ST790-003: Advanced Statistical Computing

Mon/Wed 10:15am-11:30am, SAS Hall 1216

Instructor: Dr Hua Zhou, hua_zhou@ncsu.edu

1 Lecture 1: Jan 7

Today

e Introduction and course logistics

e Linux fundamentals

What is this course about?

Statisticians used to ... Now we spend all time ...

e Statistics, the science of data analysis, is the applied mathematics in the 21st century.

e Data is increasing in volume, velocity, and variety. Classification of data sets by

(1994, [1996).


hua_zhou@ncsu.edu
http://www.forbes.com/sites/oreillymedia/2012/01/19/volume-velocity-variety-what-you-need-to-know-about-big-data/

Data Size Bytes Storage Mode

Tiny 102 Piece of paper

Small 10 A few pieces of paper
Medium  10° (megabyte) A floppy disk

Large 108 Hard disk

Huge 10° (gigabytes) Hard disk(s)

Massive  10'? (terabytes) RAID storage

e Themes of statistics (borrowed from Kenneth Lange’s talk)

— Three pillars: estimation, hypothesis testing, model selection.
— Two philosophies: frequentist, Bayesian.
— Mathematical underpinnings: optimization, penalization, asymptotics, integra-

tion, Monte Carlo sampling.

Statistics is partly empirical and partly mathematical. It is now almost entirely

computational.

e This course covers some topics on computing I found useful for working statisticians
but not covered in ST758 or typical statistics curriculum. Advanced does not mean
more difficult here.

e General topics.

— Operating systems: Linux and scripting basics

— Programming languages: R (package development, Repp, ...), Matlab, Julia
— Tools for collaborative and reproducible research: Git, R Markdown, sweave
— Parallel computing: multi-core, cluster, GPU

— Convex optimization

— Integer and mixed integer programming

— Dynamic programming

— Advanced topics on EM/MM algorithms

— Algorithms for sparse regression

— More advanced optimization methods motivated by modern statistical and ma-

chine learning problems, e.g., ALM, ADMM, svm, online algorithms; ...

e Last version (2013 Spring) of this course may give you a rough idea.
http://www.stat.ncsu.edu/people/zhou/courses/st810/LectureNotes

Of course topics on computing change fast.


http://www.stat.ncsu.edu/people/zhou/courses/st810/LectureNotes

Course logistics

e Check course website frequently for updates and announcements.
http://hua-zhou.github.io/teaching/st790-2015spr/schedule.html
Pre-lecture notes will be posted before each lecture. Cumulative lecture notes will be

updated and posted after each lecture.
e My office hours: Mon @ 4P-5P, Wed @ 4P-5P, or by appointment.
e TA office hours: Tue @ 2P-3P, Fri @ 2P-3P, at 1101 SAS Hall.
e 5 to 8 homework assignments. Group (20) or solo work (14)7

e A course final project. Survey results: 31 (course project) vs 2 (final exam). Group or

solo?

e Final grade: roughly 70% HW + 30% final project.

Linux: brief introduction

e Which operating system (OS) are you using? Survey results:

Which operating system(s) do you use for
your daily work?

Answered: 33 Skipped: 0

Windews

Linux

Other (please
specify)

0% 10% 20% 30% 40% 50% 60% 70% B0% 80% 100%

Answer Choices Responses
Windows 66.67% 22
Mac OS5 36.36% 12
Linux 24.24% 8
Other (please specify) Responses 0.00% 0

Total Respondents: 33


http://hua-zhou.github.io/teaching/st790-2015spr/schedule.html

e Linux is the most common platform for scientific computing.

— E.g., both department HPC (Beowulf cluster) and campus HPC run on CentOS

Linux. It’s a lot of computing power sitting there.
— Open source and community support.
— Things break, when they break using linux its easy to fix them!

— Scalability: portable devices (Android, iOS), laptops, servers, and supercomput-

ers.
— Cost: it’s free!
e Distributions of Linux. http://upload.wikimedia.org/wikipedia/commons/1/1b/
Linux_Distribution_Timeline.svg
— CentOS is well supported in the department and on campus.
— Ubuntu is another popular choice for personal computers.

— cat /etc/issue displays the distribution on Linux command line

800 4 hzhou3 — hzhou3@teaching:~ — ssh — 81x6 .“
[hzhou3@teaching ~]$ cat /etc/issue =
Cent0S release 6.6 (Final)

Kernel \r on an \m

[hzhou3@teaching ~1%

— I'= Mac OS was originally derived from Unix/Linux (Darwin kernel). It is POSIX
compliant. Most shell commands we review here apply to Mac OS terminal as
well. Windows/DOS, unfortunately, is a totally different breed.

e Linux directory structure.

root

bin ete homes usr fmp

fred Sue

filel file?. filel subdirectoryl
new user I_[_‘
V—k—\ filel fle2
Ezercisel Hle2

First.mi



http://upload.wikimedia.org/wikipedia/commons/1/1b/Linux_Distribution_Timeline.svg
http://upload.wikimedia.org/wikipedia/commons/1/1b/Linux_Distribution_Timeline.svg
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By default, upon log-in user is at his/her home directory
® 00 /% hzhou3 — hzhou3@teaching:~ — ssh — 81x7 el
]

hzhou3@Hua-Zhous-MacBook-Pro:~ $ ssh teaching.stat.ncsu.edu
hzhou3@teaching.stat.ncsu.edu's password:

Last login: Tue Jan

[hzhou3@teaching ~]1$% pwd
/home/hzhou3

6 21:31:02 2015 from 10.139.98.169

[hzhou3@teaching ~1%

e Linux shells.

— A shell translates commands to OS instructions.
— Most commonly used shells: bash, csh, tcsh, ...

— & Sometimes a script or a command does not run simply because it’s written

for another shell.
— Determine the current shell you are working on: echo $0 or echo $SHELL.

— List available shells: cat /etc/shells.



— Change your login shell permanently: chsh -s /bin/bash

and log in.

800

userid. Then log out

% hzhou3 — hzhou3@teaching:~ — ssh — 95x15 e

/bin/tcsh

/bin/sh
/bin/bash
/sbin/nologin
/bin/dash
/bin/tcsh
/bin/csh

Changing shell for hzhou3.
Password:

Shell changed.
[hzhou3@teaching ~13$ I

e Move around the file system.

— Knowing where you are.

[hzhou3@teaching ~]$ echo $SHELL 1=

[hzhou3@teaching ~]$ cat /etc/shells

[hzhou3@teaching ~]$ chsh -s /bin/bash

pwd prints the current working directory.

— 1s lists contents of a directory.

1s -1 lists detailed contents of a directory.

1s -a lists all contents of a directory, including those start with “.” (hidden
folders).
I’= Options for many Linux commands can be combined. E.g., 1s -al.
8 00 £ hzhou3 — hzhou3@teaching:~ — ssh — 101x22 e
[hzhou3@teaching ~]$ 1s ﬁ
workspace/
[hzhou3@teaching ~]$ 1s -1
total 4
drwxr-xr-x 4 hzhou3 4096 Jan 6 16:39 workspace/
[hzhou3@teaching ~]$ 1s -al
total 56
drwx——-———- 6 hzhou3 4@96 Jan 6 21:44 ./
drwxr-xr-x 17 root 4096 Jan 6 14:05 ../
—rW——————= 1 hzhou3 185 Jan 6 21:50 .bash_history
-rw-r-—r-— 1 hzhou3 18 Jan 6 14:085 .bash_logout
—-rw-r-—r-— 1 hzhou3 176 Jan 6 14:05 .bash_profile
—-rw-r——r—— 1 hzhou3 308 Jan 6 14:05 .bashrc
-rw-r--r=- 1 hzhou3 319 Jan 6 14:05 .cshrc
-rw-r-—r-— 1 hzhou3 500 Jan 6 14:05 .emacs
drwxr-xr-x 2 hzhou3 4096 Jan 6 14:05 .gnome2/
—rW——————= 1 hzhou3 1698 Jan 6 21:46 .history
drwxr-xr-x 4 hzhou3 4096 Jan 6 14:05 .mozilla/
-ry———— 1 hzhou3 4 Jan 6 16:03 .Rhistory
drwx—————- 2 hzhou3 4@96 Jan 6 16:25 .ssh/
drwxr-xr-x 4 hzhou3 4096 Jan 6 16:39 workspace/
[hzhou3@teaching ~]$ [




— File permissions.

4 nits nits 4096 2011-12-26 01:55 Desktop 0 B B ) no permISSIons
? 1 - - x onlyexecute

r-read 2 - w - onlywrite
d FWXT=-XI-X w - write 3 - w x write and execute
T ] { | X - execute] 4 r - - onlyread
ee User Group Others 5 r - x readand execute

6 r w - readandwrite
Pie permissions in Linax 7 r w x read, write and execute

chmod g+x file makes a file executable to group members.
chmod 751 file sets permission rwxr-x—x to a file.

groups userid shows which group(s) a user belongs to.

— = .. denotes the parent of current working directory.
I’= . denotes the current working directory.
I’= ~ denotes user’s home directory.
cd .. changes to parent directory.
cd or cd ~ changes to home directory.
cd / changes to root directory.
pushd changes the working directory but pushes the current directory into a stack.

popd changes the working directory to the last directory added to the stack.
e Manipulate files and directories.

— cp copies file to a new location.

— mv moves file to a new location.

— touch creates a file, if file already exists it is left unchanged.
— rm deletes a file.

— mkdir creates a new directory.

— rmdir deletes an empty directory.

— rm -rf deletes a directory and all contents in that directory (be cautious using
the -f option ...)

— locate locates a file by name. E.g., to find files with names containing “libcublas.so”



800

4} hzhou3 — hzhou3@teaching:~ — ssh — 101x16

[hzhou3@teaching ~]$ locate libcublas.so
/usr/local/MATLAB/R2@13a/bin/glnxa64/1libcublas.so0.5.0
/usr/local/MATLAB/R2013a/bin/glnxa64/1libcublas.s0.5.0.40

/usr/local/cuda-5.
/usr/local/cuda-5.
/usr/local/cuda-5.

/usr/local/cuda-6

/usr/local/cuda-6.
/usr/local/cuda-6.
/usr/local/cuda-6.
/usr/local/cuda-6.
/usr/local/cuda-6.
/usr/local/cuda-6.
/usr/local/cuda-6.

5/targets/x86_64-1inux/1lib/libcublas.
5/targets/x86_64-1inux/1lib/libcublas.
5/targets/x86_64-1inux/1lib/libcublas.
.0/doc/man/man7/libcublas.so.7

@/targets/x86_64-1inux/lib/libcublas.
@/targets/x86_64-1inux/1lib/libcublas.
@/targets/x86_64-1inux/1lib/libcublas.

5/doc/man/man7/libcublas.so.7

5/targets/x86_64-1inux/1lib/libcublas.
5/targets/x86_64-1inux/1lib/libcublas.

so

S0.2.
S0.2.

S0

50.0.
50.0.

so
S0
so

v
(S NS,

(=)}
[~

.6.5
.6.5.14

S/target5/x86:64—1inux/lib/libcublas.
/usr/local/cuda-6.5/targets/x86_64-1inux/1ib/stubs/libcublas.so
[hzhou3@teaching ~1% [

— find is similar to locate but has more functionalities, e.g., select files by age,

size, permissions, .... , and is ubiquitous.

e View/peek text files.

cat prints the contents of a file.
head -1 prints the first [ lines of a file
tail -1 prints the last [ lines of a file

more browses a text file screen by screen (only downwards). Scroll down one page

(paging) by pressing the spacebar; exit by pressing the q key.

less is also a pager, but has more functionalities, e.g., scroll upwards and down-
wards through the input.

I’= “less is more, and more is less”.
grep prints lines that match an expression.

— Wildcard characters:

Wildcard Matches

7 or. Any single character
* Any string of characters
+ One or more of preceding pattern
) beginning of the line

[set] Any character in set

[!set] Any character not in the set

[a-7] Any lowercase letter

[0-9] Any number (same as [0123456789))




® 00 4% hzhou3 — hzhou3@teaching:~/workspace /vctest/datasets/GAW18 — ssh — 101%29 -]
[hzhou3@teaching GAW18]$ 1s 8|
chr21-geno.bed chr3-geno-MAP4-849. log chr3-geno-MAP4-849. txt
chr21-geno.bim chr3-geno-MAP4-849-maf5.txt kinship_all.csv
chr21l-geno. fam chr3-geno-MAP4-849.out kinship.csv
chr3-geno-MAP4-849.bed chr3-geno-MAP4-849-recodel2-maf5.map ped.adj.csv
chr3-geno-MAP4-849.bim chr3-geno-MAP4-849-recodel2-maf5.ped PED_all.csv
chr3-geno-MAP4-849.fam chr3-geno-MAP4-849-recodel2.map prepare.R
chr3-geno-MAP4-849.frq chr3-geno-MAP4-849-recodel2. ped

[hzhou3@teaching GAW18]$ head chr2l-geno.bim

21 21-9411318 %] 9411318 T C

21 21-9411347 4] 9411347 C G

21 21-9411732 [} 9411732 G T

21 21-9411785 %] 9411785 T G

21 21-9411799 %] 9411799 C T

21 21-9411998 [} 9411998 C T

21 21-9412099 %] 9412099 T C

21 21-9412105 %] 9412105 T A

21 21-9412126 [} 9412126 C T

21 21-9412193 %] 9412193 T C

[hzhou3@teaching GAW18]$ grep 9412105 chr2l-geno.bim

21 21-9412105 [/} 9412105 T A

[hzhou3@teaching GAW18]$ grep 21-9412[3-71[0-9] [@-9] chr2l-geno.bim

21 21-9412354 %] 9412354 T C

21 21-9412370 [} 9412378 C A

21 21-9412608 %] 9412608 G A

21 21-9412629 %] 9412629 T C

21 21-9412658 [} 9412658 T C

21 21-9412691 %] 9412691 C A

[hzhou3@teaching GAW181s I

— Above wildcards are examples of regular expressions. Regular expressions are
a powerful tool to efficiently sift through large amounts of text: record linking,
data cleaning, scraping data from website or other data-feed. Google ‘regular

expressions’ to learn.

— Piping and redirection.
| sends output from one command as input of another command.
> directs output from one command to a file.
>> appends output from one command to a file.

< reads input from a file.



800

% hzhou3 — hzhou3@teaching:~/workspace jvctest/datasets/GAW18 — ssh — 101x18

m|

[hzhou3@teaching GAW181s I

[hzhou3@teaching GAW18]$ wc -1 chr2l-geno.bim
239352 chr2l-geno.bim
[hzhou3@teaching GAW18]$ wc -1 < chr2l-geno.bim

239352

[hzhou3@teaching GAW18]$ cat chr2l-geno.bim | wc -1
239352

[hzhou3@teaching GAW18]1$% 1s -1 /home | grep "“uuuu.. x'
drwxr-xr-x 5 bsmelton 4896 May 19 2014 bsmelton/
drwxr-xr-x 4 dcoliver 4096 May 16 2014 dcoliver/
drwxr-xr-x 4 laherhol 4096 May 16 2014 laherhol/
drwxr-xr-x 4 mlfurman 4896 May 19 2014 mlfurman/
drwxr-xr-x 5 njmeyer 4096 May 19 2014 njmeyer/
drwxr-xr-x 7 njms 4096 Aug 28 16:26 njms/
drwxr-xr-x 4 npkapur 4896 May 19 2014 npkapur/
drwxr-xr-x 4 rmlaw 4096 May 15 2014 rmlaw/
drwxr-xr-x 5 tawilso3 4096 Dec 27 2013 tawilso3/
drwxr-xr-x 4 wzheng4 4896 May 16 2014 wzheng4/

— Other useful text editing utilities include

sed, stream editor

awk, filter and report writer

and so on.

— Combinations of shell commands (grep, sed, awk, ...), piping and redirection, and

regular expressions allow us pre-process and reformat huge text files efficiently.

10



2 Lecture 2, Jan 12

Announcements

e TA office hours changed to Tue @ 1P-2P and Fri @ 2P-3P.

e HWI1 posted. Due Mon Jan 19.

Last Time

e Course introduction and logistics.
e Linux introduction: why linux, move around file system, viewing/peeking text files,

and simple manipulation of text file.

Today

e Linux introduction (continued).
e Key authentication.

e Version control using Git.

Linux introduction (continued)

o Text editors. “Editor war” http://en.wikipedia.org/wiki/Editor_war.

Richard Stallman appearing as St 6]
IGNU—cius, a saint in the Church of
Emacs

11


http://en.wikipedia.org/wiki/Editor_war

— Emacs is a powerful text editor with extensive support for many languages in-
cluding R, IWTEX, python, and C/C++; however it’s not installed by default on
many Linux distributions. Basic survival commands:

x emacs filename to open a file with emacs.

CTRL-x

CTRL-x

* CTRL-x

* CTRL-x

*

CTRL-f to open an existing or new file.

CTRX-s to save.

*

CTRL-w to save as.

CTRL-c to quit.

Google “emacs cheatsheet” to find something like

GNU Emacs Reference Card

(for version 24)

Motion Multiple Windows

When two commands are shown, the second is a similar com-
mand for a frame instead of a window.

entity to move over backward forward

character c-b c-f
Sta!‘ting Emacs word M-b M-f delete all other windows C-x 1 C-x 51
line c-p C-n split window, above and below c-x 2 C-x 52
To enter GNU Emacs 24, just type its name: emacs g0 to line beginning (or end) C-a C-e delete this window C-x 0 C-x 50
sentence M-a M-e split window, side by side Ccx 3
L - - scroll other window C-M-v
eaving Emacs paragraph KL i 1l other wind
page Cx [ ox1] switch cursor to another window cx o cx 50
suspend Emacs (or iconify it under X) c-z o g::jb ‘é::jf select buffer in other window C-x4b Cx5b
exit Emacs permanently C-x C-c ) P display buffer in other window -X -0 -X -0
p y “““‘l;“ﬂb a 2 © lisplay buff her wind C-x 4 C-0 C-x 5 C:
go to buffer beginning (or end) M-< M-> find file in other window Cx4f Cx5¢
Files scroll to next screen c-v find file read-only in other window ~ C-x4r Cx5r
scroll to previous screen M-v run Dired in other window C-x 4d C-x 5d
read a file into Emacs ok ot scroll left Cx < find tag in other window C-x4. Cx5
save a file back to disk C-x C-s seroll right Crx > grow window taller Cx -
save all ﬁisi' - " Gz s scroll current line to center, top, bottom c-1 shrink window narrower c-x {
insert contents of another file into this buffer C-x 1 if’“l)( line a Mg g grow window wider Cx ¥
replace this file with the file you really want  C-x C-v ack to indentation M Formatting
write buffer to a specified file Cx C-w s .
toggle read-only status of buffer Cx Cq Killing and Deleting indent current line (mode-dependent) TAB
. . indent region (mode-dependent) C-M-\
Getting Hel entity to kill . backward  forward indent sexp (mode-dependent) C-M-q
etting Help character (delete, not kill) DEL c-d indent region rigidly arg columns C-x TAB
) ) word M-DEL M-d indent for comment M-;
The help system is simple. Type C-h (or F1) and follow the di- line (to end of) M-0 C-! C-k insert newline after point C-o
rections. If you are a first-time user, type C-h t for a tutorial. sentence C-x DEL M-k b
! ° e ok ek move rest of line vertically down C-t-o
remove help window C-x 1 sexp blank lines around point C-x C-o
scroll help window C-M-v kill region C-w join line with previous (with arg, next) M-~
apropos: show commands matching a string  C-h a copy region to kill ring X M-w delete all white space around point M-\
describe the function a key runs C-h k kill through next occurrence of char M-z char put exactly one space at point M-SPC
describe a function C-h £ yank back last thing killed c-y fill paragraph M-q
get mode-specific information C-hm replace last yank with previous kill M-y set fill column to arg Cx f
set prefix each line starts with Cx .
Error Recovery Marking set face M-o
g 0 or C- Case Change
abort partially typed or executing command C-g set :‘“k here ek €-@ or C-SPC g
recover files lost by a system crash  M-x recover-session exchange point and mal G-z Cx uppercase word M-u
undo an unwanted change C-x u, C-_ or C-/ set mark arg words away M-@ lowercase word M-1
restore a buffer to its original contents M-x revert-buffer mark paragraph M-h capitalize word M-c
redraw garbaged screen c-1 mark page C-x C-p uppercase region C-x C-u
mark sexp c-M-@ lowercase region C-x C-1
mark function C-M-h ..
Incremental Search ek entve buffer o The Minibuffer
search forward C-s Reol The following keys are defined in the minibuffer.
search backward c-r complete as much as possible
h backward Query Replace I b il TaB
regular expression search C-M-s interactively replace a text string M-, cnmp}nm upd[n one word SPC
reverse regular expression search C-M-r using regular expressions M-x query-replace-regexp c}omp ete Tl execu;ef 17112‘1'
" evious search string - ) ; show possible completions ?
“}“t Dt ot ’“‘“Chl“mﬁ P Valid responses in query-replace mode are fetch previous minibuffer input M-p
select next later search strin M-n
exit incremental search “ RET replace this one, go on to next SPC or y fetch later minibuffer input or default M-n
undo effect, of last character DEL replace this one, don’t move s regexp search backward through history M-r
abort, current search cg skip to next without replacing DEL or n regexp search forward through history M-s
- o o replace all remaining matches ! abort command cg
Use C-=s or C-r again to repeat the search in cither direction. If back up to the previous match - Type C-x ESC ESC to edit and repeat the last command that
Emacs is still searching, C-g cancels only the part not matched. exit query-replace RET wsed the minibuffer. Type F10 to activate menu bar items on
® 2012 Free Software Foundation, Inc. Permissions on back. enter recursive edit (C-M-c to exit) C-r text terminals.

