ST790-003, Homework 3 (Updated Feb 17 @ 11PM)

Due Wednesday, Feb 25, 2015 @ 11:59PM

Convex or Not?

Determine whether each of the following loss functions in statistics is convex or not. If it is convex, give a rigorous proof. If it is not convex, give a counter example. A concrete numerical example is perfect as a counter example. This is a solo homework. Discussion with fellow students is allowed but you have to write your code and report independently.

1. (Least squares, general least squares, and nonlinear least squares) Given data $\boldsymbol{y} \in \mathbb{R}^{n}$ and $\boldsymbol{X} \in \mathbb{R}^{n \times p}$, least squares criterion is

$$
\ell(\boldsymbol{\beta})=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right)^{2} .
$$

General least squares criterion is

$$
\ell(\boldsymbol{\beta})=\frac{1}{2}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T} \boldsymbol{\Omega}^{-1}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}),
$$

where $\boldsymbol{\Omega}$ is a fixed $n \times n$ positive definite matrix. Nonlinear least squares criterion is

$$
\ell(\boldsymbol{\beta})=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-f\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}\right)\right)^{2}
$$

2. (ℓ_{p} regression) For a fixed $p \in[0, \infty], \ell_{p}$ regression finds the regression coefficients $\boldsymbol{\beta}$ that minimizes the ℓ_{p} norm of residual vector

$$
\ell_{p}(\boldsymbol{\beta})=\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{p}
$$

When $p=0$, it is the best subset regression. When $p=1$, it is the ℓ_{1} regression. When $p=2$, it is the least squares problem. When $p=\infty$, it is the ℓ_{∞} regression.
3. (Worst k error regression) Define absolute residuals $r_{i}(\boldsymbol{\beta})=\left|y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right|$. If our primary interest is to reduce the k largest approximation errors, then we seek regression coefficients $\boldsymbol{\beta} \in \mathbb{R}^{p}$ that minimize

$$
\ell(\boldsymbol{\beta})=\sum_{i=1}^{k} r_{(i)}(\boldsymbol{\beta})
$$

where $r_{(1)} \geq r_{(2)} \geq \cdots \geq r_{(n)}$ are order statistics of absolute residuals. When $k=1$, it reduces to ℓ_{∞} regression. When $k=n$, it reduces to ℓ_{1} regression.
4. (Quantile regression) It is well known that the sample median of y_{1}, \ldots, y_{n} is the minimizer of the sum of absolute deviations $\sum_{i=1}^{n}\left|y_{i}-\xi\right|$. Therefore ℓ_{1} regression is called the median regression. Likewise, the τ-th sample quantile, $\tau \in(0,1)$, is the minimizer of $\sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\xi\right)$,
where $\rho_{\tau}(z)=z\left(\tau-I_{\{z<0\}}\right)$. This leads to the quantile regression problem that minimizes the loss function

$$
\ell_{\tau}(\boldsymbol{\beta})=\sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right)
$$

The $\tau=1 / 2$ case recovers the ℓ_{1} regression.
Plot the function $\rho_{\tau}(z)$ for a couple of τ values and determine whether the loss function $\ell_{\tau}(\boldsymbol{\beta})$ is convex or not.
5. (Variance component model) Consider the multivariate normal model $\boldsymbol{Y} \sim N(\boldsymbol{X} \boldsymbol{\beta}, \boldsymbol{\Omega})$, where

$$
\boldsymbol{\Omega}=\sum_{i=1}^{m} \sigma_{i}^{2} \boldsymbol{V}_{i}
$$

and $\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{m}$ are m fixed positive semidefinite matrices. Parameters are mean effects $\boldsymbol{\beta} \in \mathbb{R}^{p}$ and non-negative variance components $\sigma_{1}^{2}, \ldots, \sigma_{m}^{2}$. The negative log-likelihood function is

$$
\ell\left(\boldsymbol{\beta}, \sigma_{1}^{2}, \ldots, \sigma_{m}^{2}\right)=\frac{n}{2} \ln (2 \pi)+\frac{1}{2} \ln \operatorname{det} \boldsymbol{\Omega}+\frac{1}{2}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T} \boldsymbol{\Omega}^{-1}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}) .
$$

6. (Linear mixed model) Consider the model $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \boldsymbol{\gamma}+\boldsymbol{\epsilon}$, where $\boldsymbol{\beta} \in \mathbb{R}^{p}$ are fixed effects, $\gamma \sim N(\mathbf{0}, \boldsymbol{R})$ with \boldsymbol{R} unknown are random effects, and $\boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma_{0}^{2} \boldsymbol{I}\right)$ are noises independent of γ. Write down the negative log-likelihood and determine wether it is convex or not.
7. (Gaussian mixture model) Gaussian mixture model assumes that a data point $\boldsymbol{y} \in \mathbf{R}^{d}$ comes from multivariate Gaussian distribution $N\left(\boldsymbol{\mu}_{j}, \boldsymbol{\Omega}_{j}\right)$ with probability π_{j} for $j=1, \ldots, k$. Therefore the parameters of interested are k component probabilities $\left(\pi_{1}, \ldots, \pi_{k}\right), k$ component means $\left(\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}\right)$, and k component covariance matrices $\left(\boldsymbol{\Omega}_{1}, \ldots, \boldsymbol{\Omega}_{k}\right)$. Write down the negative log-likelihood and determine wether it is convex or not.
8. (Logistic regression and GLM) The negative log-likelihood of the logistic regression model is

$$
\ell(\boldsymbol{\beta})=-\sum_{i=1}^{n}\left[y_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}-\ln \left(1+e^{\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}}\right)\right]
$$

How about the negative log-likelihood of any generalized linear model (GLM) with canonical link?
9. (Gaussian covariance estimation) Suppose $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n} \in \mathbb{R}^{p}$ are iid multivariate normal $N(\mathbf{0}, \boldsymbol{\Sigma})$. Write down the negative log-likelihood function $\ell(\boldsymbol{\Sigma})$ and determine whether it is convex or not.
10. (Gaussian precision matrix estimation) Suppose $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n} \in \mathbb{R}^{p}$ are iid multivariate normal $N\left(\mathbf{0}, \boldsymbol{\Omega}^{-1}\right)$. Write down the negative log-likelihood function $\ell(\boldsymbol{\Omega})$ and determine whether it is convex or not.

