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For the one-way classification random model with unbalanced data, we compare five esti-
mators of ¢ and o2, the among- and within-treatments variance components: analysis of
variance (ANOVA), maximum likelihood (ML), restricted maximum likelihood (REML), and
two minimum variance quadratic unbiased (MIVQUE) estimators. MIVQUE(0) is MIVQUE
with a priori values 2 = 0 and 62 = 1; MIVQUE(A) is MIVQUE with the ANOVA estimates
used as a priori’s. We enforce nonnegativity for all estimators, setting any negative estimate to
zero in accord with usual practice. The estimators are compared through their biases and
MSE’s, estimated by Monte Carlo simulation.{Our results indicate that the ANOVA esti-
mators perform well, except with seriously unbalanced data when ¢2/0? > 1; ML is excellent
when ¢2/02 < 0.5, and MIVQUE(A) is adequate; further iteration to the REML estimates is
unnecessary. When ¢2/02 > 1, MIVQUE(0) (the default for SAS’'s PROCEDURE VAR-
COMP) is poor for estimating o2 and very poor for a2, even for just mildly unbalanced data.
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1. INTRODUCTION

Variance components are commonly estimated in

the course of determining appropriate sampling de-

" signs, establishing quality control procedures, or, in
statistical genetics, estimating heritabilities and gen-
etic correlations. Traditionally, the estimators used
most often have been the analysis of variance
(ANOVA) estimators, which are obtained by equating
observed and expected mean squares from an analysis
of variance and solving the resulting equations. (See,
e.g., Searle 1971, ch. 9.) If the data are balanced (that
is, if they have equal numbers of observations in corre-
sponding subclasses), the ANOVA estimators have
many appealing properties: they are unbiased, mini-
mum variance among all unbiased estimators that are
quadratic functions of the observations, and, under
normality, minimum variance among all unbiased es-
timators. However, with unbalanced data (those with
unequal subclass frequencies), all of these properties
are lost except unbiasedness.

Because variance components must often be esti-
mated from unbalanced data, research has been direc-
ted toward estimation methods whose properties do
not depend on balanced data, and that provide gener-
al unifying criteria for variance components esti-
mation. Two general classes of estimators have
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sparked considerable interest: maximum likelihood
and restricted maximum likelihood (ML and REML),
and minimum norm and minimum variance quadratic
unbiased estimation (MINQUE and MIVQUE). In
fact, there are strong links between these two classes of
estimators, as is illustrated in Section 2.

Harville (1977) reviews the literature on the proper-
ties, advantages, and disadvantages of ML and
REML. Briefly, while ML estimates the variance com-
ponents by those values which maximize the full likeli-
hood function over the parameter space, REML parti-
tions the likelihood into two pieces, one of which is
free of the fixed effects, and maximizes only that por-
tion of the likelihood. In contrast to ML, REML takes
into account the loss in degrees of freedom associated
with estimation of fixed effects. In practice, a principal
limitation of ML and REML is that the variance
components estimates must usually be obtained itera-
tively, and the required computing may be difficult
and perhaps infeasible for large data sets.

Swallow and Searle (1978) summarize Rao’s (1971b)
derivation of MIVQUE. To compute the MIVQUE’s
the user must supply a priori values for the variance
components. The estimators are then functions of the
data and of the a priori values, and are only locally
minimum variance; that is, they are minimum vari-
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ance only when each a priori value equals the true
value of the corresponding variance component. Re-
alistically, the user cannot provide perfect a priori
values, so, in application, the estimators will not be
minimum variance. Notwithstanding the lack of per-
fect values, Swallow (1981) has shown that for the
one-way classification random model under normality
(with ¢2 and o2 the between- and within-treatments
variance components, respectively), if 62/¢2 > 1 and
the a priori estimate of 62/52 is not a drastic underesti-
mate, the MIVQUE of ¢? is often more efficient than
the ANOVA estimator; the MIVQUE and ANOVA
estimators of ¢ usually differ little.

Under normality (assumed in the Monte Carlo
comparisons that follow) the MIVQUE and
MINQUE equations are identical. Specifying the a
priori values of the variance components for
MIVQUE is equivalent to specifying the particular
Euclidean norm (specified as “weights”) to be mini-
mized for MINQUE (Rao 1971a,1972). When the data
are balanced, both the a priori values of MIVQUE
and the weights of MINQUE drop out, and the
MIVQUE, MINQUE, and ANOVA estimators are
identical. With unbalanced data, MIVQUE and
MINQUE suffer from computing difficulties similar
to those of ML and REML, except in some special
cases where the estimators are available in forms that
do not require matrix inversion (see, for example,
Brocklebank 1981, Swallow and Searle 1978).

The presence of “a priori” values of the variance
components in the MIVQUE estimators with unbal-
anced data suggests the possibility of iteration, using
the “estimates” from each round of iteration as the “a
priori” values in the next round, and repeating until
the “estimates” converge (Harville 1969, Rao
1972,1979). When such iteration is used, the esti-
mators become biased, since the “a priori” values are
functions of the data after the first iteration. We will
call the iterated estimators I-MIVQUE’s and I-
MINQUE’s in keeping with Brown’s (1976) no-
menclature, but meaning only that the MIVQUE and
MINQUE equations are used iteratively—the
MIVQUE and MINQUE properties are not pre-
served.

Under normality, the equations for I-MIVQUE,
I-MINQUE, and REML are identical, with the initial
a priori values of MIVQUE, the initial weights of
MINQUE, and the starting point for iteration with
REML playing analogous roles. A key difference, for
REML, however, is that the equations are solved sub-
ject to a nonnegativity constraint, whereas the theory
of I-MIVQUE and I-MINQUE allows negative esti-
mates. Nonnegativity constraints are discussed further
in Section 2.

