ST758, Homework 1

Due Thursday, Sep 11, 2014

Some R exercises

1. Let $a=0.7, b=0.2$, and $c=0.1$.
(a) Test whether $(a+b)+c$ equals 1 .
(b) Test whether $a+(b+c)$ equals 1 .
(c) Test whether $(a+c)+b$ equals 1 .
(d) Explain what you found. Hint: find the internal representation of these numbers.
2. Create the vector $\boldsymbol{v}=(969,971,972, \ldots, 1022,1023)$ of 54 elements.
(a) Compute the sum $\sum_{i=1}^{54} 2^{v_{i}}$.
(b) Compute the sum $\sum_{i=2}^{54} 2^{v_{i}}$.
(c) Compute the sum $2^{v_{1}}+\sum_{i=2}^{54} 2^{v_{i}}$.
(d) Explain what you found.
3. Create the vector $\boldsymbol{x}=(0.988,0.989,0.990, \ldots, 1.010,1.011,1.012)$.
(a) Plot the polynomial $y=x^{7}-7 x^{6}+21 x^{5}-35 x^{4}+35 x^{3}-21 x^{2}+7 x-1$ at points x_{i} in \boldsymbol{x}.
(b) Plot the polynomial $y=(x-1)^{7}$ at points x_{i} in \boldsymbol{x}.
(c) Explain what you found.
4. Let $\boldsymbol{u}=(1,2,3,3,2,1)^{\top}$.
(a) Compute $\boldsymbol{U}=\boldsymbol{I}-(2 / d) \boldsymbol{u} \boldsymbol{u}^{\top}$ where $d=\boldsymbol{u}^{\top} \boldsymbol{u}$. (This type of matrix is known as an 'elementary reflector' or a 'Householder transformation.')
(b) Let $\boldsymbol{C}=\boldsymbol{U} \boldsymbol{U}$, the matrix product of \boldsymbol{U} and itself. Find the largest and smallest offdiagonal elements of \boldsymbol{C}.
(c) Find the largest and smallest diagonal elements of \boldsymbol{C}.
(d) Compute $\boldsymbol{U} \boldsymbol{u}$. (matrix times vector)
(e) Compute the scalar $\max _{i} \sum_{j}|U(i, j)|$
(f) Print the third row of \boldsymbol{U}.
(g) Print the elements of the second column below the diagonal.
(h) Let \boldsymbol{A} be the first three columns of \boldsymbol{U}. Compute $\boldsymbol{P}=\boldsymbol{A} \boldsymbol{A}^{\top}$.
(i) Show that \boldsymbol{P} is idempotent by recomputing (e) with $\boldsymbol{P} \boldsymbol{P}-\boldsymbol{P}$.
(j) Let \boldsymbol{B} be the last three columns of \boldsymbol{U}. Compute $\boldsymbol{Q}=\boldsymbol{B} \boldsymbol{B}^{\boldsymbol{\top}}$.
(k) Show that \boldsymbol{Q} is idempotent by recomputing (e) with $\boldsymbol{Q} \boldsymbol{Q}-\boldsymbol{Q}$.
(l) Compute $\boldsymbol{P}+\boldsymbol{Q}$.
5. Read in the matrix in the file 'oringp.dat' on the failure of O-rings leading to the Challenger disaster. The columns are flight number, date, number of O-rings, number failed, and temperature at launch. Compute the correlation between number of failures and temperature at launch, deleting the last, missing observation (the disaster).
6. Let the $n \times n$ matrix \boldsymbol{A} have elements $A(i, j)=1 /(|i-j|+1)$.
(a) Compute and print \boldsymbol{A} for $n=10$.
(b) Compute and print the Cholesky factorization for \boldsymbol{A} for $n=10$.
(c) Compute the Cholesky factorization for $n=20$. Does it fail? If not, find the determinant.
