

— $qr: a matrix of same size as input matrix

— $rank: rank of the input matrix
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— $pivot: pivot vector

— $aux: normalizing constants of Householder vectors

Auxiliary functions qr.coef (), qr.resid(), qr.qy(), qr.qty (), qr.solve(),
.. are very helpful.

QR by Givens rotation (JM 5.7-5.8)

Householder transform Hj introduces batch of zeros into a vector.

Givens transform (aka Givens rotation, Jacobi rotation, plane rotation) selec-

tively zeros one element of a vector.

Overall QR by Givens rotation is less efficient than the Householder method,

but is better suited for matrices with structured patterns of nonzero elements.

Givens/Jacobi rotations:

0 0 0 1
where ¢ = cos(#) and s = sin(f). G(i, k, 0) is orthogonal.
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e Pre-multiplication by G (i, k, )" rotates counterclockwise @ radians in the (i, k)
coordinate plane. If x € R" and y = G(i, k,0)"x, then
cr; — ST J =1
Y= sr;+cxy j=k
X ] 7é i, k

Apparently if we choose tan(f) = —xy/x;, or equivalently,

X — T
= 2 2’ 5= 2 2’
\V T+ T VAL S

then y;, = 0.

e Pre-applying Givens transform G (i, k, )7 € R™™ to a matrix A € R™*™ only
effects two rows of A:

wayy—<c ﬁ A(li K], ),

—S C

costing 2m flops.

e Post-applying Givens transform G(i, k,0) € R™*™ to a matrix A € R™™ only
effects two columns of A:

A@@@M—A@pxp(c j,

—S C

costing 2n flops.

i R
e QR by Givens: GT---GT X = ( 1)

0
X X X [(x X X C % x X
X X X f (34 X X X {2y x x x {12
—ly e e
X X X X X X 0 x x
X x X _0 x X [_0 X X
X X X [ x X X [ X X X
0 x x cg.ﬂ 0 x x Qﬂ 0 x x m-—"f-}R
0 x x 0 x x D 0 x
0 x x _0 0 x _0 0 x



Zeros in X can also be introduced row-by-row.
If X € R™*P, the total cost is (3/2)np? — p?/2 flops and O(np) square roots.

Note each Givens transform can be summarized by a single number, which is

stored in the zeroed entry of X.

Fast Givens transform avoids taking square roots.
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9 Lecture 9, Sep 25

Announcements

o HW2 returned. Feedback:

— Only Q2, Q4, and Qb are graded. Maximum points 60.

— Code style penalty doubles.

— Late penalty: 5 pts/day.

— Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/

hw02so0l.html. Please compare to your code carefully and understand why:.

e HW3 due next Tue. FAQs at http://hua-zhou.github.io/teaching/st7568-2014fall/
St758fal12014/2014/09/24/hw3-hints.html

e HW4 posted. Due Oct 14.
e Answer to Susheela’s questions:

— Backward accumulation algorithm for accumulating Q@ = H; --- H, from
Householder vectors stored in the Household QR output costs about 2(n?p—
np? + p*/3) flops. See |Golub and Van Loan| (1996, p213).

— Computing Q7Y , Y € R™™" (r right hand sides), costs about (2np — p*)r
flops. See |Golub and Van Loan| (1996, p212).

e Answer to Meng’s question: Why (how) normalize Householder vector such that
the 1st element is 17 See |Golub and Van Loan| (1996 Algorithm 5.1.1, p212).

Last time

e QR by Householder

e QR by Givens

Today

e Sweep operator (KL 7.4-7.6, JM 5.12)
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Sweep operator
Assume A > 0,5y,

o KL 7.4-7.6; JM 5.12; Also see “A tutorial on the SWEEP operator” by James
H. Goodnight. http://www. jstor.org/stable/2683825

e Note the (anti-symmetric) version in JM is different from the (symmetric) ver-
sion in KL. I follow the convention in KL.

e Sweep on the k-th diagonal entry ag, # 0 yields A with entries

. 1
Qg = ———
993

N Qg
Qi =

Ak
A Qpj
ag; = —

Qg
- Ak Ak . .
aij = a;———, 1#kj#Fk

ALk

n?/2 flops (taking into account of symmetry).

e Inverse sweep sends A to A with entries

. 1
Ak = ———
Ak
. . ik
Qi = —
Ak
< Qe
ag; = ——
993
- Qi A . .
Qi a; ———, iFkj#k

Ak

n?/2 flops (taking into account of symmetry).
e A=A
e Block form of sweep: Let the symmetric matrix A be partitioned as A =

A, A
( 1 12) . If possible, sweep on the diagonal entries of Aq; yields

Ay Ay
Ao AT Al A '
A21A1_11 Aoy — A21A1_11A12
Order dose not matter.
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Pd and determinant: A is pd if and only if each diagonal entry can be swept
in succession and is positive until it is swept. When a diagonal entry of a pd
matrix A is swept, it becomes negative and remains negative thereafter. Taking
the product of diagonal entries just before each is swept yields the determinant
of A.

X'X X7
Linear regression by sweep. Sweep on ( . y) yields

LX) X)Xy (—hVa@) B
YX(XX) yy-yX(X'X)'XTy 3 ly—9l3)

In total np?/2 + p3/2 flops.

Sweep is useful for stepwise regression, (conditional) multivariate normal density
calculation, MANOVA, ...

Warning: the sweep() function in R has nothing do to with the sweep operator

here.

Demo code: http://hua-zhou.github.io/teaching/st758-2014fall/sweep.
html
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10 Lecture 10, Sep 30

Announcements

e HW3 due today. Submit hard copy + code (LastFirstHW3.R or LastFirstHW3.Rmd)
e HW4 posted. Due Oct 14.
e TA office hours on Oct 8 @ 10AM-12PM?

e Some FAQs:

— (Maggie) If A € R™*P has full rank, Householder QR gives A = Q; R, and
MGS gives A = Q2 Ry, where Q1,Q2 € R™?, QTQ, = Q1 Q2 = I, and
R, R, € RP*P are upper triangular with positive diagonal entries. How
do we know Q1 = Q57

— (Meng) Block sweep simply means sweeping diagonal entries in that block

sequentially. Order does not matter.
— Check “80 character rule” in R Studio.

— (Liuyi) What exactly is that pivot from the output of qr() and chol()
(with pivot = TRUE) functions in R? See hints at http://hua-zhou.
github.io/teaching/st7568-2014fall/st7568fal12014/2014/09/24/hw3-hints.
html

Last time

o HW2 review

e Sweep operator (KL 7.4-7.6, JM 5.12)

Today

e Summary of numerical methods for linear regression
e Summary of solving linear equations: overdetermined system

e Condition number for solving linear equations
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Summary of linear regression: Table on KL p105

Method Flops Remarks Software  Stability
Sweep np?/2+p*/2 (XTX)"! available  SAS less stable
Cholesky np?/2 +p*/6 less stable
QR by Householder — np? — p*/3 R
QR by MGS np? Q; available more stable

Table 1: Numerical methods for linear regression. In order of stability.

Remarks:

e When n > p, sweep and Cholesky are twice faster than QR and need less space.

But QR methods are more stable and produce numerically more accurate solu-

tion.
e Although sweep is slower than Cholesky, it yields standard errors and so on.

e Sweep is useful for stepwise regression, multivariate normal calculation, and

numerous other statistical applications.

e MGS appears slower than Householder, but it yields Q.

“There is simply no such thing as a universal ‘gold standard’ when it

comes to algorithms”.

Summary of solving linear equations

Consider linear system Ax = b.

e We now know some good numerical methods for the least squares problem,

which is essentially “solving” an overdetermined system (a tall A).

e Table 2/ compares the flops of some methods (in order of stability) for solving a

square (unstructured) A € R™*".
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Method Flops

Stability

Gaussian elimination
QR by Householder
QR by MGS
SVD

n®/3
(2/3)n

6n3

less stable

most stable

Table 2: Flops of different numerical methods for nxn square linear systems, assuming
availability of the right hand side at time of decomposition.

e Flop count is not everything. GE/LU has a higher memory traffic and vector-

ization overheads, and QR approach is comparable in efficiency. QR methods

are more stable.
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e Solve an underdetermined system (a flat A € R™*" of full row rank) by QR —
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version 1. First compute QR on AT

ar—qr-q ™ .
O(n—m)Xm

Then Ax = b becomes

(QR)'® = (Rl 0pxum)) (Z) =b,

T, _ [*1
0w ()

z; is determined from RIz, = b. If we take z, = 0,,_,,, then we obtain the

where

minimum norm solution (why?).

e Solve an underdetermined system (a flat A € R™*" of full row rank) by QR —

version 2. First compute QR with column pivoting on A
ATI=Q (R, R»).

where Ry € R™™ is upper triangular and Ry, € R™*™ ™ Thus Az = b

transforms to
(R R) (“) -Q'»,
Z2

'z = <z1> .
Z9

One solution is obtained by z; = RleTb and zy = 0,,_,,. It is not guaranteed

where

to be of minimum norm.

Condition number for linear equations (matrix inversion)

e Assume A € R™ " is nonsingular and consider the system of linear equation
Ax = b. The solution is £ = A~'b. We want to know how the solution changes

with a small perturbation of the input b (or A).
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Let b=b+ Ab. Then £ = A~'(b+ Ab) = « + Ax. Thus
|Az| = AT Ab]| < [|A7[[|Ab]].

Because b = Az, - < ||A||ﬁ This results

e

|Az|| 1 12D
< [AlA IS
[ed] 6]
k(A) = ||AJ|||A7Y| is called the condition number for inversion. It depends on

the matrix norm being used. k, means condition number defined from matrix-p

norm.
Large condition number means “bad”.

Some useful facts

H(A) = k(A
K(cA) — K(A)
HA) > 1
K1(A) = Ko(AT) "
ra(A) = fiz(AT)Zan(A)
Ka(ATA) = % — 12(A) > ma(A).

The last fact says that the condition number of AT A can be much larger than
that of A.

The smallest singular value o, indicates the “distance to the trouble”.

Condition number for the least squares problem is more complicated. Roughly
speaking, the method based on normal equation (Cholesky, sweep) has a con-
dition depending on k5(X )% QR for a “small residuals” least squares problem
has a condition depending on ky(X).

Numerically, consider the simple case

1 1
X=1102 o0
0 1073

73



Forming normal equation yields a singular Gramian matrix

xx- (!
11

if executed with a precision of 6 digits.

e In R, the kappa() function (wrapper of DTRCON in LAPACK and DTRCO in LIN-

PACK) computes or approximates (default) the condition number of a matrix.

e In regression problems, standardizing the predictors could improve the condi-
tion. See demo on the Longley data http://hua-zhou.github.io/teaching/
st758-2014fall/longleycond.html.

e In design of experiments (DoE), people favor orthogonal design. Why?
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11 Lecture 11, Oct 2

Announcements

e HW3 returned. Feedback:

— Only Q2(d) and Q3 are graded. Total points is 50.

— Style issues: penalty doubles.

— Late penalty: 5 pts/day.

— Q1, probabilistic proof?

— By default, qr() function does Householder QR with column pivoting!

Need to use the pivot vector to permute results.

— Make good use of crossprod() and tcrossprod() functions to compute
Grammian matrix, avoid unnecessary matrix transpose, and so on. Check
source code:

/R-3.1.1/src/main/names.c

/R-3.1.1/src/main/array.c
— How to generate rank deficient matrix?
— Efficient implementation of sweep operator?

— Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/

hw03sol.html. Please compare to your code carefully and understand why.
e HW4 due Oct 14.
e TA office hours on Wed Oct 8. No TA office hours on Fri Oct 10 (fall break).

e Caleb’s question: Nvidia Tesla vs Intel Xeon Phi
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Single Complex Double Complex

* CUBLAS 6.5 on K40m, ECC ON, input and output data on device
Performance may vary based on 05 version and motherboard configuration 1

+ m=n=k=4096, transpose=no, side=right, fill=lower

Matrix Multiply Performance using Intel* Math Kernel Library
on Intel* Xeon Phi™ Copracessor 7120P and Intel* Xeon* Processor €5-2697 v2

DGEMM

Performance (GFlops)
2
g

256 512 1024 1536 2048 2560 3072 3584 4096 4608 5120 5632 6144 6656 7168 7680 8192 8704 9216 9728 10240

Matrix Size (M=N=K)
~#-Native Execution on Intel” Xeon Phi Copracessor 7120P  ~m-Intel* Xeon® Processor £5-2697 v2

Our department has at least 2 servers each with 4 Nvidia Tesla M2070QQ GPUs.
Each Tesla M2070Q has 6G memory (5.25G with ECC), 786K L2 cache, 448

cores @ 1.15GHz, and theoretical throughput of 1288 SP GFLOPS or 512 DP
GFLOPS.
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Last time

e Summary of linear regressions

e Summary of numerical methods for solving linear equations: tall A (least
squares, over-determined system), square A, and flat A (underdetermined sys-

tem)

e Condition number for solving linear equations

Today

e [terative solvers for linear systems

Iterative method for solving linear equations: introduction

Mathematical PageRanks for a simple network, expressed as percentages. &
(Google uses a logarithmic scale.) Page C has a higher PageRank than Page E,
even though there are fewer links to C; the one link to C comes from an important
page and hence is of high value. If web surfers who start on a random page have
an 85% likelihood of choosing a random link from the page they are currently
visiting, and a 15% likelihood of jumping to a page chosen at random from the
entire web, they will reach Page E 8.1% of the time. (The 15% likelihood of
jumping to an arbitrary page corresponds to a damping factor of 85%.) Without
damping, all web surfers would eventually end up on Pages A, B, or C, and all
other pages would have PageRank zero. In the presence of damping, Page A
effectively links to all pages in the web, even though it has no outgoing links of its
own.

e Direct method (flops fixed a priori) vs iterative methods:
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— Direct method (GE/LU, Cholesky, QR, SVD): good for dense, small or

moderate sized, unstructured A

— Iterative methods (Jacobi, Gauss-Seidal, SOR, conjugate-gradient, GM-
RES): good for large, sparse, or structured linear system, parallel comput-

ing, warm start

e PageRank (HW4):
— A € {0,1}™" the connectivity matrix with entries

1 if page 7 links to page j

CLij =
0 otherwise
n ~ 10° in Sep 2014.
—r= Zj a;; is the out-degree of page 1.
— Imagine a random surfer wandering on internet according to following
rules:
* From a page ¢ with r; > 0
- with probability p, (s)he randomly chooses a link on page i (uni-
formly) and follows that link to the next page

- with probability 1 — p, (s)he randomly chooses one page from the
set of all n pages (uniformly) and proceeds to that page

* From a page i with r; = 0 (a dangling page), (s)he randomly chooses

one page from the set of all n pages (uniformly) and proceeds to that
page
The process defines a Markov chain on the space of n pages.

— Stationary distribution of this Markov chain gives the ranks (probabilities)
of each page.

— Stationary distribution is the top left eigenvector of the transition matrix
P corresponding to eigenvalue 1. Equivalently it can be cast as a linear

equation.

— Largest matrix computation in world (7).
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— GE/LU will take (10%)3/3/10' ~ 3.33 x 10 seconds ~ 1 x 107 years on

a tera-flop supercomputer!

— Iterative methods come to the rescue.

Jacobi method

Solve linear system Ax = b.

e Jacobi iteration:

i—1 (t) n ()
L bi — D oy Qi = Do i Gty
) - .

Qg4

e Requires non-zero diagonal element!

e One round costs n? flops with an unstructured A. Gain over GE/LU if converges
in o(n) iterations. Saving is huge for sparse or structured A. By structured, we
mean the matrix-vector multiplication Awv is fast.

e Splitting: A=L+ D+ U.

e Jacobi: Dz = (L +U)z® + b, i.e.,

™) = D YL +U)x"Y + D'b.
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(Gauss-Seidel

Gauss-Seidel iteration:

i1 (1) n )
(t+1) bi — Zj:l Q5T - Zj:i—H Q5T ;

; =
Qg

With splitting, (D + L)Y = —Uz® + b, i.c.,

™) = (D +L)"'Uz" + (D + L) 'b.

GS converges for any (¥ for symmetric and pd A.

Convergence rate of Gauss-Seidel is the spectral radius of the (D + L)™'U.

e Comparing Jacobi and GS, Jacobi is particularly attractive for parallel comput-

ing.

Successive over-relaxation (SOR)

e SOR: $§t+1) = w(b; — 22;11 aija;gtﬂ) =D i aijx§t)>/aii +(1-— w)a;z(t), ie.,

) = (D +wL)™'[(1 —w)D —wU]z" 4 (D + wL) (D + L) 'wb.

e Need to pick w € [0, 1] beforehand, with the goal of improving convergence rate.
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Conjugate gradient method

Solving Ax = b is equivalent to minimizing the quadratic function %mTAm —blx.
To do later, when we study optimization. Conjugate gradient and its variants are the

top-notch iterative methods for solving huge, structured linear systems.

Table 1. Kershaw’s results for a fusion problem.

Method Number of iterations
Gauss Seidel 208,000

Block successive overrelaxation methods 765
Incomplete Cholesky conjugate gradients 25
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12 Lecture 12, Oct 7

Announcements

o HW4 due next Tue Oct 14
e HW5 will be posted this week
e TA office hours this week: Wed Oct 8 @ 10A-12P

e Dr. Zhou office hours this week: Tue Oct 7 @ 4P-5P, Thu Oct 9 by appointment

Last time

o HW3 review

e [terative methods for solving linear equations

Today

e A catalog of “easy” linear systems — last topic in solving linear equations
g y y g

e Eigen-decomposition and SVD

A list of “easy” linear systems

Consider Ax = b, A € R™". Or, consider matrix inverse (if you want). A can be
huge. Keep massive data in mind: 1000 Genome Project, NetFlix, Google PageRank,
finance, spatial statistics, ... We should be alert to many easy linear systems. Don’t

waste computing resources by bad choices of algorithms!

e Diagonal: n flops.