C-<key> means hold the control key, and press <key>
M-<key> means press the Esc key once, and press <key>

— vi is ubiquitous (POSIX standard). Learn at least its basics; otherwise you can

edit nothing on some clusters. Basic survival commands:

x vi filename to start editing a file.

12



x vi is a modal editor: insert mode and normal mode. Pressing i switches

from the normal mode to insert mode. Pressing ESC switches from the insert

mode to normal mode.

* :x<Return> quit vi and save changes.

*

*

:wq<Return> quit vi and save changes.

x :w<Return> saves changes.

Google “vi cheatsheet” to find something like

Quitting

:q!<Return> quit vi without saving latest changes.

Vi Command Cheat Sheet

Motion

Buffers

Exit, saving changes

Exit as long as there have been no changes
Exit and save changes if any have been made
Exit and ignore any changes

ERNERY

Inserting Text

Insert before cursor

Insert before line

Append after cursor

Append after line

Open & new line after current line
Open a new line before current line
Repiace one character

Replace many characters

T oo »L T

Deleting Text

Almost all deletion commands are performed by
typing d followed by a motion.

dw | Delete word

Delete character to the right of cursor
Delete character to the left of cursor
Delete to the end of the line

O x x

a

ay 2 SO e @O —=
155303 55

Move left

Move down

Move up

Move right

Move fo next word

Move to next blank delimited word
Move to the beginning of the word
Move to the beginning of btank delimited word
Move to the end of the word

Move to the end of blank delimited word
Move a sentence back

Move a sentence forward

Move a paragraph back

Move a paragraph forward

Move (o the beginning of the line
Move to the end of the line

Move to the first line of the file
Move to the last line of the file
Move to nth line of the file

Move to nth line of the file

Move forward to ¢

Move back to ¢

dd |Delete current line H Move to top of screen
Delete current line M Move to middle of screen
L Move to button of screen
Yanking Text Cirl+u |Page up
Almost alf yank commands are performed by typing  Ctri+d |Page down
followed by a motion. % Move to associated ( }, {}. []
¥$ |Yank to the end of the line
yy |Yank the current line Search for strings
:y |Yank the current line /string |Search forward for string
?string |Search back for string
Changing text n Search for next instance of string
The change command is a deletion command that N Search for previous instance of string
leaves the editor in insert mode. It is performed by
typing ¢ followed by a motion. Other B
ow {Change word - Toggle capital and lower-case
C [Change to the end of the iine J [Join lines
cc JChange the whole line . Repeat last text-changing command
u Undo last change
Putting text U Undo all changes to line

p {Put after the position or after the line
P |Put before the position or before the line

Based on hitp:/www.lagmonster.org/docs/vi.ktmi

Named buffers may be specified before any deletion, change, yank or put
command. The general prefix has the form “c where ¢ is any lowercase
character. for example, "adw deletes a word into buffer a. It may

thereafter be put back into text with an appropriate "ap.

Markers
Named markers may be set on any line in a file. Any lower case letter

mc Set marker ¢ on this line

¢ Go to beginning of marker ¢ line.

'c Go to first non-blank character of marker ¢ line,
Replace

The search and replace function is accomplished with the s command. It
is commonly used in combination with ranges or the :g command (below).
:sipattern/string/flags [Replace pattern with string according to flags.

g Flag - Replace all accurrences of pattern
c Flag - Confirm replaces.
& Repeat last :s command

Counts

Nearly every command may be preceded by a number that specifies how
many times it is to be performed. For example, 5dw wilf delete 5 words
and 3fe will move the cursor forward to the 3rd occurrence of the lefter e.

Ranges
Ranges may precede most "colon” commands and cause them fo be

executed on a line o lines. For example :3,7d would delete lines 3-7.

nm Range - Lines n-m

. Range - Current line

$ Range - Last line

B Range - Marker ¢

% Range - All lines in file

:g/pattern/ Range - All lines that contain pattern
Files

wfile Write fo file

irfile Read file in after line

n Go to next file

K Go to previous file

we file Edit file

!program Replace line with output from program

— Statisticians write a lot of code. Critical to adopt a good IDE (integrated develop-

ment environment) that goes beyond code editing: syntax highlighting, executing

code within editor, debugging, profiling, version control, ...
R Studio, Matlab, Visual Studio, Eclipse, Emacs, ...

e Bash completion. Bash provides the following standard completion for the Linux users

by default. Much less typing errors and time!
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1. Pathname completion
2. Filename completion

3. Variablename completion
E.g., echo $[TAB] [TAB]

4. Username completion
E.g., cd ~[TAB] [TAB]

5. Hostname completion
E.g., ssh hzhou3@[TAB] [TAB]

It can also be customized to auto-complete other stuff such as options and command’s

arguments. Google “bash completion” for more information.
e OS runs processes on behalf of user.

— Each process has Process ID (PID), Username (UID), Parent process ID (PPID),
Time and data process started (STIME), time running (TIME), ...

— ps command provides info on processes.
ps -eaf lists all currently running processes
ps —fp 1001 lists process with PID=1001
ps —eaf | grep python lists all python processes

ps —fu userid lists all processes owned by a user.

— kill kills a process. E.g., ki1l 1001 kills process with PID=1001.
killall kills a bunch of processes. E.g., killall -r R kills all R processes.

— top prints realtime process info (very useful).
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4 hzhou3 — hzhou3@teaching:~ — ssh — 101x29

(]

8 006

[hzhou3@teaching ~]$ ps -fu hzhou3
uID PID PPID C STIME TTY
hzhou3 29478 29469 @ 21:45 ?
hzhou3 29479 29478 @ 21:45 pts/1
hzhou3 29679 29479 @ 21:5@ pts/1
hzhou3 30239 29679 1 23:29 pts/1
[hzhou3@teaching ~]$ top

Mem:

PID
1

2
3
4
5
6
7
8

Cpu(s):

USER
root
root
root
root
root
root
root
root
root
root
root
root
root
root

top — 23:30:01 up 148 days, 12:48,
Tasks: 240 total,
0.0%us, 0.

0%sy,

Swap: 67108856k total,

TIME CMD

00:00:00 sshd: hzhou3@pts/1l
00:00:00 /bin/bash -1
00:00:00 /bin/bash -1
00:00:00 ps —fu hzhou3

1 user,
1 running, 239 sleeping,

0.0%n1i,100.0%id,
65895092k total, 11971800k used, 53923292k free,
0k used, 67108856k free,

load average: 0.00, 0.02, 0.00

@ stopped,
0.0%wa,

PR NI VIRT RES SHR S %CPU %MEM

@ 2143
]

SRS I B RS S RS RS R RS

6 1580 1264 S
2] ] es
] ] e s
] ] e s
2] ] es
] ] e s
] ] e s
2] 2] as
] ] e s
] ] e s
2] 2] as
] ] e s
] ] e s
2] 2] as

[ = B R R = I~ I
DO

[ R B B R R R I R I R~
000000000

D000 O L

@ zombie

0.0%hi, ©.0%si,
634864k buffers
9890968k cached

TIME+ COMMAND
103.38 init

100.00 kthreadd
:00.18 migration/@
112,16 ksoftirqd/@
:00.00 migration/@
:12.40 watchdog/@
100.16 migration/1
:00.00 migration/1
:18.88 ksoftirqd/1
111.99 watchdog/1
:07.86 migration/2
:00.00 migration/2
112,93 ksoftirqd/2
:11.97 watchdog/2

(Seamless) remote access to Linux machines

e SSH (secure shell) is the dominant cryptographic network protocol for secure network

connection via an insecure network.

— On Linux or Mac, access the teaching server by

ssh unityid@teaching.stat.ncsu.edu

— Windows machines need the PuTTY program (free).

e Forget about passwords. Use keys! Why?

— Much more secure. Most passwords are weak.

— Script or a program may need to systematically SSH into other machines.

— Log into multiple machines using the same key.

— Seamless use of many other services: Git, svn, Amazon EC2 cloud service, parallel

computing on multiple hosts in Julia, ...

— Many servers only allow key authentication and do not accept password authen-

tication. E.g., NCSU arc cluster.

e Key authentication.

0.0%st

]




Step 1: Give your public key Step 2. Sender uses your public key

to the sender to encrypt the plaintext
Yw pebic key /
You pubkc key *
Sender’s messoge
encrypted (cipher text)
Step 3: Sender gives Step 4: Use your private key {and passphrase)
the ciphertext to you to decrypt the ciphertext

8/\\@? %\

Your pravate key

— Public key. Put on the machine(s) you want to log in.

— Private key. Put on your own computer. Consider this as the actual key in your

pocket; never give to others.

— Messages from server to your computer is encrypted with your public key. It can

only be decrypted using your private key.

— Messages from your computer to server is signed with your private key (digital
signatures) and can be verified by anyone who has your public key (authentica-

tion).
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e Generate keys.

1. On Linux or Mac, ssh-keygen generates key pairs. E.g., on the teaching server

8 006 4 hzhou3 — hzhou3@teaching:~/.ssh — ssh — 83x32 "
[hzhou3@teaching ~]$ pwd L]
/home/hzhou3

[hzhou3@teaching ~]$ mkdir .ssh

[hzhou3@teaching ~]$ cd .ssh

[hzhou3@teaching ~/.ssh]$ ssh-keygen -t dsa -f hzhou_key
Generating public/private dsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in hzhou_key.

Your public key has been saved in hzhou_key.pub.

The key fingerprint is:
20:d3:a2:ae:08:82:ea:3e:08:2a:b3:82:f8:d4:f4:81 hzhou3@teaching.stat.ncsu.edu
The key's randomart image is:

+——[ DSA 1024]-—--——+

|
|
|
.E.S |
|
|
|
|

[hzhou3@teaching ~/.ssh]l$ ls -al
total 16

drwxr-xr-x 2 hzhou3 4896 Jan
drwxr-xr-x 5 hzhou3 4896 Jan
—rW—————— 1 hzhou3 668 Jan
-rw-r——r-— 1 hzhou3 619 Jan
[hzhou3@teaching ~/.sshl$ I

152 ../
:52 hzhou_key
:52 hzhou_key.pub

Use a (optional) paraphrase different form password.

2. Set right permissions on the .ssh folder and key files

8 006 4 hzhou3 — hzhou3@teaching:~/.ssh — ssh — 83x10 o
[hzhou3@teaching ~/.sshl$ chmod 78@ ~/.ssh L]
[hzhou3@teaching ~/.sshl$ chmod 68@ hzhou_keyx

[hzhou3@teaching ~/.sshl$ 1s -al

total 16

drwx————— 2 hzhou3 4096 Jan 6 14:52 ./

drwxr-xr-x 5 hzhou3 4096 Jan 6 14:52 ../
—-rW—————— 1 hzhou3 668 Jan 6 14:52 hzhou_key
—-rW=—————e 1 hzhou3 619 Jan 6 14:52 hzhou_key.pub

[hzhou3@teaching ~/.sshl$
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3. Append the public key to the /.ssh/authorized keys file of any Linux machine
we want to SSH to, e.g., the Beowulf cluster (hpc.stat.ncsu.edu).

® 00 73 hzhou3 — hzhou3@stat02bw:~/.ssh — ssh — 83x24 w
[hzhou3@teaching ~/.ssh]$ scp hzhou_key.pub hzhou3ghpc.stat.ncsu.edu:~/.ssh/ n
The authenticity of host 'hpc.stat.ncsu.edu (152.1.228.92)' can't be established.
RSA key fingerprint is 61:f1:d1:87:a9:14:4f:cb:9c:3c:a2:6f:a7:3e:8c:78.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'hpc.stat.ncsu.edu,152.1.228.92' (RSA) to the list of kn
own hosts.

hzhou3@hpc.stat.ncsu.edu's password:

hzhou_key.pub 100% 619 0.6KB/s 00:00
[hzhou3@teaching ~/.ssh]$ ssh hpc.stat.ncsu.edu

hzhou3@hpc.stat.ncsu.edu's password:

Last login: Tue Jan 6 10:30:37 2015 from 10.139.98.169

[hzhou3@hpc ~]$ cd .ssh/

[hzhou3@hpc .sshls 1s -al

total 196

drwx————— 2 hzhou3 ncsu 64 Jan 6 15:08

drwx————— 2 hzhou3 4294967294 65536 Dec 9 14:00 ..

—rw-r——r—— 1 hzhou3 ncsu 414 Dec 9 14:00 authorized_keys
—-rW—————— 1 hzhou3 ncsu 619 Jan 6 15:@8 hzhou_key.pub
—-rW=—————e 1 hzhou3 ncsu 668 Jul 23 10:45 id_dsa
—rW=——————e 1 hzhou3 ncsu 1675 Dec 9 14:00 id_rsa
-rw-r--r-— 1 hzhou3 ncsu 414 Dec 9 14:00 id_rsa.pub
-rw-r--r-— 1 hzhou3 ncsu 2042 Jan 6 10:47 known_hosts

[hzhou3@hpc .ssh]$ cat hzhou_key.pub >> authorized_keys
[hzhou3ghpc .sshls I
"

4. Now you don’t need password each time you connect from the teaching server to

the Beowulf cluster.

5. If you set paraphrase when generating keys, you’ll be prompted for the paraphrase
each time the private key is used. Avoid repeatedly entering the paraphrase by
using ssh-agent on Linux/Mac or Pagent on Windows.

I’= Same key pair can be used between any two machines. We don’t need to
regenerate keys for each new connection.

I’s For Windows users, the private key generated by ssh-keygen cannot be
directly used by PuTTY; use PuTTYgen for conversion. Then let PuTTYgen
use the converted private key. Read Sections A and B of the tutorial http://
tipsandtricks.nogoodatcoding.com/2010/02/svnssh-with-tortoisesvn.html

e Transfer files between machines.

— scp copies files via SSH.
scp filehere unityid@teaching.stat.ncsu.edu:”/remotefolder

scp unityid@teaching.stat.ncsu.edu:”/remotefile folderhere

— sftp is FTP via SSH.
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— GUIs for Windows (WinSCP) or Mac (Cyberduck).

— (My preferred way) Use a version control system to sync project files between

different machines and systems.

e [= Line breaks in text files. Windows uses a pair of CR and LF for line breaks.
Linux/Unix uses an LF character only. Mac X also uses a single LF character. But old
Mac OS used a single CR character for line breaks. If transferred in binary mode (bit by
bit) between OSs, a text file could look a mess. Most transfer programs automatically
switch to text mode when transferring text files and perform conversion of line breaks
between different OSs; but I used to run into problems using WinSCP. Sometimes you

have to tell WinSCP explicitly a text file is being transferred.

Summary of Linux

e Practice Linux machine for this class:
teaching.stat.ncsu.edu

Start using it right now.

e Ask for help (order matters): Google (paste the error message to Google often helps),

man command if no internet access, friends, Terry, ...

e Homework (ungraded): set up keys for connecting your own computer to the teaching

server.

Version control by Git

’ If it’s not in source control, it doesn’t exist.

NOT SO LONG AGO. }
IN A GALAXY CLOSE BY- l

NOT THIS STUPID
;Sé)ﬂ BATTLE’ THING

HEY GEORGE N
\
. ; .
WHAT'S pP? T éozgrs 3&”;’? VERSION CON-WHAT?
OH WELL.
1 ACCIDENTILY
DELETED ANOTHER YOU HAD IT ALL
e B ONDER VERSION
MANDSCRIPT - CONTROL RIGHT? USH.
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teaching.stat.ncsu.edu

e (Collaborative research. Statisticians, as opposed to “closet mathematicians”, rarely do

things in vacuum.

We talk to scientists/clients about their data and questions.

— We write code (a lot!) together with team members or coauthors.

We run code/program on different platforms.

— We write manuscripts/reports with co-authors.

e 4 things distinguish professional programmers from amateurs:

— Use a version control system.

— Automate repetitive taks.

Systematic testing.

Use debugging aids rather than print statements.

e Why version control?

A centralized repository helps coordinate multi-person projects.

— Synchronize files across multiple computers and platforms.

Time machine. Keep track of all the changes and revert back easily (reproducible).

Storage efficiency. This is what I often see ...

| © 0O/ & sections research - Dropbe. x

€ CH ps:/ /www.dropbox.com/home/gpugenetics sections_research =
STAT 758 STAT 810-007 iGoogle Yahoo! DNA2013@NCSU EE364a: Lecture Vic EE364b: Lecture Vic Lost in the Moment... interfacelIFT 1203.3209) Tensor [1204.3331) Regul.
4+ Dropbox Qf: gpugenech sectlons_research 4 B8 @ «
(@ sharing v
Name 4 Kind
& Links Research_Strategy_v34.tex TIe Tex
$) Events :
g Research_Strategy_v37.tex file tex
Get Started —
Research_Strategy_v39.tex file tex
10) Photos
%’3_ Research_Strategy_v40.pdf document pdf
Research_Strategy_v40.tex file tex
J
Help Privacy More 4

e Available version control tools.
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— Open source: cvs, subversion (aka svn), Git, ...
— Proprietary: Visual SourceSafe (VSS), ...

— Dropbox? Mostly for file back and sharing, limited version control (1 month?), ...
We use Git in this course.
e Why Git?

— The Eclipse Community Survey| in 2014 shows Git is the most widely used source
code management tool now. Git (33.3%) vs svn (30.7%).

— History: Initially designed and developed by Linus Torvalds in 2005 for Linux

kernel development. “git” is the British English slang for “unpleasant person”.

I'm an egotistical bastard, and I name all my projects after myself. First

'Linux’, now ’git’.

Linus Torvalds

— A fundamental difference between svn (centralized version control system, left

plot) and Git (distributed version control system, right plot):

Server Computer
Computer A Central VCS Server

Version Database

Checkout (vorsons )

Version Database m
Computer A Computer B
Computer B

aaaaaaaaaaaaaa

= 1 @D | 8}

— Advantages of Git.

* Speed and simple (?) design.
* Strong support for non-linear development (1000s of parallel branches).
x Fully distributed. Fast, no internet required, disaster recovery,
x Scalable to large projects like the Linux kernel project.
x Free and open source.
— Be aware that svn is still widely used in IT industry (Apache, GCC, SourceForge,
Google Code, ...) and R development. E.g., type
svn log -v -1 5 https://svn.r-project.org/R

on command line to get a glimpse of what R development core team is doing.
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— Good to master some basic svn commands.
e What do I need to use Git?

— A Git server enabling multi-person collaboration through a centralized repository.
* |github.com: unlimited public repositories, private repositories costs $, aca-
demic user can get 5 private repositories for free.

* github.ncsu.edu: unlimited public or private repositories, but space limita-
tion (300M?), not accessible by non-NCSU collaborators.

* bitbucket.org: unlimited private repositories for academic account (register

for free using your NCSU email).
I’& For this course, use github.ncsu.edu please.
— Git client.

* Linux: installed on many servers, including teaching.stat.ncsu.edu and

hpc.stat.ncsu.edu. If not, install on CentOS by yum install git.
* Mac: install by port install git.
* Windows: GitHub for Windows (GUI), TortoiseGIT (is this good?)

I’ Don’t rely on GUI. Learn to use Git on command line.
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3 Lecture 3, Jan 21

Announcements

e Today’s office hours change to 5P-6P.
e Install Linux on your personal computer?

e Want to use R Studio on teaching server?

eoeoe RStudio

A

| + [ € teaching stat.ncsu.edu:8787

m #

H#H¥  Stat 790-003 Stat 758 Hua Zhou | /E# NCSU Statistics  Statistics, .._phics and Fun  Google Lost in the Moment.. interfacelIFT  Google Maps Yahoo! News ¥

6 File Edit Code  View Plots Session Build Debug Toals. Help

Q- - -

Console -/
R version 3.1.2 (2014-1@-31) -- "Pumpkin Helmet"

Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ‘contributors()’ for more information and
‘citation()’ on how to cite R or R packages in publications.

Type 'demo()’ for some demos, 'help()' for on-line help, or
*help.start()" for an HTML browser interface to help.

Type 'g()' to quit R.

> |

Access via http://teaching.stat.ncsu.edu:8787. However you need to change

password on command line (passwd).

Last Time

e Key authentication.

e Version control using Git.

Today

e Version control using Git (cont’d).
e Reproducible research.

e Next week: languages (R, Matlab, Julia)
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Environment  History =]
&% [ | 22 Import Dataset~ | 3 Clear | (& Listr
% Global Environment =
Environment is empty

Files Plots Packages Help Viewer -
@il New Folder & | Upload @ | Delete (5] Rename | {gk Mere~ @

42 Home

4 Name Size Modified
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http://teaching.stat.ncsu.edu:8787

Version control using Git (cont’d)

e Life cycle of a project.
Stage 1:

— A project (idea) is born on github.ncsu.edu, with directories say codebase,
datasets, manuscripts, talks, ...

— Advantage of github.ncsu.edu: privacy of research ideas (free private reposito-

ries).

— Downside of github.ncsu.edu: not accessible by off-campus collaborators; 300M

storage limit.
— bitbucket.orgis a good alternative. Unlimited private repositories for academic
accounts (register with .edu email).
Stage 2:
— Hopefully, research idea pans out and we want to put up a standalone software
development repository at github.com.

— This usually inherits from the codebase folder and happens when we submit a
paper.

— Challenges: keep all version history. Read Cai Li’s slides (http://hua-zhou.
github.io/teaching/st790-2015spr/gitslides-Caili.pdf)) for how to migrate

part of a project to a new repository while keeping all history.
Stage 3:

— Active maintenance of the public software repository.

— At least three branches: develop, master, gh-pages.
develop: main development area.
master: software release.

gh-pages: software webpage.

— Maintaining and distributing software on github.com.
I’= Josh Day will cover how to distribute R package from github next week.

e Basic workflow of Git.
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working
directory

— Synchronize local Git directory with remote repository (git pull).

— Modify files in local working directory.

— Add snapshots of them to staging area (git add).

— Commit: store snapshots permanently to (local) Git repository (git commit).

— Push commits to remote repository (git push).
e Basic Git usage.