With so many available estimators of variance com-
ponents from unbalanced data, which one should the
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prospective user choose? Are the ANOVA estimators
still a viable alternative, even though their optimal
properties are lost under unbalanced data? How do
they compare with estimators that have stronger theo-
retical support but are much more demanding compu-
tationally? To shed light on these questions, we pres-
ent here a side-by-side Monte Carlo comparison of
the ANOVA, ML, REML, and two MIVQUE esti-
mators under the one-way classification random
model with unbalanced data. This direct comparison
provides the user with some basis for selecting an
estimator.

2. THE MODEL AND ESTIMATORS
TO BE COMPARED

Under the one-way classification random model
assuming normality, y;;, the jth observation in the ith
group, can be expressed as

yij=p+a;+ e, (1

where p is an unknown parameter, a; and e;; are
mutually independent random variables from normal
distributions with zero means and variances ¢2 and
o2, respectively, i=1,...,a witha>2,j=1,...,n
with n; > 1 for all i and n; > 1 for some i, and N =
Y n;. The variance components to be estimated are o2
and o2. The n-pattern or vector of subgroup sizes is
(ny, ny, ..., n,), and the data are called unbalanced
whenever the n; are not all equal. When the y;; are
ordered by i and by j within i, (1) may be rewritten in
matrix notation as

1

L, 0 - 0
y=lyu+| 0 1, :

a+Iye

0 . 1

Na

=Xu+Za+Z,e,

where a’'=(a;,a,,...,a,), € =(e;,e,,,..., Can)s
X = 1y (an N-vector with all elements unity), Z, is the
N x ablock-diagonal matrix shown above,and Z, =

Iy. Thus y is a vector of random variables with mean
1y p and variance-covariance matrix

V=02V, +42V,, )

where V, = Z,Z) and V, = Z, Z),. When ¢? and ¢?
are replaced in (2) by “estimates” ¢Z and 62 (perhaps a
priori values), we have

V=62V, +62v,. (3)
Finally, we define
P=V 11— xx¥v 1x)-'x¥v-1]. 4

Five methods of estimating the variance compo-
nents are considered.
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2.1 Analysis of Variance (ANOVA)

The ANOVA estimators are obtained by equating
the among- and within-groups mean squares from an
analysis of variance to their expectations, and solving
the resulting equations for ¢2 and 62. This gives

Z z (yij - ,V’i»)z

T (N-a

and

n(y. — }_".)2 —(a— 1)65]
‘ (N - Z nf/N)

where j;. and y.. are the ith group mean and grand
mean, respectively (Searle 1971, p. 474).

2.2 Maximum Likelihood (ML)

The ML estimates can be obtained by iterative
solution of the two equations in 62 and 62 given by

tr (V'Z2,2\V'2,2) t(V '2,2,V 12,7,
[tr(V“ZIZ;V“ZZZ’Z) tr(V‘llZZ’ZV“ZZZ’Z)]
62 yPZ,Z, Py 5
[éﬁ] - [y'l"zz z, Py]' ®)
We use the ANOVA estimates as the starting point for
iteration, that is, as the 1n1t1a] values for 62 and 62 mV
and P Thereafter, 67 and 62 for each iteration are 62
and 67, respectively, from the previous iteration, and
we continue iterating until the convergence criterion is
satisfied. Following Herbach (1959), when 62 = 0 we
recalculate 67 as though the N observations are a
sample from a single population; this has little effect
on ¢ unless o2 ~ 0. Additional details are provided
below and in Section 3.

2.3 Restricted Maximum Likelihood (REML)

The two equations in 67 and 62 solved iteratively
for the REML estimates are given by

tr (PZ,2\PZ,Z)) tr (PZ,Z\PZ,Z;) [ 42
tr (PZ,2,PZ2,2,) tr (PZ,2,PZ,27;) || 6
_[yPz,z, Py
lyPzZ,Z,Py |
Again we use the ANOVA estimates as the starting
point for iteration. It is noteworthy that equations (5)
and (6) have identical right sides; their left sides differ
only in that V! of (5) is replaced by P in (6). For the

detailed algebra leading to (5) and (6), see Searle
(1979).

2.4 MIVQUE With the ANOVA Estimates as
A Priori Values (MIVQUE(A))

The MIVQUE(A) estimators use equation (6) with-
out iteration, inserting the ANOVA estimates for G2
and 62 in P of (6). Although MIVQUE theory speci-
fies that the a priori values be independent of the data
(for unbiasedness of MIVQUE), users with no a priori
values in mind often have suggested using some easily
obtained estimates, such as the ANOVA estimates, as
a priori values. The MIVQUE(A)’s are the first iter-
ates of the REML estimators of Section 2.3.

2.5 MIVQUE With A Priori Values
2 =0, 62 =1 (MIVQUE(0))

MIVQUE(Q) estimators are defined as those ob-
tained from (6) without iteration, using 62 = 0, 62 = 1.
These estimates are important by virtue of their in-
clusion as the default estimators in SAS’s PRO-
CEDURE VARCOMP (SAS User’s Guide: Statistics,
pp. 223-228); SAS calls them “MIVQUEO” esti-
mators. In general, SAS’s MIVQUEQ sets 62 = 1 and
all other a priori values to zero, which simplifies the
MIVQUE expressions and thus the required com-
puting. However, the SAS MIVQUEQO user should be
mindful that, in choosing to use MIVQUEQ, a priori
values are specified passively, but just as surely as with
any other specification.

