
26 Lecture 26, Dec 2

Announcements

• HW8 (ranking MLB teams) returned. Feedback:

– Bradley-Terry model. KL 12.6 or David Hunter’s paper.

– Non-concavity of the log-likelihood in � parameterization. Enough to find

a simple counter-example. However the negative log-likelihood is an ex-

ample of geometric program, a branch of convex programming.

– Vectorization of MM update: outer function.

– Concavity of the log-likelihood function in � parameterization. “log-sum-

exp” terms are convex.

– Implementation of Newton’s method. Hessian is singular due to identifia-

bility. Setting �1.

– Problem structure: sparsity in large league.

– Check David Hunter’s code for taking advantage of sparsity.

Sketch of solution: http://hua-zhou.github.io/teaching/st758-2014fall/

hw07sol.html

• HW9 (simulation project) due Dec 9 @ 11A.

• FAQs on HW9 (simulation project)

• Regular o�ce hours this week: Tue (Hua), Thu (Hua) and Fri (William). No

o�ce hours next week.

• Course evaluation!: https://classeval.ncsu.edu/

Last time

• Pre-conditioning for conjugate gradient (PCG) method.

• Nonlinear conjugate gradient for optimization.

• Concluding remarks on optimization.

177



Today

• Introduction to Markov chains and MCMC.

• Fast algorithms: sorting, FFT.

Introduction to MCMC

Some topics I’ll briefly talk about.

• History of Markov chain

• History of Monte Carlo and birth of MCMC

• Convergence rate of Markov chain

Markov chains

• Markov chain is a stochastic process X0, X1, X2, . . . with the Markov property

P(X
t+1|Xt

, X
t�1, . . . , X0) = P(X

t+1|Xt

).

Given current state, the future is independent of the past.

• Stochastic analog of ordinary di↵erential equations.

dx(t)

dt
= F (x(t))

L(X
t+1|Xt

= x) = K(x, ·)

• Notations (for discrete time, finite Markov chains)

– a finite state space X

– transition matrix K(x, y), x, y 2 X

– stationary distribution ⇡ on X , defined as a probability vector that satisfies

⇡TK = ⇡T .

Existence of such ⇡ is guaranteed by the Perron-Frobenius theorem.

– K l(x, y) denotes the l-step transition probabilities
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• Markov chains in early years:

– Fermat and Pascal (circa 1654): Gambler’s ruin.

– Bernoulli (1769) and Laplace (1812): Urn model.

– I. J. Bienaymé (1845), and later Sir Francis Galton and Watson (Educa-

tional Times, 1873): Branching process.

– Paul and Tatiana Ehrenfest (1906): Statistical physics.

– Poincaré (1912): Card shu✏ing. Calcul des Probabilités

– Markov’s contribution

⇤ Markov, A. A. (1906)

Extension of the law of large numbers to dependent quantities [in

Russian], Izv. Fiz.-Matem. Obsch. Kazan Univ. (2nd Ser.)

⇤ St. Petersburg School vs Moscow School.

⇤ Example: 20,000 letters in Pushkin’s Eugene Onegin.

 

vowel consonant

vowel 0.128 0.872

consonant 0.663 0.337

!  

⇡

0.432

0.568

!

⇤ See Seneta’s interesting account on the history (Seneta, 1996)

– Some other leading pioneers: Kolmogorov, Fréchet, and Doeblin.

• Why are Markov chains important in statistics?
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– Modeling tool.

E.g., Marc Coram’s “jail message” example: Markov model for letter se-

quence; PageRank’s (imaginary) random web surfer; ...

– A methodology that revolutionized statistics: Markov Chain Monte Carlo

(MCMC).

⇤ Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)

Equation of state calculation by fast computing machines, The Journal

of Chemical Physics, 21, 1087–1092.

⇤ Want to sample from a distribution ⇡(x) / f(x).

Metropolis algorithm constructs a Markov chain that converges to ⇡.

⇤ Marc Coram’s “jail message” example.

Markov chain Monte Carlo (MCMC)

• Monte Carlo method is a generic name for “computational algorithms that rely

on repeated random sampling to obtain numerical results”. They are in contrast

to the deterministic algorithms. They have wide applications in

– integration

– drawing sample from a distribution. E.g., HW9 (simulation study).

– optimization (simulated annealing). E.g., Marc Coram’s “jail message”

example, traveling salesman, Soduku, ...

• Monte Carlo in early years
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– Stanislaw Ulam conceived it in 1946 while playing solitaire in hospital bed.