Tridiagonal /banded: Band LU, band Cholesky, ... roughly O(n) flops

Triangular: n?/2 flops

Block diagonal: Suppose n =Y. n;. (>, n:)%/3 vs Y. n}/3.

Kronecker product: (A® B)™' = A~ @ B™!, (C" ® A)vecB = vec(ABC)

fits iterative method.
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Sparsity: iterative method, or sparse matrix decomposition.

Remark: Probably the easiest recognizable structure. Familiarize yourself with
the sparse matrix computation tools in MATLAB, R (Matrix package), MKL
(sparse BLAS), ... as soon as possible.

Easy plus low rank: U € R™™ V € R™"™ m < n. Woodbury formula
(A+UVvVH)'=A"-A'UUI,+V'A'U)'VTA™L
Keep HW2 Q5 in mind.

Easy plus border: For A pd and V full row rank,

-1
A VT (AT ATVT(VATIVT)TIVATL ATlvT(vATlVT) T

vV o B (VAIVT) 1V AL —(VA-lyT)!
Orthogonal: n? flops at most. Permutation matrix, Householder matrix, Jacobi

matrix, ... take less.

Toeplitz systems:

To r ry T3
r-1 To T
ro T-1 To T

r3 -2 T-1 To

Tx = b, where T is pd and Toeplitz, can be solved in O(n?) flops. Durbin
algorithm (Yule-Walker equation), Levinson algorithm (general b), Trench al-
gorithm (inverse). These matrices occur in auto-regressive models and econo-

metrics.

Circulant systems: Toeplitz matrix with wraparound

20 R4 =3 22 21

21 R0 R4 R3 22
Clz)= |2 21 20 21 23],

23 R2 21 R0 <4

24 R3 22 21 <0

DCT (discrete cosine transform) and DST (discrete sine transform).

FFT type algorithms.
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e Vandermonde matrix: such as in interpolation and approximation problems

1 1 1
To 1 Tn
V(:U07 . 73371) = . .
n n n
a’:o ‘,1:1 “ e I/n/

Vax =bor VIz = b can be solved in O(n?) flops.

e Cauchy-like matrices:
QA — AA = RST,
where 2 = diag(wy, ..., w,) and A = (Ay,..., ;). O(n) flops for LU and QR.

e Structured-rank problems: semiseparable matrices (LU and QR takes O(n)

flops), quasiseparable matrices, ...

e Fast multiple method (FMM) for kernel matrix.

Other computations such as matrix-vector multiplication with these “easy” matrices
are typically fast too.
Bottom line: Don’t blindly use solve().

Linear algebra review: eigen-decomposition

Our last topic on numerical linear algebra is eigen-decomposition and singular value
decomposition (SVD). We already saw the wide applications of QR decomposition
in least squares problem and solving square and under-determined linear equations.
Eigen-decomposition and SVD can be deemed as more thorough orthogonalization of

a matrix. We start with a brief review of the related linear algebra.
o Figenvalues are defined as roots of the characteristic equation det(\I,,—A) = 0.

o If )\ is an eigenvalue of A, then there exist non-zero x,y € R" such that
Az = Az and yT A = \y?. x and y are called the (column) eigenvector and

row eigenvector of A associated with the eigenvalue .
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A is singular if and only if it has at least one 0 eigenvalue.
Eigenvectors associated with distinct eigenvalues are linearly independent.

Eigenvalues of an upper or lower triangular matrix are its diagonal entries:

)\i = ;-
Eigenvalues of an idempotent matrix are either 0 or 1.
Eigenvalues of an orthogonal matrix have complex modulus 1.

In most statistical applications, we deal with eigenvalues/eigenvectors of sym-
metric matrices. The eigenvalues and eigenvectors of a real symmetric matrix

are real.

Eigenvectors associated with distinct eigenvalues of a symmetry matrix are or-

thogonal.
Eigen-decompostion of a symmetric matrix: A = UAUT, where

— A =diag(\, ..., \)

— columns of U are the eigenvectors, which are (or can be chosen to be)

mutually orthonormal. That is U is an orthogonal matrix.

A real symmetric matrix is positive semidefinite (positive definite) if and only

if all eigenvalues are nonnegative (positive).
Spectral radius p(A) = max; |\|.

A € R™™ a square matrix (not required to be symmetric), then tr(A) = > .\

and |A| =, A
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13 Lecture 13, Oct 14

Announcements

e HW4 due today: hardcopy + email code (LastFirstHW4.R or LastFirstHW4.Rmd)

e HWS5 posted, due next Tue Oct 21

Last time

o A list of “easy” linear system

e Linear algebra review: eigen-decomposition

Today

e Linear algebra review: SVD
e Applications of eigen-decomposition and SVD

e Algorithms for eigen-decomposition and SVD

Linear algebra review: SVD

e Singular value decomposition (SVD): For a rectangular matrix A € R™*", let
p = min{m, n}, then we have the SVD

A=UXV",

- U = (uy,...,u,) € R™™ is orthogonal
-V =(vy,...,v,) € R"™" is orthgonal

— ¥ = diag(oy,...,0,) ER™" 0y >09>--->0,>0.

o; are called the singular values, u; are the left singular vectors, and wv; are the

right singular vectors.
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e Thin SVD. Assume m > n. A can be factored as
A=US, V' => cun],
i=1

where

- U, eR™" UMU, =1,
-~ VeER™, V'V =I,

— ¥, =diag(oy,...,0,) ER™™ 0y > 09> >0, >0

e Denote 0(A) = (0y,...,0,)". Then

— r =rank(A) = # nonzero singular values = ||o(A)||o
— A= UTET‘/;T = Z;:l O'Z"U,Z"UiT
= [Alle = (2, 092 = [lo(A)l2

— [Allz =1 = [lo(A)]l

e Assume rank(A) = r and partition U = (U,.,U,) € R™™ and V = (V,, V) €
R™ ™ then

- N(A) =C(V,), C(AT) =C(V;)
— U, U is the orthogonal projection onto C(A)

U,UT is the orthogonal projection onto N'(AT)
— V, VT is the orthogonal projection onto C(AT)
— V. VT is the orthogonal projection onto N'(A)

e Relation to eigen-decomposition. Using thin SVD,

ATA = VXU UXV = VXV’
AAT = UXV'VIU =UXU".

e Another relation to eigen-decomposition. Using thin SVD,

O A"\ 1 (V 'V S Opn) 1 (VT U
A Opnm) V2\U -U)\0,,, -/ V2\VT —U" )"
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Hence any symmetric eigen-solver can produce the SVD of a matrix A without
forming AAT or ATA.

e Yet another relation to eigen-decomposition: If the eigendecomposition of a real
symmetric matrix is A = WAWT = Wdiag(\, ..., \,) W7, then

|\ sgn(A;)
A=WAWT =W wT
|)‘n| SgnO‘n)

is the SVD of A.

Applications of eigen-decomposition and SVD

e Principal components analysis (PCA). X € R™ P is a centered data matrix.
Perform SVD X = UXVT or equivalently X" X = VX2V, The linear combi-

nations &; = Xwv; are the principal components and have variance 7. Usages:

1. Dimension reduction: reduce dimensionality p to ¢ < p. Use top PCs

Zi,..., %, in downstream analysis.

2. Use PCs to adjust for confounding — a serious issue in association studies

in large data sets.
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Low rank approximation, e..g, image/data compression.
Eckart-Young theorem:

i X -Y|?
rangg%zrl| IR

. . . . 1
is achieved by Y = >""_| oyu;v] with optimal value >\ o7, where (0, u;, v;)

are singular values and vectors of X.

Gene Golub’s 2691 x 598 picture requires 2691 x 598 x6 = 9, 655, 308 bytes (RGB
16 bit per channel). Rank 120 approximation requires 120 x (2691 + 598) x 6 =
2,368,080 bytes. Rank 50 approximation requires 50 x (2691 + 598) x 6 =
986, 700 bytes. Rank 12 approximation requires 12 x (2691 +598) x 8 = 236, 808
bytes.

Figure 2. Rank 12, 50, and 120 appreximations ko @ rank 598 color photo of Gene Golub.

Least squares, ridge regression, least squares over a sphere, ...

Moore-Penrose (MP) inverse: Using thin SVD,
AT =VITU",

where 37 = diag(o;',...,07%,0,...,0), 7 = rank(A). This is how the ginv()

function is implemented in MASS package.

Read KL and JM and do HW5 for some more applications.
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One eigen-pair - power method

Assume A € R™™ symmetric.

e Power method iterates according to

1
— ——— Azt
[ Az

AD O T Az

20

from an initial guess ® of unit norm.

e Suppose we arrange |[A;| > |[Ag| > .-+ > |\,| (the first inequality strict) with

corresponding eigenvectors u;, and expand ) = ciuy + - + c,u,, then

PO (> Nuuj) (>, ciwg)
12 Mwiw]) (32, i) ||
Zi CiAgui
B cu; + CQ()\Q//\1>tu2 4 Cn<>\n/)\1)tun ( A >t
= Hc1’u1 + CQ(}\2/>\1>t’u,2 4+ Cn<)\n/)\1)tun||2 p\l‘ .

* lewllz \ M

t
Thus x® — ( 21 ) — 0 as t — oco. The convergence rate is [Ag|/|A1]-

e MW TAzx® converges to \;.

Inverse power method for finding the eigenvalue of smallest absolute value: Sub-
stitute A by A~! in the power method. (E.g., pre-compute LU or Cholesky of
A).

Shifted inverse power: Substitute (A —uI)~! in the power method. It converges

to an eigenvalue close to the given pu.

Initial guess of the desired eigenvalue can be obtain by Gerschgorin’s circle

theorem and so on.

Power method also applies to asymmetric A, e.g., PageRank problem costs

O(n) per iteration.

90



Top r eigen-pairs - orthogonal iteration

Generalization of power method to higher dimensional invariant subspace.

e Orthogonal iteration: Initialize Q®) € R™ " with orthonormal columns. For
t=1,2,...,

ZO — AQ"Y  (n*r flops)

QYRY «— Z® (QR factorization, nr? — r3/3 flops)

e Z® converges to the eigenspace of the largest r eigenvalues if they are real and

separated from remaining spectrum. The convergence rate is |A,11]/| |-

(Impractical) full eigen-decomposition - QR iteration

Assume A € R™" symmetric.

e take r = n in the orthogonal iteration. Then Q® converges to the eigenspace
U of A. This implies that

T .— Q(t) TAQ(t)
converges to a diagonal form A = diag(Ay,...,\,).
e Note how to compute T® from T¢-1

T(t—l) _ Q(t—l) TAQ(t—l) _ Q(t—l) T(AQ(t—l)) _ (Q(t—l) TQ(t))R(t)
TGO = QWTAQW =QWTAQHVIQHTQW = R(t)(Q(t—l)TQ(t))_

e QR iteration: Initialize U € R™ " orthogonal and set T = U TAU O,
Fort=1,2,...

UYRY «+ T (QR factorization)
0 L ROU®

e QR iteration is expensive: O(n?®) per iteration and linear convergence rate.
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QR algorithm for symmetric eigen-decomposition
Assume A € R™ " symmetric.
e As done in LAPACK: eigen() in R, eig() in Matlab

e Idea: Tri-diagonalization (by Householder) + QR iteration on the tri-diagonal
system with implicit shift

— Step 1: Householder tri-diagonalization: 4n3/3 for eigenvalues only, 8n®/3
for both eigenvalues and eigenvectors. (Why can’t we apply Householder

to make it diagonal directly?)

- = m = = = -
'

— Step 2: QR iteration on the tridiagonal matrix. Implicit shift accelerates
convergence rate. On average 1.3-1.6 QR iteration per eigenvalue, ~ 20n
flops per QR iteration. So total operation count is about 30n%. Eigenvec-

tors need an extra of about 6n® flops.

Eigenvalue Eigenvector

Householder reduction  4n?/3 4n3/3
QR with implicit shift ~ 30n? ~ 613

e Don’t request eigenvectors unless necessary: set only.values = TRUE when

calling eigen() in R.

e Remark: there are at least two alternative ways (other than QR with implicit

shift) to solve the symmetric tridiagonal eigenproblem
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— Bisection: good when only selected portions of eigensystem are needed

— Divide and conquer: good for parallel implementation

o The unsymmetric QR algorithm obtains the real Schur decomposition of an

asymmetric matrix A.
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14 Lecture 14, Oct 16

Announcements

o HW4 returned. Feedback:

— Key to the success of iterative methods is fast matrix-vector multiplication.
Here the structure in PT or I — P7 is “sparse + low rank”. Say in power
method, if we first form the matrix P7 and then iterate according to
x® «— PTa(=1 it costs n? flops per iteration. If we keep the “sparse +

low rank” structure and iterate according to
z) — AT (diag(rH)zY) + 1, (zTxY),

it costs 3n + nnz(A) < n? flops, where nnz(A) is the number of non-zero

elements in A.

— Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/
hwO4sol.html

— Some run times in MATLAB: using vs ignoring “sparse + low rank” struc-

ture.

Matrix Size Sparsity svt (fh input svds

)

bfwb398 398  0.9816 0.0176(0.0011)  0.0408(0.0009)
rdb8001 800 0.9928 0.0240(0.0005)  0.2115(0.0014)
tols1090 1090  0.9970 0.0780(0.0009)  0.9396(0.0079)
mhd4800b 4800  0.9988 0.0471(0.0001)  5.6700(0.0166)
crygl0000 10000 0.9995 0.1909(0.0022) 44.2213(0.4373)

Table 3: Top 6 singular values and vectors of “sparse + low rank” matrices by svt
and svds. Structured matrices are formed by adding a random rank-10 matrix to
the original sparse test matrix. Reported are the average run time (in seconds) and

standard error (in parentheses) based on 10 simulation replicates.

e HW5 due next Tue Oct 21.
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Last time

e Linear algebra review: SVD

e Applications of eigen-decomposition and SVD:
PCA, data/image compression, least squares and its variants, MP inverse, sta-

tionary distribution of Markov chains (Google PageRank), ...

e Answer to Caleb’s question: Following picture is from the article “Genes mirror

geography within Europe” by Novembre et al.| (2008)) published in Nature http:
//www.nature.com/nature/journal/v456/n7218/full/nature07331.html.

Use of PCA to adjust for confounding in modern genetic studies is proposed in

the paper “Principal components analysis corrects for stratification in genome-

wide association studies” by |Price et al. (2006) published in Nature Genet-
tcs http://www.nature.com/ng/journal/v38/n8/full/ng1847.html. It has
been cited 3346 times as of Oct 14, 2014.

e Algorithms for eigen-decomposition:
power method (top eigen-pair), orthogonal iteration (top r eigen-pairs), QR iter-
ation for full eigen-decomposition (O(n?) flops), Householder tri-diagonalization
+ QR iteration with implicit shift (O(n?) flops).
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Today

e SVD algorithm

Algorithm for singular value decomposition (SVD)

APR CALIFORNIA #2008

PROF SVD

Bk
il

!

Gene Golubsslicense plate, photographed by Professor P, M. Kioonenberg of eiden Universiy:

Assume A € R™*"™ and we seek the SVD A =UDV™.
e “Golub-Kahan-Reinsch” algorithm:

— Stage 1: Transform A to an upper bidiagonal form B (by Householder).

[ dy fl 0 7
B 0 @ :
ULAVE = [ﬂ ] B = . c R™*"
 fama
0 0 dn |
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X X X X X X X X
X X X X 0 x x x
xxxxﬂ.ﬂxxxi
X X X X 0 X x x
[ X X x x | _Dxxx_
x x 0 0] [x x 0 0
ﬂxxxunxxxv
0 x x x| =3]0 0 x x| —=
0 x x x 0 0 x x
__ﬂxxx_ _ﬂﬂ'xx_
x x 0 0 x x 0 0 x x 0 0
0 x x 0 0 x x 0 0 x x 0
0 0 x x|Z& 10 0 x x|%]|0 0 x x
0 0 x x 0 0 0 x 0 0 0 x
0 0 x x 0 0 0 x 0 0 0 0

— Stage 2: Apply implicit-shift QR step to the tridiagonal matrix B™B im-
plicitly.

e See|Golub and Van Loan| (1996] Section 8.6) for more details.
e 4m?n + 8mn? + 9n3 flops for a tall (m > n) matrix.

e svd() in R and Matlab: wrapper of the _GESVD subroutine in LAPACK.
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15 Lecture 15, Oct 21

Announcements

e HW5 due today: submit hardcopy + email code
e Homework due date change to Thu?

e Spaces around “=" in function call?

Last time

e HW4 (PageRank algorithm). Ilse Ipsen’s slides
http://www4.ncsu.edu/~ipsen/ps/slides_imacs.pdf

e SVD (Golub-Kahan-Riensch) algorithm

Today

e Iterative methods (Lanszos and Arnoldi methods) for huge, structured A

e Jacobi method for eigen-decomposition (parallel computing)

Generalized eigen-problem: Ax = ABx (PLS, SIR, CCA, ...)

Variants of least squares problems (self-study)

Concluding remarks for numerical linear algebra

Lanczos/Arnoldi iterative method for top eigen-pairs

e Motivation

— Consider the Google PageRank problem. We want to find the top left

eigenvector of the transition matrix
P=pR"A + 21,

where R = diag(ry,...,7m,) and z; = (1 —p)/nif r, > 0and 1/nif r; = 0.

Suppose there are n &~ 1 billion web pages.
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The (unsymmetric) QR algorithm will take order

(1 x 10%)3

e ~ 3.33 x 10! seconds =~ 1 x 107 years

on a tera-flop supercomputer!