— Register for an account on a Git server, e.g., github.ncsu.edu. Fill out your

profile, upload your public key to the server, ...

— Identify yourself at local machine:
git config --global user.name "Hua Zhou"
git config --global user.email "hua_zhou@ncsu.edu"

Name and email appear in each commit you make.
— Initialize a project:

x Create a repository, e.g., st790-2015spr, on the server github.ncsu.edu.
Then clone to local machine

git clone git@github.ncsu.edu:unityID/st790-2015spr.git

x Alternatively use following commands to initialize a Git directory from a lo-
cal folder and then push to the Git server
git init
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git remote add origin git@github.ncsu.edu:unityID/st790-20156spr.git

git push -u origin master

— Edit working directory.
git pull update local Git repository with remote repository (fetch + merge).
git status displays the current status of working directory.
git log filename displays commit logs of a file.
git diff shows differences (by default difference from the most recent commit).
git add ... adds file(s) to the staging area.
git commit commits changes in staging area to Git directory.

git push publishes commits in local Git directory to remote repository.
Following demo session is on my local Mac machine.

hzhou3@Hua-Zhous-MacBook-Pro:mglm $ pwd
/Users/hzhou3/github.ncsu/mglm
hzhou3@Hua-Zhous-MacBook-Pro:mglm $ 1s
.DS_Store .gitignore datasets/ manuscripts/
.git/ codebase/ literature/ talks/
hzhou3@Hua-Zhous-MacBook-Pro:mglm $ git pull
remote: Counting objects: 5, done.
remote: Compressing objects: 1@0% (2/2), done.
remote: Total 5 (delta 3), reused 5 (delta 3)
Unpacking objects: 18@% (5/5), done.
From github.ncsu.edu:hzhou3/vctest

80be212..b22d29f master -> origin/master
Updating 8@be212..b22d29f
Fast—forward
manuscripts/letter-skat-famskat/Letter_to_the_editor.tex | 4 ++——
1 file changed, 2 insertions(+), 2 deletions(-)
hzhou3@Hua-Zhous-MacBook-Pro:mglm $ echo "hello st79@ class" > gitdemo.txt
hzhou3@Hua-Zhous-MacBook-Pro:mglm $ 1s
.DS_Store .gitignore datasets/ literature/ talks/
.git/ codebase/ gitdemo.txt manuscripts/
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hzhou3@Hua-Zhous-MacBook-Pro:mglm $ git add gitdemo.txt
hzhou3@Hua-Zhous-MacBook-Pro:mglm $ git status .
On branch master
Your branch is up-to-date with 'origin/master’.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: gitdemo. txt

Untracked files:
(use "git add <file>..." to include in what will be committed)

codebase/Example_RNAseq_top100/
codebase/MGLM/R/.Rhistory
hzhou3@Hua-Zhous-MacBook-Pro:mglm $ git commit -m '"git demo for st79@ class"
[master ea636ff] git demo for st790 class
1 file changed, 1 insertion(+)
create mode 100644 gitdemo.txt
hzhou3@Hua-Zhous-MacBook-Pro:mglm $ git log gitdemo.txt

Author: Hua Zhou <hua_zhou@ncsu.edu>
Date: Sun Jan 11 17:06:23 2015 -0500

git demo for st79@ class
hzhou3@Hua-Zhous-MacBook-Pro:mglm $ git push
Counting objects: 3, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 301 bytes | @ bytes/s, done.
Total 3 (delta 1), reused @ (delta 0)
To git@github.ncsu.edu:hzhou3/mglm.git
77145d2..ea636ff master —> master

git reset --soft HEAD 1 undo the last commit.

git checkout filename go back to the last commit.

git rm different from rm.

I’= Although git rm deletes files from working directory. They are still in Git
history and can be retrieved whenever needed. So always be cautious to put large

data files or binary files into version control.
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hzhou3@Hua-Zhous-MacBook-Pro:mglm $ echo "bye st790 class" >> gitdemo.txt
hzhou3@Hua-Zhous-MacBook-Pro:mglm $ cat gitdemo.txt
hello st790 class

bye st790 class

hzhou3@Hua-Zhous-MacBook-Pro:mglm $ git diff gitdemo.txt
diff --git a/gitdemo.txt b/gitdemo.txt
index ece6d4e..2bb77f8 100644
-—- a/gitdemo.txt
+++ b/gitdemo.txt
@ -1 +1,2 @@

hello st790 class
+bye st790 class

hzhou3@Hua-Zhous-MacBook-Pro:mglm $ git checkout gitdemo.txt
hzhou3@Hua-Zhous-MacBook-Pro:mglm $ cat gitdemo.txt
hello st790 class

hzhou3@Hua-Zhous-MacBook-Pro:mglm $ git rm gitdemo.txt
rm 'gitdemo.txt’

hzhou3@Hua-Zhous-MacBook-Pro:mglm $ git status .
On branch master
Your branch is up-to-date with 'origin/master’'.
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

deleted: gitdemo. txt

Untracked files:
(use "git add <file>..." to include in what will be committed)

codebase/Example_RNAseq_top100/
codebase/MGLM/R/.Rhistory

hzhou3@Hua-Zhous-MacBook-Pro:mglm $ git commit -m "delete the git demo file for st790"
[master 4b4f9c5] delete the git demo file for st790

1 file changed, 1 deletion(-)

delete mode 100644 gitdemo.txt
hzhou3@Hua-Zhous-MacBook-Pro:mglm $ git push

Counting objects: 2, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (2/2), done.
Writing objects: 100% (2/2), 238 bytes | @ bytes/s, done.
Total 2 (delta 1), reused @ (delta 0)

1To git@github.ncsu.edu:hzhou3/mglm.git

eab36ff..4b4f9c5 master —> master

hzhou3@Hua-Zhous-MacBook-Pro:mglm $ 1s

.DS_Store .gitignore datasets/ manuscripts/

.git/ codebase/ literature/ talks/

e Branching in Git.

— Branches in a project:

feature. release
branches develop branches hotfires master
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— For this course, you need to have two branches: develop for your own develop-
ment and master for releases (homework submission). Note master is the default
branch when you initialize the project; create and switch to develop branch im-

mediately after project initialization.

develop master

é! e

wersion

\E i pmmlm l
pluducllnn

git branch branchname creates a branch.

pm;m'.snn
'nnctl&ue'

— Commonly used commands:

git branch shows all project branches.
git checkout branchname switches to a branch.
git tag shows tags (major landmarks).

git tag tagname creates a tag.
— Let’s look at a typical branching and merging workflow.

* Now there is a bug in v0.0.3 ...

8 006 (] gitdemo — bash — 80x11 e

hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git branch
develop

* master

hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git tag

ve.0.1

ve.0.2

ve.0.3

hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ 1s

.git/ bug.txt code.txt

hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $

IS How to organize version number of your software? Read blog “R Package

29



Versioning” by Yihui Xie
http://yihui.name/en/2013/06/r-package-versioning/

8 00 (] gitdemo — bash — 80x31 e
hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git checkout develop L
Switched to branch 'develop'
Your branch is up-to-date with 'origin/develop'.
hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git branch
* develop
master
hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ 1s
.git/ code.txt
hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git pull origin master
From github.ncsu.edu:hzhou3/gitdemo
* branch master —> FETCH_HEAD
Updating 44dd1dl..da@47cf
Fast-forward
bug.txt | 1 +
1 file changed, 1 insertion(+)
create mode 100644 bug.txt
hzhou3@Hua-Zhous—-MacBook-Pro:gitdemo $ 1s

.git/ bug.txt code. txt
hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git rm bug.txt
rm 'bug.txt’

hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git commit -m "debug"
[develop 1685b4c] debug

1 file changed, 1 deletion(-)

delete mode 100644 bug.txt
hzhou3@Hua-Zhous-MacBook-Pro:gitdemo % git push
Counting objects: 1, done.
Writing objects: 10@% (1/1), 18@ bytes | @ bytes/s, done.
Total 1 (delta @), reused @ (delta @)
To git@github.ncsu.edu:hzhou3/gitdemo.git

44dd1dl..1085b4c develop —> develop

hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ I

Now ‘debug’ in develop branch is ahead of master branch.

x Merge bug fix to the master branch.
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. 8.00 i gitdemo — bash — 80x26
hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git checkout master

Switched to branch 'master'

Your branch is up-to-date with 'origin/master’.

hzhou3@Hua-Zhous-MacBook-Pro:gitdemo % git branch

develop

* master

hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git pull origin develop

From github.ncsu.edu:hzhou3/gitdemo

* branch develop —> FETCH_HEAD

Updating da@47cf..1085bdc

Fast-forward

bug.txt | 1 -

1 file changed, 1 deletion(-)

delete mode 100644 bug.txt

hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ 1s

.git/ code. txt

hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git status .

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

(use "git push™ to publish your local commits)

nothing to commit, working directory clean

hzhou3@Hua-Zhous-MacBock-Pro:gitdemo $ git push origin master

Total @ (delta @), reused @ (delta @)

To git@github.ncsu.edu:hzhou3/gitdemo.git
da@47cf..1e85b4c master —> master

hzhou3@Hua-Zhous-MacBook-Pro:gitdemo % I

@)y

* Tag a new release v0.0.4.

_E LA ﬁ gitdemo — bash — 80x26
hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git tag v@.0.4
hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git tag

ve.0.1

ve.0.2

v0.0.3

ve.0.4

hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git show v0.0.4
commit 1@85b4c97ed29fc847442bd0640db2b6fed4doat
Author: Hua Zhou <hua_zhou@ncsu.edu>

Date: Tue Jan 13 11:24:19 2015 -@500

@]

debug

diff —-git a/bug.txt b/bug.txt

deleted file mode 100644

index @ald6ac..@000000

--- a/bug.txt

+++ Sfdev/null

@@ -1 +0,0 @@

-There is a bug
hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ git push origin v@.0.4

Total @ (delta @), reused @ (delta 0)

To git@github.ncsu.edu:hzhou3/gitdemo.git
* [new tag] ve.9.4 —> v0.0.4
hzhou3@Hua-Zhous-MacBook-Pro:gitdemo $ [J
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e Further resources:

— Book Pro Git, http://git-scm.com/book/en/v2
— Google
— Cai Li’s slides http://hua-zhou.github.io/teaching/st790-2015spr/gitslides-Caili.

pdf| (migrate repositories or folders of a repository, how branching and merging

work)
e Some etiquettes of using Git and version control systems in general.

— Be judicious what to put in repository

x Not too less: Make sure collaborators or yourself can reproduce everything

on other machines.

*x Not too much: No need to put all intermediate files in repository.

Strictly version control system is for source files only. E.g. only xxx.tex, xxx.bib,
and figure files are necessary to produce a pdf file. Pdf file doesn’t need to be

version controlled or frequently committed.
— I’ “Commit early, commit often and don’t spare the horses”

— Adding an informative message when you commit is not optional. Spending
one minute now saves hours later for your collaborators and yourself. Read the
following sentence to yourself 3 times:

I’= “Write every commit message like the next person who reads it is an axe-

wielding maniac who knows where you live.”

e Acknowledgement: some material in this lecture are taken from Cai Li’s group meeting

presentation.
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Reproducible research (in computational science)

An article about computational result is advertising, not scholarship. The
actual scholarship is the full software environment, code and data, that pro-
duced the result.

Buckheit and Donoho (1995)
also see Claerbout and Karrenbach (1992)

e 3 stories of not being reproducible.

— Duke Potti Scandal.

[-Ne¥e} How a New Hope in Cancer Fell Apart - NYTimes.com

~
L« 2 (2] [+ |8 mrwnytmes.com 3 reacer [
[0 ¥ Stat790-003 Stat758 HuaZhou | fi# NCSU Statistics Statistics, ...phics and Fun  Google Lost in the Moment... interfacelIFT Google Maps Yahoo! ~News ~
RStudio l The Duke Set | Simply Statistic 1 ioir i 1 How a New Hope in Cancer Fell Apart - NYTimes... [ + r|-|
HOME PAGE | TODAY'S PAPER | VIDEO | MOSTPOPULAR | TIMES TOPICS PETROSRET Login | Register Now | Help
" -9 Search All NYTimes.com
EheNew YJork Eimes Research
[

'WORLD US. NY./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION ARTS STYLE ‘TRAVEL JOBS REAL ESTATE AUTOS
Search Health 3,000+ Topics Inside Health

. Research | Fitness & Nutrition = Money & Policy | Views | Health Guide

VO L VO EXPAND v

mewell zne

Blueberries May Lower Blood Pressure
January 14, 2015, 11:10 AM

How Bright Promise in Cancer Testing Fell Apart

Can Compression Clothing Enhance Your Workout?
January 14, 2015, 8:00 AM

Many Who Take a Daily Aspirin Don’t Need It
January 13, 2015

Varied Routes to Safer Streets
January 12, 2015

Naps May Be Good for a Baby's Learning
January 12,2015
Health & Fitness Tools

BMI Calculator
What's your score? »

Keith Baggerly, left, and Kevin Coombes, statisticians at M. D. Anderson Cancer Center, fou

MOST EMAILED MOST VIEWED
By GINA KOLATA
Published: July 7, 2011 = 1. WOMEN ATWORK
. B e Speaking While Female
When Juliet Jacobs found out she had lung cancer, she was terrified, w TWITTER
but realized that her hope lay in getting the best treatment medicine [ UNKEDIN 2. DAVID BROOKS
could offer. So she got a second opinion, then a third. In February of @ COMMENTS (75) 9 The Child in the Basement
2010, she ended up at Duke University, where she entered a research

S PRINT

study whose promise seemed stunning. 3. MODERN LOVE
REPRINTS To Fall in Love With Anyone, Do This

Potti et al| (2006) Genomic signatures to guide the use of chemotherapeutics,
Nature Medicine, 12(11):1294-1300.

Baggerly and Coombes| (2009) Deriving chemosensitivity from cell lines: Forensic

bioinformatics and reproducible research in high-throughput biology, Ann. Appl.
Stat., 3(4):1309-1334. http://projecteuclid.org/euclid.aocas/1267453942
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More information is available at
http://en.wikipedia.org/wiki/Anil_Potti
http://simplystatistics.org/2012/02/27/the-duke-saga-starter-set/

— Nature Genetics (2013 Impact Factor: 29.648). 20 articles about microarray
profiling published in Nature Genetics between Jan 2005 and Dec 2006.

ANALYSIS

nature

genetics

Repeatability of published microarray gene expression
analyses

John P A Ioannidis'~3, David B Allison?, Catherine A Ball®, Issa Coulibaly*, Xiangqin Cui#, Aedin C Culhane%7’,
Mario Falchi®?, Cesare Furlanello'?, Laurence Game'?, Giuseppe Jurman'?, Jon Mangion“, Tapan Mehta?,
Michael Nitzberg®, Grier P Page®12, Enrico Petretto!!? & Vera van Noort!*

T Given the complexity of microarray-based gene expressil research, the Uniform Guidelines of the International Committee of
% studies, guideli g p design and public Medical Journal Editors state that authors should “identify the methods,
g data availability. Several journals require public data deposition  apparatus and procedures in sufficient detail to allow other workers to
and several public databases exist. However, not all data are reproduce the results™'2, Making primary data publicly available has

ﬂ publicly available, and even when available, it is unknown many challenges but also many benefits'>. Public data availability allows
.2 whether the published results are reproducible by independent  other investigators to confirm the results of the original authors, exactly
= { Here we eval d the replication of data analy replicate these results in other studies and try alternative analyses to
. in 18 articles on microarray-based gene expression profiling see whether results are robust and to learn new things. Journals such

2  published in Nature Genetics in 2005-2006. One table or as Nature Genetics require public data deposition as a prerequisite for
= figure from each article was independently evaluated by two publication for microarray-based research. Yet, the extent to which data
g teams of analysts. We reproduced two analyses in principle areindeed made fully and accurately publicly available and permit con-

Can repraduce in principle

Can reproduce with gome

discrepancies ware not avallable

Can reproduce
from processed data
with some discrepancies

Can reproduce partially with some
discrepancias

Figure 1 Summary of the efforts to replicate the published analyses.

— Bible code.
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THE NEW YORK TIMES BESTSELLER

STATISTICAL THE

SCIENCE BIBLE
CODE

MICHAEL DROSHNLN

EQUIDISTART LETTER SEQUENCES IN THE
WMWK RF GRS S
by B, WHrlem, 6. Rigs and T Eo=cnherg

‘Witztum et al.| (1994) Equidistant letter sequences in the book of genesis. Statist.
Sci., 9(3):429438. http://projecteuclid.org/euclid.ss/1177010393

McKay et al.| (1999) Solving the Bible code puzzle, Statist. Sci., 14(2):150-173.
http://cs.anu.edu.au/~bdm/dilugim/StatSci/

e Why reproducible research?
— Replicability has been a foundation of science. It helps accumulate scientific
knowledge.
— Better work habit boosts quality of research.
— Greater research impact.

— Better teamwork. For you, it probably means better communication with your
advisor (Buckheit and Donoho), |1995)).

e Readings.

— Buckheit and Donohol (1995) Wavelab and reproducible research, in Wavelets and
Statistics, volume 103 of Lecture Notes in Statistics, page 55-81. Springer Newt
York. http://statweb.stanford.edu/~donoho/Reports/1995/wavelab.pdf

Donoho| (2010) An invitation to reproducible computational research, Biostatis-
tics, 11(3):385-388.
— (2009) Reproducible research and biostatistics, Biostatistics, 10(3):405-408.

(2011)) Reproducible research in computational science, Science, 334(6060):1226—
1227.

35


http://projecteuclid.org/euclid.ss/1177010393
http://cs.anu.edu.au/~bdm/dilugim/StatSci/
http://statweb.stanford.edu/~donoho/Reports/1995/wavelab.pdf

Roger Peng’s blogs Treading a New Path for Reproducible Research.

http://simplystatistics.org/2013/08/21/treading-a-new-path-for-reproducible-re:
http://simplystatistics.org/2013/08/28/evidence-based-data-analysis-treading-a-
http://simplystatistics.org/2013/09/05/implementing-evidence-based-data-analys:

— Reproducible research with R and RStudio by Christopher Gandrud. It covers
many useful tools: R, RStudio, KTEX, Markdown, knitr, Github, Linux shell, ...

I’= This book is nicely reproducible. Git clone the source from https://github.
com/christophergandrud/Rep-Res-Book and you should be able to compile into
a pdf.

— Reproducibility in Science at

http://ropensci.github.io/reproducibility-guide/

e How to be reproducible in statistics?

When we publish articles containing figures which were generated by computer,

we also publish the complete software environment which generates the figures.

Buckheit and Donoho (1995)

— For theoretical results, include all detailed proofs.
— For data analysis or simulation study

* Describe your computational results with painstaking details.

* Put your code on your website or in an online supplement (required by many
journals, e.g., Biostatistics, JCGS, ...) that allow replication of entire analysis
or simulation study. A good example:
http://stanford.edu/~boyd/papers/admm_distr_stats.html

* Create a dynamic version of your simulation study/data analysis.

e What can we do now? At least make your homework reproducible!

— Document everything!

— Everything is a text file (.csv, .tex, .bib, .Rmd, .R, ...) They aid future proof and

are subject to version control.

1’5 Word/Excel are not text files.

— All files should be human readable. Abundant comments and adopt a good style.

Tie your files together.
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— Use a dynamic document generation tool (weaving /knitting text, code, and output
together) for documentation. For example
http://hua-zhou.github.io/teaching/st758-2014fall/hwOlsol.html
http://hua-zhou.github.io/teaching/st7568-2014fall/hw02sol.html

http://hua-zhou.github.io/teaching/st758-2014fall/hw07sol.html
http://hua-zhou.github.io/teaching/st758-2014fall/hw08sol.html

— Use a version control system proactively.

— Print sessionInfo() in R.

I’= For your homework, submit (put in the master branch) a final pdf report and all

files and instructions necessary to reproduce all results.

e Tools for dynamic document /report generation.

— R: RMarkdown, knitr, Sweave.
— Matlab: automatic report generator.
— Python: IPython, Pweave.

— Julia: [Julia.

We will briefly talk about these features when discussing specific languages.
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4 Lecture 4, Jan 26

Announcements

e Helpful tutorial about Git branching
http://pcottle.github.io/learnGitBranching/
shared by Bo Ning.

e Want to use R Studio on teaching server?

8eoe RStudio e

(200 (2] [2]© weaching stat nesu-edusers7 ¢ [Lsade J%
88|

Stat 790-003 Stat 758 Hua Zhou | % NCSU Statistics  Statistics, ...phics and Fun  Google  Lost in the Moment... interfacellFT  Google Maps  Yahoo! News ™

6 File Edit Code View Plots Session Build Debug Tools Help hzhous3 | Sign Out

Q- & - . E| project: (None) ~
Console -/ Environment  History =0
& @ | [ Import Dataset~ | 3 Clear | (& List=

R version 3.1.2 (2014-18-31) -- "Pumpkin Helmet”

Global te
Copyright (C) 2814 The R Foundation for Statistical Computing % Global Environment

Platform: x86_64-unknown-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY. Envirenment is empty
You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()’ for distribution details.

R is o collaborative project with many contributors.

a £ i Files Plots Packages Help Viewer =0
Type 'contributors()’ for more information and » — -
"citation()' on how to cite R or R packages in publications. € New Folder & Upload  © | Delete [ Rename | 1k More - @
4 Home

Type 'dema()’ for some demos, "help(}' for on-line help, or e Size Modified
*help.start()’ for an HTML browser interface to help. [ & Rhistory T Jan 14, 2015, 10:34 AM
Type 'q()" to quit R. -

I ] gurobi.log 668 Jan 8, 2015, 1:18 PM
> | O £ mosek

O ae

1 & workspace

Access via http://teaching.stat.ncsu.edu:8787. However you need to change

password on command line (passwd).

Last Time

e Version control using Git (cont’d).

e Reproducible research.