He wanted to know the probability of getting a perfect solitaire hand, and

wondered whether computers can help answer this.

– John von Neumann was intrigued by the idea and developed a way to gener-

ate pseudorandom numbers (inversion, importance sampling, acceptance-

rejection sampling) on electronic digital computers (ENIAC) to realize

Ulam’s idea, for the neutron fission and di↵usion problem.
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May 21, 1947
Mr. Stan Ulam
Post Office Box 1663
Santa Fe
New Mexico

Dear Stan:

– Ulam and von Neumann, working on Manhattan Project, used the code

name Monte Carlo. It is a casino in Monaco where Ulam’s uncle fre-

quented.

– Nicholas Metropolis, fascinated by the Monte Carlo idea too, designed

and built computing devices (MANIAC) to handle such calculations. His

paper with Ulam in JASA (Metropolis and Ulam, 1949) formed the basis

of modern sequential Monte Carlo methods.

– Birth of MCMC (Metropolis et al., 1953):

⇤ Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)

Equation of state calculation by fast computing machines, The Journal

of Chemical Physics, 21, 1087–1092.

⇤ Want to sample from a distribution ⇡(x) / f(x).

Metropolis algorithm constructs a Markov chain that converges to ⇡.

⇤ Metropolis chain: From current state x, generate a new state x0 (from a
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proposal distribution p(x, x0) such that p(x, x0) = p(x0, x)) and accept

x0 with probability min
n

f(x0)
f(x)

, 1
o

.

Fact: Metropolis chain has ⇡ as stationary distribution.

⇤ Marc Coram’s “jail message” example.

• Given ⇡, generic ways to construct a Markov chain K that has ⇡ as stationary

distribution:

– Metropolis algorithm: (Metropolis et al., 1953)

– Hastings algorithm: (Hastings, 1970)

– Gibbs sampler: Glauber dynamics (1963), Tanner andWong (1987), Gelfand

and Smith (1990)

• See KL Ch25-27 and JM Ch13 for a general introduction, or take a Bayesian

course. A comprehensive textbook is (Robert and Casella, 2004).
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Convergence rate of Markov chains

• Classical result: For finite, irreducible, and aperiodic Markov chains

lim
l!1

K l(x, y) = ⇡(y).

In practice, we often want to know how many steps to make the di↵erence

between K l(x, ·) and ⇡ small?

• Example: “How many shu✏es do I need to do to mix a deck of 52 cards?”

Consider ri✏e shu✏e. GilbertShannonReeds model: bionomial(52, 0.5) cut +

cards drop according to probability L/(L+R), where L and R and the number

of cards in the left and right hand respectively.
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• Example: ”How long do I need to run my Gibbs sampler?”

Consider Beta-Binomial Gibbs sampler

– Likelihood f(x | p) ⇠ Bin(n, p) and prior ⇡(p) ⇠ Beta(↵, �)

– Want to sample from joint density f(x, p) = f(x | p)⇡(p)

– Gibbs sampler : Repeat the following

⇤ Sample x from Bin(n, p)

⇤ Sample p from Beta(x+ ↵, n� x+ �)

– (X
l

, p
l

)
l�1 form a Markov chain on {0, 1, . . . , n}⇥ [0, 1]

– Let K̃(x, p; x0, p0) be the transition density

– How many steps (obviously depending on n,↵, �) does this Markov chain

converge to the stationary distribution?

• In a typical Bayesian course, we learn many convergence diagnostics that are

often heuristic. Is there anything rigorous we can say about convergence rate

of Markov chains?

• Distances between distributions:

– Total variation distance:

kµ� ⇡kTV =
1

2

X

x2X

|µ(x)� ⇡(x)|

= max
A⇢X

|µ(A)� ⇡(A)|

=
1

2
sup

kfk11

|µ(f)� ⇡(f)|.

– Lp distance wrt ⇡:

Let f(x) = µ(x)
⇡(x)

and g(x) = ⌫(x)
⇡(x)

. For 1  p <1,

d
⇡,p

(µ, ⌫) = kf � gk
L

p(⇡) =

 

X

x2X

|f(x)� g(x)|p⇡(x)
!1/p

• The usual limit theorems are useless in practice:

“There exist constants A,B > 0, ⇢ 2 (0, 1) such that kK l(x, ·) �
⇡k

TV

 A⇢Bl.”
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A, B, and ⇢ are some mysterious constants.

Can we get some more quantitative, useful bounds?