— Consider adjusting for confounding by PCA in modern GWAS (genome-
wide association studies). We want to find the top singular values/vectors

of a genotype matrix X € R™?, where n ~ 103 and p ~ 10°.

e Krylov subspace methods are the state-of-art iterative method for obtaining the
top eigen-values/vectors or singular values/vectors of large sparse or structured

matrices.
e Lanczos method: top eigen-pairs of a large symmetric matrix.
e Arnoldi method: top eigen-pairs of a large asymmetric matrix.

e Both methods are also adapted to obtain top singular values/vectors of large

sparse or structured matrices.

e We will give a brief overview of these methods together with the conjugate

gradient method for solving large linear system.

e eigs() and svds() in Matlab are wrappers of the ARPACK package. No native

functions in R (7).

Jacobi method for symmetric eigen-decomposition (KL 8.2)
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Assume A € R™" is symmetric and we seek the eigen-decomposition A =
UAUT.

e [dea: Systematically reduce off-diagonal entries

off(A) = Z Z a?j

i gt
by Jacobi rotations.
e Jacobi/Givens rotations:
1 0 0 0
0 cos(6) sin(6) 0
0 — sin(0) cos(0) 0
0 0 0 1

J(p, q,0) is orthogonal.

e Consider B = J"AJ. B preserves the symmetry and eigenvalues of A.
Taking

tan(20) = 2a,q/(aqq — app) if apy, # agq

0=m/4 if a,, = agq
forces b,y = 0.
e Since orthogonal transform preserves Frobenius norm, we have
b, 4 bo, = a2, + al, + 2a5,.
(Just check the 2-by-2 block)
e Since ||A||r = || B]|r, this implies that the off-diagonal part
off(B) = off(A) — 2aZ,
is decreased whenever a,, # 0.
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e One Jacobi rotation costs O(n) flops.

o Classical Jacobi: search for the largest |a;;| at each iteration.

e off(A) < n(n —1)af; and off(B) = off(A) — 2a3; together implies

2

off(B _
(B) < n(n —1)

1—

off(A).

e In practice, cyclic-by-row implementation, to avoid the costly O(n?) search in

the classical Jacobi.

e Jacobi method attracts a lot recent attention because of its rich inherent par-

allelism.

e Parallel Jacobi: “merry-go-round” to generate parallel ordering.

P —
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lelism of the latter algorithm. To illustrate this, suppose n = 4 and group
the six subproblems into three rotation sets as follows:

rot.set(l) = {(1,2),(3,4)}
rot.set(2) = {@1,3),(2,9)}
rot.set(3) = {(1,4),(2,3)}

Note that all the rotations within each of the three rotation sets are “non-
conflicting.” That is, subproblems (1,2) and (3,4) can be carried out il
parallel. Likewise the (1,3) and (2,4) subproblems can be executed in par-
allel as can subproblems (1,4) and (2,3). In general, we say that
(i1,52), (izs2), - (iwsdn) N =(n— 1)n/2

is a parallel ordering of the set {G)I1<i<i< n} if for s = n -1
the rotation set rot.set(s) = { (igydry 17 =14 n(s — 1)/2:ns/2 } consists
of nonconflicting rotations. This requires 7 to be even, which we assume
throughout this section. n case can be handled by bordering
A with a row and column of zeros and being careful when solving the
subproblems that involve these augmented z€ros.)

A good way to generate a parallel ordering is to visualize a chess tourna-
ment with n players in which everybody must play everybody else exactly
| once. In the n = 8 case this entails 7 “rounds.” During round one we have
| the following four games:

EEIEEA
[2[4]6]8]

i.e., 1 plays 2, 3 plays 4, etc. To set up rounds 2 through 7, player 1 stays
put and players 2 through 8 embark on a merry-go-round:

rot.set(l) = {(1,2),(3,4),(5,6),(7,8)}

E- rot.set(2) = {(1,4),(2,6),(3,8), (5N}
E rot.set(3) = {(1,6),(418)1(237)1(375)}
l—’ [2] rotset(d) = {(1,8),(6,7),(4,5), 2.9}

EENER
H ~
EERER
EERER

rot.set(5) = {(1,7),(5,8),(3,6), (2% 4}

o
B

rot.set(8) = {(1,5),(3,7),(2,8): (4,6)}
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[1]5]7]8]
nn rot.set(7) = {(1,3),(2,5),(4,7),(6,8)}

- We can encode t}lese operations in a pair of integer vectors top(1:n/2) and
bo{(}:n/Z). During a given round top(k) plays bot(k) , k = 1:n/2. The
pairings for the next round is obtained by updating top and bot as follows:

function: [new.top, new.bot] = music(top, bot,n)

m=n/2
for k =1:m
ifk=1
new.top(l) =1
else if k =2
new.top(k) = bot(1)
elseif k > 2
new.top(k) = top(k — 1)
end
ifk=m
new.bot(k) = top(k)
else
new.bot(k) = bot(k + 1)
end
end

Using music we obtain the following parallel order Jacobi procedure.

Algorithm 8.4.4 (Parallel Order Jacobi ) Given a symmetric A € R**"
{and a tolerance tol > O,T this algorithm overwrites A with VT AV where V
is orthogonal and off(VTAV) < tol|| A ||z . It is assumed that n is even.

V=1I,
eps =tol|| A|
top = 1:2:n; bot = 2:2:n
while off(A) > eps
for set =1n—1
for k = 1:n/2
p = min(top(k), bot(k))
q = max(top(k), bot(k))
(c, s) = sym.schur2(4,p,q)
A=J(p,q,0)TAJ(p,q,6)
V=VJ(p,q,6)
end
[top, bot] = music(top, bot, n)
end
end



Generalized eigen-problem

e Generalized eigen-problem: Ax = ABx, where A psd and B pd.

Applications: partial least squares (PLS), sliced inverse regression (SIR), canon-

ical correlation analysis (CCA).

Method 1: B~!Axz = A\z. Non-symmetric eigen-problem ®.

Method 2: Cholesky B = LL". Then L'AL Ty = \y where y = L™x.

Method 3 (most numerically stable, B can be rank deficient): QZ algorithm.

eig() and qz() in Matlab implement QZ. No native function in R?

Generalized singular value decomposition

e A € R™" and B € RP*". Then there exists orthogonal U € R™*™ and
V € RP*P and an invertible X € R™ ™ such that

UTAX = C =diagci,...,cn), ¢ >0
VIBX = S =diag(si,...,8,), si>0,

where ¢ = min{p, n}.
e Applications: quadratically inequality-constrained least squares problem (LSQI).

e gsvd() in Matlab implements generalized SVD. No native function in R?

In the zoo of least squares (self-study)
Weighted least squares

e In weighted least squares, we minimize » ", w;(y; — 1 3)?, where w; > 0 are

observation weights.

o Let W = diag(wy, ..., w,). Then the criterion is |[W'/2y — W1/2X 3|2, which
can be solved by standard methods for least squares with § = W2y and
X =Ww'?X.
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General least squares

e In Aitken model: FE(y) = X3, Cov(y) = 0?V, where V is a positive semidefi-

nite matrix. We minimize the generalized least squares criterion

(y—XB)"M (y— Xp),

where M € R™ ™ is some positive semidefinite matrix, e.g., M = V for non-
singular V or M =V + X X7 for singular V.

o Let M = BB for some B € R™*" (e.g., the Cholesky factor). One approach
is to minimize
1B~ (y — X85

Unfortunately, when B is poorly conditioned (or even not invertible), the pro-

cedure produces a poor solution.

e Paige’s method. The generalized least squares problem is equivalent to
minimize v’wv
subject to X3+ Bv =y.

To solve this problem, first compute the QR of X

X =(Q1,Q,) (RO) |

Compute another QR for the (flat) matrix Q% B such that

ZT
QgB = (O’S) <Z:T> )

where S is upper triangular and (Z, Z;) € R™ ™ is orthogonal. Then the

constraint becomes

0 0 S ARY Ty )
From the bottom half we can solve for v from the equation (how?)
SZ,v=Qyy.

Then we solve for 3 from the equation

R B=Qly— (QTBZ,Z] + QTBZ,Z])v = QTy — QT BZy(Z]v).
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e Paige’s method also works for singular X and B (using QR with column piv-

oting).

e MATLAB’s 1scov() function implements Paige’s method for singular covariance

V. No R implementation (?)

Ridge regression

e In ridge regression, we minimize

ly — X8Il + AlIBII3.

where A is a tuning parameter.

e Ridge regression by augmented linear regression. Ridge regression problem is

H( )- <fr>ﬁ

Therefore any methods for linear regression can be applied.

equivalent to

2

e Ridge regression by method of normal equation. The normal equation for the

ridge problem is
(X"X +2,)8=X"y.
Therefore Cholesky or sweep can be used.
e Ridge regression by SVD. If we obtain the (thin) SVD of X
X=U%,,V"
Then the normal equation reads
(Z2+\L)VTE=3U"y

and we get

P
-~ alu Y, Jlu Y,
B(\) = g = Y g p Y r = rank(X).
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It is clear that
lim B()) = Bors

A—0

and HB()\)HQ is monotone decreasing as A increases.

e Only one SVD is needed for all A (!), in contrast to the method of augmented

linear regression, Cholesky, or sweep.

Least squares over a sphere

e Ridge regression “shrinks” the solution via penalty. Alternatively we can simply
fit a least squares problem subject to the constraint that the solution lives in a
sphere

minimize |ly — X G]3
subject to || 8|2 < a.

e Suppose we obtain the (thin) SVD X = UX,,,VT. If the ordinary least
squares solution

ro.T
~ u; Yy
Bors = Z (; Vi
i=1 "
has ¢, norm less than «, then we are done. If not, we use the method of

Lagrangian multipliers

1 A
V(BN = 5lly = X8l + (1815 — o).
Setting the gradient to 0, we have the shifted normal equation
(X'X +A)B=X"y,

which has solution

BN =3 j’“jj

We need to choose the A such that HB()\)HQ = «. That is we need to find the
(unique) zero of the function

O = 1B —a? = (j}’fzf a2

=1

This is easily achieved by Newton’s or other methods.
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Least squares with equality constraints

e In many applications, there are a prior: constraints on the regression param-

eters. Let’s consider how to solve linear regression with equality constraints
(LSE)

minimize |ly — X G]3

subject to BB =d.

e LSE by QR. First compute QR of BT € RP*™
R
B =

XQ=(X,,X,) and Q78— (g) .
2

and set

Then the original minimization problem becomes

minimize ||y — X;8, — X203
subject to RTB, = d.

Now 3, is determined from the constraint RT3, = d and 3, is solved from the

unconstrained least squares problem
minimize ||(y — X18,) — X28,]/5.

Finally we recover the solution from

By
B=Q :
By
e LSE by augmented system. Define the Lagrangian function
1 2 T
4B, N) = 5lly — XBIE ~ N'(BS - d).
Setting gradient to zero yields
X'XB3-B"\ = X'y
Bg = d,
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suggesting the augmented system

XX BT B\ (X Ty
B o/)\-x) \ad )
This linear system is non-singular when X and B have full rank and can be

solved by Cholesky, sweep, and so on.

e LSE by generalized SVD.

Total least squares (TLS)
WY

X
TLS considers the case both predictors and observations are subject to errors. It is
solved by SVD. Read KL 9.3.6 if interested.
Tikhonov regularization
Tikhonov regularization is an extension of the ridge regression
ly — X8Il + Al BBI3,
where B € R™*? is a fixed regularization matrix and A is a tuning parameter. It is
solved by the generalized singular value decomposition (GSVD).
Least squares with quadratic inequality constraint (LSQI)

Least squares with quadratic inequality constraint (LSQI) minimizes the least squares

criterion over a hyper-ellipsoid:

minimize ||y — X 3|3

subject to || BBz < «,
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where B € R™*? is a fixed regularization matrix. It is solved by the generalized
singular value decomposition (GSVD). See|Golub and Van Loan| (1996], Section 2.1.1).

Concluding remarks on numerical linear algebra

e Numerical linear algebra forms the building blocks of most computation we do.

Most lines of our code are numerical linear algebra.
e Be flop and memory aware.

The form of a mathematical expression and the way the expression

should be evaluated in actual practice may be quite different.
e Be alert to problem structure and make educated choice of software/algorithm.
The structure should be exploited whenever solving a problem.

e Do not write your own matrix computation routines unless for good reason.
Utilize BLAS and LAPACK as much as possible!

e In contrast, for optimization, often we need to devise problem specific optimiza-

tion routines, or even “mix and match” them.

Some useful reference books on (numerical) linear algebra

e Linear algebra books: |Magnus and Neudecker| (1999), Horn and Johnson| (1985)),
Harville| (1997), Gentle (2007)
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e MAIn Ix A"Al's Is

MATRIX

DIFFERENTIAL

CALCULUS
WITH APPLICATIONS
IN STATISTICS

AND ECONOMETRICS

Revised Edition

Jan R. Magnus
Heinz Neudecker ROGER A. HORN
AND
CHARLES R. JOHNSON

Copyrighted Material

WILEY SERIES IN PROBABILITY AND STATISTICS

Springer Texts in Statistics

James E. Gentle

Matrix Algebra

e Golub and Van Loan| (1996): “Bible” in numerical linear algebra.
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GENE H. GOLUB - CHARLES F. VAN LOAN

MATRIX

COMPUTATIONS

MATRIX
15 A =

Gene H. Golub
Charles F. Van Loan

THIRD EDITIO

e Lawson and Hanson| (1987)) and Bjorck| (1996): classical monographs on solving

least squares problems.

» NUMERICAL ¢

MRTHODS

Solving Least
Squares Problems

AKE BJORCK

o (2003): standard reference for iterative methods
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Iterative Methods
for Sparse Linear Systems

. YOUSEF SAAD |

siam
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16 Lecture 16, Oct 23

Announcements

o HW5 returned. Feedback:

— What's the likelihood of two independently written code looking like this?

daté ;— read.table(file = "http://hua-zhou.github.io/teaching/st75

.dat™)
<- data[, 1]
<- length(y)
<- data[, -1]
<- as.matrix(x)
<- rep(1, n)
cbind(l, x)
<- svd(X)
<- s%d
<- s$u
<- shv
D <- dA2
Uy <- t(U) %*% y
z <- matrix(@, nrow(U_y), 1)
z<-d* Uy
ridge_soln <- function(k)
{Dmodified <- D + k

< CcCQawnm Xr-X X 3K
A

Dmodified <- 1 / (Dmodified) A 2

z <- Dmodified * z A 2
return(sqrt(sum(z)))

}

lambda <- seq(5, 100, by=5)

data <- read.table("longley.txt")
x <- data[, -1]

y <- data[, 1]

n <- length(y)

X <- as.matrix(x)

1 <- rep(1, n)

X <- cbind(l, x) # adding intercept
s <- svd(X)

D <- s $ d # array of diagonal elements
D_matrix <- diag(D)

no_of_eltms <- ncol(t(D))

U< s$u

V< ss$v

D2 <-DA2

Uty <- t(U) ¥*% y

z <- matrix(@, nrow(Uty), 1)

z <~ D * Uty

ridgeBeta <- function(k)
{D2new <- D2 + k

D2new <- 1 / (D2new) A 2
z <- D2new * z A 2
return(sqrt(sum(z)))

lambda <- seq(5, 100, by = 5)

yl @ sapply(l:ZO, function(x) r'idge_soln(S * X)) w <- sapply(1:20, function(x) ridgeBeta(5 * x))

plet(lamb?a, yl, col = "red", main = "RIDGE SOLUTION", xlab = expr plot(lambda, w, col = "blue”, main = "Ridge Betahat norm",
= "Values") ylab = "Values")

Copying code from any source without acknowledgement is plagiarism.

First time, hw score is 0; second time, course grade is F.

— Q2 (ridge regression): avoid loops. Vectorize code (matrix/vector opera-

tion) > apply, sapply > for loop.
— Organize your code into functions.

— Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/
hwObsol.html

e HW6 posted and due Nov 6. Start early.

e ST790: Advanced Statistical Computing.

Last time

e Iterative methods (Lanszos and Arnoldi methods) for huge, structured A
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Jacobi method for eigen-decomposition (parallel computing)

Generalized eigen-problem: Az = A\Bx (PLS, SIR, CCA, ...) and generalized

singular value decomposition

Variants of least squares problem

Concluding remarks for numerical linear algebra

Today

¢ MLE

e General optimization theory

MLE (as a motivation for optimization)
A great idea due to Fisher in 20s, and made rigorous by Cramer and others in 40s.

e Notations:

Density: f(x|@), where 8 € © C R?

— Log-likelihood function: L(6) = In f(x|0)
(Column) Gradient /score vector: VL(0) € RP*!
Differential: dL(0) = [VL(0)]" € R'*?

— Hessian: d*L(6) = V*L(8)

Observed information matrix: —d*L(0)

Expected (Fisher) information matrix: I(0) = Eg[—d>L(0)]

— Given iid observations 1, ..., x, from f(:|0),
L.(6) = ) Inf(xi6)
i=1

— Maximum likelihood estimator (MLE):
[ N— argmaxg L,(0)
e Consistency of MLE
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— Under the true parameter value 6,

M(8) = ~{L0(6) = L (60)
~ M(0) = Eg, n £(X10) ~ In f(X|60)

for all @ almost surely.

— Note that M () is the negative Kullback-Leibler divergence between dis-
tribution at @ and distribution at 8.
Assuming identifiability, by the information inequality, M (@) achieves max-
imum uniquely at 8,. We hope the MLE

~

0,, = argmaxg M, (0)
converges to
0, = argmaxg M (0).
— Need uniform convergence of M, (0) to M(0), i.e.,

sup |M,(0) — M(0)]
©

converges to 0 in probability. A set of sufficient conditions for uniform

convergence:

x compactness of the parameter space ©
% continuity of M (@) in @ for any x
% M (0) dominated by an integrable function

— Example of non-uniform convergence: f,(z) = 1{, 41} (or a triangle on
[n,n + 1] if we want f,, to be continuous). f, — f = 0 pointwise but not

uniformly.
e Asymptotic normality of MLE
— Assume 6, is consistent for 6.
— Taylor expansion on 0, = %VLn(én) gives
1 1, .