Today

e This week: languages (R, Matlab, Julia)
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Computer Languages

THHEEE, »EFE

To do a good job, an artisan needs the best tools.

The Analects by Confucius (about 500 BC)

e What features are we looking for in a language?

— Efficiency (in both run time and memory) for handling big data.
— IDE support (debugging, profiling).

— Open source.

— Legacy code.

— Tools for generating dynamic report.

— Adaptivity to hardware evolution (parallel and distributed computing).
e Types of languages

1. Compiled languages: C/C++, FORTRAN, ...
— Directly compiled to machine code that is executed by CPU
— Pros: fast, memory efficient
— Cons: longer development time, hard to debug
2. Interpreted language: R, MATLAB, SAS IML, ...
— Interpreted by interpreter
— Pros: fast prototyping
— Cons: excruciatingly slow for loops
3. Mixed languages: Julia, Python, JAVA, Matlab (JIT), R (JIT), ...
— Compiled to bytecode and then interpreted by virtual machine

— Pros: relatively short development time, cross-platform, good at data prepro-

cessing and manipulation, rich libraries and modules

— Cons: not as fast as compiled language
4. Script languages: shell scripts, Perl, ...

— Extremely useful for data preprocessing and manipulation
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o Messages

— To be versatile in the big data era, be proficient in at least one language in each

category.

— To improve efficiency of interpreted languages such as R or MATLAB, avoid loops
as much as possible. Aka, vectorize code

“The only loop you are allowed to have is that for an iterative algorithm.”

— For some tasks where looping is necessary, consider coding in C or FORTRAN. It
is convenient to incorporate compiled code into R or MATLAB. But do this only
after profiling!

Success stories: glmnet and lars packages in R are based on FORTRAN.

— When coding using C, C++, FORTRAN, make use of libraries for numerical linear
algebra: BLAS, LAPACK, ATLAS, ...

= Julia seems to combine the strengths of all these languages. That is to achieve

efficiency without vectorizing code.
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5 Lecture 5, Jan 28

Announcements

e HW2 (NNMF, GPU computing) posted. Due Feb 11.

Last Time

e Computer languages.

e Productivity tools (Repp, Boost, Armadillo, R markdown) of R (Josh Day).

Today

e Matlab and Julia.

Computer languages (cont’d)

“As some of you may know, I have had a (rather late) mid-life crisis and run

off with another language called Julia. http: // julialang. org|”

Doug Bates (on the knitr Google Group)

e Language features of R, MATLAB, and JULIA

Features R MATLAB JULIA
Open source ® ® ©

IDE R Studio ©® Slele) ®
Dynamic document ©©O(RMarkdown) 066 ©OO(1Julia)
Multi-threading parallel pkg © ©

JIT compiler pkg @) @)

Call C/Fortran wrapper wrapper no glue code
Call shared library wrapper wrapper no glue code
Typing ® O OB
Pass by reference ® ® QOO
Linear algebra ® MKL, Arpack OpenBLAS, Eigpack
Distributed computing ® ®© Glele;
Sparse linear algebra ® (Matrix package) ©06 ©lele)
Documentation ® SlSle) Sle)
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e Benchmark code R-benchmark-25.R from http://r.research.att.com/benchmarks/
R-benchmark-25.R covers many commonly used numerical operations used in statis-
tics. We ported to MATLAB and Julia and report the run times (averaged over 5 runs)

here.

Machine specs: Intel i7 @ 2.6GHz (4 physical cores, 8 threads), 16G RAM, Mac OS 10.9.5.

Test R 3.1.1 MATLAB R2014a  JULIA 0.3.5
Matrix creation, trans, deformation (2500 x 2500) 0.80 0.17 0.16
Power of matrix (2500 x 2500, A.1900) 0.22 0.11 0.23
Quick sort (n =7 x 10°) 0.65 0.24 0.64
Cross product (2800 x 2800, AT A) 9.95 0.35 0.38
LS solution (n = p = 2000) 1.21 0.07 0.10
FFT (n = 2,400, 000) 034  0.04 0.14
Eigen-decomposition (600 x 600) 0.78 0.31 0.56
Determinant (2500 x 2500) 3.52 0.18 0.23
Cholesky (3000 x 3000) 4.03 0.15 0.23
Matrix inverse (1600 x 1600) 3.05 0.16 0.22
Fibonacci (vector) 0.28 0.17 0.66
Hilbert (matrix) 0.22 0.07 0.18
GCD (recursion) 0.47 0.14 0.20
Toeplitz matrix (loops) 0.34 0.0014 0.03
Escoufiers (mixed) 0.38 0.40 0.17

e A slightly more complicated (or realistic) example taken from Doug Bates’s slides
http://www.stat.wisc.edu/~bates/JuliaForRProgrammers.pdf. The task is to

use Gibbs sampler to sample from bivariate density
f(z,y) = ka® exp(—ay® — y* + 2y — 4x),x > 0,

using the conditional distributions

1
XY ~ I'(3 —o
| (’y2+4>

1 1
Yix ~ N(1+x’2(1+x))’

Let’s sample 10,000 points from this distribution with a thinning of 500.

— How long does R take?
http://hua-zhou.github.io/teaching/st790-2015spr/gibbs_r.html
— How long does Julia take?

http://hua-zhou.github.io/teaching/st790-2015spr/gibbs_julia.html
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— With similar coding efforts, Julia offers ~ 100 fold speed-up! Somehow JIT in R
didn’t kick in. (Neither does Matlab, which took about 20 seconds.)

— Julia offers the capability of strong typing of variables. This facilitates the opti-

mization by compiler.
— With little efforts, we can do parallel and distributed computing using Julia.
I’= Benchmark of the same example in other languages including Rcpp is available

in the blogs by Darren Wilkinson (http://bit.1ly/IWhJ52) and Dirk Eddelbuettel’s
(http://dirk.eddelbuettel.com/blog/2011/07/14/).

Julia

e IDE in Julia.

— Juno (http://junolab.org) is the currently recommended IDE for Julia. It
has limited capabilities (syntax highlighting, tab completion, executing lines from
editor, ... ) compared to R Studio or Matlab IDE.

— No easy-to-use debugging tool yet (set breakpoint, inspect variables at breakpoint,

break at error, ...) ®

— Profiling. The language itself provides many very useful profiling tools.
http://julia.readthedocs.org/en/latest/stdlib/profile

@profile macro shows line-by-line analysis how many times each line is sampled

by the profiler.
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a—julia—94x38 e ——————

julia= Profile.clear() =
julia> @profile Bhat, Xhat = varcomp(Y, X, V);
julia= Profile.print(format=:flat)
Count File Function Line
13@ ...ces/julia/lib/julia/sys.dylib Array -1
1 ...ces/julia/lib/julia/sys.dylib map -1
130 ...ces/julia/lib/julia/sys.dylib print_to_string -1
3 ...org/vcmm/codebase/julia/vc.jl kronaxpy! 312
5 ...org/vcmm/codebase/julia/vc.jl kronaxpy! 314
3 ...org/vcmm/codebase/julia/ve.jl kronreduction! 339
55 ...org/vcmm/codebase/julia/vc.jl varcomp 78
1 ...org/vcmm/codebase/julia/vc.jl varcomp 80
35 ...org/vcmm/codebase/julia/vc.jl varcomp 82
54 ...org/vcmm/codebase/julia/vc.jl varcomp 83
25 ...org/vcmm/codebase/julia/vec.jl varcomp 88
13 ...org/vcmm/codebase/julia/vc.jl varcomp 93
141 ...org/vcmm/codebase/julia/vc.jl varcomp 100
3 ...org/vcmm/codebase/julia/ve.jl varcomp 185
35 ...org/vcmm/codebase/julia/vec.jl varcomp 108
8 ...org/vcmm/codebase/julia/vc.jl varcomp 114
542 ...org/vcmm/codebase/julia/vc.jl varcomp 117
519 ...org/vcmm/codebase/julia/vc.jl varcomp 118
168 ...org/vcmm/codebase/julia/vec.jl varcomp 119
1 ...org/vcmm/codebase/julia/vc.jl varcomp 120
2 ...org/vcmm/codebase/julia/vc.jl varcomp 121
2 ...org/vcmm/codebase/julia/vc.jl varcomp 123
2 ...org/vcmm/codebase/julia/ve.jl varcomp 127
265 ...org/vcmm/codebase/julia/ve.jl varcomp 128
133 ...org/vcmm/codebase/julia/vc.jl varcomp 130
2044 REPL.j1 eval_user_input 53
1 abstractarray.jl cat 616
196 array.jl fill! 151
31 linalg/blas.jl gemm! 527
376 linalg/blas.jl trmm! 813 l
3 linalg/blas.jl trmv! 404
2 linalg/dense.jl \ 417

@time macro displays memory footprint and significant gc (garbage collection)

along with run time.

julia — julia — 94x5

julia> @time Bhat, Ihat = varcomp(Y, X, V);
elapsed time: 37.295446594 seconds (5518642216 bytes allocated, 2.24% gc time)

julia> ]

Finer analysis of line-by-line memory allocation is also available.

http://docs.julialang.org/en/release-0.3/manual/profile/#memory-allocation-anal

e Work flow in Julia.

— Tim Holy:

“quickly write the simple version first (which is really pleasant thanks to Julia’s
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7

design and the nice library that everyone has been contributing to)” — “run it”
— “ugh, too slow” — “profile it” — “fix a few problems in places where it actually

matters” — “ah, that’s much nicer!”
— Stefan Karpinski:

1. You can write the easy version that works, and

2. You can usually make it fast with a bit more work.
e Types (data structures) in Julia.

— Julia provides a very rich collection of static data types, abstract types, and user-
defined types.
http://julia.readthedocs.org/en/latest/manual/integers-and-floating-point-numbe
http://julia.readthedocs.org/en/latest/manual/types/.

e Functions (methods, algorithms) in Julia.

— Functions in Julia are really methods. All functions in Julia are generic so any

function definition is actually a method definition.
— Same function (method) names can be applied to different argument signatures.

— Templated methods and data types. Sometimes you want to define algorithms on

the abstract type with minor variations for, say, the element type.

e 00 || Julia-vs-R — hzhou3@teaching:~ — ssh — 92x15 |
‘ Julia l hzhou3@teaching:~ I

julia> methods(sin)

# 11 methods for generic function "sin":

sin(a::Complex{Floatl6}) at floatl6.jl:141

sin(z::Complex{T<:Real}) at complex.jl:518

sin(x::Float64) at math.jl:122

sin(x::Float32) at math.jl:123

sin(a::Floatl6) at floatl6.jl:140

sin(x::BigFloat) at mpfr.jl:488

sin(x::Real) at math.jl:124

sin{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}) at sparse/sparsematrix.jl:448
sin{T<:Number}(::AbstractArray{T<:Number,1}) at operators.jl:359
sin{T<:Number}(::AbstractArray{T<:Number,2}) at operators.jl:360
sin{T<:Number}(::AbstractArray{T<:Number,N}) at operators.jl:362

julia= ]

— In Julia, all arguments to functions are passed by reference. A Julia function can

(6'77

modify its arguments. Such mutating functions should have names ending in
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le,1,2]

julia> copy!(dest, src); println(dest)
[1,2,3]

julia>

e Call compiled code.

— In Julia, usually it’s unnecessary to write C/C++ or Fortran code for perfor-

mance. Just write loops in Julia and leave the work to its compiler.

— Still in many situations, we’d like to call functions in some compiled libraries
(developed in C or Fortran). Use the ccall() function in Julia; no glue code is
needed. For example, Mac OS has the math library 1ibm.dylib, from which we

can call the sin function
mysin(x) = ccall((:sin,"libm"), Cdouble, (Cdouble,), x)
We can vectorize the single argument function myin by

Ovectorize_larg Real mysin

julia> myﬁin(x) = ccal
mysin (generic function with 1 method)

julia> mysin(3.0) - sin(3.9)
0.0

julia> @vectorize_larg Real mysin
mysin (generic function with 4 methods)

julia= mysin([1 2 3 4])
1x4 Array{Float64,2}:
0.841471 0.909297 0.14112 -0.756802

julia> ]

— They must be shared libraries available in the load path, and if necessary a direct

path may be specified.

e (Call Julia function from other languages like C.

http://docs. julialang.org/en/release-0.3/manual/embedding/
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e Documentation.

— Online help: 7 funname.

Online documentation is mostly clear, but seems to lack plenty of examples.

— I haven’t found a good in-source documentation system like roxygen for R ®.

Julia provides tab completion, like bash completion.

e Package management in Julia all centers around Github. No manual censorship on
CRAN anymore ©®

e Julia summary.

“In my opinion Julia provides the best of both worlds and is the technical

programming language of the future.”

Doug Bates
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6 Lecture 6, Feb 2

Announcements

e HW1 graded. Feedback

— Solution sketch: http://hua-zhou.github.io/teaching/st790-20156spr/hwOlsol.

— grade unityID.md committed to your master branch.

Don'’t forget git tag: Tagging time will be used as your homework submission

time.
— “Commit early, commit often and don’t spare the horses”

— Reproducibility (source code for reproducing results and instructions). Dynamic

document (Rmd, IPython, ...) is worth learning.
o HW2:

— Think more carefully about algorithmic updates.

— Use VO.txt and WO.txt as starting points for timing.

e HW3 (Convex or Not?) posted. Due Mon, Feb 23.

Last Time

e Julia: a promising language to know about.

Today

e Matlab.

e Parallel computing.

Matlab

e Matlab IDE. A powerful IDE comes with MATLAB. Familiarity with it prevents tons

of pain.
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800 Editor - hzhy lab_f demo_lsq.m

File Edit Text Go Cell Tools Debug Desktop Window Help
x 2 2fDNEHE $RMRYC LD - Mesf B-BRERE BB sak(bse ] f (B o s =
/8@ -[10]+ +1]x B O
1 %% Sparse Linear Regression 1
2 % A demonstration of sparse linear regression using SparseReg toolbox.
3 % Sparsity is in the general sense: variable selection, total variation
4 $ regularization, polynomial tjrend filtering, and others. Various penalties
5 % are implemented: elestic net (enet), power family (bridge regression),
6 % log penalty, SCAD, and MCP.
7
8 %% Sparse linear regression (n>p)
9 % Simulate a sample data set (n=500, p=100)
10 - clear;
il [= s = RandStream( 'mt19937ar"','Seed’',1);
12 - RandStream.setGlobalStream(s);
13- n = 500;
14 - p = 100;
15[= X = randn(n,p); % generate a random design matrix
16 - X = bsxfun(@rdivide, X, sqgrt(sum(X."2,1))); % normalize predictors
17 - X = [ones(size(X,1),1) X]; % add intercept
18 - b = zeros(p+1,1); % true signal:
19 — b(2:6) = 3; % first 5 predictors are 3
20 - b(7:11) = -3; % next 5 predictors are -3
21 - y = X*b+randn(n,1); % response vector
22
23 %%
24 % Sparse regression at a fixed tuning parameter value
25 - penalty = 'enet'; % set penalty function to lasso
26 - penparam = 1;
27 - penidx = ... % leave intercept unpenalized
28 [false; true(size(X,2)-1,1)];
29 - lambdastart = ... % find the maximum tuning parameter to start
30 max (lsq maxlambda(sum(X(:,penidx)."2),-y'*X(:,penidx),penalty,penparam));
21 Aimndlasrt]l ambhdand e\ o
[ script [Ln 4 Col 31

— Essentials: syntax highlighting, code indenting/wrapping/folding, text width (de-

fault = 72 characters), ...

— Code cells delimited by %%. Cells break script into logical segments and facilitate

automatically generating documentation.

— Code analyzer. Are you greened? Check upper-right corner.

e Matlab functions.

— MATLAB development revolves around functions.

— Each function is a separate file: funl.m, fun2.m, ...

I'= R and Julia can have multiple functions in one file.

— Add help/documentation immediately below the function definition. It facilitates

the help command and automatically generating documentation.

— If there are more than one functions in a file, only the first one is callable. Others

are local functions, equivalent of subroutines/subfunctions in other languages.

— Nested function. It has access to the variables in its parent function. Memory

saver!

— Function help follows a fixed format: declaration, calling convention, see also,

example, copyright, ...
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800 LA s pareto/ fo I

_sparsereg.m

[File Edit Text Go Cell Tools Debug Desktop Window Help

— Help command

800

MATLAB R2012a

x 2 +» DNEHE £$RR2920¢ 52 - Meft B -8R BBE BB sack| Base B OB &
%EEE—1.0+ + (11 x @I O

1 - function [betahat] = lsq_sparsereg(X,y,lambda,varargin) Iy

2 0% LSQ_SPARSEREG Sparse linear regression at a fixed penalty value

3 %  BETAHAT = LSQ_SPARSEREG(X,y,lambda) fits penalized linear regression

4 % using the predictor matrix X, response Y, and tuning parameter value

5 % LAMBDA. The result BETAHAT is a vector of coefficient estimates. By

6 % default it fits the lasso regression.

7 %

8 %  BETAHAT = LSQ_SPARSEREG(X,y,lambda,'PARAM1',vall,'PARAM2',val2,...)

9 % allows you to specify optional parameter name/value pairs to control
10 %  the model fit. Parameters are:

11 %

12 % ‘maxiter' - maxmum number of iterations

13 %

14 % ‘penidx' - a logical vector indicating penalized coefficients

15 %

16 % ‘penparam’ - index parameter for penalty; default values: ENET, 1,
17 % LOG, 1, MCP, 1, POWER, 1, SCAD, 3.7

18 %

19 % ‘pentype’' - ENET|LOG |MCP |POWER |SCAD

20 %

21 % 'sum_x_squares' - precomputed sum(wt*X."2,1)

22 %

23 % ‘weights' - a vector of prior weights

24 %

25 % 'x0' - a vector of starting point

26 %

27 % See also LSQ SPARSEPATH,GLM SPARSEREG,GLM SPARSEPATH.

28 %

29 %  EXAMPLE

30 %

31 %  References:

32 %

33 %  Copyright 2011-2012 North Carolina State University

34 $  Hua zhou (hua_zhou€ncsu.edu), Artin Armagan

35

36 % input parsing rule

37- [n,p] = size(X);

38 - argin = inputParser;

39 - argin.addRequired('X', @isnumeric);

40 -  argin.addRequired('y', @(x) length(y)==n);

41-  argin.addRequired('lambda’, @(x) x>=0);

[1sq_sparsereg [Ln 33 Col 56

| File Edit Debug Parallel Desktop Window Help

%

Tl 4 T ™ 9 o @ of 2 @ CurrentFolder: | /Users/hzhou3/workspace/pareto/codebase/matlab_fortran

=@

7 Shortcuts 2] Howto Add (2] What's New

x 2 w 0O Current Folder

x

2 w0 Command Window

x 2 + 0 Workspace

“demo_glm.m
“idemo_lsg.m
“/demo_paper.m
“lexample_MandA...

“1glm_sparsereg.m
Tinfo.xml
O INSTALL.txt
#1sq_maxlambda.m
2lsq_regpath.m
1sg_sparsepath.m
“Ilsq_sparsereg.m
1RELEASE_NOTES....
“ wolfpack_icon.gif
*wolfpack_logo.gif

rsereg.m (MATLAB Function) A

fe

0« matlab f..» v 2 & #- >> help lsg sparsereg
BhaiNamety 1sq_sparsereg Sparse linear regression at a fixed penalty value
> @ html BETAHAT = lsq_sparsereg(X,y,lambda) fits penalized linear regression
> & private using the predictor matrix X, response Y, and tuning parameter value
“ Contents.m LAMBDA. The result BETAHAT is a vector of coefficient estimates. By
default it fits the lasso regression.
1 COPYRIGHT.txt

BETAHAT = lsq_sparsereg(X,y,lambda, 'PARAM1',vall, 'PARAM2',val2,...)
allows you to specify optional parameter name/value pairs to control
the model fit. Parameters are:

'maxiter' - maxmum number of iterations
“lexample_SAheart...
“1glm_maxlambda.m 'penidx' - a logical vector indicating penalized coefficients
#1glm_regpath.m
#glm sparsepath.m 'penparam' - index parameter for penalty; default values: ENET, 1,
gim_sparsep LOG, 1, MCP, 1, POWER, 1, SCAD, 3.7

'pentype' - ENET|LOG|MCP|POWER |SCAD
'sum_x_squares' - precomputed sum(wt*X."2,1)
'weights' - a vector of prior weights
'x0' - a vector of starting point

See also lsg_ sparsepath,glm sparsereg,glm sparsepath.