• Cuto↵ phenomenon (Diaconis, 1996)

– Ri✏e shu✏e.

l 1 2 3 4 5 6 7 8 9 10

kKl � ⇡kTV 1.000 1.000 1.000 1.000 0.924 0.624 0.312 0.161 0.083 0.041

– Many more examples: Ehrenfest chain, random transposition, Gibbs sam-

pler, ...

“Cuto↵ phenomenon for XXX chain.”

– Not every Markov chain has a cuto↵.

A chain without cuto↵: simple random walk on the integers mod n.

• Generic methods for studying convergence rates:

– Algebraic methods (spectral analysis) - E.g, random walks on groups (shuf-

fling cards), some Gibbs samplers, ...

– Analytic methods - Geometric Inequalities.

– Probabilistic methods - Coupling and strong stationary times.

• Algebraic method
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– Reversible Markov chains.

If ⇡ is a probability distribution on X and

⇡(x)K(x, y) = ⇡(y)K(y, x), for all x, y 2 X ,

then ⇡ is the unique stationary distribution of K. E.g., Metropolis chain.

– K operates on L2(⇡) = {f : X 7! R,E
⇡

[f 2] <1} by

Kf(x) =
X

y2X

K(x, y)f(y).

– Reversibility of K is equivalent to self-adjointness of the operator K.

– By standard spectral theorem for self-adjoint operators, K has eigen-

values 1 = �0 � �1 � · · · � �|X |�1 � �1 with (right) eigenfunctions

{�0, . . . ,�|X |�1} that are orthonormal on L2(⇡)

< �
i

,�
j

>
L

2(⇡)=
X

x2X

�
i

(x)�
j

(x)⇡(x) = 1{i=j}.

– If we know all the spectral information (lucky!), then

d2
⇡,2(K

l(x, ·), ⇡) =
|X |�1
X

i=1

�2l
i

�2
i

(x).

– Usually the upper bound is tight.

kK l(x, ·)� ⇡k
TV

 1

2
d
⇡,2(K

l(x, ·), ⇡)

– When are we lucky? In presence of symmetry.

E.g., for random walks on groups, we only need eigenvalues, which can be

derived from the irreducible representations of the group.

Definite reference for this topic is the book Diaconis (1988)

• Algebraic method for analyzing the baby Gibbs sampler

– The joint chain K̃(x, p; x0, p0) is irreversible.

– The x-marginal chain K(x, x0) is reversible, with m ⇠Beta-Bin(n,↵, �) as
stationary distribution. And

kK l

x

�mk
TV

 kK̃ l

x,p

� fk
TV

 kK l�1
x

�mk
TV

.

Thus su�cient to study convergence rate of the x-marginal chain.
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– Some analysis (Diaconis et al., 2008) shows that K has

⇤ eigenvalues: �0 = 1, �
j

= n[j]/(n+ ↵ + �)(j), j = 1, . . . , n.

⇤ eigen-functions: �
j

are the Hahn polynomials.

– Doing the summation gives

0.5�l

1  kK̃ l

0,p � fk
TV

 3�l�1/2
1 .

– Cuto↵ phenomenon: n+↵+�

2(↵+�)
steps are necessary and su�cient for conver-

gence.

– Similar analysis can be carried out for all following conjugate pairs (see

KL 27.9)

• Analytic method

– Upper bound through spectral gap

4kKl(x, ·)� ⇡kTV  d2⇡,2(K
l(x, ·),⇡)  1

⇡(x)
�2l
⇤ ,

where �⇤ = max{|�1|, |�|X |�1|}.

– Use some geometric inequalities to bound �⇤.

– Where to look up the material? Lecture notes by Salo↵-Coste (1997).

– (K, ⇡) reversible on X (finite). Dirichlet form

✏(f, g) =< (I �K)f, g > .
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Fact

✏(f, f) =
1

2

X

x,y

[f(x)� f(y)]2⇡(x)K(x, y).

– Lemma

1� �1 = min
f 6=1

✏(f, f)

var(f)

1� �|X |�1 = max
f 6=0

✏(f, f)

var(f)
.

– Definition: Poincaré inequality

var(f)  A✏(f, f), for all f 2 L2(⇡).

– We can bound �1 by finding A

�1  1� 1

A
.

– Theorem (Poincaré Ineq for Markov Chains (Diaconis and Stroock, 1991)):

�1  1� 1

A
, where A = max

e

1

Q(e)

X

�

x,y

3e
|�

x,y

|⇡(x)⇡(y).