We have chosen to enforce nonnegativity in esti-
mation of o2 for all estimators, which means that any
negative MIVQUE(A), MIVQUE(0), or ANOVA esti-
mate of o7 is set to zero. (The estimates of 62 are
always nonnegative.) Enforcing nonnegativity vio-
lates the theory of MIVQUE and ANOVA esti-
mation, since negative estimates must be allowed in
order to retain unbiasedness, but it is in tune with
common practice, in that users virtually always set
negative estimates to zero, at least when estimating
variance components individually (versus in linear
combinations). In enforcing nonnegativity we forfeit
unbiasedness in the MIVQUE(0) and ANOVA esti-
mators, the only estimators of our five that would
otherwise have been unbiased. The ANOVA estimate
of 67 used as 6 in the ML, REML, and MIVQUE(A)
calculations of Sections 2.2-2.4 is thus guaranteed to
be nonnegative.

ML and REML estimates of variance components
are by definition nonnegative. However, negative
values can crop up in the iterative process and, if used
as 62 in V, cause a singularity or near singularity that
can disrupt computation. Therefore after each iter-
ation we set any negative 67 to zero before using it as
62 in the next iteration; domg so eliminated compu-
tational problems (such as inverting singular matrices)
that we had occasionally observed in earlier work. A
number of papers have dealt with the problems caused
by negative values in iterating to ML or REML esti-
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mates (Corbeil and Searle 1976a,b, Harville 1977,
Hemmerle and Hartley 1973, Hocking and Kutner
1975, Jennrich and Sampson 1976, Miller 1979).
REML, as defined here, is identical to I-MIVQUE
and I-MINQUE with nonnegativity enforced after
each iteration.

Both ML and REML were allowed up to 20 iter-
ations to converge. Convergence was said to have
occurred when the estimates at the kth and (k + 1)th
iterations satisfied

L) A2 22 22
Iaa.k+l _aa.kl+|0e,k+l ~a-e.kl < 0001
1+ 62, 1+ 62,

The choice of convergence criterion is always arbi-
trary. Our selection was based on the premise that
relative discrepancy is more meaningful than absolute
discrepancy; unity was added to each denominator (a)
to rule out division by zero, and (b) to prevent the
convergence criterion from being overly stringent
when either 62, or 62, was very small.

Defining ML, REML, MIVQUE(A), and
MIVQUE(0) estimation using Equations (5) and (6)
emphasizes their interrelationships. Using (5) and (6)
iteratively as described to obtain the ML and REML
estimates amounts to maximizing the likelihoods by
Fisher’s method of scoring (Harville 1977, Hocking
and Kutner 1975, Rao 1979).

3. MONTE CARLO COMPARISON

Comparing variance components estimators for un-
balanced data requires comparison under a variety of
n-patterns and true values of the components (o2, o2).
The n-patterns used in this study are listed in Table 1
and are among those used by Swallow and Searle
(1978) and Swallow (1981). We have kept the n-
pattern numbers (P, P,, etc.) as assigned in the ear-
lier papers for ease in cross-referencing; pattern num-
bers that are missing in Table 1 (P;, P¢, P,,) are for
patterns not discussed in detail in this article (because
they gave results similar to those for P,, Ps, and Py,
respectively). For a discussion of the interrelationships
of these n-patterns, the rationale for their selection,
and the difficulties in selecting n-patterns for com-
paring variance components estimators, see Swallow
and Searle (1978, pp. 268-270). Patterns P, and P,,
are included because previous experience has shown
them to be especially troublesome (“worst cases”) for
variance components estimation. In considering
values of (62, ¢2) for comparing variance components
estimators, one need only be concerned with the ratio
ol/ol; we take o2/c?2 =0, .1, .2, .5, 1.0, 2.0, and 5.0
(taking 67 = 1,50 62/02 = ¢2) for a fairly broad range
of values.

For each n-pattern and value of ¢2/62, 10,000 sam-
ples (or replicates) were generated. Given ¢2/62 and
the n-pattern, the subgroup means and subgroup
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sums of squares are sufficient for the variance compo-
nents estimators. (Individual observations need not be
generated.) This was exploited in the Monte Carlo
simulation, using Marsaglia and Bray’s (1964) modi-
fied polar method for generating normal random vari-
ables (subgroup means) and Cheng and Feast’s (1980)
extension of Kinderman and Monahan’s (1977) ratio-
of-uniforms algorithm for generating chi-squared
random variables (for subgroup sums of squares). The
initial seed was a function of the n-pattern, set and
updated using Schrage’s (1979) portable Fortran ver-
sion of the Lewis, Goodman, and Miller (1969) uni-
form pseudorandom number generator. All compu-
tations were in double-precision Fortran.

For each replication we estimated both ¢2 and ¢?2
using all five estimators, and from these estimates we
calculated mean squared error and bias. When either
an ML or a REML estimator failed to converge in 20
iterations, as occasionally occurred, that replicate was
dropped for all estimators, so that estimators would
be compared for the same replicates.

4. RESULTS AND DISCUSSION

Underlying this study is a factorial structure con-
sisting of four factors: the estimator used, the variance
component being estimated, the value of ¢2/52, and
the n-pattern. In addition, the set of n-patterns has a
fractional factorial structure of its own. The factors do
interact, and the discussion focuses largely on these
interactions.

4.1 Biases in Estimators of o2

Table 1 gives estimated biases of the estimators of
o’ for each estimator, n-pattern, and value of ¢2/g2.

Each entry in Table 1 is computed from the approxi-
mately 10,000 usable replicates. For ¢2 > 0, tabled
values for which the estimated relative bias exceeds 10
percent (i.e., | bias/o?| > .10) are italicized for empha-
sis.