EXAMPLE

— Support variable number of input/output arguments

% linear regression
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B [Dse. v >

Name & Value

x 2 » 0 Comma...

make
%-- 1/15/
%-- 1/15/
v %-- 1/15/
make
clear
clc
help 1lsg
help nan
clc
help 1lsg

—



b = glmfit(x,y);

% logistic regression

b = glmfit(x,y,’binomial’);

% probit regression

b = glmfit(x,y,’binomial’,’link’, ’probit’);
% probit regression with observation weights

b = glmfit(x,y,’binomial’,’link’,’probit’, ’weights’,wts);

I’ inputParser for parsing name/value pairs

®00 Editor - /Users/hzhou3 pareto/codebase/matlab_fortran/Isq_sparsereg.m
File Edit Text Go Cell Tools Debug Desktop Window Help
x a «%‘]J.j 1 ® 9 Y e B -8R B W B B @ stack Base 3 fx (B ol =
‘BWE -[0]+ +11]x H O
36 % input parsing rule Tl
37 - [n,p] = size(X);
38 - argin = inputParser;
39 - argin.addRequired('X', @isnumeric);
40 - | argin.addRequired('y', @(x) length(y)==n);
41 - argin.addRequired('lambda’', @(x) x>=0);
42 - argin.addParamvValue( 'maxiter', 1000, @(x) isnumeric(x) && x>0);
43 - argin.addParamValue( 'penalty', 'enet', @ischar);
44 - argin.addParamvalue( 'penparam', [], @isnumeric);
45 - argin.addParamValue( 'penidx', true(p,1l), @(x) islogical(x) && length(x)==p);
46 - argin.addParamvValue( 'sum x squares', [], @(x) isnumeric(x) && all(x>=0) && ...
47 length(x)==p);
48 - argin.addParamvValue( 'weights', ones(n,1l), @(x) isnumeric(x) && all(x>=0) && ...
49 length(x)==n);
50 - argin.addParamvalue( 'x0', zeros(p,1), @(x) isnumeric(x) && length(x)==p);
51 % parse inputs
52 - y = reshape(y,n,1);
53 - argin.parse(X,y,lambda,varargin{:});
54 - maxiter = round(argin.Results.maxiter);
55 | penidx = reshape(argin.Results.penidx,p,1);
56 — pentype = upper(argin.Results.penalty);
57 - penparam = argin.Results.penparam;
58 - sum_x_squares = argin.Results.sum_x_squares;
59 — wt = reshape(argin.Results.weights,n,1);
60 — x0 = reshape(full(argin.Results.x0),p,1);
61 % compute covariate norms if not supplied
62 — if (isempty(sum_x_squares))
63 - sum_x squares = sum(bsxfun(@times, wt, X.*X),1)';
64 — else
AR — cum v aemiaree = rechanalanm v amiaraa n 1)
7 © demo_lsq.m © lsq_sparsereg.m
[1sq_sparsereg Ln 14 Col 44

e Debugging in Matlab.

Execute code cell-by-cell, line-by-line, ...
— Breakpoints.

— Examine intermediate values:

data tips in editor, command window, workspace browser

Error breakpoints.
e Profiling in Matlab.

— Timing: tic/toc (wall time).

— Profiling: profile on/viewer.
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— Let’s profile the 1sq_sparsepath() function.

® 006 Editor - /Users/hzhous3, p: / /

X Isq.m

IFile Edit Text Go Cell Tools Debug Desktop Window Help

x 2 az“jvjﬂ ¥R o BD-MNesh B-BRBBE BB sak | Bse i fy
B -(uo]+ 11l x W 0

64 — plot(rho_path,beta_path); ™

65 — xlabel('\rho');

66 — ylabel( '\beta(\rho)");

67 — xlim([min(rho_path),max(rho_path)]);

68 — title([penalty '(' num2str(penparam) '), ' num2str(timing,2) ' sec']l);

69

70 %%

71 % Solution path for power (0.5)

72 - penalty = 'power'; % set penalty function to power

73 - penparam = 0.5;

74 - eslE)p

75 - profile on;

76 — [rho_path,beta path] = ...

77 1sq_sparsepath(X,y, 'penalty',penalty, 'penparam',penparam, 'penidx',penidx);

78 -  profile viewer;|

79 - timing = toc;

80

81 - figure;

82 - plot(rho_path,beta path);

83 - xlabel('\rho');

84 - ylabel('\beta(\rho)');

85 - xlim([min(rho_path),max(rho_path)]);

86 — title([penalty '(' num2str(penparam) '), ' num2str(timing,2) ' sec'l]);

87

88 3%

89 % Compare solution paths from different penalties

90 - penalty = {'enet' 'enet' 'enet' 'power' 'power' 'log' 'log' 'log' 'scad'};

91 - penparam = [1 1.5 2 0.5 10 15 3.7];

92 - penidx = [false; true(size(X,2)-1,1)]; % leave intercept unpenalized
/] 33 demo_lsq.m © lsq_sparsereg.m

[ script

[Ln 78 Col 16

— profile viewer produces a summary in html that includes line by line analysis.

800 Profiler

| File Edit Debug Desktop Window Help

T e o A

7 [ startrofiing | Run this code: |

v @ Profile time: 2 sec

E’g:;;"t‘aer:j 15-Jan-2013 23:23:15 using cpu time.
Function Name Calls Total Time Self Time* Total Time Plot
(dark band = self time)
Isg_sparsepath 1 2.478 s 0.101s
ode45 88 2.092s 0.138 s wem—
funfun/private/odezero 138 1.574s 0.619s  mmwem
Isq_sparsepath>events 3997 0.818 s 0.415s ==
matlab_fortran/private/lsq_thresholding 3997 0.403 s 0.287s m
Isq_sparsepath>odefun 916 0.239s 0.169s =
funfun/private/ntrp45 3859 0.166 s 0.166s =
Isg_sparsereg 89 0.159s 0.101s
matlab_fortran/private/Isgthresholding (MEX-file) 3997 0.116 s 0.116s 1
Isq_sparsepath>objfun 316 0.111s 0.086s 1
matlab_fortran/private/penalty_function 1232 0.096 s 0.078s 1
funfun/private/odearguments 88 0.068s 0.023s 1
odeget 968 0.055s 0.025s 1
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800

Profiler

File Edit Debug Desktop Window Help
Clewd o A

< 0.01

< 0.01

7 [ startprofiling | Run this code:

1

88
88

88
88

88
88
88
88

88
88
88
88

v @ Profile time: 2 sec

% main loop for path following

158 for k=2:maxiters

161
162

165
166

_169
_170
i
1712

115
176
177
178

% Solve ode until the next kink or discontinuity
tstart = rho path(end);
[tseg,xseg] = ode4d5(@odefun, [tstart tfinal],xsetActive,odeopt);

% accumulate solution path
rho_path = [rho_path tseg']; %#ok<*AGROW>
beta_path(setActive, (end+1): (end+size(xseg,1l))) = xseg';

% update activeSet

rho = max(rho_path(end)-tiny,0);

x0 = beta_path(:,end);

x0(setPenz) = coeff(setPenz);

x0 = lsg sparsereg(X,y,rho, 'weights',wt, 'x0',x0, ...
'sum _x squares',sum_X_squares, 'penidx',penidx, 'maxiter',maxrounds,...
'penalty’',pentype, 'penparam',penparam) ;

setPenZ = abs(x0)<le-8;

setPenNZ = ~setPenZ;
setPenZ(setKeep) = false;
setPenNZ (setKeep) = false;

e Call compiled code in MATLAB.

— Step 0: Are you sure you want to do this? Profile first!

— Step 1: Check compiler compatibility.

« What compilers are supported by MATLAB 2014a (Linux)? Check

http://www.mathworks.com/support/compilers/R2014a/index.html

*x Compilers not supported? Tweak the mexopts.sh file

— Step 2: Write C or FORTRAN code.

x Develop C or FORTRAN code as usual

« If you obtain source code from open source projects, internet, book (e.g.

Numerical Recipes), ..., follow license and give credit

— Step 3: Write mex function wrapper.
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800 * | Isgsparse.F90

- LastSaved: 1/15/13 11:45:09 PM
© f \E File Pathv : ! i F90
< | > |o[1 Isasparse.F90 7 MEXFUNCTION 3
1 #include "fintrf.h"
2 !
3 SUBROUTINE MEXFUNCTIONCNLHS, PLHS, NRHS, PRHSX
alv| 1
s| |t This is the gateway subroutine for LSQSPARSE mex function
5 !
7 USE SPARSEREG
8 IMPLICIT NONE
9 !
10 ! MEXFUNCTION ARGUMENTS
u !
2 MWPOINTER :: PLHS(*), PRHS(*)
13 INTEGER :: NLHS, NRHS
1l 1
15 ! FUNCTION DECLARATIONS
w1
17 INTEGER :: MXISCHAR,MXISLOGICAL,MXISNUMERIC
18 INTEGER*4 :: MEXPRINTF
19 MWPOINTER :: MXCREATEDOUBLEMATRIX,MXGETPR,MXGETSTRING
20 MWSIZE :: MXGETM, MXGETN
2n !
2 |1 SOME LOCAL VARIABLES
a1
24 INTEGER :: MAXITERS,STATUS
23 MWSIZE N, P, PENNAMELEN , PENPARAMS
E3 REAL(KIND=DBLE_PREC) :: MAXITERSREAL,LAMBDA
27 CHARACTER(LEN=1@) :: PENTYPE
8 LOGICAL, ALLOCATABLE, DIMENSION(:) :: PENIDX
29 REAL(KIND=DBLE_PREC), ALLOCATABLE, DIMENSION(:) ESTIMATE,PENPARAM, SUM_X_SQUARES ,WT,Y
£ REAL (KIND=DBLE_PREC), ALLOCATABLE, DIMENSION(:, X
a1
2 ! CHECK FOR INPUT ARGUMENT TYPES
1l |1
34 IF (NRHS.NE.10) THEN
3 CALL MEXERRMSGIDANDTXT('MATLAB: 1sqsparse:nTnput’, 'Ten input requried.')
36 ELSEIF (NLHS.NE.1) THEN
353 | Fortran 9x & | Unicode (UTF-8) % | Unix (LF) & [ 4,502 /526 /115 |

W, #.
-

*x The name of the mex function file is the name of your MATLAB function

« Purpose: match data types between MATLAB and C/FORTRAN, transfer

input/output (pass by value!), ...

* Format for mex function: Google for “matlab mex function”

— Step 4: Use mex command to compile source.
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800

MATLAB R2012a

File Edit Debug
=] =]

Parallel

x 2 » 0O Current Folder
«pr. v O & #

& Name &

/] glm_thresholding.m

* glmmaxlambda.F90

4) glmmaxlambda.mexa64

4] glmmaxlambda.mexm.

<) glmmaxlambda.mexw64

 gimsparse.F90

) glmsparse.mexa64

<) glmsparse.mexmaci64

[«) glmsparse.mexw64

* glmthresholding.F90

) glmthresholding.mexa64

<) gimthresholding.mex...

<) glmthresholding.mexw...

7] Isq_thresholding.m

* Isqmaxlambda.F90

) Isqmaxlambda.mexa64

4] Isqmaxlambda. mexma.

<) Isqmaxlambda.mexw64

* Isqsparse.F90

4] Isgsparse.mexa64

<) Isqsparse.mexmaci64

4] Isgsparse.mexw64

* Isqthresholding.F90

<) Isqthresholding.mexa64

<) Isqthresholding.mexm...

4] Isqthresholding.mexw64

“) make.m

* penalty.F90

4] penalty.mexa64

4] penalty. mexmaci64

<] penalty.mexw64

) penalty_function.m

¥ sparsereg.F90

) sparsereg.mod

Details ~

Desktop Window Help
& o 2

©  Current Folder: | /Users/hzhou3,

pareto/codeb: lab_f P

Shortcuts 2] Howto Add (] What's New

i etiaEL Command Window

>> make

mex penalty.F90 sparsereg.F90

sparsereg.F90:1025: warning: no newline at end of file

1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/¢
1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/g
mex lsqmaxlambda.F90 sparsereg.F90

sparsereg.F90:1025: warning: no newline at end of file

1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/g
1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/g
mex lsgsparse.F90 sparsereg.F90

sparsereg.F90:1025: warning: no newline at end of file

1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/g
1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/g
mex lsqthresholding.F90 sparsereg.F90

sparsereg.F90:1025: warning: no newline at end of file

1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/g
1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/¢
mex glmsparse.F90 sparsereg.F90

sparsereg.F90:1025: warning: no newline at end of file

1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/g
1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/¢
mex glmthresholding.F90 sparsereg.F90

sparsereg.F90:1025: warning: no newline at end of file

1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/g
1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/g
mex glmmaxlambda.F90 sparsereg.F90

sparsereg.F90:1025: warning: no newline at end of file

1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/g
1d: warning: ignoring file /Developer/SDKs/MacOSX10.6.sdk/usr/local/lib/g

‘LJ@
x2s0 Workspace
&) %) Stack: Base [ Select data to plot -
Name & Value Min Max
X 2 w0 Command History
fastinfo
fastginfo

%$-- 1/6/13 11:50 PM --%
%-- 1/10/13 11:07 AM --%
%-- 1/12/13 9:40 PM --%
v $-- 1/13/13 4:15 PM --%
help lsq_sparsereg
v $-- 1/15/13 11:13 AM --%
mex setup
help mex
mex -setup
make
echo on
make
clear
cle
make

4 Start

« This produces binary code: funname.mexmaci64 (Mac), funname.mexw64

(Windows), or funname .mexa64 (Linux)

* These binaries are what you need to run program. Just use as native MATLAB

functions

e Toolbox development in MATLAB.

— Toolbox in MATLAB is equivalent to the packages in R. You can submit to MAT-

LAB CENTRAL (equivalent of CRAN) or simply publish on your github or website.

— Basic steps to create a toolbox.

1.
2.

Write functions and demo scripts

Debug, test, profile, document
debug, test, profile, document

“Publish” your demo scripts as html by clicking the Publish button. It works

just like knit.
http://www.mathworks.com/help/matlab/matlab_prog/marking-up-matlab-comments
html

Edit the info.xml and helptoc.xml files. They help automatically generate

the help documentation and put the toolbox to the MATLAB start menu

Write the COPYRIGHT . txt, INSTALL. txt and RELEASE_NOTES. txt documents
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http://www.mathworks.com/help/matlab/matlab_prog/marking-up-matlab-comments-for-publishing.html
http://www.mathworks.com/help/matlab/matlab_prog/marking-up-matlab-comments-for-publishing.html

6. Zip the toolbox folder and publish on

your website or to MATLAB CENTRAL

A demonsration of sparse linear regression using SparseReg toolbox. Sparsity is in the general sense: variable selection,
total variation regularization, polynomial trend filtering, and others. Various penalties are implemented: elestic net (enet),
power family (bridge regression), log penalty, SCAD, and MCP.

Contents
= Sparse linear regression (n>p)
= Fused linear regression

= Sparse linear regression (n<p)

Sparse linear regression (n>p)

Simulate a sample data set (1=500, p=100)

clear;
s = RandStream('mt19937ar’,'Seed’,1);
RandStream.setGlobalStream(s) ;

n = 500;

100;

randn(n,p); % generate a random design matrix
bsxfun(@rdivide, X, sqrt(sum(X."2,1))); % normalize predictors
[ones(size(X,1),1) X]; % add intercept

zeros (p+l,1); % true signal:

% first 5 predictors are 3

% next 5 predictors are -3

% response vector

b(2:
b(7:
y = X*b+randn(n,1);

Sparse regression ata fixed tuning parameter value

penalty = 'enet’; % set penalty function to lasso
penparam = 1;
penidx = ... % leave intercept unpenalized
[false; true(size(X,2)-1,1)1;
lambdastart = ... % find the maximum tuning parameter to start
max(1sq_maxlambda(sum(X(:,penidx)."2),-y' *X(:,penidx),penalty,penparan));
display(lambdastart);

lambda = 0.9*lambdastart; % tuning parameter value

®00 / i i x\ ! x
|| Sparse Linear Regression \ [ Sparse Linear Regression
C | file://localhost/Users/hzhou3/workspace/pareto/codebase/matlab_fortran/... ¢ = | & C % | file:///Users/hzhou3/workspace/pareto/codebase/matlab_fortran/html/demo... ¢

| STAT 758 | STAT 810-007 | | iGoogle | | Yahoo! | DNA2013@NCSU | EE364a: Lecture Vid » ||| STAT 758 || STAT 810-007 | | iGoogle | Yahoo!  DNA2013@NCSU | EE364a: Lecture Vic

penidx = [false; true(size(X,2)-1,1)]; $ leave intercept unpenalized
Sparse Linear Regression e

for i=1:length(penalty)
tic;

[rho_path,beta_path] = lsq_sparsepath(X,y, ...
‘penalty’,penalty{i}, 'penparan’,penparam(i), 'penidx',penidx);

timing = toc;

subplot(3,3,1);

plot(rho_path,beta_path);

if (i==8)
xlabel('\zrho');

end

if (i==4)
ylabel('\beta(\rho)');

end

xLim([min(rho_path) ,max(rho_path)]);

title([penalty{i} '(' num2str(penparam(i)) '), ' num2str(timing,1) 's']);

enel(1.5), 3 enel(2),2s

enel(1), 25

10

5 10 15 20
scad(3.7), 28

— Contents of a toolbox.

x Function files. The private folder “hides” functions and compiled binaries

not directly accessible by user

* Demo scripts

* The html (or any other name) folder holds the documentation generated by

“publishing” demo scripts

% The info.xml file contains essential

information about the toolbox. It puts

the toolbox to the start menu of MATLAB and links to the help documenta-

tion. See screenshots in next two slides for an example
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MATLAB R20122

File Edit Debug Parallel Desktop Window

Help

1sq_sparsepath.m
lsq_sparsereg.m

" RELEASE_NOTES.txt
*wolfpack_icon.gif
= wolfpack_logo.gif

Ié ) % W™ 9 ™ @ 2 @ CurentFolder: | /Users/hzhou3/workspace/pareto/codebase/matlab_fortran e
7 Shortcuts 2] Howto Add 2] What's New
x 2 1wn Current Folder L xa=wp Command Window x a0 Workspace ]
[ « codebase » matlab_fortran » v 0 (&) # | fy >> | @l B % W stack: [ Select datato plot
& Name & | Name & | Value ' Min | Max |
> & html
> & private
“Contents.m
1 COPYRIGHT.txt
“idemo_glm.m
“/demo_lsq.m
“idemo_paper.m
“lexample_MandA_reg.m
“lexample_SAheart.m
#1glm_maxlambda.m
gg:m—reg path.m x2a=0 Cumman’d History |
glm_sparsepath.m mex -setup
“1glm_sparsereg.m make
Dinfo.xml echo on
“1INSTALL.txt make
#1sq_maxlambda.m clear
#1sq_regpath.m cle
make

Details ~

006

$-- 1/15/13 2:12 PM --%

$-- 1/15/13 2:13 PM --%

v %-- 1/15/13 8:27 PM --%
make
clear

clc

MATLAS R20122

File Edit Debug Parallel Desktop Window

Help

Iz 1 4 W A 9 @ f 2 @ CurentFolder: | /Users/hzhou3/workspace/pareto/codebase/matlab_fortran RE)
A
7 Shortcuts 2 Howto Add 4\ Bioinformatics |
x 2 wQ Cur| 4 C ications System Ei=] Command Window X2 %0 Workspace |
[0 « codebase » matlal 44 Control System >> @ @l & % W stack: D select datato plot
B [Name & : Curve Fitting Name & [ Value M Max |
» DSP System
html 4\ Financial
> & private 4\ Fixed-Point
“ Contents.m ¥ Fuzzy Logic
“ | 4k Global Optimization
1 COPYRIGHT 4 image Acquisition
“ demo g|m 4\ Image Processing

4 Instrument Control

“idemo_lsq.n 4 mapping

=) @ < Neural Network
demo_pap 4L Optimization

“lexample_Mi 4 paraliel Computing

“1glm_regpat # Signal Processing
F1gim_sparse g coii
gim_sp 4\ Statistics

“1glm_sparse 4 symbolic Math

S 4\ System Identification
4\ MATLAB > @ Tensor

Toolboxes
& Simulink

(2] Shortcuts

< Desktop Tools »ath.m
@ Web >

@ Get Product Trials
@ Check for Updates

& Preferences...
[dl Find Files...
@ Help

+ Demos

YYVYYYVYYVYVYYYVYVYVVYVVYYY

< SparseReg Documentation
@ SparseReg Toolbox Site

{vvvvey

x2+0 Command History

mex -setup

make

echo on

make

clear

clc

make
$-- 1/15/13 2:12 PM --%
$-- 1/15/13 2:13 PM --%

v %-- 1/15/13 8:27 PM --%
make
clear

clc
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® 0 0 Help
File Edit View Go Favorites Desktop Window Help

Q~ Search 2 - o - MATLAB SparseReg Toolbox -
Search Results < Department of Statistics

» & Neural Network Toolbox s North Carolina State University

» & Optimization Toolbox

» & Parallel Computing Toolbc

» & Partial Differential Equatiol SparseReg Toolbox

» & RF Toolbox The MATLAB SparseReg Toolbox implements commonly used sparse
" regression for linear and generalized linear models.

» @ Robust Control Toolbox

» & Signal Processing Toolbox

Documentation

e Linear regression

> @SparseReg Toolbox « Generalized linear model (GLM)

» & Statistics Toolbox Web Page

@ Sym bolic Math Toolbox For more information including how to cite the toolbox, please visit the

> Q} System Identification TOO” SparseReg Toolbox homepage at http://www.stat.ncsu.edu/. :::t;:;u

» @Tensor Toolbox Legal Stuff (otasrager o

(919)515-2570
« SparseReg Toolbox License
« SparseReg Toolbox Copyright

» & Wavelet Toolbox

» @ Simulink

> & SimDriveline

» & SimEvents

» & SimPowerSystems

» @ Simscape

» @ Simulink 3D Animation

Questions or Comments?

Please send us email.

©2013, North Carolina State University.

e More features of MATLAB.

— Object-oriented programming (OOP)

— GUI development.

— More productivity tools: help report, TODO/FIXME report, code analyzer re-

port, dependency report, ...

e Matlab summary.

— Good points.

*

*

Highly efficient, esp. for numerical linear algebra.
Good IDE. Debugging and profiling is a breeze.

The language of choice for some technical computing areas. E.g., my research
requires a lot solving ODE (ordinary differential equations) and tensor (multi-
dimensional array) computing, which are not available (or not good enough)
in R.

Existence of Matlab sets a high standard for other competing technical com-

puting languages. Examples are R Studio and Julia.
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* Reasonably update with hardware technology. For example, > 200 native
functions in Matlab supports GPU and distributed computing toolbox enables

cluster computing of large scale problems.
— Pitfalls.

* Not open source! $$$

x Limited statistical functionalities compared to R packages.

Summary of languages

Choosing language(s) for your project mostly depends your specific tasks, legacy code,

and which “church you happen to frequent”.
Trade-off between development time and run time.
Never believe others’ benchmark results. Do your own profiling and benchmark.