– Apply Poincaré inequality to the baby Gibbs sampler gives a horrible

bound (something exponential ...)

– Other geometric inequalities: Cheeger, Nash, Log-Soblov inequalities (in a

series of papers by Diaconis and Salo↵-Coste).

• Probabilistic methods

– By cleverness, we can get good bounds for convergence rate without using

all those analytic methods.

– Good starting point is the book (Diaconis, 1988) and the unpublished book

by Aldous and Fill (available on Aldous’ website).

– Coupling - Wolfgang Doeblin.
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– For the baby Gibbs sampler, coupling gives an upper bound of order n lnn

(o↵ by lnn).

– Yields useful bounds for hierarchical random e↵ects model (Hobert and

Geyer, 1998).

– Let’s work on a simpler example: Borel’s Shu✏e (random to top, random

to bottom, ...).

– Coupling : Two processes evolve until they are equal. Coupling time T .

Coupling inequality

kK l

x

� ⇡k
TV

 P(T > l).

– For Borel’s shu✏e, bound on coupon collector problem gives

kK l

x

� ⇡k
TV

 n

✓

1� 1

n

◆

l

.

Thus l = n lnn steps su�ce.
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• Summary

– Keep Markov chains in your toolbox - useful for modeling, simulation, and

combinatorial optimization.

– Convergence rate of Markov chains is an interesting applied probability

problem that often gives more insights into the chains.

– A lot remains to be done for analyzing many MCMC algorithms being

used.

Sorting algorithms (JM 14.3, KL 1.10)

• Applications: order statistics (median, quantiles), QQ-plot, multiple testing

(sorting p-values), Wilcoxon rank-sum test, ...

• Bubble sort : Locate maximum and put on top; find maximum in the (n � 1)

list and put on the top second position; ...

O(n2) average cost.

• Think about sorting massive data n = 1012. On a teraflop computer. n2 flops

take 1012 seconds ⇡ 31710 years, while n lnn flops take 1012 log(1012)/1012 ⇡ 27

seconds.

• Key idea: Divide and conquer.

• Merge sort : Recursively partition into two lists, sort them respectively, and

then merge. T (n) = 2T (n/2) +O(n). Solution is T (n) = O(n log2 n).

• Quick sort : Randomly select a pivot element, split into 3 lists, and do some

swaps so that the pivot is in the right position.

T (n) =
1

n

n�1
X

j=1

[T (j � 1) + T (n� j)] + n� 1 =
2

n

n�1
X

j=1

T (j) + n� 1.

Solution is O(n lnn).

• Sorting is a well-trodden area in computer science. Mature functions/libraries

in standard softwares. The “bible” on this topic is (of course) Knuth (2005).
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Fast Fourier transform (FFT) (KL Chapter 20, JM 14.5)

• History: Cooley and Tukey (1965)

John Tukey: “bit”, box-plot, “learning from the experience of the others”,

multiple comparison, FFT, ...

Tukey conceived the FFT algorithm during meetings with President JFK’s Sci-

ence Advisory Committee. They need fast ways to analyze seismic waves to

detect nuclear weapon tests in Soviet Union. Richard Garwin of IBM immedi-

ately realize the potential of this fast algorithm and referred Tukey to Cooley

to implement it.

People also believe Gauss essentially used the same strategy when solving his

least squares problem!

• Applications in statistics: convolution, time series, branching process, ...

• Consider two independent random variables on {0, 1, . . . , N � 1}:

X ⇠ {p0, . . . , pN�1}, Y ⇠ {q0, . . . , qN�1}.

What’s the distribution of the sum Z = X + Y ?
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– z
k

=
P

k

j=0 pjqk�j

, k = 0, . . . , 2N � 2. O(N2) computation.

– Do DFT of both sequences, multiply together, and inverse DFT.

O(N lnN) computation!

• Discrete Fourier transform (DFT) of a vector x 2 RN .

a
k

=
N�1
X

j=0

wjkx
j

, k = 0, . . . , N � 1.

where w = e�2⇡
p
�1/N . Note w is an N -th root of 1. DFT is essentially matrix-

vector multiplication

aT = xTW , W = (wjk),

which usually costs O(N2) flops.

• Suppose N = N1N2. Index rewriting:

– j  j1N2 + j2 (fill out N1-by-N2 matrix in row major),

– k  k2N1 + k1 (fill out N1-by-N2 matrix in column major),

– j1, k1 2 {0, . . . , N1 � 1}, j2, k2 2 {0, . . . , N2 � 1}.

