
Writing R Function
1. Basics

Arguments

There are no strict requirements of the types of arguments you put in the function. Arguments can be

numerical, factor, character; it can be vector, matrix, data.frame, list, or even another function.

Example1:

fun1 <- function(x){

 y <- 2*x+1

 return(y)

}

out <- fun1(1)

out

[1] 3

out <- fun1(c(1:20))

out

[1] 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Example2:

fun2 <- function(x){

 a <- paste(x, "is easy!", sep=" ")

 return(a)

}

x <- "Writing function"

fun2(x)

[1] "Writing function is easy!"

x2 <- c("Writing function", "Using R", "Learning stat")

fun2(x2)

[1] "Writing function is easy!" "Using R is easy!"

[3] "Learning stat is easy!"

By assigning the function output to another variable, the result of running the function is saved in that

variable. It can be used as a global variable in the future, such as the “out” in example 1. But when running

example 2, I didn’t save the function output in any variable, so there is no way to call the results directly in the

future.

The object .last.value saves the previous output for you.

fun2(x2)

[1] "Writing function is easy!" "Using R is easy!"

[3] "Learning stat is easy!"

fun2out <- .Last.value

fun2out

NULL

Namespace

You can name the function with whatever name you like. But keep in mind that if you happen to give two

functions the same name, the first function will be covered by the second one.

If you happen to use a name same as a native R function, R will remember your function by that name, and

you will have trouble calling the native R function.

Example:

rm(list=ls())

x <- rnorm(10)

y <- runif(10)

lm(y~x)

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

0.5363 -0.0989

lm <- function(x, y){

 return(sum(x+y))

}

lm(x, y)

[1] 8.496

Function output

You can output anything you like, vector, matrix, data.frame, lists. Whatever you didn’t output, and is created

within the R function will not be saved. That is one of the reasons that we prefer functions most of the time. By

default, R only output the last variable in the function.

est <- function(x){

 mean <- mean(x)

 var <- var(x)

}

vector <- seq(0, 100, by=2)

out <- est(vector)

out

[1] 884

It is safe to put a line ‘return()’ at the end of the function. If we need it to output more stuff, such as, both the

mean and the variance. We can do

item Save the vector of c(mean, variance).

est <- function(x){

 mean <- mean(x)

 var <- var(x)

 return(c(mean, var))

}

vector <- seq(0, 100, by=2)

out <- est(vector)

out

[1] 50 884

But I don’t quite recommend this lazy way, ’cause you might forget whether the first element is the mean or the

variance before long.

Save it as a data frame, then we can call the output elements with a dollar sign.

est <- function(x){

 mean <- mean(x)

 var <- var(x)

 return(data.frame(mean.X=mean, var.X=var))

}

vector <- seq(0, 100, by=2)

out <- est(vector)

out

mean.X var.X

1 50 884

out$mean.X

[1] 50

out$var.X

[1] 884

Most of the time, we want to output more complex things, for example we want one function to output vector,

matrix, character string at the same time. We’d better save them to a list.

Save as a list.

est <- function(x){

 mean <- mean(x)

 var <- var(x)

 y <- x̂2+1

 z <- outer(x, x)

 out.list <- list(mean.X=mean, var.x=var, Y=y, Z=z)

 return(out.list)

}

vector <- seq(0, 100, by=2)

out <- est(vector)

out$Y

[1] 1 5 17 37 65 101 145 197 257 325 401

[12] 485 577 677 785 901 1025 1157 1297 1445 1601 1765

[23] 1937 2117 2305 2501 2705 2917 3137 3365 3601 3845 4097

[34] 4357 4625 4901 5185 5477 5777 6085 6401 6725 7057 7397

[45] 7745 8101 8465 8837 9217 9605 10001

Saving function

Save everything in a .R file, and use “source()” function to call it when you need it. The source() function is

actually running that .R file line by line. It is the same as you open the .R file yourself, and highlight the code,

and run it.

source("Examples/environment.R")

This is not always convenient, because it’s very possible that some part of the .R file is not necessary to be

called. You just put it there when you write that code the first time, but you only want to keep a specific

function in that .R file. We can save the function by itself. Save the function as an R object (.RData file).

save(est, file="Examples/function.RData")

When using it,

attach("Examples/function.RData")

The following object is masked _by_ .GlobalEnv:

est

est

function(x){

mean <- mean(x)

var <- var(x)

y <- x̂2+1

z <- outer(x, x)

out.list <- list(mean.X=mean, var.x=var, Y=y, Z=z)

return(out.list)

}

2. Function Environments Scope
We always running the program in certain environment. In R, there is the most common global environment.

environment()

<environment: R_GlobalEnv>

Environments are created implicitly by function calls. In this case the environment contains the variables local

to the function (including the arguments), and its enclosure is the environment of the currently called function.

