
ST790-003, Homework 6 (Updated Mar 26)

Due Wednesday, Apr 1, 2015 @ 11:59PM

SDP, GP, MIP

This homework explores applications of SDP (semidefinite programming), GP (geometric program-

ming), and MIP (mixed integer programming) in statistics. This is a solo homework. Discussion

with fellow students is allowed but you have to write your code and report independently.

1. (Experiment design) Consider a linear model

yi = xT
i β + εi, i = 1, . . . , n,

where εi are independent Gaussian noises with common variance σ2. It is well known that the

least squares estimate β̂ is unbiased and has covariance σ2(
∑n

i=1 xix
T
i )−1. In experimental

design, given total number of allowable experiments, we want to choose among a list of m

candidate design points {x1, . . . ,xm} such that the covariance matrix is minimized in some

sense. In mathematical terms, we want to find a probability vector p = (p1, . . . , pm) such that

pi ≥ 0,
∑m

i=1 pi = 1, and the matrix V =
(∑m

i=1 pixix
T
i

)−1
is “small”.

(a) (D-optimal design) In D-optimal design, we minimize the determinant of V . That is

minimize det

(
m∑
i=1

pixix
T
i

)−1

subject to p � 0, 1Tp = 1

for the optimal p. Formulate this problem as an SDP.

(b) (E-optimal design) In E-optimal design, we minimize the spectral norm, i.e., the maxi-

mum eigenvalue of V

minimize λmax

(
m∑
i=1

pixix
T
i

)−1

subject to p � 0, 1Tp = 1.

Statistically we are minimizing the maximum variance of
∑p

j=1 ajvar(β̂j) over all vectors

a with unit norm. Formulate this problem as an SDP.

(c) (A-optimal design) In A-optimal design, we minimize the trace of V

minimize tr

(
m∑
i=1

pixix
T
i

)−1

subject to p � 0, 1Tp = 1.

Statistically we are minimizing the total variance
∑p

j=1 var(β̂j). Formulate this problem

as an SDP.
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(d) Consider a 3×4 factorial design with treatment A at levels A1, A2, and A3 and treatment

B at levels B1, B2, B3, and B4. It is known that the A3:B4 combination creates undesir-

able side effects so we omit this design point. Find the optimal D, E, and A designs for

this experiment. For ease of grading, please use the dummy coding for factors. Report

your solutions in 3× 4 tables.

2. (Complete Lena) This time the picture of Lena (lena128missing.png) has a lot of missing

pixels.

Your goal is to “complete” Lena by a technique called matrix completion (Candès and Recht,

2009; Candès and Tao, 2010). Let Y = (yij) be the gray levels of a 2D image with missing

values coded as 0. We complete the matrix Y by solving the optimization problem

minimize ‖X‖∗
subject to xij = yij for all observed entries (i, j).

Here ‖M‖∗ =
∑

i σi(M) is the nuclear norm. That is we seek the matrix with minimal nuclear

norm that agrees with the observed entries. Formulate and solve this problems as an SDP and

display your solution.

3. (Best subset regression) We again work on the prostate cancer data in HW4.

(a) Repeat HW4 Q1 parts (a) and (b).

(b) Fit the best subset regression

minimize
1

2
‖y − β01−Xβ‖22

subject to ‖β‖0 ≤ k

for k = 0, 1, . . . , 8 using MIP on the training data and plot the solution path. Also plot

the prediction errors on the test set over k.

4. (Ranking MLB teams) We revisit the sports team ranking problem considered in ST758 (2014

fall) HW8 http://hua-zhou.github.io/teaching/st758-2014fall/ST758-2014-HW8.pdf
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(a) Retrieve the complete American League 2014 season win-loss data at http://espn.go.

com/mlb/standings/grid/_/year/2014.

(b) The ranking method described in ST758 HW8 is the classical Bradley-Terry model. For-

mulate the maximum likelihood estimation (MLE) problem for the Bradley-Terry model

as a geometric program (GP) and find the MLE for the 2014 American League data

using a convex optimization software. Display the team strength parameters γi and the

ranking.

(c) Alternatively we model each team’s ability by a parameter ai ∈ [0, 1], i = 1, . . . , p. Team

i beats team j with probability P(ai − aj > v) where v is a standard normal random

variable. Formulate the MLE problem for this model as a convex optimization problem.

Find the MLE for the 2014 American League data using a convex optimization software.

(Hint: cvx has a built-in function log normcdf.) Compare the ranking to that by the

Bradley-Terry model.
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