The most striking feature of Table 1 is the bias in
the ML estimator. As noted earlier, ML fails to take
account of loss in degrees of freedom associated with
estimation of fixed effects (e.g, ML uses “a” rather
than “a — 17 as the among-groups degrees of free-
dom). As a consequence, the ML estimator is gener-
ally biased downward, perhaps considerably so when
a is small. In Table 1, when ¢2/02 = 62 is small, the
bias is not serious. However, for larger values of o2,
the ML estimator of o7 has mean of approximately
[(@ — 1)/a]o?, which is to say that the downward bias
is roughly (1/a)o?. To demonstrate this, we include in
Table 1 ML-adj, which is a/(a — 1) times the ML
estimator; the bias remaining in ML-adj is very small.
As a becomes large, the bias in the ML estimator
becomes negligible. Approximate bias correction and
ML-adj are introduced mainly for use in our dis-



VARIANCE COMPONENT ESTIMATORS

Table 1. Estimated Biases of Estimators of o

2

02jol =0l (c2=1)

n-pattern .0 A 2 5 1.0 2.0 5.0
P,=(3.57) ANOVA 082 .063 .053 042 018 —.009 .005
MIVQUE(0) 078 .058 .049 041 019 —.022 —.028
MIVQUE(A) 084 067 .056 .041 014  —.001 .026
REML = I-MIVQUE .083 .066 .056 .043 018 .006 .036
ML 034 —-.020 -.068 -.190 -.383 -.731 -1.72
ML-adj 051 019 -.002 —-.035 —.074 —.096 —.080
P,=(1,59) ANOVA 096 .078 .063 .048 054 033 017
MIVQUE(0) 078 .066 .056 043 .061 .046 017
MIVQUE(A) 110 094 075 .053 029 -—.0456 —.106
REML = I-MIVQUE 112 .098 .083 .078 077 .036 .035
ML 036 —-.021 -.073 -.202 -.389 -.771 -1.79
ML-adj 054 019 —-009 -.053 —-.083 —.156 —.185
P,=(3.35577) ANOVA 055  .034 019 008 —.005 .004 029
MIVQUE(0) 052 .032 018 008 —.010 .003 .045
MIVQUE(A) 056 .036 .020 006 —.007 -—.002 .004
REML = I-MIVQUE .054 .035 .020 008 —.002 .006 014
ML 033 —.009 —-.043 -.110 -.205 -.366 —.859
ML-adj 039 009 -.012 —-.032 —.046 —.039 —.031
P,=(1,1,55,99) ANOVA 056 .029 .023 017 .009 013 .020
MIVQUE(0) 046 025 .021 020 014 013 022
MIVQUE(A) 057 .035 .030 015 —.014 —.041 —.091
REML = I-MIVQUE .052 .031 .028 .026 015 017 015
ML 028 —-.018 -.046 -.112 —-.213 -.388 —.895
ML-adj 033 —-001 -015 —-.034 —.056 —.066 —.074
P,=(1,1,1,1,13,13) ANOVA 066 .043 .031 .026 056  .047 211
MIVQUE(0) 033 008 —.003 -—.007 .038 .030 .245
MIVQUE(A) 071  .057 .047 .025 .002 —.062 —.068
REML = I-MIVQUE .070 .062 .059 062 075 .069 142
ML 030 —.013 —-.044 -.119 -.207 -.395 —.838
ML-adj 036 004 —013 -—.043 —.048 —.074 —.006
Pe=1(3.3,3555777) ANOVA 044 021 010  .003 004 —.014 —.019
MIVQUE(0) 041 020 .009 .002 006 —.012 —.018
MIVQUE(A) 045 023 0N 001 —.001 —.023 -.027
REML = I-MIVQUE .043  .021 .010 .003 004 —.016 —.019
ML 029 -.008 -.033 -.077 -.133 -.262 -.598
ML-adj 033 003 -.012 —.024 -.025 -.045 —.048
Py=1(1,1,1,55,59299) ANOVA 045 018 007 .003 014 .003 .007
MIVQUE(0) 036 .015 .006 .002 020 006 —.001
MIVQUE(A) 044 023 012 003 —.008 -—.046 —.068
REML = I-MIVQUE .039 .018 .009 .009 011 —.006 .007
ML 024 —.015 -.040 -.083 —.141 -.273 —.598
ML-adj .027 —-005 -.020 -.031 —-.034 -.057 —.048
P,=(1,1,111,1,1,19,19) ANOVA 058 .035 .020 .008 028 033 113
MIVQUE(0) 021 -.000 —-.018 —.026 —.006 014 131
MIVQUE(A) 061 .048 .036 006 —-.014 —.069 —.126
REML = I-MIVQUE .059 .053 .049 .042 065 064 068
ML 029 —-.007 -.033 -.090 -.141 -.259 —.587
ML-adj 033 004 —-012 —-.039 —-.03¢ -.041 —.035
P,=1(210,18) ANOVA 046 031 .032 021 .037 062  —.049
MIVQUE(0) 037 .027 .031 .023 042 074 —.057
MIVQUE(A) 052 037 .029 005 —.006 —-.019 -.119
REML = I-MIVQUE .054 .043 .041 .032 039 046  —.027
ML 016 —-.038 -.081 -.200 -.372 -.707 -1.76
ML-adj 024 _007 -.022 -.050 -.058 —.060 —.140
P.3=(3,15,27) ANOVA 031 .017  .009 .004 .009 004 —.034
MIVQUE(0) 025 .014 .009 .007 014 —004 —.041
MIVQUE(A) 034 021 006 —.017 —.033 -.029 —.085
REML = I-MIVQUE .035 .027 016 .007 004 024 —.017
ML 010 —-.041 -.087 -.202 -.376 -.701 -1.73
ML-adj 016 —-.012 -.030 -.053 —.064 —.051 —.095
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cussion of MSE’s in Section 4.2. A better approxi-
mation for the magnitude of the downward bias is
(6%/N + 62/a), but 62/N is comparatively small here
because 62 = 1, so we have opted to use the simpler
approximation ¢2/a.