Don’t be afraid to learn new languages. Having more tools in your toolbox is always

a plus.

Parallel computing — what and why?

Parallel computing, in contrast to serial computing, means carrying out computation

simultaneously.

Recent change in the landscape of parallel computing due to end of frequency scaling

game in 2004.
Run time = # instructions X avg. time per instruction.

Cranking up clock frequency (frequency scaling) obviously reduces avg. time per in-
struction, but unfortunately ... increases power consumption and worsens cooling prob-

lem too.

_ 2
P, ower — “Yapacitance X ‘/:)ltage x I requency -

This is what I see when running Matlab benchmark code on a MacBook Pro with a
2.6 GHz Intel Core i7 CPU.
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SENSORS
Active Set Default
Battery TS1 91°
Battery TS2 87°
Battery TS_MAX 91°
CPU Proximity 144°
DC In Proximity Air Flow 106°
DDR3 Proximity 135°
GPU Die - Analog 167°
GPU Proximity 151°
Left Heat Pipe & Fin Stack... 135°
PCH Die - Digital 142°
PCH Proximity 130°
Palm Rest 87°
Right Fin Stack Proximity 121°
X29 Proximity 120°

You can cook eggs on that CPU ...

e Intel canceled its Tejas and Jayhawk lines in 2004 due to power consumption constraint,

which declared the end of frequency scaling and start of parallel scaling.

e This paradigm shift changes the way we do computation. Running the serial code

written for single-core CPU on a multi-core CPU will not make it faster.

e There are many modes of parallel computing: multi-core, cluster, GPU, ...

Multi-core parallel computing

e A typical CPU on a server.

— Issue cat /proc/cpuinfo on teaching.stat.ncsu.edu.
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® 00 (% hzhou3 — hzhou3@teaching:~ — ssh — 92x32 '

processor 111

vendor_id : GenuinelIntel

cpu family HI ]

model 1 45

model name : Intel(R) Xeon(R) CPU E5-2640 @ @ 2.50GHz
stepping 1 7

microcode : 1808

cpu MHz i 2500.145

cache size : 15360 KB

physical id HE

siblings HI]

core id : 5

cpu cores HI)

apicid : 42

initial apicid : 42

fpu 1 yes

fpu_exception 1 yes

cpuid level : 13

wp 1 yes

flags : fpu vme de pse tsc msr pae mce cxB apic sep mtrr pge mca cmov pat pse36 cl

flush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb rdtscp lm constant_tsc arch
_perfmon pebs bts rep_good xtopology nonstop_tsc aperfmperf pni pclmulgdq dtes64 monitor ds_
cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid dca ssed_1 ssed_2 x2apic popcnt tsc_deadline_t
imer aes xsave avx lahf_lm ida arat xsaveopt pln pts dts tpr_shadow vnmi flexpriority ept vp
id

bogomips : 4999,33

clflush size : 64

cache_alignment : 64

address sizes : 46 bits physical, 48 bits virtual

power management:

[hzhou3@teaching ~]$ [

— Intel® Xeon® E5-2640 chip, with 6 physical cores

. i _He_gﬁ'éry Controller F

[ ) = b 0 it . -
‘Intel] e | ‘Core |“Core
Xeon' £5-2600 ‘ o
_

Intel’s hyperthreading “interleaves” two threads on one core

MEEN0 and QP

How Hyper-Threading Technology Works

Physical Logical processor Physical processor Throughput
Processors visible to OS resource allocation
> Timg —4—
F ST T
| - el
3 resource 3 0| I ) I
.
g [ | e |
g Resource |
3 e | | (O
£ Rmme:--_l_]-
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http://articulznetwork.blogspot.com/2012/09/hyper-threading-technology-not-in.html

— In total it appears as 12 “processors” (logical processors, virtual cores, logical

cores, siblings) to the OS on the teaching server.

— Theoretical throughput of the machine is
120 DP GFLOPS ~ 4 DP FLOPs/cycle x 2.5 GHz x 12 logical processors

It’s almost impossible to achieve this theoretical throughput.
e A typical CPU on current PCs and laptops.

— For example, MacBook Pro has an Intel® Core™ i7-3720QM CPU @ 2.60GHz.

— 4 physical cores and 8 threads. It appears as 8 virtual cores to the OS.

e Some terminology.

— A thread is a (serial) sequence of instructions.

— A process is a collection of threads, which share resources such as memory. Dif-

ferent processes run in separate memory spaces.

— An application may have multiple processes

Process

Global Variables

Thread Thread Thread

— Example: Web browser (Google Chrome) is an application, each tab is a process,

threads for each tab control text, music and so on.

e Multi-core or multi-thread computation relies on communication between processes/threads

— Message passing libraries (MPI, PVM)

* very powerful

62



* designed for C/C++, Fortran
% not easy to use from R (rpvm, Rmpi packages), Matlab, ...

— Forking.

— Sockets.

Ideally we need a transparent R interface that hides these communication details.
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7 Lecture 7, Feb 4

Last Time

— Matlab.
— Parallel computing: what and why.

Today

— A debug-profile-optimize session on NNMF (HW2)?

— Parallel computing: multi-core in R, Matlab, Julia.

A debug-profile-optimize exercise on NNMF (HW2)

I was preparing for the solution to HW2, and thought it might be a good example simple

enough that we can go through a debug-profile-optimize exercise in class.

Multi-core computing in R
e Fact: base R is single-threaded.

e Running a benchmark script| (random number generation, numerical linear algebra) on

the teaching server occupies only 1 out of the 12 logical processors.

®00 4 hzhou3 — hzhou3@teaching:~ — ssh — 94x26.
[ Farouseveachin. chmar matian | I

top - 14:59:13 up 12:57, 2 users, load average: 0.72, 2.42, 1.46

Tasks: 498 total, 2 running, 496 sleeping, @ stopped, 0 zombie

Cpu(s): 4.0%us, 0.2%sy, 0.0%ni, 95.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 82510056k total, 3061020k used, 79449036k free, 190704k buffers

Swap: 16777208k total, Ok used, 16777208k free, 1499484k cached

6468 hzhou3 20 @ 362m 178m 3832 R 99.9 0.2 0:24.40 R
6310 hzhou3 20 0 15300 1564 940 R 0.3 0.0 0:02.45 top
1 root 20 0 21424 1576 1264 S 0.0 0.0 0:01.41 init
2 root 20 0o @ @ 0S 0.0 0.0 0:00.00 kthreadd

e To perform multi-core computation in R

— Develop multi-threaded code or libraries in C/C++, Fortran, ... and call from R.
— For embarrassingly parallel single-threaded tasks.

x Option 1: Manually run multiple R sessions

x Option 2: Make multiple system ("Rscript") calls. Typically automated
by a scripting language (Python, Perl, shell script) or within R.
x Option 3: Use package parallel
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http://r.research.att.com/benchmarks/R-benchmark-25.R

e parallel package in R.

— Included in R since 2.14.0 (2011).

— Based on the snow (Luke Tierney) and multicore (Urbanek) packages.

Authors: Brian Ripley, Luke Tieney, Simon Urbanek.
— To find number of cores in the teaching server.
> library(parallel)

> detectCores()
[1] 12

How to utilize these cores to speed up computation?

e (Case study: One common embarrassingly parallel task in statistics is Monte carlo

simulation study.

— E.g., in ST758 (2012, 2013), students are asked to carry out a simulation study
to compare three procedures (LRT, eLRT, eRLRT) for testing Hy : 02 = 0 vs

a

H, : 02 >0 in a linear mixed model (variance component model)
y ~ N(ul,03V; +o21).

Want to compare the size of power of three methods across 16 V; pattern (stored

in n.pattern.list) and 7 02/0? ratios (stored in sigma2.ratio.list).

— Monte carlo estimate of size/power and its standard deviation for each method /pattern/o?

combination can be summarized in a table

02=0 02=01 02=02 02=05 o2=1 o02=2 o02=5

P, LRT 0.0171 0.0500 0.0893 0.2166 0.3892 0.5809 0.7851
(0.0013)  (0.0022) (0.0029) (0.0041) (0.0049) (0.0049) (0.0041)

ELRT  0.0485 0.1175 0.1833 0.3387 0.5243 0.6968 0.8470
(0.0022) (0.0032) (0.0039) (0.0047) (0.0050) (0.0046) (0.0036)

RLRT  0.0487 0.1193 0.1833 0.3392 0.5241 0.6969 0.8479
(0.0022) (0.0032) (0.0039) (0.0047) (0.0050) (0.0046) (0.0036)

P, LRT 0.0126 0.0433 0.0782 0.1822 0.3190 0.4905 0.6869
(0.0011)  (0.0020) (0.0027)  (0.0039) (0.0047) (0.0050) (0.0046)

ELRT  0.0517 0.1195 0.1778 0.3220 0.4618 0.6155 0.7789
(0.0022) (0.0032) (0.0038) (0.0047) (0.0050) (0.0049) (0.0041)

RLRT  0.0502 0.1140 0.1675 0.3164 0.4655 0.6224 0.7869
(0.0022) (0.0032) (0.0037) (0.0047) (0.0050) (0.0048) (0.0041)

P; LRT 0.0144 0.0460 0.0825 0.2081 0.3386 0.5107 0.7100
(0.0012)  (0.0021) (0.0028) (0.0041) (0.0047) (0.0050) (0.0045)

BT RT n NnAQQ n 192N n 1RAN n N2 n A7QK N RANQ N 70RK

— Suppose we have a function compare.tests that compares the methods at a fixed
pattern and signal-to-noise ratio on a large number of Monte carlo replicates

65



compare.tests <- function( n.pattern, sigma2.ratio,
mc.size = 10000, ... )

Need to loop over n.pattern.list and sigma2.ratio.list.

112 embarrassingly parallel tasks. Each might take long with many Monte carlo

replicates.

Let’s try to parallelize the serial code (HW submission by Yichi Zhang) using the
parallel package.

Run the double loop (encapsulated in the compare.tests.all function) on the

teaching server. Monte carlo sample size (mc.size) is set at (ridiculously small)
10

> # perform simulations -- serial code

> set.seed (123, "L’Ecuyer")

> system.time (result.serial <- compare.tests.all (

+ n.pattern.list, sigma2.ratio.list, mc.size = 10))
user system elapsed

238.410 0.148 239.409

Only 1 out of the 12 logical processors being used

8006 4 hzhou3 — hzhou3@teaching:~ — ssh — 94x12 2

hzhou3@teaching:ve_sim hzhou3@teaching:~ |
top - 22:50:24 up 20:48, 2 users, load average: 0.71, 0.24, 0.08 A

Tasks: 498 total, 2 running, 496 sleeping, 0 stopped, 0 zombie

Cpu(s): 4.2%us, 0.0%sy, 0.0%ni, 95.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 82510056k total, 2428740k used, 80081316k free, 216236k buffers

Swap: 16777208k total, Ok used, 16777208k free, 871496k cached

11782 hzhou3 20 @ 310m 120m 5136 R 99.8 0.1 1:13.45 R
1 root 20 @0 21428 1584 1264 S 0.0 0.0 0:01.40 init
2 root 20 0 0 0 0SS 0.0 0.0 0:00.00 kthreadd
3 root RT 0 0 0 S 0.0 0.0 0:00.00 migration/@
4 root 20 0 0 0 0S 0.0 0.0 0:00.28 ksoftirqd/0

Run the same task using mcmapply () function (parallel analogue of mapply) in
the package parallel

# parallel simulations using mcmapply w/o load balancing

set.seed (123, "L’Ecuyer")

system.time (result.mcmapply <- mcmapply ( compare.tests,
rep (n.pattern.list, each = length (sigma2.ratio.list), times = 1),
rep (sigma2.ratio.list, each = 1, times = length (n.pattern.list)),

+ + 4+ VvV Vv VvV

MoreArgs = list (mc.size = 10), mc.cores = 12))
user system elapsed
218.226 0.840 22.378
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— mc.cores=12 instructs using 12 cores

® 00 A\ hzhou3 — hzhou3@teaching:~ — ssh — 100x23 "]
[ hzhous@reachingvcsim | hzhou3@teaching:~ |
top — 23:12:06 up 21:10, 2 users, load average: 2.66, 0.69, 0.48 "
Tasks: 510 total, 13 running, 497 sleeping, 0 stopped, 0 zombie
Cpu(s): 50.0%us, 0.1%sy, 0.0%ni, 49.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 82510056k total, 3726236k used, 78783820k free, 216548k buffers
fwap: 16777208k total, 0k used, 16777208k free, 871628k cached

PID USER PR NI VIRT RES SHR S %CPU SMEM TIME+ COMMAND

11921 hzhou3 20 © 310m 116m 2064 R 100.0 0.1 0:11.26 R

11920 hzhou3 20 @ 305m 111m 2068 R 100.0 0.1 ©0:11.27 R

11922 hzhou3 20 © 306m 112m 2072 R 100.0 0.1 ©0:11.25 R

11923 hzhou3 20 @ 305m 111m 2076 R 100.0 0.1 ©0:11.24 R

11924 hzhou3 20 @ 306m 111lm 2064 R 100.0 0.1 ©0:11.23 R

11925 hzhou3 20 @ 310m 116m 2064 R 100.0 0.1 ©0:11.21 R

11927 hzhou3 20 @ 310m 116m 2076 R 100.0 0.1 ©0:11.19 R

11928 hzhou3 20 @0 310m 116m 2076 R 100.0 0.1 ©0:11.18 R

11929 hzhou3 20 @ 312m 117m 2072 R 100.0 0.1 ©0:11.17 R

11930 hzhou3 20 © 307m 113m 2080 R 100.0 0.1 ©0:11.15 R

11926 hzhou3 20 @ 310m 116m 2056 R 99.6 0.1 0:11.20 R

11931 hzhou3 20 @0 310m 116m 2084 R 99.6 0.1 0:11.14 R

11822 hzhou3 20 @ 15300 1588 944 R 0.7 0.0 0:05.80 top

9 root 20 0 0 0 0SS 0.3 0.0 0:00.04 ksoftirqd/1
2725 root 20 0 0 0 S 0.3 0.0 0:00.92 kondemand/13
2732 root 20 0 0 0 S 0.3 0.0 0:00.85 kondemand/20
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8 Lecture 8, Feb 9

Announcements

e No class and office hours this Wednesday. Instructor out of town.

e HW2 due this Wed @ 11:59PM. Tagging time will be your submission time. No tagging

time = no hw submission.

e HW2 progress.

Matlab (CPU+GPU). Easy.

Julia (CPU+GPU). Use CUDArt and CUBLAS packages.
Python (CPU+4GPU). Ask Xiang Zhang.

R (GPU?).

e A list of potential course projects.
http://hua-zhou.github.io/teaching/st790-2015spr/project.html

More topics will be added. Talk to me about your course project.

Last Time

e A debug-profile-optimize session on NNMF (HW2).

e Parallel computing: multi-core in R.

Today

e Multi-core computing in R (cont’d), Matlab, Julia.

e Cluster computing.

Multi-core computing in R (cont’d)

e Last time we demonstrated how to use parallel package to do multi-core computing

in R on a simulation study. Steps are

1. Write a function to carry out Monte carlo simulation and method comparison for

one combination of levels (one cell in the table).

2. Use mcapply for multi-core parallel computing.
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3. Results are automatically collected in the master session. No need for extra

scripting to collect results from parallel runs.

I’ Demo code is available on course webpage http://hua-zhou.github.io/teaching/
st790-2015spr/vesim. T

Load balancing: Good for small number of parallel tasks with wildly different compu-
tation times

No load balancing: Good for numerous parallel tasks with similar computation times

Master: Master:

Slave 1: Slave 1:

Slave 2: Slave 2:

Slave 3: Slave 3: . g /}
Slave 4: Slave 4: \\_/‘
Slave 5: Slave 5: \\_/

Turn on load balancing by setting mc.preschedule=FALSE

# parallel simulations using mcmapply with load balancing

set.seed (123, "L’Ecuyer")

system.time (result.mcmapplylb <- mcmapply ( compare.tests,
rep (n.pattern.list, each = length(sigma2.ratio.list), times = 1),
rep (sigma2.ratio.list, each = 1, times = length(n.pattern.list)),

+ + + VvV Vv VvV

MoreArgs = list (mc.size = 10), mc.cores = 12, mc.preschedule = FALSE))
user system elapsed
263.397 5.486 21.792

Forking creates a new R process by taking a complete copy of the master process,
including the workspace and random number stream. The copy will share memory

with the master until modified so forking is very fast.

I’& mcmapply, mclapply and related functions rely on the forking capability of POSIX
operating systems (e.g. Linux, MacOS) and is not available in Windows

parLapply, parApply, parCapply, parRapply, clusterApply, clusterMap, and re-
lated functions create a cluster of workers based on either socket (default) or forking

cl <- makeCluster(<size of pool>)
# one or more parLapply calls

stopCluster(cl)
& Socket is available on all platforms: Linux, Mac OS, Windows.
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e Same simulation example using clusterMap with load balancing

> # parallel simulations using clusterMap with load balancing
> cl <- makeCluster (getOption ("cl.cores", 12))
> clusterSetRNGStream(cl, 123)
> clusterExport (cl, c ("generate.design", "generate.response",
+ "simulate.null.samples") )
> clusterEvalQ (cl, library(nlme) )
> clusterEvalQ (cl, library(RLRsim) )
> system.time (result.clusterMaplb <- clusterMap (cl, compare.tests,
+ rep (n.pattern.list, each = length (sigma2.ratio.list), times = 1),
+ rep (sigma2.ratio.list, each = 1, times = length (n.pattern.list)),
+ MoreArgs = list (mc.size = 10), .scheduling = "dynamic") )
user system elapsed
0.115 0.011 22.310
> stopCluster (cl)

e clusterSetRNGStream control random number streams.
e clusterExport and clusterEvalQ copy environment of the master to slaves.

e Many embarrassingly parallel tasks in statistics can be organized in a similar way using

parallel.

— simulation across multiple factors (methods, generative models, signal/noise ra-
tios, sparsity levels, ...)

— bootstrap

— solution path/surface in regularization methods

— independent MCMC chains

— cross validation

— spatial prediction (kriging)

e 5 ~ 15 fold speed-up, depending on the number of cores on your machine.

e Need to make sure each task is thread-safe.
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Multi-core and multi-thread computing in Matlab

e Many Matlab functions, esp. numerical linear algebra (MKL libraries), are multi-
threaded since 2007.

e For example, running a benchmark script on the teaching server occupies up to all 7
(virtual) cores.

® 00 3 hzhou3 — hzhou3@teaching:~ — ssh — B0x14 ol
hzhou3@teaching:~ ssh ... | hzhou3@teaching:~ |
top - 19:56:28 up 1 day, 20:25, 2 users, load average: 1.35, ©.91, 0.46 L

Tasks: 250 total, 1 running, 249 sleeping, @ stopped, @ zombie

Cpu(s): 46.8%us, 7.8%sy, 0.0%ni, 45.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 65895192k total, 5566156k used, 60329036k free, 352612k buffers

Swap: 67108860Qk total, Ok used, 67108860k free, 3951124k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
38397 hzhou3 20 @ 5694m 512m 82m S 658.3 0.8 2:47.89 MATLAB

28496 hzhou3 20 @ 15172 1366 936 R ©.7 @©.0 0:01.87 top
1 root 20 0 23508 1616 1280 S @.0 0.0 9:01.79 init
2 root 20 0 2 0 S 0.0 0.0 0:00.00 kthreadd
3 root RT @ %] %] S 0.0 0.0 0:01.67 migration/@
4 root 20 0@ [*] (%] S 0.0 0.0 0:00.21 ksoftirqd/@
5 root RT @ %] 5] S 0.0 0.0 0:00.00 stopper/@

e parfor (parallel for loop) mechanism for embarrassingly parallel tasks.

e Parallel Computing Toolbox has more to offer (distributed array and SPMD, GPU
computing, parallel MapReduce, cluster computing, ...)

http://www.mathworks.com/help/distcomp/index.html

Multi-core and multi-thread computing in Julia

e Numerical linear algebra (OpenBLAS library) is already multi-threaded.

e Distributed computing capabilities are built in core language.

http://docs.julialang.org/en/release-0.3/manual/parallel-computing/

e Perhaps I can say more later this semester ...

Cluster computing

e Architecture of a computer cluster - computing parts.

— Cluster: a network of workstations (nodes).
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— Compute nodes, login nodes, gateway (I/O) nodes, management nodes, file servers

=

L

I

I T

I

.

S o compute node
===l compu |E‘ login / remote partition server node

S infiniband switch
? " gateway node

rEmEmamImD management hardware

I’= When log into a cluster, always keep in mind you're interacting with the login
nodes, not the commute nodes.

— A chassis (or rack) houses one or more nodes together with power, cooling, con-

nectivity, management, ... This is a rack of our beowulf cluster.

— A node (or blade) contains one or more sockets, memory, a modest size disk drive

holding OS, swap space, and a small local scratch space.

L
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— Each socket holds one processor, e.g., Intel Xeon or AMD Opteron.
— A processor contains one or more cores (logical processors).

— The cores perform FLOPS.
e Architecture of a computer cluster - network.

— Infiniband: 2.5 Gbits/sec.
— 4 x Infiniband: 10 Gbits/sec.
— Hardware: Adapter, switches.

— Nodes within a single chassis usually communicate faster.

Beowulf HPC cluster in department

e Access via
ssh unityID@hpc.stat.ncsu.edu

I’= Use git or svn to synchronize project files.

e Read instructions for submitting jobs.
http://www.stat.ncsu.edu/computing/beowulf_instructions.php
bwsubmit submits single-threaded jobs.
bwsubmit mult submits multi-threaded jobs.

& Each user can use 20 threads at a time.

e Write one script using parallel package and submit by bwsubmit mult seems the

easiest way for organizing embarrassingly parallel R jobs.
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henry2 HPC cluster at NCSU

e 1053 nodes (dual Xeon blade servers)

Compute — -
Nodes - Llognnodes =
==~ 7 and Storage |
el
.
- By
| Message .