+%[Ip ® (0, — 6,)7] {%Dd%n(én)} (6, — 6y),
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where 6, is somewhere between 6, and ,. If %Dd2Ln(én) = 0,(1)
(bounded in probability), then the third term is 0,(1)(8, — 6) and

; L Tn
Now
¥ —=d’L,(00) + 0,(1) — Eg [~d*L(8))] = I(6,) almost surely by the
law of large number.
x n~Y/ 2VLn(90) converges to a multivariate normal with mean 0, and

variance
Eg, [VL(00)dL(6o)],

which equals I(68) under exchangeability of integral and differentia-

tion.

Then by the Slutsky theorem,

\/ﬁ(én_eo)
= N, (0,,17(80) - Bg, [VIn f(8)d n £(8)] - T(80))
= N, (0,,I7(6y))

in distribution.
— In practice, we can estimate the variance by

% Fisher information matrix I-1(6),
% observed information matrix [—(1/n)d2L,(8)]"*, or

* the sandwich estimator

e Asymptotic efficiency of MLE.

“Cramer-Rao theorem” says the variance of any unbiased estimator is “at least”
(nI(60))~" (the difference is psd). So MLE has the smallest asymptotic variance

within the class of unbiased estimators.
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17 Lecture 17, Oct 28

Announcements

e No TA office hours this Friday.

e FAQson HW6: http://hua-zhou.github.io/teaching/st758-2014fall/st758fal112014/
2014/10/26/hw6-hints.html

e Roadmap (to winter break!): HW7, HWS, simulation project, final or not?

Last time

e Review of HW5

¢ MLE

Today

e Newton and scoring algorithm

e Hierarchy of optimization problems

Newton’s method and Fisher’s scoring (KL Chapter 14)

Josph Rof hron

Consider maximizing log-likelihood L(8), 8 € © C RP.
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Newton’s method was originally developed for finding roots of nonlinear equa-
tions f(0) =0 (KL 5.4).

Newton’s method (aka Newton-Raphson method) is considered the gold stan-

dard for its fast (quadratic) convergence

HB(tJrl) . O*H

s constant.
16 — 6|2

Idea: iterative quadratic approximation.

Taylor expansion around the current iterate 8¢
1
L(0) ~ L) +dL(68") (0 — 8V) + 50— 0N d*L(6") (6 — 6")
and then maximize the quadratic approximation.

To maximize the quadratic function, we equate its gradient to zero
VLOWY) + [d*L(67V)] (0 — 6" = 0,
which suggests the next iterate

' = 9" — [*L(8W)'VL(OY)
= 09 4+ [—a*L(6D)] 'V L(OY).

Some issues with the Newton’s iteration
— Need to derive, evaluate, and “invert” the observed information matrix.
Remedies:

1. exploit structure in Hessian whenever possible,
2. numerical differentiation (works for small problems), or

3. quasi-Newton method (to be discussed later)

— Stability: Newton’s iterate is not guaranteed to be an ascent algorithm.
It’s equally happy to head uphill or downhill. Remedies:

1. approximate —d2L(0™) by a positive definite A (if it’s not), and
2. line search (backtracking).
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In summary, Newton’s method iterates according to

) =0 1+ s[ADIIVLOY) = 0" + sA0Y

where A® is a pd approximation of —dQL(B(t)) and s is a step length.
Why? By first-order Taylor expansion,

L(OY + sA8Y) — L(oW)
= dL(0D)sA0Y) + o(s)
= sdL(@M)[AD]IVLOY) + o(s).
For s sufficiently small, right hand side is strictly positive.

e Backtracking strategy: step-halving (s = 1,1/2,...), golden section search,

cubic interpolation, Amijo rule, ...

e How to approximating —d?L(€)? More of an art than science. Often requires

problem specific analysis.
e Taking A = I leads to the method of steepest ascent, aka gradient ascent.

e Fisher’s scoring method: replace —d*L(0) by the expected Fisher information

matrix
1(6) = E[-d’L(0)] = E[VL(6)dL(0)] = 0px,,
which is psd under exchangeability of expectation and differentiation.

Therefore the Fisher’s scoring algorithm iterates according to

ot — g s[I(O(t))]_IVL(H(t))

Hierarchy of optimization problems

Difficulty of optimization problems in general

Harder Easier

discrete (combinatorial) optimization continuous optimization

non-smooth smooth

non-convex convex

constrained un-constrained
inequality constraint equality constrained
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18 Lecture 18, Oct 30

Announcements

e No TA office hours this Friday. Makeup office hours next Mon, Nov 3 @ 3P-5P.

Last time

e Newton and Fisher scoring method

e Hierarchy of optimization problems

Today

e Convex optimization

e Some fundamentals of optimization theory

Convex optimization

e Fatremely important skill to recognize or transform to convex problems

convex problems

more general
cone problems \

SDP
SOCP GP
QP LP

more specific

LS

— Examples: (., regression, ¢; regression, quantile regression, and many

Inore.
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— Conver Optimization by Boyd and Vandenberghe and accompanying slides
http://www.stanford.edu/~boyd/cvxbook/

Stephen Boyd and
Lieven Vandenberghe

convex
Optimization

— Lecture videos:
http://www.stanford.edu/class/ee364a/videos.html
http://www.stanford.edu/class/ee364b/videos.html

e Convex programming (LS, LP, QP, GP, SOCP, SDP) is almost becoming a
technology (Cplex, Gurobi, Mosek, cvx, Matlab, ...)

e Non-convex optimization still occurs in many natural statistical applications.
Statisticians have specialized tools to deal with them (Fisher scoring method,

EM algorithm, simulated annealing, ...)
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Unconstrained optimization (KL 11.2)

Figure 1  Unconstrained optimization in one variable

e Possible confusion:

— We (statisticians) talk about mazimization: max L,(8).
— People talk about minimization in the optimization world: min, f(x).
e Fundamental questions: When does a function have minimum? How do we tell
whether a point is minimum?
e When does a function have a minimum?
(Weierstrass) A continuous function f(x) defined on a compact (closed and
bounded) set is bounded below and attains its minimum.

e None of the Weierstrass conditions can be taken out.

x € (—00,00). Non-compact support.

fx) =
f(z) = ( ), © € (—m/2,7/2). Non-compact support.
f(x) =2,z € (—1,1) and f(—1) = f(1) = 0. The minimum not attained

by the discontinuous function f.

e None of the Weierstrass conditions are necessary. f(z) =z, z € [0,2), f(x) =1,
€ (2,00).
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Coercive function: {x € U : f(x) < f(y)} is compact for all y € U.
Weierstrass theorem also holds for a coercive function defined on a possibly
open U.

Necessary conditions for a local minimum.

Assume f has a local minimum at interior point y € U.

— (Fermat) If f is differentiable, then V f(x) vanishes at y.
— If f is twice differentiable, then d?f(y) is psd.

Points with V f(x) = 0 are called stationary points or critical points. Most
optimization algorithms try to find the stationary points of the function and
then check sufficient condition.

Counter-examples to necessary conditions. (1) f(z) = 2 has zero gradient at
0, which is not local minimum. (2) f(z) = |z| has local minimum at 0, where

the gradient does not exist.

(A first-order sufficient condition; first derivative test) Suppose f is differen-
tiable in a ball B(y) around an interior point y, and (V f(x),x —y) > 0 for all

x € B(y), then y is a local minimum.

(A second-order sufficient condition; second derivative test) If Vf(y) = 0 and

d*(y) is pd, then y is a strict local minimum.

Remark: In case d?f(y) is neither positive definite nor negative definite but
non-singular, y is a saddle point, i.e., a stationary point that is neither a local

minimum nor a local maximum. In case d*f(y) is singular, we cannot tell.

Example: fi(z,y) = 2* +y*, fa(z,y) = —2* —y*, fa(z,y) = 2> +y°. Origin is a
stationary (critical) point and the Hessian d?f;(0,0) = Oy is singular. Origin

is a minimum, maximum, and a saddle point respectively.

122



Convexity and global optima

1 L 1 L I L L 1 L ]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

FIGURE 11.2. Plot of the Convex Function e® + z°

e f:Uw— Ris conver if

— Uis a convex set (Ax + (1 —A)y € U for all x,y € U and X € (0,1)), and
~FO@+ (1= Ny) < Af(@) + (1= N f(y), for all 2,9 € U and A € (0,1).

f is strictly conver if the inequality if strict for all @ # y € U and .

o (Supporting hyperplane inequality) A differentiable function f is convex if and
only if f(x) > f(y) +(Vf(y),x —y) for all xz,y € U.

e (Second-order condition for convexity) A twice differentiable function f is con-
vex if and only if d?f() is psd for all © € U.

It is strictly convex if d%f(x) is pd for all © € U.

e (Convexity and global optima) Suppose f is a convex function on a convex set

U.

1. Any stationary point y is a global minimum. (By supporting hyperplane
inequality, f(z) > f(y) +(Vf(y),z —y) = f(y) forall z € U.)

2. Any local minimum is a global minimum.
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3. The set of (global) minima {x € U : f(x) = f(y)} is convex.

4. If f is strictly convex, then the global minimum, if exists, is unique.

e Example: Least squares estimate. f(3) = 3|ly—XB||3 has Hessian d*f = XX
which is psd. So f is convex and any stationary point (solution to the normal

equation) is a global minimum. When X is rank deficient, the set of solutions

1S convex.

(Jensen’s inequality) W a random variable taking values in U and h is convex
on U. Then
E[R(W)] = h[E(W)],

provided both expectations exist. For a strictly convex h, equality holds if and
only if W = E(W) almost surely.

Proof: supporting hyperplane inequality taking @ = W and y = E(W).

(Information inequality) Let f and g be two densities with respect to a common

measure p. h,g > 0 almost everywhere relative to u. Then

E;(In f) > Ef(Ing),

with equality if and only if f = g almost everywhere on pu.

Proof: Apply Jensen’s inequality to the convex function —In(¢) and random
variable W = g(x)/ f(z).
Applications: M-estimation, EM algorithm.
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19 Lecture 19, Nov 4

Announcements

e Answer to Caleb’s question: Why do people care about /., regression?

min||y — X Bl = min max ly; — 2.

Chebychev approximation, or minimax approximation

fx) ~

1

N
c;Ti(z).
—0

For fixed degree N, find the coefficients ¢; that minimize the worst possible

approximation error.

Last time

e Convex optimization

e Fundamentals of optimization theory: optimality conditions for unconstrained
optimization, convexity and global optima

Today

e Fundamentals of optimization theory (cont’d): optimality conditions for con-

strained optimization

e Application of Newton and Fisher scoring algorithm: GLM

Optimization with equality constraints (KL 11.3)

Consider the equality constrained minimization problem

minimize f(x)
subject to g¢;(x) =0,i=1,...,m
xecUCR"
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We write

g1(x) dgi(z)
g(x) = : € R™ and Dg(x) = e e R™*™,

Im(T) dgm(a:)

e Method of Lagrange multiplier. Lagrangian function

L(x, ) = f(z) + A'g(x) = f(x) + Z Aigi(e).

Strategy for finding the equality constrained minimum: find the stationary point
(x*, A") of the Lagrangian,

Vel(x,A\) = Vf(x)+ zm: AiVygi(x) =0,

glx) = 0.

Intuition: Null space of the matrix Dg is the tangent space. Movement along
the tangent space does not change constraint function values. We need the V f
to be orthogonal to the tangent space. In other words, Vf is in the column

space of [Dg]T.

Intuition of the Lagrange multiplier method: Hill climb along a trail which is
a contour line of the constraint function. We feel effortless exactly when the
direction of our movement is perpendicular to the steepest ascent direction of
the hill. In other words, steepest ascent direction of the constraint function
aligns with that of the hill.
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Jxy) y

X

Figure 2: Contour map of Figure 1. The red line shows &~
the constraint g(l‘, y) — (. The blue lines are

Figure 1: Find x and y to maximize f (.T, y) subject & contours of f(il', y) The point where the red line
. tangentially touches a blue contour is our solution.Since

to a constraint (shown in red) g(.’l‘, y) = C- dy > dy. the solution is a maximization off(_r, y)

e (Necessary condition for a constrained local minimum) Assume conditions (i)
g(y) = 0, (2) f and g are differentiable in some n-ball B(y), (iii) Dg(y) €
R™*™ is continuous at y, (iv) Dg(y) has full row rank, (v) f(x) > f(y) for any
x € B(y) satisfying g(x) = 0,, (y a local minimum subject to constraints).
Then there exists A € R™ satisfying Vf(y) + > 1", iiVai(y) = 0,, i.e., (y,A)
is a stationarity point of the Lagrangian L(zx, A). In other words, there exists
A € R™ such that VL(y, A) = 0,4

e (Sufficient condition for a constrained local minimum) (i) f twice differentiable
at y, (ii) ¢ twice differentiable at y, (iii) the Jacobian matrix Dg(y) € R™*"
has full row rank m, (iv) it is a stationarity point of the Lagrangian at a given
AeR™ (v) u"df(y)u > 0 for all u # 0, satisfying [Dg(y)]u = 0,, (tangent
vectors). Then y is a strict local minimum of f under constraint g(y) = 0,,.

e Check condition (v). Condition (v) is equivalent to the “bordered determinantal

Om m Br
(—1)mdet< 8 ) >0

criterion”

BT ATT

forr=m+1,...,n, where
— A,, is the top left r-by-r block of d*f(y) + >, Nid?gi(y)

— B, € R™*" ig the first r columns of the Dg(y).
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e (Sufficient condition for a global constrained minimum) Lagrangian first order

condition + convexity of the Lagrangian on U.

e (Interpretation of the Lagrange multipliers A). Consider min f(x) subject to
some resource constraint g(x) = b. Consider the solution x*(b) as a function
of b. Then it can be shown that

Of(x* (b))

AR

ob;
That’s why the score test is classically called the Lagrange multiplier test.

e Example: Linearly constrained least squares solution. min |y — X 3||3 subject

to linear constrained V3 = d. Form the Lagrangian
1
LB.) = 5lly — XBIE+ N'(VE - d)
Stationary condition says
X'XB-X"y+V'A = 0,
Ve =

) R-09)
Vv 0 A d |’
which can be solved by say sweeping on

X'X VI X'y

1% o d |,
yX' d y'y

or equivalently

or Cholesky or QR.

Optimization with both equality and inequality constraints
(KL 11.4)

Consider the constrained minimization problem
minimize f(x)
subject to g¢;(x) =0,i=1,...,p
hj(x) <0,i=1,...,q
xeUCR"
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Lagrangian function:
q
L(z, A\, p) )+ Z Nigi(z) + Z pihi(x)
j=1

Karush-Kuhn-Tucker (KKT) necessary condition: If (1) y is a local constrained
minimum and (2) satisfies certain constraint qualifications (Kuhn-Tucker, Mangasarian-

Fromovitz), then

1. (Lagrangian stationarity condition) there exist A € RP, p € R? such that

+2Avg, +ZN9W

2. (Complementary slackness) p; = 0 if h;(y) < 0 and p; > 0 otherwise.
Sufficient condition: KKT 4 second order condition.
Global minimum: KKT conditions + convexity.

Read KL Section 11.4 for more details. KKT is “one of the great triumphs of
20th century applied mathematics”.
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1. A Kuhn, H. W.; Tucker, A. W. (1951). "Nonlinear
programming" g¥. Proceedings of 2nd Berkeley Symposium.
Berkeley: University of California Press. pp. 481-492.
MR47303 &

2. M W. Karush (1939). Minima of Functions of Several
Variables with Inequalities as Side Constraints. M.Sc.
Dissertation. Dept. of Mathematics, Univ. of Chicago,
Chicago, lllinois.

Nonlinear Programming
H. W. Kuhn, and A. W. Tucker

Source: Proc. Second Berkeley Symp. on Math. Statist. and Prob. (Univ. of
Calif. Press, 1951), 481-492.

First Page: Hide

NONLINEAR PROGRAMMING

H. W.KUHN anp A. W. TUCKER
PRINCETON UNIVERSITY AND STANFORD UNIVERSITY

1. Introduction
Linear programming deals with problems such as (see [4], [5]) : to maximizea linear
functiong(x) = E“" of # real variables xy, . . ., x, (forming a vector x) con-

strained by m + # linear inequalitics,
h@H=b—-D am20,520, A=t mi=1..., n

‘This problem can be transformed as follows into an equivalent saddle value (min-
imax) problem by an adaptation of the calculus method gustomarily applied to con-
straining eguations 3, pp. 199-201). Form the Lagrangian function

Dl w =e(x) + Dwh(x).

Generalized linear model (GLM) (KL 14.7, JM 9.7)

Let’s consider a concrete example: logistic regression.

e You want to make a fame by participating the Capital One competition. The
goal is to predict whether a credit card transaction is fraud (y; = 1) or not

(y; = 0). Predictors (x;) include: time of transaction, last location, merchant,

e y; € {0,1}, &; € RP. Model y; ~Bernoulli(p;).
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e Logistic regression. Density

flyilp) = pli(1—p)' Y

eYi Inp;+(1—y;) In(1—p;)

eyzln Pi +1n(1 pz)7

where
ewz—ﬁ
E(y,)=p = (mean function, inverse link function)
14 e* 5
'8 = In <1 bi ) (logit link function).
— Di
e Given data (y;,x;),i=1,...,n,
L,(B) = Z lyilnp; + (1 = y;) In(1 — p;)]

i=1

= Z [yzm:ﬂ —1In(1+ eml‘Tﬁ)]
i=1
n a:T,B

e
VL, (B = Yiti — ———3zTi
(8) ; ( 1+ emiTﬁ )

= ) (wi—p)zi=X"(y—p

i=1
~d’L,(B) = Z pi(l —p)zixl = X WX,
where W = diag(wy, ..., wy,),w; = p;(1 — p;)
L(B) = E[-&L,(B)] = —dL.(B).

e Newton’s method = Fisher’s scoring iteration:

= BY +s[=d LBV VL(BY)

= B+ s(XTWOX) X (y — p)
(XTW(t)X)_lXTW(t) Xﬁ(t) + S(W(t))_l(y _ p(t))

— (XTW(t)X)’lXTW(t)z(t),

where

I@(H—l)

b =xpM 4+ S(W(t)>_1(y — p(t))

131



are the working responses.

weighed least squares problem > "  w;(z —

A Newton’s iteration is equivalent to solving a

(iteratively re-weighted least squares).