Requiring nonnegativity induces an upward bias in
all of these estimators that is most pronounced when
0%/l is very small, which is when negative estimates
of o2 are most likely to arise. For the ML estimator,
this upward bias effect is lessened by the downward
bias discussed in the preceding paragraph.

The ANOVA, MIVQUE(), MIVQUE(A), and
REML estimators of 7 differ very little in bias. Only
for P; and P,,, the n-patterns that have been shown
to be worst cases in earlier work, with ¢2/62 very
small, does MIVQUE(0) have less bias than the other
estimators.

4.2 MSE's of Estimators of o2

Table 2 presents the MSE’s of the estimators of g2,
computed from the usable replicates and divided by
the lower bound for quadratic unbiased estimators
(QUE’s). The QUE lower bounds are also shown, and
are the variances of the MIVQUE estimators ob-
tained from (6) without iteration, taking the true value
of 62/a% as the a priori input. (The variances can be
calculated using equation (18) of Swallow and Searle
1978; no “data” are needed.) Employing the QUE
lower bound as a scaling factor is simply a convenient
way, when comparing these estimators, to deal with
the strong dependence of all of these MSE’s on the
magnitude of g7 and on the number of subgroups a. In
many cases the biased estimators being compared
have MSE’s smaller than the lower bound for QUE's,
giving ratios less than unity. Values of the scaled
MSE’s that are <.80 or >1.20 are italicized in the
table.

The ML estimator consistently has the smallest
MSE, although its MSE superiority decreases as the
number of groups increases under the same type of
unbalancedness (compare P, P, and Py, or P,, Py,
and P,). When ¢2/62 < 0.5, the small bias and low
MSE make the ML estimator the one of choice. How-
ever, as discussed in Section 4.1, for small a the ML
estimator of 6 may have substantial downward bias
when a7/07 is large; this bias has an interesting effect
on the MSE. Since the estimator is bounded below by
zero, the bias concentrates the sampling distribution,
reducing the variance by more than enough to offset
the squared bias, so the MSE actually decreases. The
greater the bias, the more the variance and MSE
decrease. The bias is greatest when the number of
groups is smallest, so that is when the MSE superior-
ity of the ML estimator is most evident. To illustrate
this relationship between the bias and the MSE of the
ML estimator, we have added the bias-corrected
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ML-adj estimator in Table 2 as in Table 1. The MSE
of the ML-adj estimator generally agrees with the
MSE’s of competing estimators. Apparently, when the
bias of the ML estimator is large enough to be objec-
tionable, bias correction results in a loss of MSE
superiority; the bias-corrected estimator is as good as
other estimators, but it may be more difficult to com-
pute.

There is no apparent advantage of REML over
MIVQUE(A), the first iterate of REML. In fact, under
P, or P, with ¢}/ small, iterating makes the esti-
mates worse. Or course, MIVQUE with poorer a
priori values than the ANOVA estimates would not
be expected to compare as favorably with REML
overall.

When ¢7/6? = 0, MIVQUE(0) is MIVQUE with
perfect a priori values. In this case MIVQUE(0) is
second only to ML, outperforming even ML under
n-patterns P, and P,,. When the data are mildly
unbalanced (P;, P,, and Pg), the advantage of
MIVQUE(0) over the MIVQUE(A), REML, or
ANOVA estimator is slight; under more severely un-
balanced data the gains with MIVQUE(@) can be
sizable.

For 0 < ¢7/0? < 1.0, there is little difference be-
tween MIVQUE(0), MIVQUE(A), REML, and the
ANOVA estimators, except under P, and P, ,, where
MIVQUE(A) and especially REML suffer. The
ANOVA estimator is always reasonable in this range.

When 67/62 > 1.0, MIVQUE(0) performs poorly,
even in mildly unbalanced cases. This agrees with
Swallow’s (1981) conclusion, namely that when the a
priori value of ¢2/c? is a severe underestimate,
MIVQUE does very badly. MIVQUE(0)'s poor per-
formance when ¢2/62 > 1.0 renders MIVQUE(0) an
unsatisfactory default for SAS’s PROCEDURE VAR-
COMP.

Provided ¢7/62 > 1.0, the MSE’s of the MIV-
QUE(A) and REML estimators approximate the
QUE lower bound no matter how unbalanced the
data are. The ANOVA estimator suffers under badly
unbalanced data but performs very poorly only under
the unlikely n-patterns P, and P, ,.

The standard errors of the bias values reported in
Table 1 can be determined using Table 2. For exam-
ple, for P, and ¢2/6? = .5, the estimated bias of the
ANOVA estimator is .042 from Table 1. The esti-
mated variance of this value is [.980(.525)
— (.042)*]/10000 = .0000513 = (.0072)%, where .980
and .525 are the ratio and QUE lower bound, respec-
tively, from Table 2.

4.3 Biases of Estimators of ¢2

The biases (not shown) of all of these estimators are
negligible over the range of conditions studied. Even
relative biases are generally under 10 percent and



Table 2. Ratios of MSE’s of Estimators of o2 to the QUE Lower Bound,and the QUE Lower Bound

o3fo? = o2 (o2 =1)