* Passing 1

For more info about henry?2 configuration: http://www.ncsu.edu/itd/hpc/main.php

Ask your advisor for an account.

Log in: ssh unityID@login.hpc.ncsu.edu.

Users do not interact with compute nodes directly. Users submit jobs which are sched-

uled to be run on compute nodes.

Some commonly used job schedulers

— Platform LSF (Load Sharing Facility)
Altair PBS Pro

Sun Grid Engine
Microsoft HPC Server 2008
TORQUE

e henry?2 uses LSF.

e Some commonly used LSF commands

bsub: submit a batch job to LSF system
— bkill: kill a running job

— bjobs: status of jobs in the queue

— bpeek: display output and error files

— bhist: history of one or more LSF jobs

74


http://www.ncsu.edu/itd/hpc/main.php

— bqueues: info about LSF batch queues
e Example: Let’s try to run an R script simulate.fork.r on henry2.
e Have following files ready in the working directory

— simulate.fork.r
R script file

— R.csh

R configuration file

— henry2_submit_fork
Shell script file for LSF job submission

— RLRsim_2.0-11.tar.gz

necessary files for installing R libraries

e simulate.fork.r is the R script to be run on cluster

# RLRsim package required for LR and RLR test

install.packages ("./RLRsim_2.0-11.tar.gz", repos=NULL, lib="./libs")
library (RLRsim,lib.loc="./1libs")

# load libraries

library (compiler)

library (nlme) # requied for lme()

library (parallel)

# parallel simulations using mcmapply with load balance

set.seed (123, "L’Ecuyer")

mc = detectCores ()

mc

system.time (result.mcmapplylb <- mcmapply (compare.tests,
rep (n.pattern.list, each = length(sigma2.ratio.list), times = 1),
rep (sigma2.ratio.list, each = 1, times = length(n.pattern.list)),

MoreArgs = list (mc.size = 10), mc.cores = mc, mc.preschedule = FALSE))

e henry2_submit_fork is the shell script for LSF job submission
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[hzhou3@login®@5 henry21$ cat henry2_submit_fork
#!/bin/tcsh

#BSUB -n 12

#BSUB -W 10

#BSUB -R em64t

#BSUB -R span[hosts=1]

source ./R.csh

R CMD BATCH —-vanilla simulate.fork.r
#BSUB -0 out.%J

#BSUB —e err.%J

[hzhou3@login®@5 henry21$ i

— #BSUB -n 12 requests 12 processors (logical cores, threads).
— #BSUB -W 10 requests maximum of 10 minutes.
— #BSUB -R em64t requests 64-bit machines.

— #BSUB -R span[hosts=1] requests all 12 processors to be on the same machine.

Note mcmapply relies on forking, which is a shared memory model.

— #BSUB -o out.%J and #BSUB -o err.%J specify output files

e R.csh configures the path for R program

[hzhou3@login®5 henry2]$ cat R.csh
#

# file to set up csh/tcsh shell environment

# to use R

#

setenv R /usr/local/apps/R/em64t/R—-2.15.1_gnu_mpich2/bin
set path = ($R $path)

if !'($?MANPATH) then

setenv MANPATH /usr/local/apps/R/em64t/R-2.15.1_gnu_mpich2/share/man/manl: man -w"
else

setenv MANPATH /usr/local/apps/R/em64t/R—-2.15.1_gnu_mpich2/share/man/manl: $MANPATH
endif

[hzhou3@login®5 henry2ls N

e Submit job to LSF scheduler by bsub and check status by bjobs

[hzhou3@login@5 henry2]$ bsub < henry2_submit_fork
Job <111391> is submitted to default queue <short>.
[hzhou3@login®5 henry21$ bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
111391 hzhou3 PEND short login@5 *x—e err.%J Mar 10 22:13
[hzhou3@login®5 henry21$ bjobs

JOBID  USER STAT QUEUE FROM_HOST  EXEC_HOST  JOB_NAME  SUBMIT_TIME
111391 hzhou3 RUN short login@5 12xbc2c3 *x—e err.%J Mar 10 22:13

[hzhou3@login@5 henry2]$
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e Wait for the job to finish. Several files are generated in working directory

— out.111391 and err.111391: standard and error LSF output files
— simulate.fork.r.Rout: screen display of R session

— result.fork.RData: output data saved by R script

e Portion of out.111391

8 00 4 hzhou3 — ssh — 126x32 2
ssh ssh

[hzhou3@login@5 henry2]$ cat out.111391

Sender: LSF System <lsfadmin@n2c3-13>
Subject: Job 111391: <#!/bin/tcsh;#BSUB —n 12 ;#BSUB -W 10 ;#BSUB -R em64t ;#BSUB -R span[hosts=1];source ./R.csh;R CMD BATCH
—vanilla simulate.fork.r ;#BSUB -o out.%J;#BSUB -e err.%J> Done

Job <#!/bin/tcsh;#BSUB -n 12 ;#BSUB -W 10 ;#BSUB -R em64t ;#BSUB -R span[hosts=1];source ./R.csh;R CMD BATCH --vanilla simulat
e.fork.r ;#BSUB -0 out.%J;#BSUB —e err.%J> was submitted from host <login®@5> by user <hzhou3> in cluster <henry2>.

Job was executed on host(s) <12xn2c3-13>, in queue <short>, as user <hzhou3> in cluster <henry2>.

</home/hzhou3> was used as the home directory.
</home/hzhou3/workspace/ST810-2013-Spring/slides/Lec@8_parallel/material/vc_sim/henry2> was used as the working directory.
Started at Sun Mar 10 22:13:24 2013

Results reported at Sun Mar 10 22:13:53 2013

Your job looked like:

# LSBATCH: User input

#!/bin/tcsh

#BSUB -n 12

#BSUB -W 10

#BSUB -R em64t

#BSUB —R span[hosts=1]

source ./R.csh

R CMD BATCH —-vanilla simulate.fork.r
#BSUB -0 out.%J

#BSUB -e err.%J

Successfully completed.

e Portion of simulate.fork.r.Rout

> # parallel simulations using mcmapply with load balance

> set.seed (123, "L’Ecuyer")

> mc = detectCores ()

> mc

[1] 12

> system.time (result.mcmapplylb <- mcmapply (

+ compare.tests,

+ rep (n.pattern.list, each = length(sigma2.ratio.list), times = 1),

+ rep (sigma2.ratio.list, each = 1, times = length(n.pattern.list)),

+ MoreArgs = list (mc.size = 10), mc.cores = mc, mc.preschedule = FALSE))
user system elapsed

284.954 8.231 26.172

>
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# save results
save(n.pattern.list, sigma2.ratio.list,

result.mcmapplylb, file = "result.fork.RData")

VvV V V 4+ VvV V

proc.time()
user system elapsed
287.951 8.374 29.419

e Shell script for submitting simulate.socket.r which uses clusterMap

8 0 6 4 hzhou3 — ssh — 88x12

| | ssh |

[hzhou3@login@5 henry2]$ cat henry2_submit_socket
#!/bin/tcsh

#BSUB -n 16

#BSUB -W 5

#BSUB -R em64t

setenv MPICH_NO_LOCAL 1

source ./R.csh

R CMD BATCH —--vanilla simulate.socket.r
#BSUB -0 out.%J]

#BSUB -e err.%J]

[hzhou3@login@5 henry21$ JI

— Note clusterMap relies on socket and in principle works with any number of
processors

— setenv MPICH_NO_LOCAL 1 specifies that all MPI messages will be passed through

sockets, not using shared memory available on a node

Other HPC resources on campus

e BRC cluster. R/Matlab and GPUs available. Ask Tao Hu.
http://scarlatti.statgen.ncsu.edu/cluster_workshop/doku.php

e ARC cluster. Ask your advisor for an account. R/Matlab not available. Only compiled
code. GPUs available.

http://moss.csc.ncsu.edu/~mueller/cluster/arc/
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9 Lecture 9, Feb 16

Announcements

e HW2 graded. grade unityID.md committed to your master branch.

Last Time

e Cluster computing.

Today

o HW2 feedback.

e GPU computing.

HW2 feedback

e Solution sketch in Matlab and Julia:
http://hua-zhou.github.io/teaching/st790-2015spr/hw02s0l.html

e Languages (Matlab, Julia, R, Python).

— For CPU code, Julia offers more low-level memory management capabilities, lead-

ing to more efficient computation.

— For GPU programming, Matlab wins hands down in ease of use. Julia GPU com-
puting relies on the CUDArt. j1 and CUBLAS. jl packages. Currently CUBLAS.jl
implements approximately half of BLAS functions, including gemm. For non-BLAS
computations such as elementwise multiplication and division, users need to write
their own CUDA kernel functions.

For using GPU in Python, ask Xiang Zhang and Zhen Han. For using gputools
package in R, ask Brian Naughton.

e Effects of starting points. Non-convexity implies possible existence of multiple local
minima. Identifiability issue: VW = VOO~'W for any non-singular r x r matrices.
(0) ©) — 19

What happens when starting from v;;” = w jz

e Interpretability of basis images from NNMF. The following figure (Hastie et al., 2009,
p5h5) contrasts the different basis images obtained by NNMF, VQ (vector quantization),
and PCA. For a mathematical explanation of what NNMF does, see Donoho and
Stodden| (2004)).
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Original

FIGURE 14.33. Non-negative matriz factorization (NMF), vector gquantization
(VQ, equivalent to k-means clustering) and principal components analysis (PCA)
applied to o database of facial images. Details are given in the text. Unlike VQ
and PCA, NMF learns to represent faces with a set of basis images resembling
parts of faces.

e Different kinds of GPUs. I ran the same Matlab and Julia code on the teaching server,
a desktop, and a laptop. They represent common GPUs we see everyday. Note these
models are a couple years old and stand for technology around 2011.

e CPU vs GPU.

— Gain of GPU over CPU depends on specific cards and precision. Baby GPUs on
laptops show no gain on DP computations.

80



e GPU SP (single precision) vs GPU DP (double precision).

— Do they get same objective values? Do we have to use double precision? For ex-

ample, in MCMC, Monte Carlo errors often far exceed numerical roundoff errors.

— How’s the timing using SP vs DP? Tesla card has similar SP and DP performance.
GTX card has higher SP performance than DP. Baby GPUs on laptops show no

gain on DP computations.

Introduction to GPU computing

e GPUs are ubiquitous: servers, desktops, and laptops.

NVIDIA GPUs Tesla M2090 GTX 580 GT 650M

Computers servers, cluster desktop

Main usage scientific computing gaming gaming
Current version K40 GTX 980 GTX 900M
Memory 6GB 1.5GB 1GB
Memory bandwidth 177GB/sec 192GB/sec 80GB/sec
Number of cores 512 512 384
Processor clock 1.3GHz 1.5GHz 0.9GHz
Peak DP performance 666GHlops
Peak SP performance 1332Gflops 1581 Gflops 691Gflops
Release price $2500 $500 OEM

e Cost effective for high performance computing.
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Theoretical GFLOP/s

5750
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5250 GeForce 780 Ti

5000 ==p==NVIDIA GPU Single Precision
4750 @ NVIDIA GPU Double Precision

4500 ss=s==Intel CPU Double Precision GeForce GTX TITAN

4250 emgmm|ntel CPU Single Precision

4000

3750

3500

3250

3000 GeForce GTX 680
2750

2500

2250

2000

1750 GeForce GTX 580
1500 GeForce GTX 480
1250

1000
750 GeForce 8800 GTX

Tesla K40
Tesla K20X

GeForce GTX 280
Tesla M2090
Tesla C2050
500 GeForce 7800-GTX

GeForce 6800 Ultra
250 GeForce FX 5800

Ivy Bridge

Westmere

Nov-10 Apr-12 Aug-13 Dec-14

Pentium 4

Bloomfield
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Floating-Point Operations per Second - Nvidia CUDA C Programming Guide
Version 6.5 - 24/9/2014 - copyright Nvidia Corporation 2014

e GPU architecture vs CPU architecture.

CPU GPU

- ] ) ol
Control Control ﬂ_ I‘— “— “— II- ll- Il- Il-

Cache Cache

o e
5

— GPUs contain 100s of processing cores on a single card; several cards can fit in a
desktop PC

— Each core carries out the same operations in parallel on different input data —
single program, multiple data (SPMD) paradigm.

— Extremely high arithmetic intensity *if* one can transfer the data onto and results
off of the processors quickly.

82



An analogy taken from Andrew Beam’s presentation in ST790. Also see https:
//www.youtube.com/watch?v=-P28LKWTzrI.

e Which cards to use?

— Three major manufacturers of GPUs: AMD, NVIDIA, and Intel.

— So far NVIDIA cards are more widely adopted for GPGPU.
E.g., GPU servers in our department and NCSU henry?2 cluster all have NVIDIA.

— NVIDIA has a much richer set of GPU math libraries

AMD NVIDIA Intel
Cards ATI Radeon GTX, Tesla Xeon Phi coprecessor
Language OpenCL CUDA C/C++, PGI CUDA Fortran C/C++, Fortran, OpenCL
GPU math libraries  clMath (BLAS,FFT) cuBLAS, cuFFT, cuSPARSE, cuSolver MKL
cuRAND, CUDA MATH, Thrust, ...
Platforms Linux, Windows Linux, Windows, MacOS Linux, Windows

I’= On the other hand, cross-platform feature of OpenCL, adopted by Intel and AMD,

1s attractive.

e My experience with GPGPU (general purpose GPU computing).

— Almost always involve (new) algorithm development and/or revamping CPU code.
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— Research before going for GPGPU.

— Easier to develop in C/C++ (free compiler), Fortran (compiler $), and Matlab.

— Do not reinvent the wheel — use libraries.

e Before using GPUs, do following.

0.
1.

Frustrated by slow code ...
Am T using the right algorithm(s)?

Go to your ST758 notes or a numerical analysis book.
Repeat: Profile and optimize original code
Can a compiled language or optimized library (MKL, ATLAS) help?

Identify the bottleneck routine and research the potential gain on GPU. Do your

own benchmark specific to your own problem and data size
Can my data fit into GPU memory?

Can other steps besides the bottleneck be easily implemented on GPU? Will any
of them become the new bottleneck?

Decide the toolchain: Matlab, Julia, CUDA, PGI toolchain, ...

e GPGPU development toolchains.

— Use a higher level language such as Matlab, Julia or Python, if they happen to

provide all functions we need.

— CUDA® toolchain provided by NVIDIA®

https://developer.nvidia.com/cuda-zone

* C/C++
* free

x only for NIVIDA cards

— PGI® toolchain (CUDA Fortran)

https://www.pgroup.com/resources/cudafortran.htm

* C/C++, Fortran
* $3%
x only for NVIDIA cards

— OpenCL™ (Open Computing Language)

* Oopen source
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x Specs for cross-platform, parallel programming of modern processors (PCs,

servers, handheld /embedded devices)
x Adopted by Intel, AMD, NVIDIA, Qualcomm, ...

Mathematical libraries on GPUs

e Many statistical computing subroutiens are covered by the BLAS, LAPACK, sparse

linear algebra, random number generation, and other standard libraries.

e Availability of mathematical libraries on GPUs.

— NVIDIA® CUDA® math libraries.

x Optimized for NVIDIA GPUs

* cuBLAS, cuSPARSE, cuRAND, cuFFT, CUDA Math Library, Thrust (data
structures and algorithms), cuSolver (CUDA v7.0).

x Platforms: Linux (free), MacOS (free) and Windows (free)
— Intel© MKL library.

* Support both Intel® CPUs and Xeon Phi coprocessors since v11.0 (2013)
x BLAS, LAPACK, FFT, sparse linear algebra, random number generation, ...
* Platforms: Linux (free) and Windows ($), no MacOS support ®

— AMD® cIMath® library.

* For AMD GPUs
x BLAS, FFT

« Platforms: Linux (free) and Windows (free)
— Third-party libraries

x CULA ($): CUDA LAPACK

* MAGMA (free): OpenCL LAPACK

= NVIDIA’s rich collection of math libraries is very attractive.
e Some dense linear algebra benchmark results.

— cuBLAS on NVIDIA K40m.

85



3500
3000 -
2500 |-
9 2000 -
Q

S

& 1500 1-
1000 +-

500 +-

. >3 TFLOPS single-precision
CUBLAS: >1 TFLOPS double-precision

: £z E| |£ 33 8| =:3 % |EE 3 2
w = e > w E @ > w E o > E = 4 >
& @ E @ o b £ @& o @b £ 2 e B K R
Iy w 0w ] o o Q (5] a = a a N N N

Single Single Complex Double Double Complex

« cuBLAS 6.0 on K40m, ECC ON, input and output data on device

Performance may vary based on 05 version and motherboard configuration » m=n=k=4096, transpose=no, side=right, fill=lower

— zgemm cuBLAS on NVIDIA K40m vs MKL on Xeon E5-2697 v2 @ 2.7GHz.

cuBLAS: ZGEMM 5x Faster than MKL

1200
1000
a00
w
-9
Q
T 600 - ——cuBLAS
Q
—MKL
400
200
0 T T T T T T T T
] 500 1000 1500 2000 2500 3000 3500 4000
Matrix Dimension (m=n=k}
» cuBLAS 6.0 on Kd0m, ECC OM, input and output data on device
Performance may vary based on 05 version and motherboard configuration + MKL 11.0.4 on Intel yBridge 12-core E5-2657 vZ @ 2.70GHz

— dgemm MKL on Xeon Phi® 7120P vs MKL on Xeon 12-core E5-2697 v2 @ 2.7GHz.
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Matrix Multiply Performance using Intel” Math Kernel Library
onIntel” Xeon Phi” Coprocessor 7120P and Intel” Xeon® Processor €5-2697 v2

DGEMM
1200
_ 1000 -
5w
2w

256 S12 1024 153 2088 2560 3072 3583 4006  460B 5120 5632 6144 6655 7168 7680 8102 8704 6216 9728 10240
Hatrix Size (M=N=K)

‘~-Hative Execution On Intel* Xeon Phi” Coprocessor 7120 ~mIntel" Xeon* Processor £5-2697 42

e Sparse linear algebra. cuSPARSE on K40m vs MKL on Xeon E5-2697 v2 @ 2.7GHz.

cuSPARSE: 5x Faster than MKL

Sparse Matrix x Dense Vector (SpMV)

«+ Average of s/c/d/z routines

+ CUSPARSE 6.5 on K40m, ECC ON, input and output data on device

+ MKL 11.0.4 on Intel IvyBridge single socket 12-core E5-2697 v2 @ 2.70GHz
Performance may vary based on OS version and motherboard configuration « Matrices obtained from: http://www.cise.ufl.edu/research/sparse/matrices/ 17

e Random number generation. cuRAND on K40m vs MKL on Xeon E5-2697 v2 @
2.7GHz.

cuRAND: Up to 70x Faster vs. Intel MKL

= cuRAND
MKL

GSamples / sec

Sobol32 MRG32k3a Sobol32 MRG32k3a MRG32k3a
Uniform Distribution Normal Distribution Log-Normal Distribution

« CURAND 6.5 on K40c, ECC ON, double-precision input and output data on device
performance may vary based on OS version and motherboard configuration * MKL 11.0.4 on Intel IvyBridge single socket 12-core E5-2697 v2 @ 2.70GHz 19
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10 Lecture 10, Feb 18

Announcements

e TA’s Friday office hour changes to Thu Feb 19 @ 2P-3P.

o HW3 deadline extended to Feb 25 @ 11:59PM.

Last Time

e GPU computing: introduction.

Today
e GPU computing: Matlab, Julia, R.

e GPU computing: case studies.

e Convex programming.

GPU computing in Matlab

e Getting started.

— Query available GPU devices: gpuDevice().

800 MATLAB R2014a o
HOME PLOTS APPS R NG NN Q Search Doc on ﬂ
< % (5 & [/ » Users » hzhou3 » Documents » MATLAB » -lo
Current Folder e Virkspace e
B Name & >> gpuDevice Name & Value
Apps ans 1x1 parallel.gpu.CUDAL
» oo ans =
» [ html
« baseball_estimate.eps CUDADevice with properties:
[ c:\Users\gainer19\ Docume...
» 5 cvx-maci64.zip Name: ‘GeForce GT 650M'
7] dimeell.m Index: 1
#) jin_pcolor.m ComputeCapability: '3.0'
Y mytext.txt SupportsDouble: 1
) testixt DriverVersien: 6.5000

ToolkitVersion: 5.5000
MaxThreadsPerBlock: 1024
MaxshmemPerBlock: 49152
MaxThreadBlocksize: [1024 1024 64]
MaxGridSize: [2.1475e+09 65535 65535]
SIMDWidth: 32
TotalMemory: 1.073de+09
FreeMemory: 25944064
MultiprocessorCount: 2
ClockRateKHz: 900000
ComputeMode: ‘Default’
GPUOverlapsTransfers: 1
KernelExecutionTimeout :
CanMapHostHemory :
DeviceSupported:

1
1
1
DeviceSelected: 1

— List built-in functions that support GPU: methods(’gpuArray’). Nearly 300
built-in functions in Matlab 2014a support GPU.

88



600 MATLAB R2014a 2

4 % (5 G 02/ » Users » hzhou3 » Docu »
Current Folder ® Wo.. ®
B Names N
Apps @] an:
» Clo
> e
& baseball_estimate.eps
nerl
>
ezplots e
ezpotar inerode streantine
ezsurt infill streanparticles
ezsurfc infilter
any contourt feather
appiylut contourstice
conv e
arraytun conv2 frerte
conv fren
corr2 fu
osh
ot
oth
divergence
dot
double
edge
eig
end
eps
e
ert
erte
existsongry
exp i
imadjust isocaps
ezcontour inag isocolors pie stair
Static methods:
int Loadob) nan rand randn zeros
false Uinspace Logspace ones randi true
Deuits ~ g

e Scheme for GPU algorithm development on Matlab.