Then

a
k

= a
k2N1+k1 =

N�1
X

j=0

wjkx
j

=
N1�1
X

j1=0

N2�1
X

j2=0

w(j1N2+j2)(k2N1+k1)x
j1N2+j2

=
N1�1
X

j1=0

N2�1
X

j2=0

wj1k1N2+j2(k2N1+k1)x
j1N2+j2

=
N2�1
X

j2=0

wj2(k2N1+k1)

N1�1
X

j1=0

(wN2)j1k1x
j1N2+j2

=
N2�1
X

j2=0

(wN1)j2k2wj2k1

N1�1
X

j1=0

(wN2)j1k1x
j1N2+j2 .
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• Essentially we need to do N2 DFT of length-N1 sequences and then do N1 DFT

of length-N2 sequences. Total cost

T (N) = T (N1N2) = N2T (N1) +N1T (N2).

SupposeN is a power of 2. Then T (N) = (N/2)T (2)+2T (N/2) and the solution

is T (N) = O(N lnN)!.

• Inverse DFT. W�1 has entries w�jk/N . Then

xT = aTW�1.

• Variants for prime N : still O(N lnN). But always a good idea to pad with zero

to get N as a power of 2.

• Generalizations to 2D, 3D FFT available.

• Mature libraries/functions for both CPU and GPU.

• Galton-Watson process. Survival of families. Lotka data (Lotka, 1931a,b).

Using 1920 census data, the progeny generating function for a white male

P (s) = .4982 + .2103s+ .1270s2 + .0730s3 + .0418s4 + .0241s5

+.0132s6 + .0069s7 + 0.0035s8 + .0015s9 + .0005s10.

PGF for the first generation P1(s) = P (s). PGF for the second generation

P2(s) =
P

k

p
k

P (s)k = P (P (s)). In general, PGF for the i-th generation is

P
i

(s) = P (· · ·P (s)) (i recursions).

Extinction probability of a family: lim
i!1 P

i

(0) = P (· · ·P (0)) = 0.88, or solv-

ing for P (s) = s.

What if we want to know the distribution of the i-th generation? Extend the

generating function P
i

to unit circle P
i

(wk) =
P

j

p
j

wjk, w = e�2⇡
p
�1/N , where

k = 0, . . . , N � 1 for N large. So P
i

(wk) is the DFT of distribution p
j

of i-th

generation. Then apply inverse DFT to retrieve p
j

. O(N logN) cost!

• Continuous-time branching process. Solve di↵erential equation for P
t

(wj) at

any time t. Then apply inverse DFT.

• See JM 14.7 for more applications of FFT in statistics.
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Take-home messages from this course

• Statistics, the science of data analysis, is the applied mathematics in the 21st

century

– Read the first few pages and the last few pages of Tukey (1962)’s Future of

data analysis (http://www.stat.ncsu.edu/people/zhou/courses/st810/

notes/Tukey61FutureDataAnalysis.pdf).

• Big data era: Challenges also mean opportunities for statisticians

– methodology: big p

– e�ciency: big n and/or big p

– memory: big n, distributed computing via MapReduce (Hadoop), online

algorithms
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• Being good at computing (both programming and algorithms) is a must for

today’s working statisticians.

• HPC (high performance computing) 6= abusing computers.

Always optimize your algorithms as much as possible before resorting to cluster

computing resources.

• Coding

– Prototyping: R, Matlab, Julia

– A “real” programming language: C/C++, Fortran, Python

– Scripting language: Python, Linux/Unix script, Perl, JavaScript

• Numerical linear algebra – building blocks of most computing we do. Use stan-

dard libraries (BLAS, LAPACK, ...)! Sparse linear algebra and iterative solvers

such as conjugate gradient methods are critical for exploiting structure in big

data.

• Optimization

– Convex programming (LS, LP, QP, GP, SOCP, SDP). To do in ST790-003.

Convex programming is becoming a technology, just like least squares (LS).

– Specialized optimization algorithms for modern statistical learning prob-

lems. To do in ST790-003.

– Generic nonlinear optimization tools: Newton, quasi-Newton, (nonlinear)

conjugate gradient, ...

– Specialized tools in statistics: EM/MM, Fisher scoring, Gauss-Newton,

simulated annealing, ...
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– Combinatorial optimization techniques: divide-and-conquer, dynamic pro-

gramming, greedy algorithm, ...

• MCMC: take a Bayesian course!
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