n-pattern .0 A 2 5 1.0 2.0 5.0
P,=(3,517) ANOVA .70 .75 .85 .98 1.03 .98 1.06
MIVQUE(0) 68 .76 .89 112 1.19 1.10 1.21
MIVQUE(A) 74 .80 .88 .95 .99 .98 1.03
REML = I-MIVQUE .74 .81 .89 .96 1.00 .99 1.03
ML 21 .27 .36 .47 .53 .54 .56
ML-adj 46 .60 .75 .90 .98 .98 1.03
QUE Lower Bound .049 104 179 .525 1.50 495 27.3
P,=(1.59) ANOVA .98 .84 .84 94 1.12 1.15 1.26
MIVQUE(0) .75 .87 .96 1.16 1.42 148 1.67
MIVQUE(A) 1.72 1.16 .97 .97 1.00 .93 .96
REML = I-MIVQUE 217 142 1.15 112 1.11 .99 .98
ML 50 .38 .38 .48 .53 .53 .55
ML-adj 112 .86 .81 .94 1.02 .96 .98
QUE Lower Bound .051 125 227 .678 1.86 5.73 294
P,=1(335,5177) ANOVA 68 .78 .85 .96 1.02 1.06 1.08
MIVQUE(0) 66 .84 .94 1.15 1.22 1.30 136
MIVQUE(A) 71 .80 .85 .93 .98 1.02 1.00
REML = I-MIVQUE .70 .82 .87 .95 .99 1.02 1.00
ML 34 .48 .58 71 .76 .78 .76
ML-adj 49 .68 .80 .94 .99 1.02 1.00
QUE Lower Bound .018 .040 .070 .208 .5699 1.98 10.9
Py,=(1,1,5,599) ANOVA .88 .78 .88 1.01 1.07 1.20 1.30
MIVQUE(0) 68 .84 1.03 1.31 144 1.65 184
MIVQUE(A) 1.02 .88 .94 .96 .95 .97 .98
REML = I-MIVQUE 1.06 .98 1.07 1.08 1.04 1.03 .99
ML 45 .51 .63 .73 .76 .77 .76
ML-adj 64 .73 .88 .99 1.00 1.02 .99
QUE Lower Bound .015 .041 .079 .250 711 2.25 11.7
P,=(1,1,1,1,13,13) ANOVA 1.60 .90 .90 1.14 1.41 1.70 229
MIVQUE(0) 67 .88 1.10 1.75 238 3.00 4.09
MIVQUE(A) 281 140 117 .98 .94 .94 .98
REML = I-MIVQUE 4.15 197 1.56 123 1.10 1.02 1.01
ML 153 .90 .82 .79 .77 .76 .76
ML-adj 220 129 1.16 1.08 1.05 1.01 1.01
QUE Lower Bound .012 .054 115 .367 .956 2.73 12.8
Py=1(3,3,35,505,7,7,7) ANOVA 67 .76 91 1.01 1.06 1.05 1.05
MIVQUE(0) 60 .79 1.00 1.18 1.28 1.30 133
MIVQUE(A) 69 .78 9 .98 1.02 1.00 .96
REML = I-MIVQUE 68 .79 .93 .99 1.02 1.00 .96
ML 39 .55 72 .82 .86 .85 .82
ML-adj 50 .70 .88 .99 1.03 1.01 .97
QUE Lower Bound .01 .025 .044 130 374 1.24 6.83
Py=(1,1,1,5,55,9,9 9) ANOVA .88 .79 .90 .99 1.10 1.19 1.32
MIVQUE(0) 64 .84 1.05 1.24 147 1.62 182
MIVQUE(A) .88 .86 92 97 97 97 1.01
REML = I-MIVQUE .82 92 .99 1.07 1.04 1.01 1.02
ML 42 .60 .73 .84 .85 .84 .86
ML-adj 53 .75 .88 1.02 1.02 1.00 1.02
QUE Lower Bound .009 .025 .048 153 440 1.40 7.30
P,=(.,111111,1919) ANOVA 247 .96 .89 1.15 1.61 2.14 292
MIVQUE(O) 62 .93 1.14 1.90 3.03 4.19 581
MIVQUE(A) 4.51 149 1.15 .96 .90 .96 1.00
REML = I-MIVQUE 7.02 2.09 1.55 1.18 1.05 1.03 1.01
ML 335 1.15 .98 .88 .84 .85 .84
ML-adj 425 146 122 1.08 1.03 1.03 1.01
QUE Lower Bound .006 .037 .085 .27 .678 1.84 8.30
P,,=1(2,10,18) ANOVA 97 .87 .99 1.09 1.20 1.36 130
MIVQUE(0) 74 .98 1.20 137 153 1.77 1.70
MIVQUE(A) 154 1.04 .96 .94 .96 1.03 .97
REML = I-MIVQUE 203 128 1.13 1.05 1.02 1.06 .98
ML 39 .41 .45 .51 .54 .57 .55
ML-adj .87 .86 .89 .96 .99 1.05 .98
QUE Lower Bound .012 .056 125 461 1.43 4.87 27.2
P,y =(3 15, 27) ANOVA .99 .86 .95 1.10 1.17 1.33 138
MIVQUE(0) 77 .98 1.15 1.39 1.50 1.71 1.77
MIVQUE(A) 1.58 .96 .91 .92 .92 1.03 1.03
REML = I-MIVQUE 2.06 1.16 1.04 1.00 .96 1.05 1.04
ML 42 .42 47 .53 .53 .57 .57
ML-adj 93 .84 89 96 95 1.05 1.03

QUE Lower Bound 005 039 096 392 129 458 265
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exceed 25 percent only for the ML estimator with
a<6andc?/o? <0.2.

4.4 MSE’s of Estimators of o2

Table 3 is similar to Table 2, except for estimating
62 (62 = 1). The QUE lower bounds are calculated
using equation (17) of Swallow and Searle (1978).
Values of ratio to the lower bound <.80 of > 1.20 are
italicized in the table.

The striking conclusion from Table 3 is that when
62/6? > 1.0, MIVQUE(0) can be terrible, even for
mildly unbalanced data. For 62/62 > 5.0 (not shown),
MIVQUE(0)s problems become even more pro-
nounced. At ¢2/62 =200, the ratio of the
MIVQUE(0) MSE to the QUE lower bound is 76.1
under P,, 139 under P,, 154 under Py, and 656 under
P,,; comparable values for all other estimators are

near unity.