Distribution Support of distribution

Normal

Exponential
Gamma

Inverse
Gaussian

Poisson

Bernoulli

Binomial

integer: [O, K)
K-vector of integer:
Categorical |[(), 1], where exactly
one elementin the
vector has the value 1

K-vector of integer:

Multinomial [0. "\‘Y]

real: ( —o0, +00)

real: (0, +00)
real: (0, +00)
integer:[0, 4+-00)
integer:[0, 1]

integer: [O L ]\"]

x3)?. Thus the name IRWLS

Common distributions with typical uses and canonical link functions

Typical uses

Linear-response data Identity Xﬂ =u

Exponential-
response data, scale
parameters

count of occurrences
in fixed amount of
time/space

outcome of single
yes/no occurrence

count of # of "yes"
occurrences out of N
yes/no occurrences

outcome of single K-
way occurrence

count of occurrences
of different types (1 ..
K) out of N total K-
way occurrences

K Link function Mean function
name
n=Xg
Inverse | X3 = ! H= (X/B)_l
Inverse -2 \—1/
squared XB=np n=(Xg) o
oo XB=mn()  |u=ew(XP)
) I exp (X3) 1

L XB3=1 = 5 N = g

ogit B=In (1 = “);L 1+exp(XB8) 1+exp(—Xp)

Let’s consider the more general class of generalized linear models (GLM).

e Y belongs to an exponential family with density

p(ylo, ¢) =

exp

yt — b(0)
a(¢)

+c(y, ¢)

0: natural parameter. ¢ > 0: dispersion parameter. GLM relates the mean

u = E(Y|x) via a strictly increasing link function

g(pn) =n=x'3,
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e Score, Hessian, information

VLB = 3 (yi_ﬂigﬂi(ni)wi

i=1 i
= () s i) )
~d’L,(B) = ; Ma:; azlml—; Y 'l;lz 1 T, T,
1) — B-aL@) -3 B0 xtwx.

i=1 t

e Fisher scoring method
B = gt 4 S[I(,B(t))]_1VLn(ﬁ(t))
IRWLS with weights w; = [u;(n;)]?/0? and some working responses ;.

e For canonical link, 6 = n, the second term of Hessian vanishes and Hessian

coincides with Fisher information matrix. Convex problem ®

Fisher’s scoring = Newton’s method.

e Non-canonical link, non-convex problem ®
Fisher’s scoring algorithm # Newton’s method.

Example: Probit regression (binary response with probit link). y; ~ Bernoulli(p;)

and

pi=0(x{B), n=x{B=2"(n),
where ®(-) is the cdf of a standard normal.

e glmfit() in R and MATLAB implements the Fisher scoring method, aka IR-
WLS, for GLMs.
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20 Lecture 20, Nov 6

Announcements

e HW6 due today. Submit hardcopy and email code to me (LastFirstHW6.R or
LastFirstHW6.Rmd)

e HW7 due date changed to Tue Nov 18

Last time

e Optimality conditions for constrained optimization (KKT)

e Application of Newton and Fisher scoring algorithm: GLM

Today

e Application of Newton and Fisher scoring algorithm: nonlinear regression

e EM algorithm

Nonlinear regression — Gauss-Newton method (KL 14.4-14.6,
JM 9.8)

e Now we finally get to the problem Gauss faced in 1800!

Relocate Ceres by fitting 41 observations to a 6-parameter (nonlinear) orbit.

e Nonlinear least squares (curve fitting):

n

minimize f(B3) = %Z[yz — (i, B)]°

=1

For example, y; = dry weight of onion and z; = growth time, and we want to

fit a 3-parameter growth curve

M(%ﬁhﬁ%ﬁ:&) = %~

134



Honlinear regression (Dry weight)

00

Dy welight

Macel

e “Score” and “information matrices”

ViB) = —Z BV i(B)

n

f(B) = Z Vi(B)dpi(B) = D [y — 11:(8))d* i (B)
i=1
I(8) = va )dpi(B) = J(B)'J(8),
where J(3)" = [Vul(ﬁ), ., Vi (B)] € RP*™,
e Gauss-Newton (= “Fisher’s scoring algorithm”) uses I(3), which is always psd.

B =B +s1(B") 'V L(BY)

e Levenberg-Marquardt method, aka damped least squares algorithm (DLS), adds
a ridge term to the approximate Hessian

B = g0+ 51(8") + 71,1V L(BY)

bridging between Gauss-Newton and steepest descent.

e Other approximation to Hessians: nonlinear GLMs.
See KL 14.4 for examples.
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Which statistical papers are most cited?

Paper Citations Per Year

Kaplan-Meier (Kaplan and Meier} 1958 44502 795
EM (Dempster et al., [1977a 39167 1059

Cox model (Cox, (1972 38036 906

Metropolis (Metropolis et al., 1953 28093 461

FDR (Benjamini and Hochberg, 1995 24093 1268
Unit root test (Dickey and Fuller, 1979 15354 439
Lasso (Tibshirani, 1996 11438 635

bootstrap (Efron, 1979 10953 313

FFT (Cooley and Tukey, |1965 10134 207

Gibbs sampler (Gelfand and Smith, 1990 5901 246

e Citation counts from Google Scholar on 11/03/2014.

e EM is one of the most influential statistical ideas, finding applications in various

branches of science.

EM algorithm

e History: Dempster et al.| (1977b)).

roF] Maximum likelihood from incomplete data via the EM algorithm

AP Dempster, NM Laird, DB Rubin - Journal of the Royal Statistical Society. ..., 1977 - JSTOR
A broadly applicable algorithm for computing maximum likelihood estimates from incomplete
data is presented at various levels of generality. Theory showing the monotone behaviour of
the likelihood and convergence of the algorithm is derived. Many examples are sketched, ...
Cited by 39167 Related articles All 76 versions Web of Science: 16067 Cite Save More

Same idea appears in parameter estimation in HMM (Baum-Welch algorithm)
(Baum et al., [1970)).

A maximization technique occurring in the statistical analysis of probabilistic functions of

Markov chains

LE Baum, T Petrie, G Soules, N Weiss - The annals of mathematical statistics, 1970 - JSTOR
PYL... YT (A, a, f) and the difficult analysis of maximizing this function of A for very special
choices of f presented in [2],[8] that a simple explicit procedure for maximization for a general
fwould be quite difficult; however, this is not the case.

Cited by 3102 Related articles All 4 versions Cite

e Notations
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— Y observed data
— Z: missing data

— X = (Y, Z): complete data

Goal: maximize the log-likelihood of the observed data In g(y|@) (optimization!)

Idea: choose Z such that MLE for the complete data is trivial.

Let f(x|0) = f(y, 2|0) be the density of complete data

Iterative two step procedure
— E step: calculate the conditional expectation

Q(016Y) =E Inf(Y,Z]0)|Y =y,0"]

2|y =y,0%
— M step: maximize Q(8]0") to generate the next iterate
AR argmaxg Q(0|6")
e (Ascent property of EM algorithm) By the information inequality,

Q6] 6") —Ing(y|6)
= Elf(Y,Z0)|Y =y,0"] —Ing(y|0)

= E{ln {M} R% :yﬁ(t)}

g(Y | 0)
(t)
. E{m M] ,Y:y,em}
= Q0" 0") —1Ing(yleM).

(Y |69)

Rearranging shows that (fundamental inequality of EM)
ng(y |0)>Q(0]6Y) Q0" 6Y) +Ing(y|6Y)
for all 8 and in particular

ng(y [ 6“"Y) > Q0" 6Y)-Q(0"[6")+Ing(y| oY)
> Ing(y | 0Y).
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Obviously we only need
QO™ 69) - Q0" 16") >0
for this ascent property to hold (generalized EM).

e Intuition? Keep these pictures in mind

— I 1oL

° p(t+1) " g(e()n ® 0 e
o1 —Q(8]6"")+c I Hybrid

' ——q(Eee™ )+ Cvm

-2000

-4000

-6000 |

-8000

-10000 -
20

13 2 = 0 B 2
e Under mild regularity conditions, oW converges to a stationary point of In g(y|@).

e Numerous applications of EM:
finite mixture model, HMM (Baum-Welch algorithm), factor analysis, variance
components model aka linear mixed model (LMM), hyper-parameter estimation
in empirical Bayes procedure maxeq [ f(y|0)7(0|cx) dO (e.g., HWG/T), missing
data, group/censorized/truncated model, ...
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A canonical example: finite mixture models

FWILEY

Finite Mixture R
MOdﬁlS and Extensions

Second Edition

Geoffrey McLachlan
David Peel

E: Q™) =Eflog L wlyw*}
M: "= argmax Q(b;w")

Geoffrey J. McLachlan
Thriyambakam Krishnan
WILEY SERIES IN

PROBABILITY AND STATISTICS
WILEY SERIES IN.PROBABILITY AND STATISTICS

e Gaussian finite mixture models: mixture density
k
hy) =Y mhi(y |, Q). yeRY
j=1

where

/2 B
1 )T (-,
hi(y |y, €)= (%) | det(€2;)]| /262K (-1

are multivariate normals Ng(p;, §2;).

e Given data vy, ...,y,, want to estimate parameters

0:(7'('1,...,7Tk,[_1,1,...,[J,k,ﬂl,...,gk).

(Incomplete) data log-likelihood is

n n k
Mgyr,. ., Yal0) =Y Ih(y) => Y mhi(yi | py, Q).
i=1 =1 j=1
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o Let z;; = I{y; comes from group j}. Complete data likelihood is

fly,210) = HH% (yilhay, )]

=1 j=1
and thus complete log-likelihood is

n

In f(y,2|6) = Zz%ln@“nh(yzmp .

=1 j=1

e E step: need to evaluate conditional expectation

Q(6l6")
n k

N {ZZ%[M +Inhy(yilp;, ) | Y =y, 70, 6 e 0 ﬂ;(f)]} |
i=1 j=1

By Bayes rule, we have

t t t
Wi = [Zl]|y7 7“5)77”’](@)7Q§)7aﬂ§g)]
) hi il )
k t
S hy (il Q)

So the Q function becomes

(9|9(t))
n k 1 1
ZZ“’ Inm; + Z w(t) [_5 In det €2; — 5(%‘ — )" (i — )
=1 j=1 i=1 j=1

e M step: maximizer of the Q function gives the next iterate

t
(t+1) Ziwz(j)
n
n t
(t+1) Zi:lwz(j)yi
J o n ()
Zi:lwij
n t t+1 t+1
gy S = ) )
’ z’wg)

See KL Example 11.3.1 for multinomial MLE. See K. Example 11.2.3 for mul-

tivariate normal MLE.
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e Compare these extremely simple updates to Newton type algorithms!

e Also note the ease of parallel computing with this EM algorithm. See, e.g.,
Suchard, M. A.; Wang, Q.; Chan, C.; Frelinger, J.; Cron, A. & West, M. Under-
standing GPU programming for statistical computation: studies in massively
parallel massive mixtures. Journal of Computational and Graphical Statistics,
2010, 19, 419-438.

e In general, EM/MM algorithms are particularly attractive for parallel comput-
ing. See, e.g.,
H Zhou, K Lange, & M Suchard. (2010) Graphical processing units and high-

dimensional optimization, Statistical Science, 25:311-324.
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21 Lecture 21, Nov 11

Announcements

e HWG6 returned. Sketch of solution: http://hua-zhou.github.io/teaching/
st758-2014fall/hw06sol.html

e HW?7 due next Tue Nov 18

e HWS8 due Nov 25

Last time

e Nonlinear regression (Gauss-Newton algorithm)
e EM algorithm

e Example: finite mixture model

Today

e MM algorithm

MM algorithm (KL Ch12)

Statistics and Computing

Kenneth Lange

Second Edition

e Recall our picture for understanding the ascent property of EM
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—In g(6)
—Q(0l6")+c
Qeele® Myt

6(t+1)

EM as a minorization-maximization (MM) algorithm

— The @ function constitutes a minorizing function of the objective function

up to an additive constant
L) > Q(016") + Y forall @
L(O(t)) — Q(g(t)w(t)) +

— Mazimizing the @ function generates an ascent iterate 8¢+

Questions:

— Is EM principle only limited to maximizing likelihood model?
— Is there any other way to produce such surrogate function?

— Can we flip the picture and apply same principle to minimization problem?

These thoughts lead to a powerful tool — MM principle (Lange et al., [2000).
Lange, K., Hunter, D. R., and Yang, I. (2000). Optimization transfer using
surrogate objective functions. J. Comput. Graph. Statist., 9(1):159. With

discussion, and a rejoinder by Hunter and Lange.
For maximization of f(@) — minorization-maximization (MM) algorithm
— Minorization step: Construct a surrogate function ¢(8|8") such that
(08 > ¢(0]6") (dominance condition)

f(6Y) = ¢(6Y8") (tangent condition).
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— Maximization step:
6" — argmax ¢(8]0").
e Ascent property of minorization-maximization algorithm

F(8D) = g(61]100) < g(8+1 M) < F(OHY).

e EM is a special case of minorization-maximization (MM) algorithm.
e For minimization of f(@) — majorization-minimization (MM) algorithm
— Majorization step: Construct a surrogate function g(8/8") such that
(@) < ¢(6|6") (dominance condition)

f(H(t)) — g(0<t>|0<t>) (tangent condition).

— Minimization step:

6"V = argmin g(8]0").

e Similarly we have the descent property of majorization-minimization algorithm.

e Same convergence theory as EM.
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e Rational of the MM principle for developing optimization algorithms

Free the derivation from missing data structure.

— Avoid matrix inversion.

— Linearize an optimization problem.

— Deal gracefully with certain equality and inequality constraints.

— Turn a non-differentiable problem into a smooth problem.

Separate the parameters of a problem (perfect for massive, fine-scale par-

allelization).
e Generic methods for majorization and minorization — inequalities

— Jensen’s (information) inequality — EM algorithms

The Cauchy-Schwartz inequality - multidimensional scaling

Supporting hyperplane property of a convex function
— Arithmetic-geometric mean inequality

— Quadratic upper bound principle - Bohning and Lindsay

e Numerous examples in KL chapter 12.

e History: the name MM algorithm originates from the discussion (by Xiaoli

Meng) and rejoinder of the [Lange et al| (2000) paper.

Example: PET imaging

An array of 36 detectors

l _ Detector 5
|

Emission of a pair
of photons

Detector |

Detector 23 Head of the patient
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e Data: tube readings y = (y1,...,%4)-
e Estimate: photon emission intensities (pixels) A = (A1,...,\,).
e Poisson Model:

p
Y; ~ Poisson <Z cij/\j> ,
j=1

where ¢;; is the (pre-calculated) cond. prob. that a photon emitted by j-th
pixel is detected by i-th tube.

Log-likelihood:

L(A|’y) = Z [yz In (Z Cij>\j> — Zcij)\j

i J J

-+ const.

Essentially a Poisson regression with constraint A; > 0.

Which algorithm?

— Fisher scoring (IRWLS) = Newton.

Need to solve a large linear system at each iteration ®

— EM algorithm: Lange and Carson| (1984), Vardi et al. (1985)

t+1 () Yy
= )\ E
E k Czk)\

Scales well with data size. Converges to the global maximum under mild

conditions.

— Exercise: derive the EM algorithm. (Hint: missing data z;; = # of photons

emitted from pixel ¢ and received by detector j.)

e I[ssues: grainy image and slow convergence
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e Regularized log-likelihood for smoother image:

L) -5 D0 (= A

{ik}reN
= Z [yz In (Z Cm')\j) - Z Cij)\j] - % Z )\ - )\k )
i J j jkle

where p > 0 is a tuning constant.

e EM algorithm does not (or is hard to) apply to the regularization term. Let’s
derive an MM algorithm.

e Minorization step:

— By concavity of the In s function

(® (1
Cl)\ Z'/Cij’)“/
In (Z%‘%) = In (Z R '%’%‘)

@
j Gy cid

(t) (t)
Cz’j)\‘ Z~, Cz‘j’)\'/
Z E J © In ( J J Cij)\j

t
= > ey
J

t
—J(t) In\; + ).
Remark: this minorization depends on the positivity of both ¢;; and A;.

