ST758, Homework 5

Due Oct 21, 2014

1. (Maggie's question) Assume $\boldsymbol{X} \in \mathbb{R}^{n \times p}$ has full column rank. Gram-Schmidt or modified Gram-Schmidt algorithm yields $\boldsymbol{X}=\boldsymbol{Q}_{1} \boldsymbol{R}_{1}$ and Household algorithm (without pivoting) yields $\boldsymbol{X}=\boldsymbol{Q}_{2} \boldsymbol{R}_{2}$, where $\boldsymbol{Q}_{1}, \boldsymbol{Q}_{2} \in \mathbb{R}^{n \times p}, \boldsymbol{Q}_{1}^{T} \boldsymbol{Q}_{1}=\boldsymbol{Q}_{2}^{T} \boldsymbol{Q}_{2}=\boldsymbol{I}_{p}$, and $\boldsymbol{R}_{1}, \boldsymbol{R}_{2} \in \mathbb{R}^{p \times p}$ are upper triangular with positive diagonal entries. Show that $\boldsymbol{Q}_{1}=\boldsymbol{Q}_{2}$ and $\boldsymbol{R}_{1}=\boldsymbol{R}_{2}$.
2. (Ridge regression revisited) In ridge regression, we minimize

$$
\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda\|\boldsymbol{\beta}\|_{2}^{2}
$$

where $\lambda \geq 0$ is a tuning parameter.
(a) Express ridge solution $\widehat{\boldsymbol{\beta}}(\lambda)$ in terms of the singular value decomposition (SVD) of \boldsymbol{X}.
(b) Show that (i) the ℓ_{2} norms of ridge solution $\|\widehat{\boldsymbol{\beta}}(\lambda)\|_{2}$ and corresponding fitted values $\|\hat{\boldsymbol{y}}(\lambda)\|_{2}=\|\boldsymbol{X} \hat{\boldsymbol{\beta}}(\lambda)\|_{2}$ are non-increasing in λ and (ii) the ℓ_{2} norm of the residual vector $\|\boldsymbol{y}-\hat{\boldsymbol{y}}(\lambda)\|_{2}$ is non-decreasing in λ.
(c) Re-compute and plot the ridge solution for the Longley data in HW3 at $\lambda=5,10,15,20, \ldots, 100$ using the SVD approach.
(d) Comment on the computation efficiency of SVD approach compared to the approach you used in HW3.
3. (Matching images) Below figure displays two 3 s my son wrote on a piece of paper and I want to properly align them.

Let matrices $\boldsymbol{X}, \boldsymbol{Y} \in \mathbb{R}^{n \times p}$ record n points on the two shapes. In this case $n=10$ and $p=2$. Mathematically we consider the problem

$$
\operatorname{minimize}_{\beta, \boldsymbol{O}, \boldsymbol{\mu}} \quad\left\|\boldsymbol{X}-\left(\beta \boldsymbol{Y} \boldsymbol{O}+\mathbf{1}_{n} \boldsymbol{\mu}^{T}\right)\right\|_{\mathrm{F}}^{2}
$$

where $\beta>0$ is a scaling factor, $\boldsymbol{O} \in \mathbb{R}^{p \times p}$ is an orthogonal matrix, and $\boldsymbol{\mu} \in \mathbb{R}^{p}$ is a vector of shifts. Here $\|\boldsymbol{M}\|_{\mathrm{F}}^{2}=\sum_{i, j} m_{i j}^{2}$ is the squared Frobenius norm. Intuitively we want to rotate, stretch, and shift the shape \boldsymbol{Y} to match the shape \boldsymbol{X} as much as possible.
(a) Let $\overline{\boldsymbol{x}}$ and $\overline{\boldsymbol{y}}$ be the column mean vectors of the matrices and $\tilde{\boldsymbol{X}}$ and $\tilde{\boldsymbol{Y}}$ be the versions of these matrices with means removed. Show that the solution $(\hat{\beta}, \widehat{\boldsymbol{O}}, \hat{\boldsymbol{\mu}})$ satisfies

$$
\hat{\boldsymbol{\mu}}=\overline{\boldsymbol{x}}-\hat{\beta} \widehat{\boldsymbol{O}}^{T} \overline{\boldsymbol{y}}
$$

Therefore we can center each matrix at its column centroid and then ignore the location completely.
(b) Derive the solution to

$$
\operatorname{minimize}_{\beta, \boldsymbol{O}} \quad\|\tilde{\boldsymbol{X}}-\beta \tilde{\boldsymbol{Y}} \boldsymbol{O}\|_{\mathrm{F}}^{2}
$$

using the SVD of $\tilde{\boldsymbol{Y}}^{T} \tilde{\boldsymbol{X}}$.
(c) Implement your method and solve the alignment problem in the figure. Display your solution together with the original two 3s.