There is very little difference between the MIV-
QUE(A), REML, ML, and ANOVA estimators of 2.
All perform well over the broad range of conditions
studied. When ¢2/62 and the number of groups a are
small, ML has a somewhat smaller MSE ; these are the
same cases for which the downward bias of the ML
estimator is greatest. As discussed for the ML esti-
mator of ¢2, downward bias reduces variance and
thereby MSE, since the increase in squared bias is less
than the decrease in variance.

Increasing the total number of observations N,
either by increasing group sizes (compare P,, P,,,
P,) or by adding more groups (P,, Ps, Py), benefits
all estimators, as seen in the QUE lower bounds.
However, compared with the other estimators,
MIVQUE(0) becomes an even poorer choice as N
increases.

As mentioned earlier, three n-patterns used in Swal-
low and Searle (1978) and Swallow (1981) are not
included in the tables presented here: Py = (1, 7, 7),
Pe=(1,1,7,7,77,and Py, =(1,1,1,7,7,7,7,7, 7).
The results for P,, P, and P,, were similar to those
reported for P,, Ps, and Py, respectively, in Tables
1-3.

4.5 Effect of Starting Point for lteration,
and Convergence Rates

For both ML and REML we used the ratio of
ANOVA estimates (62/62) as the starting point for
iteration in Tables 1-3. To check the dependence of
these estimators on starting point, we tested also the
ANOVA ratio divided by 10 and the ANOVA ratio
times 10 for P, as an example. These three starting
points were compared for exactly the same replicates.
Some of the results of this comparison are shown in
Table 4.

As Table 4 indicates, the median number of iter-
ations to convergence for either ML or REML has
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little dependence on starting point. Both estimators
typically converge in two to four iterations when
62/62 is small, and in four to six when ¢2/5? is large.

When ¢2/62 is small, ML has fewer replicates re-
quiring 20 or more iterations to converge than does
REML; when ¢2/02 is large, REML has fewer cases of
slow convergence than ML. In general, ML and
REML exhibit slow convergence on different repli-
cates. For small ¢2/62, the number of slow conver-
gences is slightly reduced by a smaller starting point
for iteration and increased by a larger one, especially
for ML.

The MSE’s and biases of the ML and REML esti-
mators of 62 and ¢? are affected negligibly by starting
point. The values given for P, in Tables 1-3 could as
well have been for starting iteration at a tenth or ten
times the ANOVA ratio.

As noted earlier, when either ML or REML had
failed to converge in 20 iterations for a particular
replication, that replication was dropped for all esti-
mators. For mildly unbalanced n-patterns (P,, P,,
Pg), this occurred in about .1% of the replicates; for
severely unbalanced n-patterns (P,, Ps, Py, Py,, P,3,
and P,, Pg, P,,), it occurred in roughly 1%, with P,
having the most problems; and for the worst-case
n-patterns (P, Py,), it occurred in 10% of the repli-
cates. By enforcing nonnegativity on all estimators of
2, including after each iteration for ML and REML,
we seemed to avoid all computing problems except
occasional slow convergence.

5. SUMMARY AND CONCLUSIONS

1. The ML estimator of 62 has downward bias
which may be large when ¢2/62 > .5. It also has small-
est MSE, but that is in part a by-product of the bias
that has the effect of reducing the variance and thus
the MSE. When ¢2/62 < .5, the ML estimator of ¢2
has small bias, low MSE, and is the preferred esti-
mator; for 62/cZ > .5, the bias may be objectionable,
and bias correction eliminates the MSE superiority
over the ANOVA, MIVQUE(A), and REML esti-
mators, which usually differ little among themselves.

2. For estimating ¢, the five estimators have negli-
gible bias and, except for MIVQUE(0), comparable
MSE’s.

3. MIVQUE(0) assumes importance through the
wide exposure it receives as the default in SAS’s PRO-
CEDURE VARCOMP. For estimating o2, MIV-
QUE(0) performs well when 62 % 0, as it should, but
not as well as the ML estimator; when ¢2/62 = 0.1, it
is no better than the ANOVA estimator. When ¢2/
a2 > 1.0, the MIVQUE(0) is a poor estimator for o2
and a terrible estimator for ¢2, even for only mildly
unbalanced data. MIVQUE(0) is a dangerous default
a121d should be used only when one is confident that
o; = 0.
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Table 3. Ratios of MSE'’s of Estimators of a2 to the QUE Lower Bound ,and the QUE Lower Bound

6/l =0l (o2=1)