Zj Cij’)\j/

— By concavity of the —s? function

<2Aj AL ZAD T ox a0y )\,(f))Q

(N —N\)2 =
(] k) 9 + 2

1 1
> =522 = A7 =N @ - A = 0)

— Combining minorizing terms gives an overall surrogate function
t
¢ij )\( )

gAY Zyzzﬁ ZZ%
’ z]’

—E 3 ey =AY A+ (2)% Yl
{J,k}YeN
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e Maximization step:

— g(AJA®) is trivial to maximize because all \; are separated!
— Solving for the root of

9
axd

IR0
_ (Zy%) A ch ST 20— A 2

(AIXY)

t
T Ay KeN;
= 0

(t+1)
gives )\ *

e MM algorithm for PET:

Initialize: \\” = 1

repeat

2 = (e ) (S canh)

for ) =1topdo
a==2pN;|, b= p(ININ + Spen W) =1, e =32, 20
A = (b — VB2~ dac)/(2a)

end for

until convergence occurs

e Parameter constraints \; > 0 are satisfied when start from positive initial values.

e The loop for updating pixels can be carried out independently — massive paral-

lelism.

e A simulation example with n = 2016 and p = 4096 (provided by Ravi Varadhan)

CPU:i7 @ 3.20GHZ (1 thread), implemented using BLAS in the GNU Scientific
Library (GSL)
GPU: NVIDIA GeForce GTX 580, implemented using cuBLAS
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CPU GPU

Penalty u Iters Time Function Iters Time Function Speedup
0 100000 11250 -7337.152765 100000 140 -7337.153387 80
1077 24506 2573 -8500.082605 24506 35 -8508.112249 74
1076 6294 710 -15432.45496 6294 9 -15432.45586 79
107° 589 67 -55767.32966 589 0.8 -55767.32970 84
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22 Lecture 22, Nov 13

Announcements
e HW7 due next Tue Nov 18
e HWS due Nov 25

e HW9 (simulation project) will be posted this week. Due Dec 9, 2014 @ 11A.

Last time
e MM algorithm

e Example: PET imaging

Today
o HWG review
e Principles of Monte carlo simulation studies

e EM/MM example: Netflix problem

Feedback on HW6

e Who cares?

TABLE 3.5. Classical and Bayesian Allele Frequency Estimates

Allele | White | Black | Chicano | Asian

5 .0054 .0000 .0000 .0000

.0053 .0003 .0003 .0006

6 .2258 1351 .2083 .1039

2227 .1380 .2064 1147

7 .1586 3703 3333 2597

TABLE 3.4. Allele Counts in Four Subpopulations 1667 3645 -3301 -2630
8 1102 .2108 0677 .0519

Allele | White | Black | Chicano | Asian 1105 | .2045 -0707 -0609
5 2 0 i 0 9 | 1425 | 1459 | .1432 | .4416

6 | & | 50| &0 | 16 g | |30

g 2? 1’?’87 132 4(8) .3424 1421 2445 .1070

11 .0054 .0000 .0000 .0455

9 53 54 55 68 .0057 .0007 .0007 .0404

10 131 51 9 14 12| 0000 | .0000 | 0000 | .0065
11 2 0 0 7 .0002 | .0002 | .0002 | .0061

12 0 0 0 1 Sample

Total 2n 372 370 384 154 Size 2n 372 370 384 154
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e Bayesian approach to estimate a multinomial parameter p

— Data likelihood: @|p ~ multinomial(p)

— Prior: p ~ Dirichlet(ax)

— Posterior: p|x ~ Dirichlet(a + )

— Do estimation and inference of p based on the posterior distribution

But what value of o to use in

e Empirical Bayes idea:

the prior?

— Estimate a from data, say by maximizing the marginal likelihood of

x; ~ DirMult(a).

— Then estimate p by posterior mean pgg = (& + &) /(|| + |&]).

For a celebrated binomial estimation problem (batting averages of major league
baseball players), see Efron and Morris| (1973, [1977)).

Ims

CAMBRIDGE

Monographs

Large-Scale
Inference

Empirical Bayes Methods for
Estimation, Testing, and Prediction

Bradley Efron
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e The Bayes estimate (under certain conditions) enjoys both good asymptotic

and finite sample properties.

“borrow information across populations”, “shrinkage”, “learning from the ex-

perience of the others”

The Annals of Statisties
1986, Vol. 14, No. 1, 1-26

SPECIAL INVITED PAPER
ON THE CONSISTENCY OF BAYES ESTIMATES

By PERsI Diaconis! AND DaviD FREEDMAN 2

Stanford University and University of California, Berkeley

We discuss frequency properties of Bayes rules, paying special attention
to consistency. Some new and fairly natural counterexamples are given,
involving nonparametric estimates of location. Even the Dirichlet prior can
lead to inconsistent estimates if used too aggressively. Finally, we discuss
reasons for Bayesians to be interested in frequency properties of Bayes rules.
As a part of the discussion we give a subjective equivalent to consistency and
compute the derivative of the map taking priors to posteriors.

1. Consistency of Bayes rules. One of the basic problems in statistics can
be put this way. Data is collected following a probability model with unknown
parameters; the parameters are to be estimated from the data. Often, there is
prior information about the parameters, for example, their probable sign or order
of magnitude. Many statisticians express such information in the form of a prior
probability over the unknown parameters. Estimates based on prior probabilities
will be called Bayes estimates in what follows.

e Machine learning applications: Handwritten digit recognition, text mining,

email spam detection, ...

TABLE 7
Confusion Matrix for the WebKB4 Data Set Using MDD Mixture

Course  Faculty Project  Student

Course 826 47 33 24
Faculty 44 901 38 141
Project 31 47 374 52
Student 41 52 43 1505

FIGURE 13.9. Ezamples of grayscale images of handwritten digits.

e In HW6/HW7, we estimate a by MLE.

e HW6 (Newton’s method)
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Check solution. It’s not optimal but you may learn things. http://
hua-zhou.github.io/teaching/st7568-2014fall/hw0O6sol.html

Implementation of density function: deal with InT'(0)—InT'(0) = co—o0 =
NaN issue. Is the first formulation more efficient for computation (log

instead of log gamma evaluation)?

Implementation of MLE function. Allowing observation weights is always

a good idea.

Implementation of gradient/score function. Is the first formulation more

efficient (free of digamma evaluations)?

Special structure in the observed information matrix
~d’L(a)) = D — c117,
where D = diag(dy, ...,d,) and

d; = ZZI; a]+k j=1,....d,
n \m1|
© = z;kz% |a|+k:

Is the first formulation more efficient (free of trigamma evaluations)?

By Sherman-Morrison

[~EL(@)] ! =D+ ey Z (Dfll)(lTD’l),

which is pd if and only if ¢t > Zl d;*!

Ad hoc approximation of Hessian: use ¢ = 0.95(3>". d; ') =1 if it’s not satis-
fied.

Newton’s direction is computed fast: O(d) flops. No need to store any

matrix! Why do I still see solve (D) or matrix-vector multiplication?
How to calculate Fisher information matrix?

Deal with boundary constraint. Choose initial step size s such that all

components of
Y4+ sAa

are positive.
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— What’s that damn MoM starting point? If P = (Py,. .., Py) is from Dirich-

let with parameter a, then

(o +1)
el(jaf + 1)

Therefore

3 E(P?) |af+d

~E(P) ol t1

We estimate the left hand side by
Z >l Iz]/|a’z

2@y /|2

and then solve for |a®| = (d — p)/(p — 1). Then we initialize

a9 = |a(0)| >i Tij _ d—p > i Tij
’ > il p—1 >ilmil )

Is there any proof (d —p)/(p—1) is always positive? Anyway we just need

a good starting point. Other heuristics should also work.

e HW7: EM/MM algorithm for maximizing

n d Tij— n |ei-1
Zl ( )+2221na]+k >N In(lof + k)
i=1 L i=1 j=1 k=0 i=1 k=0

Hint: Apply Jensen’s inequality to In(a; + k) and supporting hyperplane in-
equality to In(|a| + k).

e Examining Newton iterates, we are delighted to see its fast (quadratic) conver-
gence. In HW7, you might see another scenario (linear convergence) for MM
iterates. On the other hand, for machine learning problem, do we really need a

super-accurate solution?
e Main messages:

— basics of Newton’s method (pd approximation, line search)

— examine and exploit problem structure whenever possible
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— EM and MM turn out to be different

— Comparing Newton versus MM: number of iterations, human efforts, effi-

ciency, ...

(Optimization is a) fascinating blend of theory and computation, heuristics

and rigor.

Roger Fletcher

There is simply no such thing as a universal ‘gold standard’ when it comes to

algorithms.

Unknown Reviewer

e Implementation details: 1gamma, digamma, trigamma, psigamma in R are vector-

ized function, vectorize code (numerical linear algebra is preferred over apply () ),

Some black-box optimization routines in R

General-purpose Optimization

Description

General-purpose optimization based on Nelder-Mead, quasi-Newton and conjugate-gradient algorithms. It
includes an option for box-constrained optimization and simulated annealing.

Usage

optim(par, fn, gr = NULL, ...,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN",
"Brent"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)
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Optimization using PORT routines

Description
Unconstrained and box-constrained optimization using PORT routines.
Usage

nlminb(start, objective, gradient = NULL, hessian = NULL,
scale = 1, control = list(), lower = -Inf, upper =
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23 Lecture 23, Nov 18

Announcements

e HW7 (EM/MM for Dirichlet-multinomial) due today: submit hardcopy + email
code (LastFirstHW7.R or LastFirstHW7.Rmd)

e HWBS (ranking MLB teams) due next Tue Nov 25

e HW9 (Monte Carlo simulation project, 100 pts) posted. Due Dec 9 @ 11A.
Send both your report (pdf) and code (R or Rmd) by email.

— Read posted course materials
— Start early and send me your questions or draft by Nov 30

— Discussion on Dec 2 (last lecture)

Last time

e HWG6 review (Newton’s method in action)

Today

e Last EM/MM example: Netflix problem

Example: Netflix and matrix completion

e Snapshot of the kind of data collected by Netflix. Only 100,480,507 ratings
(1.2% entries of the 480K-by-18K matrix) are observed

ID H movie 1 \ movie 2 | movie 3 | movie 4 \ movie 5 \ movie 6 \ . \ movie 17,770
user 1 5 3 4 3 3 NA . 1
user 2 4 NA NA NA NA NA . NA
user 3 NA NA NA NA NA NA . NA
user 4 4 NA NA NA NA 2 e 4
user 5 NA NA NA 5 NA NA e NA
user 6 3 NA NA 5 1 NA .. 3
user 7 NA NA NA NA NA NA ... NA
user 8 5 NA 5 NA NA NA . NA
user 9 NA NA NA NA 3 NA . NA

user 480,189 NA 5 NA NA NA NA .. NA
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e Netflix challenge: impute the unobserved ratings for personalized recommenda-

tion. http://en.wikipedia.org/wiki/Netflix_Prize

Netflix Prize Progress
1.0500

1.0000

0.9500

RMSE

0.9000

0.8500
Nov02  Nov30 Dec28  Jan25  Feb22  Mar22  Apri9
Date

lome  Rules Leaderboard  Register Update  Submit  Download

Leaderboal'd 10.059%0 noispiaytop[z0 |ieaders.
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BigChaos 0.8613 9.47 2009-06-23 23:06:52

o Matriz completion problem. Observe a very sparse matrix Y = (y;;). Want to
impute all the missing entries. It is possible only when the matrix is structured,
e.g., of low rank.

o Let Q = {(4,7) : observed entries} index the observed entries and Py (M) denote
the projection of matrix M to 2. The problem

1 , 1 )
min_ S|[Pa(Y) — Pa(X)llp = 5 > (v — )

rank(X)<r =
(1.7)€Q

unfortunately is non-convex and difficult.

e Convez relazation (Mazumder et al., [2010)

1
min f(X) = Z[|Pa(Y) = Po(X)[& + AIX].,

where || X ||, = [|o(X)|l; = >, 0:(X) is the nuclear norm.
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e Majorization step:

f(X) = 3 Z Yij — Tij)” Z 0+ A X

(4,5)€Q (4,4) g8
1
< 3 Z Yij — i5)? T > (@) — @)+ A X
(3,7)€ (4,)¢9
= §|\X—Z(t)||%+>\||X||*
= g(X|X"),

where Z®) = Po(Y)+ Por (X ®). “fill in missing entries by current imputation”

e Minimization step:

Rewrite the surrogate function
g(X|X 1) = JIX[R — (X7 Z0) + | 2O} + M| X
Let o; be the singular values of X and w; be the singular values of Z®). Observe
IX1F = llo(X)I; = ZU?
1ZOE = flo(Z9)]3 = Zw
and by the Fan-von Neuman’s inequality

(t)) < Z Wi

with equality achieved if and only if the left and right singular vectors of the
two matrices coincide. Thus we can choose X to have same singular vectors as
Z® and

g(X|X®) = %ZJE—Zini—F%wEvL/\ZJi
_ %Z(ai—wi)Q—l—)\Zai,

with minimizer given by az.(tﬂ) = (w; — A)4. “Singular value thresholding”

e Algorithm for matrix completion:
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Initialize X (© ¢ R™*"

repeat
ZWD  Po(Y) + Py (X®)
Compute SVD: Udiag(w)VT™ < Z{+Y
XD ¢ Udiag[(w — \) (VT

until objective value converges

e “Golub-Kahan-Reinsch” algorithm takes 4m?n + 8mn? + 9n? flops for a m > n
matrix and is not going to work for 480K-by-18K Netflix matrix.

Notice only top singular values are needed since low rank solutions are achieved
by large . Lanczos/Arnoldi algorithm is the way to go. Matrix-vector multi-

plication Z®w is fast (why?)
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24 Lecture 24, Nov 20

Announcements

e HW7 (50pts) returned. Sketch of solution: http://hua-zhou.github.io/
teaching/st7568-2014fall/hw07sol.html Feedback:

— Vectorize code by outer + apply or table + apply
— Pre-compute certain quantities s;, and 7y,

— Convergence criterion: relative change in objective values, or first oder

optimality condition
e HWBS (ranking MLB teams) due next Tue Nov 25.

e HWO (simulation project) due Dec 9 @ 11A.

Last time

e EM/MM example: Netflix problem

Today

e Quasi-Newton method.

e Conjugate gradient method.

Quasi-Newton methods (KL 14.9)

e Quasi-Newton is probably the most successful “black-box” optimizers in use.

E.g., implemented in the general purpose optimization routine optim() in R.

e Consider the general Newton scheme for minimizing f(x), x € X C R?:
where A® a pd approximation of the Hessian d2f(x®).

— Pros: fast (quadratic) convergence
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— Cons: compute and store Hessian at each iteration (usually O(np?) cost
in statistical problems), solving a linear system (O(p*) cost in general),
human efforts (derive and implement gradient and Hessian, pd approxi-

mation, ...)

e Any pd A gives a descent algorithm — tradeoff between convergence rate and

cost per iteration.

e Setting A = I leads to the steepest descent algorithm. Picture: slow conver-
gence (zig-zagging) of steepest descent (with exact line search) for minimizing

a convex quadratic function (ellipse).

(a)

(b)
Figure 10.6.1. (a) Steepest descent method in a long, narrow “valley.” While more efficient than the
strategy of Figure 10.5.1, steepest descent is nonetheless an inefficient strategy, taking many steps to
reach the valley floor. (b) Magnified view of one step: A step starts off in the local gradient direction,
perpendicular to the contour lines, and traverses a straight line until a local minimum is reached, where
the traverse is parallel to the local contour lines.

How many steps does the Newton’s method take for a convex quadratic f7

e Idea of Quasi-Newton: No analytical Hessian is required (still need gradient).

Update approximate Hessian A according to the secant condition
V(@) = Vi(@®) ~ & f@®) @) - a).

Instead of computing A from scratch at each iteration, we update an approx-
imation A to d?f(x) which satisfies (1) p.d., (2) the secant condition, and (3)

closest to the previous approximation.
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— Super-linear convergence, compared to the quadratic convergence of New-

ton’s method. But each iteration only takes O(p?)!

e History: Davidon was a physicist at Argonne National Lab in 50s and proposed
the very first idea of quasi-Newton method in 1959. Later studied, implemented,
and popularized by Fletcher and Powell. Davidon’s original paper was not
accepted for publication ®; 30 years later it appeared as the first article in the
first issue of SIAM Journal of Optimization (Davidon| |1991)).

William C. Davidon

From Wikipedia, the free encyclopedia

read about

éither the antiwar movement or

' Hoover's FBI; a masterpiece.”

~—Daniel Ellsherg

William Cooper Davidon (1927-November 8, 2013) was
an American professor of physics and math ics, and William C. Davidon
peace activist. He was the mastermind of the March 8,
1971 F.B L office breakin, in Media, Pennsylvania, and
the informal leader of the Citizens' Commission to
Investigate the FBI.

Contents

= 1Life
= 2 Activism

= 3 Family

= 4 References

= 5 External links

Life

Davidon was born in Fort Lauderdale, Florida in 1927. He
attended Purdue University, and graduated from the Born 1927 Intimid,. \\\\—
University of Chicago with a Ph.D. in 1957.1] Fort Lauderdale Y againe Th _

b
Died November 8, 2013 e & D] S COVeI.y Of

From 1954 to 1956, he was a research associate at the )
Highlands Ranch, Colorado

Enrico Fermi Institute. From 1956 to 1961, he was an clativel,
associate physicist at the Argonne National Laboratory. He | Nationality American om they e g a I' H 0 Ove )
was professor of physics at Haverford College, beginning Occupation physics professor Finyes. r S
in 1961, and then Professor of Mathematics. He retired in o o X Lingly_ e Cre t FB
1991. He was a 1966 Fulbright Scholar.2! Known for Citizens' Commission to Investigate s I
the FBI =)
Davidon moved to Highlands Ranch, Colorado, in 2010. :;::: As long oy g, = Dniteq
He died November 8, 2013, of Parkinson's disease. st Indoching 1n g : States 8overnmen, ages war
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e Davidon-Fletcher-Powell (DFP) rank-2 update. Solve

minimize ||A — AD||g
subject to A= AT
Afa® —2) = Vf(a) - V()

“omicand pelyyye,
We have carpiog
Physically theegyq,,
*=ent of the pegple |
veretaken Indeeg,
i building 2 peacesy]
U Wage nor threar,
aterial resoypeey faiy

Justice rathey
than £,
bR k|

for the next approximation A®*1. The solution is a low rank (rank 1 or rank

2) update of A®. The inverse is too thanks to Sherman-Morrison-Woodbury

!

