
ST758, Homework 6

Due Nov 6, 2014

In this homework, we work on a model-based method for handwritten digit recognition. Following

figure shows example bitmaps of handwritten digits from U.S. postal envelopes.

Each digit is represented by a 32 × 32 bitmap in which each element indicates one pixel with a

value of white or black. Each 32 × 32 bitmap is divided into blocks of 4 × 4, and the number of

white pixels are counted in each block. Therefore each handwritten digit is summarized by a vector

x = (x1, . . . , x64) of length 64 where each element is a count between 0 and 16.

By a model-based method, we mean to impose a distribution on the count vector and carry

out classification using probabilities. A common distribution for count vectors is the multinomial

distribution. However as you will see in Q11, it is not a good model for handwritten digits. Let’s

work on a more flexible model for count vectors. In the Dirichlet-multinomial model, we assume

the multinomial probabilities p = (p1, . . . , pd) follow a Dirichlet distribution with parameter vector

α = (α1, . . . , αd), αj > 0, and density

π(p) =
Γ(|α|)∏d
j=1 Γ(αj)

d∏
j=1

p
αj−1
j ,

where |α| =
∑d
j=1 αj .

1. For a multivariate count vector x = (x1, . . . , xd) with batch size |x| =
∑d
j=1 xj , show that the

probability mass function for Dirichlet-multinomial distribution is

f(x | α) =

∫
∆d

(
|x|
x

) d∏
j=1

p
xj

j π(p) dp =

(
|x|
x

)∏d
j=1(αj)xj

(|α|)|x|
,

where ∆d is the unit simplex in d dimensions, |α| equals
∑d
j=1 αj , and (a)k =

∏k−1
i=0 (a + i)

denotes a rising factorial. (Hint: Γ(a+ k)/Γ(a) = (a)k.)

2. Given independent data points x1, . . . ,xn, show that the log-likelihood is

L(α) =

n∑
i=1

ln

(
|xi|
xi

)
+

n∑
i=1

d∑
j=1

xij−1∑
k=0

ln(αj + k)−
n∑
i=1

|xi|−1∑
k=0

ln(|α|+ k)

=

n∑
i=1

ln

(
|xi|
xi

)
+

n∑
i=1

d∑
j=1

[ln Γ(αj + xij)− ln Γ(αj)]−
n∑
i=1

[ln Γ(|α|+ |xi|)− ln Γ(|α|)].
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Is the log-likelihood a concave function?

3. Write an R function to compute the density and/or log-density of the Dirichlet-multinomial

distribution. The interface should be ddirmult(x, alpha, log = FALSE). Vectorize your

code. The input x and alpha are allowed to be n-by-d matrices. In this case, the function

should return a vector of Dirichlet-multinomial probabilities f(xi|αi) (if log = FALSE) or

log-probabilities ln f(xi|αi) (if log = TRUE) for i = 1, . . . , n. Feel free to use lgamma(),

digamma(), trigamma() functions in R. They are vectorized and efficient.

4. Read in optdigits.tra, the training set of 3823 handwritten digits. Each row contains the

64 counts of a digit and the last element (65th element) indicates what digit it is. For grading

purpose, evaluate the total log-likelihood of this data at parameter values α = (1, . . . , 1) using

your function ddirmult().

5. Derive the score function ∇L(α), observed information matrix −d2L(α), and expected Fisher

information matrix E[−d2L(α)] for the Dirichlet-multinomial distribution.

6. Comment on why Fisher scoring method is inefficient for computing MLE in this example.

7. What structure does the observed information matrix possess that can facilitate the evaluation

of the Newton direction? Is the observed information matrix always positive definite? What

remedy can we take if it fails to be positive definite?

8. Discuss how to choose a good starting point. Implement this as the default starting value in

your function below. (Hint: Method of moment estimator may furnish a good starting point.)

9. Write a function for finding MLE of Dirichlet-multinomial distribution given iid observations

x1, . . . ,xn, using safeguarded Newton’s method. The interface should be dirmultfit(x,

alpha0 = NULL, maxiters = 100, tolfun = 1e-6). The arguments are: x a n-by-d matrix

of counts, alpha0 a d vector of starting point (optional), maxiters the maximum allowable

Newton iterations (default 100), tolfun the tolerance for relative change in objective values

(default 1e-6). The return value should be a list containing: maximum the log-likelihood at

MLE, estimate the MLE, gradient the gradient at MLE, hessian the Hessian at MLE, se

a d vector of standard errors, iterations the number of iterations performed.

10. Read in optdigits.tra, the training set of 3823 handwritten digits. Find the MLE for the

subset of digit 0, digit 1, ..., and digit 9 separately using your function. We denote these MLEs

α̂0, . . . , α̂9.

11. As α/|α| → p, the Dirichlet-multinomial distribution converges to a multinomial with pa-

rameter p. Therefore multinomial can be considered as a special Dirichlet-multinomial with

|α| =∞. Perform a likelihood ratio test (LRT) whether Dirichlet-multinomial offers a better

fit than multinomial for digits 0, 1, . . . , 9 respectively.

12. Now we can construct a simple Bayesian rule for handwritten digits recognition:

x 7→ arg max
k

π̂kf(x|α̂k).

2



Here we can use the proportion of digit k in the training set as the prior probability π̂k. Report

the performance of your classifier on the test set of 1797 digits in optdigits.tes.
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