Environments may also be created directly by “new.env()”. The “parent.env()” function may be used to access

the enclosure of an environment.

Simple example

fun <- function(x){

 print(environment())

 print(paste("x=", x, sep=""))

 z <- 3

 print(paste("z=", z, sep=""))

 return(z)

}

out.z <- fun(1)

<environment: 0x000000003ff65b20>

[1] "x=1"

[1] "z=3"

z

Error: object 'z' not found

x

Error: object 'x' not found

out.z

[1] 3

Another good and simple example

Taking global environment variables when the function can not find it within the function environment.

rm(list=ls())

insidefun <- function(a,b){

 print(environment())

 out <- a+b+z

 print(paste("out=",out, sep=""))

 return(out)

}

out1 <- insidefun(a=1, b=2)

<environment: 0x00000000404f8250>

Error in insidefun(a = 1, b = 2) : object 'z' not found

z <- 1

out1 <- insidefun(a=1, b=2)

<environment: 0x00000000407f9950>

out1

[1] 4

This is a bad habit of coding. It’s better to define all the variables in the function, instead of letting R use

whatever it can find.

3. Function within function
When defined and called inside another function, a function will try to find the missing variable in the upper

level environment.

rm(list=ls())

z

Error: object 'z' not found

fun2 <- function(x, a, b){

 print("In fun2:")

 print(environment())

 print(paste("x=", x, sep=""))

 z <- 3

 print(paste("z=", z, sep=""))

 insidefun <- function(a,b){

 print("In insidefun")

 print(environment())

 out <- a+b+z

 print(paste("out=",out, sep=""))

 return(out)

 }

 print("In fun2")

 print(environment())

 return(insidefun(a, b))

}

out2 <- fun2(1, 2, 3)

[1] "In fun2:"

<environment: 0x000000003af29848>

[1] "x=1"

[1] "z=3"

[1] "In fun2"

<environment: 0x000000003af29848>

[1] "In insidefun"

<environment: 0x00000000003f67a0>

[1] "out=8"

out2

[1] 8

A bad example

If we separate the two functions in the last example:

rm(list=ls())

insidefun <- function(a,b){

 print(environment())

 out <- a+b+z

 print(paste("out=",out, sep=""))

 return(out)

}

fun3 <- function(x, a, b){

 print("In fun2:")

 print(environment())

 print(paste("x=", x, sep=""))

 z <- 3

 print(paste("z=", z, sep=""))

 print("In fun2")

 print(environment())

 return(insidefun(a, b))

}

Then, when we are calling function “insidefun” within “fun2”, “insidefun” is searching variables in the global

environment instead of the environment within “fun2”.

out3 <- fun3(1, 2, 3)

[1] "In fun2:"

<environment: 0x0000000040b4dcc0>

[1] "x=1"

[1] "z=3"

[1] "In fun2"

<environment: 0x0000000040b4dcc0>

<environment: 0x0000000040b734b0>

Error in insidefun(a, b) : object 'z' not found

out3

Error: object 'out3' not found

It would work if we have variable z in our global environment.

z <- 1

out3 <- fun3(1, 2, 3)

[1] "In fun2:"

<environment: 0x0000000040a50860>

[1] "x=1"

[1] "z=3"

[1] "In fun2"

<environment: 0x0000000040a50860>

<environment: 0x0000000040a58028>

[1] "out=6"

out3

[1] 6

Other tips for writting functions
Default variables

def.fun <- function(x=1){

 print(environment())

 print(paste("x=", x, sep=""))

 z <- 3

 print(paste("z=", z, sep=""))

 return(z)

}

def.fun()

<environment: 0x0000000040d56ff8>

[1] "x=1"

[1] "z=3"

[1] 3

Extra variables

rm(list=ls())

fun4 <- function(x, ...){

 list <-list(...)

 print("In fun2:")

 print(environment())

 print(paste("x=", x, sep=""))

 print("In fun2")

 print(environment())

 insidefun <- function(a,b, z){

 print(environment())

 out <- a+b+z

 print(paste("out=",out, sep=""))

 return(out)

 }

 return(insidefun(a=list[[1]], b=list[[2]], c=list[[3]]))

}

out4 <- fun4(x=1, a=2, b=3, z=1)

[1] "In fun2:"

<environment: 0x000000003fdaab50>

[1] "x=1"

[1] "In fun2"

<environment: 0x000000003fdaab50>

<environment: 0x000000003fd8f048>

[1] "out=6"

out4

[1] 6

4. Debugging
options(error=browser)

Editor breakpoints or browser()

debug()

debugSource()

traceback()