n-pattern .0 A 2 5 1.0 2.0 5.0
P,=(3.517) ANOVA .98 1.03 1.00 1.02 1.00 1.01 1.00
MIVQUE(0) .96 1.02 1.01 1.10 1.26 1.90 586
MIVQUE(A) .96 1.01 .99 1.02 1.00 1.01 1.00
REML = |-MIVQUE .96 1.01 .99 1.02 1.00 1.01 1.00
ML .78 .84 .85 91 .92 .98 .98
QUE Lower Bound .165 .166 .166 .166 167 167 167
P,=(1,5,9) ANOVA 1.05 1.04 1.05 1.02 1.01 .99 1.00
MIVQUE(0) 1.00 1.01 1.03 1.07 1.27 183 573
MIVQUE(A) 1.00 1.00 1.01 .99 .99 .99 1.00
REML = |-MIVQUE 1.01 1.01 1.02 1.00 1.00 .99 1.00
ML .83 .86 .89 .89 .94 .96 .99
QUE Lower Bound 159 161 162 164 .166 .166 167
P,=(3,35,577) ANOVA 1.01 1.02 1.00 1.00 1.00 .97 .99
MIVQUE(O) 1.00 1.02 1.02 1.15 1.45 263 984
MIVQUE(A) 1.00 1.01 .98 .99 1.00 .97 1.00
REML = |-MIVQUE 1.00 1.01 .99 1.00 1.00 .97 .99
ML .84 .88 .90 .96 .99 .97 1.00
QUE Lower Bound .082 .083 .083 .083 .083 .083 .083
P,=(1,1,5599) ANOVA 1.07 1.02 1.02 1.05 1.02 1.00 1.03
MIVQUE(0) 1.01 1.00 1.03 1.24 1.70 357 154
MIVQUE(A) 1.01 97 .98 1.02 1.00 1.00 1.05
REML = |-MIVQUE 1.01 .98 .99 1.04 1.02 1.01 1.03
ML .87 .89 91 .99 1.00 1.01 1.04
QUE Lower Bound .078 .080 .080 .082 .083 .083 .083
P,=(1,1,1,1,13,13) ANOVA 1.13 1.06 1.06 .98 .99 .98 1.00
MIVQUE(0) 1.01 .98 1.07 129 213 536 265
MIVQUE(A) 1.02 .97 1.00 .95 .99 1.00 1.04
REML = I-MIVQUE 1.03 .99 1.02 .97 1.01 1.00 1.01
ML 92 91 .94 .93 .99 1.00 1.03
QUE Lower Bound .074 .076 .078 .081 .082 .083 .083
P,=(3,335,55,77,7) ANOVA 1.02 .99 .99 .99 .98 1.01 1.01
MIVQUE(0) 1.00 .99 1.02 1.14 1.45 2.74 112
MIVQUE(A) 1.00 .98 .98 .98 .98 1.01 1.01
REML = |-MIVQUE 1.00 .98 .99 .99 .98 1.01 1.01
ML .85 .88 .93 .97 .98 1.01 1.01
QUE Lower Bound .054 .055 .055 .055 .056 .056 .056
Py=(1,1,1,55,59299) ANOVA 1.08 1.07 1.07 1.05 1.01 .99 1.02
MIVQUE(0) 1.01 1.03 1.07 125 1.75 363 16 .0
MIVQUE(A) 1.01 1.01 1.02 1.02 .99 1.00 1.03
REML = I-MIVQUE 1.01 1.02 1.03 1.03 1.00 1.00 1.02
ML .88 .94 .98 1.01 1.00 1.00 1.03
QUE Lower Bound .052 .053 .054 .054 .055 .055 .056
P =01,111,11,1,19,19) ANOVA 1.16 1.10 1.08 1.01 .98 1.01 .99
MIVQUE(0) .99 1.02 1.08 148 298 8.36 456
MIVQUE(A) 1.01 1.00 .99 .97 .98 1.04 1.03
REML = I-MIVQUE 1.03 1.02 1.02 1.00 1.00 1.03 .99
ML .95 .96 .96 .98 1.00 1.04 1.00
QUE Lower Bound .048 .050 .051 .054 .055 .055 .055
P,,=1(2,10,18) ANOVA 1.04 1.01 1.00 1.01 1.00 1.03 .99
MIVQUE(0) 1.01 1.00 1.02 1.14 1.43 2.63 923
MIVQUE(A) 1.01 .99 .99 1.00 1.00 1.03 1.00
REML = I-MIVQUE 1.01 .99 .99 1.00 1.00 1.03 .99
ML .93 .92 .94 .97 .98 1.02 .99
QUE Lower Bound .072 .073 .074 .074 .074 .074 074
P.3=(3,15,27) ANOVA 1.01 1.00 1.02 .99 .99 .99 1.00
MIVQUE(0) .99 .99 1.04 1.14 1.52 3.17 129
MIVQUE(A) .99 .99 1.01 .99 .99 .99 1.00
REML = I-MIVQUE .99 .99 1.01 .99 .99 .99 1.00
ML .94 .95 .98 .98 .98 .99 1.00
QUE Lower Bound .047 .047 .047 .048 .048 .048 .048
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Table 4. Comparison of Starting Points for Iteration with REML and ML using P, = (1, 5, 9) and Starting

Points (ANOVA ratio)/10, (ANOVA ratio),and (ANOVA ratio) » 10

0./0; = 0] (67 =1)

.0 A 2 5 1.0 2.0 5.0
Median Number Iterations to
Convergence
REML
(ANOVA ratio)/10 2 3 4 6 6 6 6
(ANOVA ratio) 2 3 4 5 5 5 5
(ANOVA ratio) *10 2 4 5 6 6 6 5
ML
(ANOVA ratio)/10 2 3 4 4 4 5 5
(ANOQVA ratio) 2 3 3 4 5 5 5
(ANOVA ratio) 10 2 3 4 5 5 6 5
Number of the 10,000 Replications
Not Converged in <20 lterations
REML
(ANOVA ratio)/10 81 103 95 85 81 82 59
(ANOVA ratio) 96 91 64 67 73 47 33
(ANOVA ratio) *10 127 148 115 114 123 78 60
ML
(ANOVA ratio)/10 51 61 83 84 117 142 110
(ANOVA ratio) 80 73 118 118 151 138 114
(ANOVA ratio) *10 96 97 138 159 183 187 146

4. Unless the data are severely unbalanced and o2/
02 > 1, the ANOVA estimators are adequate. They
have the added advantages of being familiar and easy
to compute.

5. MIVQUE(A) is not improved by iterating to the
REML estimates. However, MIVQUE(A) requires
that one first calculate the ANOVA estimates,
whereas the REML estimates can be obtained by
using any convenient starting point for iteration (for
example, setting starting values for all variance com-
ponents to unity).

6. ML and REML usually converge rapidly. Vary-
ing the iteration starting point slightly affects the rate
of convergence, but not the MSE’s or biases of the
estimators. Enforcing nonnegativity after each iter-
ation eliminates computing problems experienced oc-
casionally otherwise.
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