O(p?) operations. Need to store a p-by-p dense matrix. Positive definiteness is

guaranteed by the same trick you used in HW6! See KL 14.9 for details.
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e Broyden-Fletcher-Goldfarb-Shanno (BFGS) rank 2 update is considered by many
the most effective among all quasi-Newton updates. BFGS imposes secant con-

dition on the inverse of Hessian H = A~ L.

minimize ||H — H(t)HF
subject to H = H'
HVF(z®) - Vf(zt V)] =2® — gt

Again H*Y is a rank two update of H®). O(p?) operations. Still need to store

a dense p-by-p matrix.

e Limited-memory BFGS (L-BFGS). Only store the secant pairs. Particularly

useful for large scale optimization.

e [-BFGS-B: with box-constraints. Implemented in the general purpose opti-

mization routine optim() in R.

e How to set the initial approximation A()? Identity or Hessian (if pd) or Fisher

information matrix at starting point.

(Linear) Conjugate gradient method

e (Linear) Conjugate gradient is the top-notch iterative method for solving large,
structured linear systems Ax = b. Earlier we talked about Jacobi and Gauss-

Seidel as the more classical iterative solvers.

Table 1. Kershaw’s results for a fusion problem.

Method Mumber of iterations
Gauss Seidel 208,000

Block successive overrelaxation methods 765
Incomplete Cholesky conjugate gradients 25

e Linear conjugate gradient method: for solving large linear systems of equations.

History: Hestenes and Stiefel in 50s.
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e Solve linear equation Ax = b, where A € R™"*" is pd, is equivalent to

1
minimize f(x) = §wTAa: —b'x.

Note Vf(x) = Az — b =: r(x).

e Consider a simple idea: coordinate descent, that is to update z; alternatingly.

Same as the Gauss-Seidel iteration.

Figure 9.1
%, s Coordinate search method makes slow
progress on this function of two variables.

o A set of vectors {p@,...,p"} is said to be conjugate wrt A if
p;Ap; =0, foralli#j.
e Conjugate direction method: Given a set of conjugate vectors {p©®,... p®},
at iteration t, we search along the conjugate direction p*)
2D = 0 | )
where

0 Tp®

W__ T P
T T PO TAp®”

e Theorem: &® converges to the solution in at most n steps.

Intuition: Look at graph.
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Figure 5.1 Successive minimizations along the coordinate directions find the
minimizer of a quadratic with a diagonal Hessian in n iterations.

e Conjugate gradient method. Idea: generate p®*) using only p®*—1)

p® = _p®) 4 gOpED),

where 3% is determined by the conjugacy condition p®*~1TAp® =0

(t) fr(t) TAp(t_l)
- pt=—DT A1)

B

e CG algorithm (preliminary version):
Given (¥

Initialize: 7 — Az — b, p© «— —rO t =0

while () £ 0 do

() . r®) Tp)
QS DT AR

o) O 4 o0 p®

r0+) o Azt — b

(t+1) . rDTAp(t)
s N OR YO

ptHD) () 4 gl H®)

166



t<—t+1
end while

e Theorem: With CG algorithm

1. r® are mutually orthogonal.

2. {,,,(0), e ,r(t)} is contained in the Krylov subspace of degree t for r(©,

denoted by
K(r©;t) = span{r® Ar® A%2© Aly©O1

3. {p?,...,p®} is contained in K(r©@;¢).

4. p . p® are conjugate wrt A.
The iterates ® converge to the solution in at most n steps.
e CG algorithm (economical version): saves one matrix-vector multiplication.

Given z(©

Initialize: 7 « Az©® —b, p© « —O ¢t =0

while 7 = 0 do

(t) () Tp(t)
a PO TApD

o) 2O 1 oOp®

r t+1) < fr(t) + a(t)Ap(t)

(

(t+1) (D p (1)
6 () p(t)

(

p th1) (D) 4 5(t+1)p(t)
t<—t+1

end while

e Computation cost per iteration is one matrix vector multiplication: Ap®.

Consider PageRank problem, A has dimension n ~ 10'° but is highly structured

(sparse + low rank). Each matrix vector multiplication takes O(n).

e Theorem: If A has r distinct eigenvalues, ) converges to solution x* in at

most r steps.
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25 Lecture 25, Nov 25

Announcements

e HWS8 (ranking MLB teams) due today. Submit hardcopy and email code
(LastFirstHW8.R or LastFirstHW8.Rmd).

e HWO (simulation project) due Dec 9 @ 11A.

e No office hours this Thu and Fri (Thanksgiving).

Last time

e Quasi-Newton method.

— DFP: keep rank-2 updating inverse of approximate Hessian

— BFGS: keep rank-2 updating approximate Hessian inverse

e (Linear) conjugate gradient method for solving linear equation Az = b.

Today

e Preconditioned conjugate gradient.
e (Nonlinear) conjugate gradient method.

e Concluding remarks on optimization.

Pre-conditioned conjugate gradient (PCGQG)

e Summary of conjugate gradient method for solving Ax = b or equivalently

minimizing jx’ Az — b x:

— Each iteration needs one matrix vector multiplication: Ap®**tY. For struc-

tured A, often O(n) cost per iteration.

— Guaranteed to converge in n steps.
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e One example of using CG. Consider the Newton method implemented in HW8
for ranking teams. Suppose the number of teams/players p is huge (e.g. online
Chess). Most likely the Hessian is sparse. Then CG can be used to compute

the Newton direction.

Simulation setup in the following figure: p = 1000 or 2000, strengths of team
are \; = i + (p/10), each player competes with about p/20 opponents.

10*

—*—NM, p=1000
——NM-CG, p=1000
——NM, p=2000
—=—NM-CG, p=2000

First Order Optimality

-10 I I I I I I

0 1 2 3 4 5 6 7
Time (seconds)

e Two important bounds for conjugate gradient algorithm:

Let Ay < --- < )\, be the ordered eigenvalues of a pd A.

M — A\ 2
le) — a2 < (—) le® — 2|3

An—t + A1

t
A) -1
22 < 9 K( 0) _ %2
wHA = (\/@+1> HCU wHAv

where k(A) = A,/ is the condition number of A.

Hw(tJrl)
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A‘I 7\'n—m xn—m+1 ?“n
lIII!IIIII | 1 1 | 1 |

0 1

Figure 5.3 Two clusters of eigenvalues.

| log(le-x*)

clustered eigenvalues

uniformly distributed =~ N~ "%
eigenvalues

iteration

Figure5.4 Performance of the conjugate gradient method on (a) a problem in which
five of the eigenvalues are large and the remainder are clustered near 1, and (b) a matrix
with uniformly distributed eigenvalues.

e Messages:

— Roughly speaking, if the eigenvalues of A occur in r distinct clusters, the

CG iterates will approzimately solve the problem after O(r) steps.

— A with a small condition number (A; &~ \,) converges fast.
e Pre-conditioning: Change of variables & = C'x via a nonsingular C' and solve
(cTaCcHz =C "b.
Choose C such that

— C~TAC™! has small condition number, or
— C~TAC™! has clustered eigenvalues

— Inexpensive solution of CT'Cy = r
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e Preconditioned CG does not make use of C' explicitly, but rather the matrix
M =C"C.

e Preconditioned CG (PCG) algorithm:

Given (¥, pre-conditioner M
r® «— Az® —p

solve My© = O for 4©
p® — —r® ¢t =0

while 7 +£ 0 do

t) T(t) Ty(t)

PO TAPDH
2D g0 4 oOp®
r(t+1) < fr(t) + @(t)Ap(t)

Solve Myt « ¢+ for 4(+1)

al

Bl %
pt+D) o _gy(t+]) 4 B+ p®)
t+—1t+1

end while

Remark: Only extra cost in the pre-conditioned CG algorithm is the need to

solve the linear system My = r.
e Pre-conditioning is more like an art than science. Some choices include

— Incomplete Cholesky. A ~ LL”, where L is a sparse approximate Cholesky
factor. Then L~ AL™T a~ I (perfectly conditioned) and My = LLTy =
T is easy to solve.

— Banded pre-conditioners.

— Choose M as a coarsened version of A.

— Subject knowledge. Knowledge about the structure and origin of a problem
is often the key to devising efficient pre-conditioner. For example, see
recent work of Stein et al.| (2012)) for pre-conditioning large covariance
matrices. http://epubs.siam.org/doi/abs/10.1137/110834469
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More buzzwords and softwares

Here are a few variants of CG that we should at least know the names and what they

are for (so we can Google later in need).

MINRES (minimum residual method): symmetric indefinite A.
Bi-CG (bi-conjugate gradient): unsymmetric A.
Bi-CGSTAB (Bi-CG stabilized): improved version of Bi-CG.

GMRES (generalized minimum residual method): current de facto method for

unsymmetric A. E.g., PageRank problem.
Lanczos method: top eigen-pairs of a large symmetric matrix.
Arnoldi method: top eigen-pairs of a large unsymmetric matrix.

Lanczos bidiagonalization algorithm: top singular triples of large matrix.

Remark: For Lanczos/Arnoldi methods, the critical computation is still matrix

vector multiplication Aw.

Softwares:

MATLAB:

— Iterative methods for solving linear equations:

pcg, bicg, bicgstab, gmres, ...

— Iterative methods for top eigen-pairs and singular pairs:

eigs, svds, ...

— Pre-conditioner:

cholinc, luinc, ...

Get familiar with the reverse communication interface (RCI) for utilizing iter-
ative solvers:

x = gmres(A, b)

x = gmres(@Afun, Db)

eigs(A)

eigs(@Afun)
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e Consider the PageRank problem. We want to find the top left eigenvector of

the transition matrix
P=pR"A+ 21],

where R = diag(ry,...,7,) and z; = (1 —p)/nif r; > 0 and 1/n if r; = 0. Size
of P can be huge: n ~ 40 billion web pages. How to call the gmres or eigs

function?

e R: Try Google and good luck ...

(Nonlinear) Conjugate gradient method

e Linear conjugate gradient method is for solving linear system Ax = b, or

equivalently, minimizing %mTAa: —blx.
e Nonlinear conjugate gradient is for nonlinear optimization

minimize f(x).

e History: Fletcher and Reeves in 60s.
e Fletcher-Reeves CG for nonlinear minimization:

Given 2
Evaluate Vf(© = V f(2(®)
Set p(@ «— —VfO ¢+ 0
while V) £ 0 do
Compute oY and set £t «— ) + oOp®

Evaluate V f+1) = V f(x(+Y)
Bl DD

sOVI®
p(t+1) — _vf(t—i—l) 4 ﬁ(t—i-l)p(t)
t+—1t+1
end while

e Most cost is evaluation of objective function and its gradient. No matrix oper-

ations are needed. Appealing for large nonlinear optimization problems.

e Line search (choose a(t)) is necessary to get a descending algorithm.
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Concluding remarks on optimization

e Nonlinear optimization algorithms

Algorithm Convergence Rate Per-iteration Cost Example
Newton quadratic high, usually O(np?) + O(p?) GLM with canonical link
Fisher Scoring super-linear high, usually O(np?) + O(p?) GLM with non-canonical link
Gauss-Newton super-linear high, usually O(np?) + O(p?) nonlinear GLM
Quasi-Newton super-linear moderate, usually O(np) + O(p?)
Conjugate gradient super-linear moderate, usually O(np) + O(p?)
Coordinate descent linear low
Steepest descent linear low
EM/MM linear low

There is simply no such thing as a universal ‘gold standard’ when it comes to

algorithms.

Unknown Reviewer

e Problem specific analysis is critical for developing a successful optimization al-

gorithm.

E.g., I don’t think any black-box procedure can beat our safe-guarded New-
ton’s method for the Dirichlet-Multinomial MLE problem (HW6/7) in terms of

efficiency.
e Use “black-box” for

— numerical linear algebra
— least squares

— convex programming (TODO in ST790-003 Advanced Statistical Comput-
ing). Current “technology” (Cplex, Gurobi, Mosek, cvx, Matlab, ..., R is
not here ®) can deal with problem with up to 10*> ~ 10* variables and

constraints or even more with structure.

174



convex problems @

/
cone problems @ more genera
SDP e
SOCP e GP
QP e LP -
more specific
® S

For example, the optimization problem in HW8 (ranking MLB teams)

, —Yij
minimize H ( i > = H%_ o (v + ’Yj)yij

> Vi + i

is recognized as a standard geometric programming (GP) problem. Using
the open source convex optimization software CVX (Grant and Boyd| 2012)
amounts to only 6 lines of MATLAB code

p = size(Y, 1);
[rowidx, colidx, yvec] = find(Y);
cvx_begin gp
variable gamma(p)
minimize prod(((gamma(rowidx) + gamma(colidx)) ./ gamma(rowidx)) .~ yvec)

cvx_end

e First order methods (EM /MM, CD, steepest descent) is easier for parallel com-
puting.

Algorithm development goes hand in glove with hardware advancement.

Hua

e Reference books:
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Numerical Optimization (Nocedal and Wright|, 2006))

Convex Optimization (Boyd and Vandenberghe, [2004)

The EM algorithm and Extensions (McLachlan and Krishnan|, 2008))
Numerical Analysis for Statisticians (Lange, 2010)
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26 Lecture 26, Dec 2

Announcements
e HWBS (ranking MLB teams) returned. Feedback:

— Bradley-Terry model. KL 12.6 or David Hunter’s paper.

— Non-concavity of the log-likelihood in A parameterization. Enough to find
a simple counter-example. However the negative log-likelihood is an ex-

ample of geometric program, a branch of convex programming.
— Vectorization of MM update: outer function.

— Concavity of the log-likelihood function in 4 parameterization. “log-sum-

exp”’ terms are convex.

— Implementation of Newton’s method. Hessian is singular due to identifia-

bility. Setting ;.
— Problem structure: sparsity in large league.

— Check David Hunter’s code for taking advantage of sparsity.

Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/
hw08sol.html

e HW9 (simulation project) due Dec 9 @ 11A.
o FAQs on HW9 (simulation project)

e Regular office hours this week: Tue (Hua), Thu (Hua) and Fri (William). No

office hours next week.

e Course evaluation!: https://classeval.ncsu.edu/

Last time

e Pre-conditioning for conjugate gradient (PCG) method.
e Nonlinear conjugate gradient for optimization.

e Concluding remarks on optimization.
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Today

e Introduction to Markov chains and MCMC.
e Fast algorithms: sorting, FFT.

e Take home messages.

Introduction to MCMC
Some topics I'll briefly talk about.
e History of Markov chain
e History of Monte Carlo and birth of MCMC

e Convergence rate of Markov chain

Markov chains

e Markov chain is a stochastic process X, X1, Xo,... with the Markov property
P(Xt+1|Xta D, CEEPIN ,Xo) = P(Xt+1|Xt)'
Given current state, the future is independent of the past.

e Stochastic analog of ordinary differential equations.

dx(t)
dt
L(Xp1| Xy =2) = K(z,)

= F(x(t))

e Notations (for discrete time, finite Markov chains)

— a finite state space X
— transition matrix K(z,y), z,y € X

— stationary distribution 7 on X', defined as a probability vector that satisfies
'K =77,
Existence of such 7 is guaranteed by the Perron-Frobenius theorem.
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— K!(x,y) denotes the I-step transition probabilities

e Markov chains in early years:

Fermat and Pascal (circa 1654): Gambler’s ruin.
Bernoulli (1769) and Laplace (1812): Urn model.
— 1. J. Bienaymé (1845), and later Sir Francis Galton and Watson (Educa-

tional Times, 1873): Branching process.

— Paul and Tatiana Ehrenfest (1906): Statistical physics.
— Poincaré (1912): Card shuffling. Calcul des Probabilités

— Markov’s contribution

* Markov, A. A. (1906)
Extension of the law of large numbers to dependent quantities [in
Russian|, Izv. Fiz.-Matem. Obsch. Kazan Univ. (2nd Ser.)

* St. Petersburg School vs Moscow School.
x Example: 20,000 letters in Pushkin’s Fugene Onegin.

vowel consonant m
vowel 0.128 0.872 0.432
consonant \ 0.663 0.337 0.568
* See Seneta’s interesting account on the history 1996))
— Some other leading pioneers: Kolmogorov, Fréchet, and Doeblin.
e Why are Markov chains important in statistics?
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— Modeling tool.
E.g., Marc Coram’s “jail message” example: Markov model for letter se-

quence; PageRank’s (imaginary) random web surfer; ...

— A methodology that revolutionized statistics: Markov Chain Monte Carlo
(MCMC).

* Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)
Equation of state calculation by fast computing machines, The Journal
of Chemical Physics, 21, 1087-1092.

% Want to sample from a distribution 7 (x) o< f(x).
Metropolis algorithm constructs a Markov chain that converges to .

x Marc Coram’s “jail message” example.

Markov chain Monte Carlo (MCMC)

e Monte Carlo method is a generic name for “computational algorithms that rely
on repeated random sampling to obtain numerical results”. They are in contrast
to the deterministic algorithms. They have wide applications in

— integration
— drawing sample from a distribution. E.g., HW9 (simulation study).
— optimization (simulated annealing). E.g., Marc Coram’s “jail message”

example, traveling salesman, Soduku, ...

e Monte Carlo in early years

180



Stanislaw Ulam

John von Neumann

Von Neumann in the 1940s Stanislaw Ulam

— Stanislaw Ulam conceived it in 1946 while playing solitaire in hospital bed.
He wanted to know the probability of getting a perfect solitaire hand, and

wondered whether computers can help answer this.

— John von Neumann was intrigued by the idea and developed a way to gener-
ate pseudorandom numbers (inversion, importance sampling, acceptance-
rejection sampling) on electronic digital computers (ENIAC) to realize

Ulam’s idea, for the neutron fission and diffusion problem.
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ANOTHER VON NEUMANIN LE§ 1

Fig. 3. In this 1947 letter 1o Stan Ulam, von M. Stan Ulam way 21, 1947
Post Office B

Neumann discusses two methods for gen- Fon ke Rox 1663
erating the nonuniform distributions of ran- ’ sunea re

dom numbers needed In the Monte Carlo

method. The second paragraph summarizes Dear Stan

the inverse-function approach in which u‘,)
represents the uniform distribution and (£')
the desired nonuniform distribution. The
rest of the letter describes an alternative ap-

“ved the necessary papers
proach based on two uniform and Indepen-  40d rotumed mine yesterday, thi.up:xn[:;‘::r:;hrk T tited
dent distributions: (x') and (y'). In this lat- T2 very glad that preparations gor the
ter approach a value x' from the first set is begin soon. 1In thys connection, I would randon
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— Ulam and von Neumann, working on Manhattan Project, used the code

name Monte Carlo. It is a casino in Monaco where Ulam’s uncle fre-

quented.

— Nicholas Metropolis, fascinated by the Monte Carlo idea too, designed
and built computing devices (MANIAC) to handle such calculations. His
paper with Ulam in JASA (Metropolis and Ulam) 1949)) formed the basis

of modern sequential Monte Carlo methods.

— Birth of MCMC (Metropolis et al., [1953)):

* Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)

Equation of state calculation by fast computing machines, The Journal

of Chemical Physics, 21, 1087-1092.

% Want to sample from a distribution 7 (x) o< f(x).

Metropolis algorithm constructs a Markov chain that converges to 7.

« Metropolis chain: From current state z, generate a new state 2’ (from a
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proposal distribution p(z, ") such that p(z,2’) = p(2’,x)) and accept

2’ with probability min { J;((Q;/)), 1}.

Fact: Metropolis chain has 7 as stationary distribution.

x Marc Coram’s “jail message” example.

Nicholas Marhsall Edward Teller

Constantine Rosenbluth
Metropolis 1927-2003

1915-1999 and Augusta
and Arianna Teller

Rosenbluth

1908-2003

e Given m, generic ways to construct a Markov chain K that has 7 as stationary

distribution:

— Metropolis algorithm: (Metropolis et al.| [1953)

— Hastings algorithm: (Hastings| 1970))

— Gibbs sampler: Glauber dynamics (1963), Tanner and Wong (1987)), |Gelfand
and Smith! (1990)

e See KL Ch25-27 and JM Ch13 for a general introduction, or take a Bayesian
course. A comprehensive textbook is (Robert and Casella, [2004)).
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Monte Carlo
Statistical
Methods

Christian P. Robert
George Casella

Convergence rate of Markov chains
e (lassical result: For finite, irreducible, and aperiodic Markov chains
lim K'(z,y) = 7(y).
l—o0

In practice, we often want to know how many steps to make the difference

between K'(z,-) and 7 small?

e Example: “How many shuffles do I need to do to mix a deck of 52 cards?”

Consider riffle shuffle. Gilbert-Shannon-Reeds model: binomial(52, 0.5) cut +
cards drop according to probability L/(L + R), where L and R are the number
of cards in the left and right hand respectively.
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e Example: "How long do I need to run my Gibbs sampler?”

Consider the Beta-Binomial Gibbs sampler

— Likelihood f(z | p) ~ Bin(n, p) and prior m(p) ~ Beta(, [3)
— Want to sample from joint density f(z,p) = f(z | p)7(p)
— Gibbs sampler: Repeat the following
% Sample z from Bin(n, p)
* Sample p from Beta(z + a,n — z + f3)
— (X1, p1)i>1 form a Markov chain on {0,1,...,n} x [0, 1]
— Let K(x,p;2',p') be the transition density

— How many steps (obviously depending on n, «, 3) does this Markov chain

converge to the stationary distribution?

e In a typical Bayesian course, we learn many convergence diagnostics that are
often heuristic. Is there anything rigorous we can say about convergence rate

of Markov chains?
e Distances between distributions:

— Total variation distance:

o=l = 5 3 i) ()

rzeX

= max |u(A) — 7(A)]

1

=5 sup \u(f) —m(f)l
lfllo<1

— LP distance wrt m:
Let f(z) = 4% and g(z) = % For 1 <p < 0,

7(x)
1/p
e p(pt;v) = |1f = gllLr(x) = (Z |f(z) - 9($)|p7f($)>

e The usual limit theorems are useless in practice:

“There exist constants A, B > 0, p € (0,1) such that |K'(z,-) —

7T||TV < ApBl‘n
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A, B, and p are some mysterious constants.

Can we get some more quantitative, useful bounds?

e Cutoff phenomenon (Diaconis, [1996))

0.9 1
®

b0.7 1
-\k;.-.d_k

3/2 (log n)
k
FiG. 1. The cutoff phenomenon for repeated riffle shuffles of n =
52 cards.
— Riffle shuffle.
l 1 2 3 4 5 6 7 8 9 10

IK'—x|rv 1.000 1.000 1.000 1.000 0.924 0.624 0.312 0.161 0.083 0.041

— Many more examples: Ehrenfest chain, random transposition, Gibbs sam-
pler, ...

“Cutoff phenomenon for XXX chain.”

— Not every Markov chain has a cutoff.

A chain without cutoff: simple random walk on the integers mod n.

e Generic methods for studying convergence rates:

— Algebraic methods (spectral analysis) - E.g, random walks on groups (shuf-
fling cards), some Gibbs samplers, ...

— Analytic methods - Geometric Inequalities.

— Probabilistic methods - Coupling and strong stationary times.

e Algebraic method
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— Reversible Markov chains.

If 7 is a probability distribution on A and
m(x)K(z,y) = n(y)K(y,x), forallz,yeX,

then 7 is the unique stationary distribution of K. E.g., Metropolis chain.

— K operates on L*(7) = {f : X — R, E[f? < oo} by

= K(z,y)f(y)

yeX
— Reversibility of K is equivalent to self-adjointness of the operator K.

— By standard spectral theorem for self-adjoint operators, K has eigen-
values 1 = By > By > -+ > Blxj-1 = —1 with (right) eigenfunctions
{¢0,...,Px-1} that are orthonormal on L*()

< ¢l7¢j >L2 Z¢Z ) - 1{1 =5}

zeX

— If we know all the spectral information (lucky!), then

|¥|-1

B alK5),7) = Y 50
— Usually the upper bound is tight.
1
1K (2, ) = mllrv < §dm2(Kl(9fa ), )

— When are we lucky? In presence of symmetry.
E.g., for random walks on groups, we only need eigenvalues, which can be

derived from the irreducible representations of the group.

Definite reference for this topic is the book Diaconis| (1988)
e Algebraic method for analyzing the baby Gibbs sampler

— The joint chain K (z, p;a’,p') is irreversible.

— The z-marginal chain K(z, ') is reversible, with m ~Beta-Bin(n, «, 5) as

stationary distribution. And
1K = mllry < KL, = fllov < K = mllzv.

Thus sufficient to study convergence rate of the z-marginal chain.
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— Some analysis (Diaconis et al., 2008)) shows that K has

* eigenvalues: By =1, B; = np/(n+a+B)G, i =1,...,n.

* eigen-functions: ¢; are the Hahn polynomials.

— Doing the summation gives

0.58) < ||K}, — fllov < 36872

n+a+8
2(a+B)

— Cutoff phenomenon: steps are necessary and sufficient for conver-

gence.

— Similar analysis can be carried out for all following conjugate pairs (see

KL 27.9)
TABLE 26.1. Conjugate Pairs
Likelihood Density Prior Density
Binomial (z);pm (1-p)"* | Beta B (1 —-p)!
Poisson %e_)‘ Gamma g QF’EZ)_I e P
Geometric (1—p)°p Beta Bla )p"‘_l(l —p)P~t
k

. . k i . . r Eé: o) k a;—1
Multinomial (mlﬁmk) | iy Dirichlet H::I rl(ai) | Iy

Normal 2L6—T($—M)2/2 Normal \/ge—w(u—mm

aw
T o—T(z—p)?/2 o> B
Normal 5=€ Gamma 1) T
aya—1
Exponential Ae™A® Gamma % e P

e Analytic method

— Upper bound through spectral gap

1
4K (2,) = mllrv < d7 o(K'(2,),m) < @ﬂfl,

where 8, = max{|/|, |Bjx|-1]}-

— Use some geometric inequalities to bound f,.

— Where to look up the material? Lecture notes by [Saloff-Coste (1997)).

— (K, ) reversible on X (finite). Dirichlet form
«(f,9) =< -K)f,g>.
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Fact

(1) = 5 SU ) = ) Pr(a) K )
— Lemma
)
b = f#1 var(f)
«(/.1)

1-— _{ = max .
A1 f#0 var(f)

— Definition: Poincaré inequality
var(f) < Ae(f, f), for all f € L*(n).

— We can bound f; by finding A

1
<1-——.
Bsi-o

— Theorem (Poincaré Ineq for Markov Chains (Diaconis and Stroock|, [1991))):

1
b1 < 1—2, where A = max

Y Paglm(@)n(y).

Vo,yS€

1
Q(e)
— Apply Poincaré inequality to the baby Gibbs sampler gives a horrible

bound (something exponential ...)

— Other geometric inequalities: Cheeger, Nash, Log-Soblov inequalities (in a

series of papers by Diaconis and Saloff-Coste).

e Probabilistic methods

— By cleverness, we can get good bounds for convergence rate without using

all those analytic methods.

— Good starting point is the book (Diaconis|, [1988|) and the unpublished book
by Aldous and Fill (available on Aldous’ website).

— Coupling - Wolfgang Doeblin.
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+ / a(s, X,)ds

/o

Fig. 20: Cover of the DVD: “Wolfgang Doeblin. A mathematician
rediscovered”
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Fig. 21: The archive of the “Académie des Sciences Fig.22: First page of the “pli cacheté no. 11668*

— For the baby Gibbs sampler, coupling gives an upper bound of order nlnn
(off by Inn).
— Yields useful bounds for hierarchical random effects model (Hobert and|

Ceyer, [1098).

— Let’s work on a simpler example: Borel’s Shuffle (random to top, random
to bottom, ...).

— Coupling: Two processes evolve until they are equal. Coupling time T.

Coupling inequality
1K, = 7llev < P(T > 1).
— For Borel’s shuffle, bound on coupon collector problem gives
!
Thus [ = nlnn steps suffice.
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Summary

— Keep Markov chains in your toolbox - useful for modeling, simulation, and

combinatorial optimization.

— Convergence rate of Markov chains is an interesting applied probability

problem that often gives more insights into the chains.

— A lot remains to be done for analyzing many MCMC algorithms being

used.

Sorting algorithms (JM 14.3, KL 1.10)

Applications: order statistics (median, quantiles), QQ-plot, multiple testing

(sorting p-values), Wilcoxon rank-sum test, ...

Bubble sort: Locate maximum and put on top; find maximum in the (n — 1)

list and put on the top second position; ...

O(n?) average cost.

Think about sorting massive data n = 10'2. On a teraflop computer. n? flops
take 10'? seconds ~ 31710 years, while nInn flops take 10'?log(10'%)/10'? ~ 27

seconds.
Key idea: Divide and conquer.

Merge sort: Recursively partition into two lists, sort them respectively, and
then merge. T'(n) = 27'(n/2) + O(n). Solution is T'(n) = O(nlogyn).

Quick sort: Randomly select a pivot element, split into 3 lists, and do some

swaps so that the pivot is in the right position.

T(n):% [T(j—1)+T(n—j)]+n—1:%Z_:T(j)+n—1.

Solution is O(nlnn).

Sorting is a well-trodden area in computer science. Mature functions/libraries
in standard softwares. The “bible” on this topic is (of course) Knuth| (2005).
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THE CLASSIC WORK
NEWLY UPDATED AND REVISED

The Art of
Computer
Programming

Sorting and Searching

second Edition

DONALD E. KNUTH

Fast Fourier transform (FFT) (KL Chapter 20, JM 14.5)

e History: (Cooley and Tukey| (1965)

John Tukey: “bit”, box-plot, “learning from the experience of the others”,

multiple comparison, FFT, ...

Tukey conceived the FFT algorithm during meetings with President JFK’s Sci-
ence Advisory Committee. They need fast ways to analyze seismic waves to
detect nuclear weapon tests in Soviet Union. Richard Garwin of IBM immedi-
ately realize the potential of this fast algorithm and referred Tukey to Cooley

to implement it.

People also believe Gauss essentially used the same strategy when solving his

least squares problem!
e Applications in statistics: convolution, time series, branching process, ...
e Consider two independent random variables on {0,1,..., N —1}:

Xw{pOV":prl}? YN{QO?"')QNfl}-

What’s the distribution of the sum Z = X +Y?
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— 2z = 2?:0 Piqk—j, k=10,...,2N — 2. O(N?) computation.

— Do DFT of both sequences, multiply together, and inverse DFT.
O(N In N) computation!

e Discrete Fourier transform (DFT) of a vector € RY.
N-1

ak:ijkxj, k=0,...,N—1.
=0

where w = e 27V=1/N_ Note w is an N-th root of 1. DFT is essentially matrix-

vector multiplication
a"=xW, W = (u"),
which usually costs O(N?) flops.
e Suppose N = N N,. Index rewriting:

— J < j1Na + jo (fill out Ni-by-Ny matrix in row major),
— k < kaNy + Ky (fill out Ny-by-Ny matrix in column major),
— Ji, k1 €4{0,..., N1 =1}, ja, ko € {0,..., Ny — 1}

Then
N—-1
_ _ 7k
Ak = QpyNy+k = W
7=0
N1—1 Na—1
_ E E (j1Na+j2)(ka N1+k1) . ]
- w T j1 No+j2
Jj1=0 j2=0
Ni—1 No—1
_ E E J1k1 Na+j2(kaN1+Fk1) . )
- w L j1 No+jz
Jj1=0 j2=0
No—1 Ni—1
_ E J2(kaN1+k1) Nayjiki .. )
- w (w ) T j1 No+j2
J2=0 Jj1=0
No—1 Ni—1
_ N1\j2kz2,, j2k1 Na\jik1 . . )
- § (w ) w (U) ) ZLj1 Natjo -
J2=0 Jj1=0
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Essentially we need to do Ny DFT of length-N; sequences and then do N; DFT

of length- N, sequences. Total cost
T(N) = T(N1N3) = NoT'(Ny) + NiT(N).

Suppose N is a power of 2. Then T'(N) = (N/2)T(2)+2T(N/2) and the solution
is T(N) = O(N In N)L.

Inverse DFT. W1 has entries w=/*/N. Then
' =a W

Variants for prime N: still O(N In N). But always a good idea to pad with zero
to get N as a power of 2.

Generalizations to 2D, 3D FF'T available.
Mature libraries/functions for both CPU and GPU.

Galton-Watson process. Survival of families. Lotka data (Lotkay, [1931alb).

Using 1920 census data, the progeny generating function for a white male

P(s) = .4982+ .2103s 4 .1270s + .0730s° 4 .0418s" + .02415°
+.01325% 4+ .0069s” + 0.0035s% + .0015s5° + .0005s°.

PGF for the first generation Pi(s) = P(s). PGF for the second generation
Py(s) = 3. peP(s)* = P(P(s)). In general, PGF for the i-th generation is
P;(s) = P(--- P(s)) (i recursions).

Extinction probability of a family: lim; ., P;(0) = P(--- P(0)) = 0.88, or solv-
ing for P(s) = s.

What if we want to know the distribution of the i-th generation? Extend the
generating function P; to unit circle P;(w*) = 37 pju’®, w = e 2"V=I/N where
k=0,...,N—1for N large. So P;(w"*) is the DFT of distribution p; of i-th
generation. Then apply inverse DFT to retrieve p;. O(N log N) cost!

Continuous-time branching process. Solve differential equation for Pi(w’) at

any time t. Then apply inverse DFT.

See JM 14.7 for more applications of FFT in statistics.
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Take-home messages from this course

e Statistics, the science of data analysis, is the applied mathematics in the 21st

century

— Read the first and last few pages of (1962))’s Future of data analy-
s1s. http://www.stat.ncsu.edu/people/zhou/courses/st810/notes/

Tukey61FutureDataAnalysis.pdf.
e Big data era: Challenges also mean opportunities for statisticians

— methodology: big p
— efficiency: big n and/or big p

— memory: big n, distributed computing via MapReduce (Hadoop), online

algorithms

Blg data i< |
g data s |ike teena

ge sex:

i CVeryone talks about it
‘ ]
0Body really knows how to doit,

CVEryone thinks everyone else s

doing it, so everyone claims they
are doing it..,
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e Being good at computing (both programming and algorithms) is a must for

today’s working statisticians.

Computers are incredibly fast, accurate, and stupid. Human beings are
incredibly slow, inaccurate, and brilliant. Together they are powerful beyond
imagination.

Albert Einstein

US (German-born) physicist (1879 - 1955) ELike - 7

e HPC (high performance computing) # abusing computers.
Always optimize your algorithms as much as possible before resorting to cluster
computing resources.

e Coding

— Prototyping: R, Matlab, Julia
— A “real” programming language: C/C++, Fortran, Python
— Scripting language: Python, Linux/Unix script, Perl, JavaScript
e Numerical linear algebra — building blocks of most computing we do. Use stan-
dard libraries (BLAS, LAPACK, ...)! Sparse linear algebra and iterative solvers

such as conjugate gradient methods are critical for exploiting structure in big
data.

e Optimization
— Convez programming (LS, LP, QP, GP, SOCP, SDP). To do in ST790-003.

Convex programming is becoming a technology, just like least squares (LS).

— Specialized optimization algorithms for modern statistical learning prob-
lems. To do in ST790-003.

— Generic nonlinear optimization tools: Newton, quasi-Newton, (nonlinear)

conjugate gradient, ...

— Specialized tools in statistics: EM/MM, Fisher scoring, Gauss-Newton,

simulated annealing, ...
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— Combinatorial optimization techniques: divide-and-conquer, dynamic pro-

gramming, greedy algorithm, ...

e MCMC: take a Bayesian course!
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