% transfer data to GPU and initialize variables
gX

gy
gBetahat = gpuArray.randn (5, 1);

gpulrray (X);

gpulrray (Y);

% computation on GPU

% transfer result off GPU
betahat = gather (gBetahat);

I’= Key: minimize memory transfer between host memory and GPU memory

e Always benchmark the specific bottleneck routine in CPU. If the bottleneck routine
does not enjoy GPU acceleration, there is no point embarking on GPU computing. E.g.,
to benchmark A\b (solve linear equations) on my desktop: paralleldemo_gpu_backslash()
in Matlab 2014a
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Single-precision performance
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Intel i7 960 CPU vs NVIDIA GTX 580 GPU

GPU computing in R
e Not supported in base R (opportunity? HiPLARM package).

e A few contributed packages in specific application areas: gputools (some data-mining

algorithms), cudaBayesreg (fMRI analysis), ...

e Develop in C/C++ or Fortran and call compiled code from R.

GPU computing in Julia

Various packages are being developed at https://github.com/JuliaGPU. See HW2 solution
for the NNMF example using CUDArt. j1 and CUBLAS. j1 packages.

GPU case study 1: NNMF

If your language (Matlab or Julia) happens to provide interface to all GPU libraries you need,
then the job can be easily done. In the NNMF example, we only need matrix multiplication

and elementwise matrix multiplication and division. See HW2 solution for sample code.
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GPU case study 2:

»Yd)-

e Data: tube readings y = (y1, ...

e Estimate: photon emission intensities (pixels) A = (Aq, ...

e Poisson Model:

PET imaging

An array of 36 detectors

Detector §

Emission of a pair
of photons

Detector |

Detector 23 Head of the patient

 Ap)-

p
Y; ~ Poisson (Z Cij)\j) ,

j=1

where ¢;; is the (pre-calculated) cond. prob. that a photon emitted by j-th pixel is

detected by i-th tube.

e Log-likelihood:

LAly) =)

()

Py

-+ const.

Essentially a Poisson regression with constraint A; > 0.

e Issues: grainy image and slow convergence
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Regularized log-likelihood for smoother image:

L) -5 D0 (= A)

{j,k}YeN

= Z [yi In (Z Cij)\J) — Z Cij)\j] - % (Aj — )2,
{

i ,k}eN

(2

J

J

where p > 0 is a tuning constant.

Which algorithm?

— Newton algorithm needs to solve a large linear system at each iteration ®

— In ST758 (2014, notes p145-p149), we derived an MM algorithm for minimizing
the regularized log-likelihood.

MM algorithm for PET:

Initialize: A\” = 1
repeat
2 = ie N (g ear)
for j =1topdo
a==2uN;|, b= (NG + T M) 1 e =3, 2

ij
A = (—b — Vb7~ dac)/(2a)
end for

until convergence occurs

Parameter constraints \; > 0 are satisfied when start from positive initial values.

Update of zi(jt») succumbs to BLAS (matrix-vector multiplication) and elementwise mul-

tiplication and division.
The loop for updating pixels can be carried out independently — massive parallelism.

A simulation example with n = 2016 and p = 4096 (provided by Ravi Varadhan).
CPU code implemented using BLAS in the GNU Scientific Library (GSL). GPU code
implemented using cuBLAS.

— Runtime on a typical computer in 2009:
CPU: Xeon E5450 @ 3GHZ (1 thread)
GPU: NVIDIA GeForce GTX 280
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CPU GPU

Penalty Iters Time Function Iters Time Function Speedup
0 100000 14790 -7337.152765 100000 282 -7337.153387 52
1077 24457 3682 -8500.083033 24457 70 -8508.112249 53
106 6294 919 -15432.45496 6294 18 -15432.45586 51
107° 589 86 -55767.32966 589 2 -55767.32970 43

— Runtime on a typical computer in 2011:
CPU: i7 @ 3.20GHZ (1 thread)
GPU: NVIDIA GeForce GTX 580

CPU GPU
Penalty u Iters Time Function Iters Time Function Speedup
0 100000 11250 -7337.152765 100000 140 -7337.153387 80
1077 24506 2573 -8500.082605 24506 35 -8508.112249 74
10~6 6294 710 -15432.45496 6294 9 -15432.45586 79
1075 589 67 -55767.32966 589 0.8 -55767.32970 84

I'& Performance of CPU increases by about 0%, while GPU increases by 100%

e Lessons learnt.

— Algorithm development. EM/MM

x separate variables. Break a complex optimization into numerous independent

simple optimizations (massive parallelism)
x avoid solving large linear systems; only BLAS routines involved

* exploit high throughput of BLAS routines on GPU

— cuBLAS library eases the GPU implementation

e C++ source code is available at http://hua-zhou.github.io/teaching/st790-20155pr/
pet.tar.gz

GPU case study 3: MDR for GWAS
e SNP and GWAS.

— Human genome consists of 3 billion pairs of letters (A,C,G,T)
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— Two people’s genome sequences are 99.9% identical

SNP (single nucleotide polymorphism) is a single-letter change in DNA
About 1 in 1000 DNA letters vary in the form of a SNP

— Genome-wide association study (GWAS) tries to find association of the trait of

interest (disease or not, blood pressure, height, ...) and each SNP

e MDR for detecting SNP interactions.
— Multifactor dimensionality reduction (MDR) is a method for detecting association
of a binary trait (0/1,control/disease) and SNP pairs
— For each SNP pair

x count number of Os and 1s for each genotype combination
« declare that genotype combination as causal (ny > ng) or protective (n; < ny)

« predict disease status using the declared causal/protective status of genotype

combinations
— Rank SNP pairs according to their predictive power

— Alternatively we can do Pearson’s x? test for contingency table

SNP1

—1
|
=



http://en.wikipedia.org/wiki/Multifactor_dimensionality_reduction

e Computation challenge and parallelism.

— For either MDR or Pearson, we need to construct tables for (’2’) SNP pairs
— For p=10°, (5) =~ 5 x 10"

— Massive parallelism: tables for SNP pairs (1,2),...,(p — 1,p) obviously can be

2

constructed in parallel

How to organize? Merry-go-round.

\Golub and Van Loan| (1996, Section 8.4)

43

]

CHAPTER 8. THE SYMMETRIC EIGENVALUE PROBLEM

lelism of the latter algorithm. To illustrate this, suppose n = 4 and group
the six subproblems into three rotation sets as follows:

rot.set(1) = {(1,2),(3,4)}
rot.set(2) = {(1,3),(2,4)}
rot.set(3) = {(1,4),(2,3)}

8.4. JACOBI METHODS 433
Egg rot.set(7) = {(1,3),(2,5),(4,7),(6,8)}

We can encode these operations in a pair of integer vectors top(1:n/2) and
bot(1:n/2). During a given round top(k) plays bot(k) , k = 1:n/2. The
pairings for the next round is obtained by updating top and bot as follows:

function: [new.top, new.bot] = music(top, bot,n)
Note that all the rotations within each of the three rotation sets are “non- [new.top | b

» That is, (1,2) and (3,4) can be carried out in e

parallel. Likewise the (1,3) and (2,4) subproblems can be executed in par- g k=1
allel as can subproblems (1,4) and (2,3). In general, we say that i new.top(1) = 1

(i1,30), (2, 2)y s (imrdw) N = (n = /2 e (k) = bot(1)
N . ;o P . elseif k > 2
is a parallel ordering of the set {(i,j) |1 <i< j<n}iffors=1n-1 new.top(k) = top(k — 1)
the rotation set rot.set(s) = { (ir,jr) : 7 = 1+ n(s —1)/2:ns/2 } consists end P
of nonconflicting rotations. This requires n to be even, which we assume fk=m
throughout this section. (The odd n case can be handled by bordering k= bot (k) = top(k)
A with a row and column of zeros and being careful when solving the o AR =P
subproblems that involve these augmented zeros.) © w.bot (k) = bot(k +1)

A good way to generate a parallel ordering is to visualize a chess tourna- d new- -

ment with n players in which everybody must play everybody else exactly end en

once. In the n = 8 case this entails 7 “rounds.” During round one we have
the following four games:

ngg rot.set(1) = {(1,2),(3,4),(5,6),(7,8) }

Using music we obtain the following parallel order Jacobi procedure.

Algorithm 8.4.4 (Parallel Order Jacobi ) Given a symmetric AeRV"
and a tolerance tol > 0, this algorithm overwrites A with V7 AV where V

ie., 1 plays 2, 3 plays 4, etc. To set up rounds 2 through 7, player 1 stays is orthogonal and of(VTAV) < toll| Allp - Tt is assumed that n is even.

put and players 2 through 8 embark on a merry-go-round:

V=l
[E]2]3]5] N - = toll A
s ] ot.set(2) = {(1,4),(2,6),(3,8),(5,7)} z; = m!lm bl,lyf= soom
while off(A) > eps

S rot.se(s) = {(1,6),(4,8), 27,39} forsel=1n1

p = min(top(k), l;::t(’;c))
rot.set(4) = {(1,8),(6,7),(4,5),(2,3)} '(’C: :‘)“‘;‘(:i"n(]":ch“g& 24)

A=J(p,q,0)TAJ(p,q,6)

[6] vV =VJ(p,q,6)

[~
([

rot.set(s) = {(1,7),(5,8),(3,6),(2,4)} end

[top, bot) = music(top, bot, n)

[«[]
E
8
a

rot.set(6) = {(1,5),(3,7),(2,8), (4,6)} ﬂ end

o Try it.
— Download the source code
wget http://hua-zhou.github.io/teaching/st790-2015spr/mds.tar.gz
— Extract files tar -zxvf mds.tar.gz
— Browse the contents of the mds folder

* source: main.cpp, mds.cpp, mds.h, mds_kernel.cu
*x make file: Makefile
* test data: gawl7.txt (500 individuals, 10000 SNPs)

— Compiling on the teaching server
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g++ —-c -02 -I/usr/local/cuda-6.5/include *.cpp

nvcc -02 -c *.cu

g++ -o mdsmain -L/usr/local/cuda-6.5/1ib64 -lcudart *.o

or use the make file. It yields the executable mdsmain.

— Run it on teaching server.

CPU: Xeon E5-2640 @ 2.5GHZ (1 thread)

GPU: NVIDIA Tesla M2090.
We see > 20 fold speed up.

® O O [ | mds — hzhou3@teaching:~/mds — ssh — 43x32

[hzhou3@teaching mds]$ ./mdsmain

Read in data: ./gawl7.txt
# individuals = 500
# SNPs = 10000

CPU is being used

Perform MDS ...
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Output to file: ./gawl7.txt.out

Algorithm:
CPU

Elapsed Time:
165

[hzhou3@teaching mdsl$
[hzhou3@teaching mds]$
[hzhou3@teaching mds]$
[hzhou3@teaching mdsls [

e CPU host code.
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8.0 0  [mds— ing:~/mds — ssh — 43x32 "
[hzhou3@teaching mds]$ ./mdsmain —-GPU @ 8|

Read in data: ./gawl7.txt
# individuals = 500
# SNPs = 10000

GPU device @ is being used:
Tesla M2090

Perform MDS ...

Allocate device memory ...
Transfer data to device memory ...
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Free device memory ...

Output to file: ./gawl7.txt.out
Algorithm:
GPU

Elapsed Time:
7




| 4 P | |cimds.cpp ) No Selection

void MDS::SolveMDS_CPU (void) {
int snpl, snp2, idx=0;
intx classifyInt = new int[9];
intx gidx = new int[N];
int* genotypeRowIdx;
for (int r=0; r<S-1; r++) {
if (r%((S-1)/10)==0) cout << 10%(r/((S-1)/10)) << "%\n";
for (int pidx=0; pidx<S/2; pidx++)
snpl = ((pidx-r)>=0)? (pidx-r):(S-1+pidx-r);
snp2 = ((S-r-2-pidx)>=0)? (S-r-2-pidx):(2xS-pidx-r-3);
if (pidx==(S/2-1)) snp2=S-1;
for (int i 1<9; i++) classifyInt([il=0;
for (int i=0; i<N; i++)
genotypeRowIdx = hGenotypeInt+ixS;

gidx[i] = 3=*(x(genotypeRowIdx+snpl))+(x(genotypeRowIdx+snp2));
classifyInt[gidx[il] += hPhenotypeInt[i];

for (int i=0; i<9; i++)
classifyInt[i] = (classifyInt[i]>=0)? 1:-1;
hPredictInt[idx] = 0;
for (int i=0; i<N; i++) {
hPredictInt[idx] += (classifyInt[gidx[i]l]==hPhenotypelInt([i]);
}

idx++;
}
}
delete [] classifyInt;
delete [] gidx;

e GPU host code.

809 Sdaco .
me | < > | o mds.cpp) [¥] MDS::SolveMDS_CUDA (void)

void MDS::Setup_CUDA (void) {
// allocate vectors/arrays in device memory
cout << "Allocate device memory ... \n";
//size_t pitch;
//cudaMallocPitch((void**)&dGenotypeInt, &pitch, Sxsizeof(int), N);
cudaMalloc((void*x)&dGenotypeInt, NxSksizeof(int));
cudaMalloc((void**)&dPhenotypeInt, Nkxsizeof(int));
cudaMalloc((void*x)&dPredictInt, (S/2)*sizeof(int));

// transfer data to device

cout << "Transfer data to device memory ... \n";

//cudaMemcpy2D(dGenotypeInt, pitch, hGenotypeInt, 2%Sksizeof(int),

// 2xSksizeof(int), N, cudaMemcpyHostToDevice);

cudaMemcpy (dGenotypeInt, hGenotypeInt, NxSksizeof(int),
cudaMemcpyHostToDevice) ;

cudaMemcpy (dPhenotypeInt, hPhenotypeInt, Nksizeof(int),
cudaMemcpyHostToDevice);

}

void MDS::Cleanup_CUDA (void) {
// free vectors/arrays in device memory
cout << "Free device memory ... \n";
if(dGenotypeInt) cudaFree(dGenotypelnt);
if(dPhenotypeInt) cudaFree(dPhenotypelnt);
if(dPredictInt) cudaFree(dPredictInt);

}

void MDS::SolveMDS_CUDA (void) {

// initialize

Setup_CUDA();

// (S-1) sweeps to classify genotypes|

for (int round=0; round<S-1; round++) {
// cout << "round " << round << endl;
if (round%((S-1)/10)==0) cout << 1@x(round/((S-1)/10)) << "%\n";
“DS_kernel_fh (round, N, S, dGenotypeInt, dPhenotypeInt, dPredictInt);
cudaMemcpy (hPredictInt+round%(S/2), dPredictInt, S/2%sizeof(int),

cudaMemcpyDeviceToHost) ;

}
// clean up
Cleanup_CUDA();

e GPU device code.
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® 00 | 1 mds_kernels.cu "

ml < > | j » [/ MDS_kernel (const int r, const int N, const int S, int* genotypelnt, const int* phenot...
// Device code

__global__ void
MDS_kernel (const int r, const int N, const int S,
int* genotypeInt, const int phenotypelnt,
int* predictInt)
{
int pidx = blockIdx.x x blockDim.x + threadIdx.x;
if (pidx < $/2) {
// assign snp pair
int snpl = ((pidx-r)>=0)? (pidx-r):(S-1+pidx-r);
int snp2 = ((S-r-2-pidx)>=0)? (S-r-2-pidx):(2%S-pidx-r-3);
if (pidx==(S/2-1)) snp2=S-1;
// allocate classifyInt vector for this snp pair
int classifyInt[9];
for (int i=0; i<9; i++)
classifyInt[i]l=0;
// loop over individuals to classify genotypes
intx genotypeRowPtr;
int gidx;
for (int i=0; i<N; i++) {
genotypeRowPtr = genotypeInt + i%S;
gidx = 3x(x(genotypeRowPtr+snpl));
gidx += x(genotypeRowPtr+snp2);
classifyInt[gidx] += phenotypeInt[il;

// classify genotypes: causal: 1, non-causal:-1|
for (int i=0; i<9; i++)
classifyInt[i] = (classifyInt[i]>=0)? 1:-1;
// loop over individuals to predict phenotypes
int predCt=0;
for (int i=0; i<N; i++) {
genotypeRowPtr = genotypeInt + i%S;
gidx = 3x(x(genotypeRowPtr+snpl));
gidx += x(genotypeRowPtr+snp2);
predCt += (classifyInt[gidx]==phenotypeInt[il);

¥
predictIntlpidx] = predCt;
}
¥

extern "C" void

MDS_kernel_fh (const int r, const int N, const int S,
intx genotypeInt, intx phenotypelnt,
intx predictInt)

{
int block_size = 64;
int n_blocks = S/2/block_size + (((S/2)%block_size==0)? 0:1);
MDS_kernel<<<n_blocks,block_size>>>(r, N, S, genotypeInt,
phenotypelInt, predictInt);

e Lessons learnt.

— Recognize massive parallelism. Common in genomics and statistics

— Algorithm development. Merry-go-round for organizing parallel pairs

e C++ source code is available at http://hua-zhou.github.io/teaching/st790-20155pr/
mds.tar.gzl

Convex optimization problems

o A mathematical optimization problem, or just optimization problem, has the form
minimize fo(x)
subject to  fi(x) <b;, i=1,...,m.

Here fy : R™ — R is the objective function and f; : R" — R, i = 1,...,m, are the
constraint functions.
I’= An equality constraint f;(x) = b; can be absorbed into inequality constraints

fi(x) < b and —fi(x) < —b;.

e [f the objective and constraint functions are convex, then it is called a convexr opti-

mazation problem.
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I’= In a convex optimization problem, only linear equality constraint of form Ax = b

is allowed.

e Convex optimization is becoming a technology. Therefore it is important to recognize,

formulate, and solve convex optimization problems.

e A definite resource is the book Convexr Optimization by Boyd and Vandenberghe, which
is freely available at http://stanford.edu/~boyd/cvxbook/. Same website has links

to slides, code, and lecture videos.

Stephen Boyd and
Lieven Vandenberghe

convex
Optimization

e In this course, we learn basic terminology and how to recognize and solve some standard

convex programming problems.
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11 Lecture 11, Feb 23

Announcements

e HW14 posted (Linear Programming). Due next Friday Mar 6 @ 11:59PM.

Last Time

e GPU computing: Matlab, Julia, R.
e GPU computing: case studies.

e Convex optimization: introduction

Today

e Convex sets and convex functions.

Convex sets

e The line segment (interval) connecting points x and y is the set

{z:ax+ (1 — )y for all a € [0,1]}.

e A set C'is convex if for every pair of points  and y lying in C' the entire line segment

B

]

connecting them also lies in C'.

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary {shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

e Examples of convex sets.

1. Any singleton.
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2. R™

3. Any normed ball B.(c) = {x : ||x — ¢|| < r}, open or closed, of radius r centered

at c.
o /_l - B
LN N
j ; L
Y \
,// \\
1/"7 0 o5
41 05 -
N VAR
N1/

\ Ml /
.\_%‘/ * i
LNorm——LNorm
10 2
1Norm —— 2 Norm

* 4Norm ——— o Norm

oo+~

O<p<l1 p=10

' l(x) =1, |z;|P)*/? is not a proper norm for 0 < p < 1.
4. Any hyperplane {z : xTv = c}.
5. Any closed half space {x : £"v < ¢} or open half space {x : xTv < c}.

6. Any polyhedron

P = {a::a]Ta:Sbj,j:1,...,m,cjra::dj,j:1,...,p}
= {z: Ax <b,Cz =d}.
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@4

Figure 2.11 The polyhedron P {shown shaded) is the intersection of five
halfspaces, with outward normal vectors a1, ....,as.

7. The set S’ | of n x n pd matrices and the set S’} of n x n psd matrices.

Figure 2.12 Boundary of positive semidefinite cone in 87,

8. The translate C'+ w of a convex set C.
9. The image A(C) of a convex set C' under a linear map A.
10. The inverse image A~!(C) of a convex set C' under a linear map A.

11. The Cartesian product of two convex sets.

e A set C is a cone if for each @ € C the set {fx : § > 0} is also in C' (closed by

multiplication by nonnegative scalars). A cone that is convex is called a convez cone.
e Examples of cone:

1. The set S’ of psd matrices is a convex cone.
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2. Is the set S’ of pd matrices a cone?

3. The set {(x,t) : ||x||> < t} is called an ice cream (or Lorentz, or second order, or

quadratic) cone.

1
L 05
0 =l
1 e
._——"//—_‘/ 1
0 o
— 0
_—-’/
—
T - 1 - 1 _'_[:1

Figure 2.10 Boundary of second-order cone in R?, {(z1, z2,t) | (z?+2%)'/? <

ny

4. Any norm cone {(z,t) : ||z|| <t} is a convex cone.

5. Can you give a non-convex cone?

e A set C' is said to be affine if
{z:0x+(1—-0O)yforalld e R} C C

for all x,y € C. Note 6 is not restricted to the unit interval. An affine set is convex
but not conversely. Every affine set A can be represented as a translate v + S of a

vector subspace S.
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Figure 2.1 The line passing through z; and zs is described parametrically
by 0z1 4 (1 —0)xz2, where 0 varies over R. The line segment between z; and
22, which corresponds to @ between 0 and 1, is shown darker.

Example: The solution set of linear equations C' = {x : Az = b} is affine. The
converse is also true. Every affine set can be expressed as the solution set of a system

of linear equations.

The intersection of an arbitrary collection of convex, affine, or conical sets is convex,

affine, conical, respectively.

Any convex combination Y ;" a;x; of points from a convex set C' belongs to C. By

conver combination we mean each oy; > 0 and y ;" oy = 1.

Similar closure properties apply to convex cones and affine sets if either the restriction

S, a; =1 or the constraints «; > 0, respectively, are lifted.

The convexr hull conv C' of a nonempty set C' is the smallest convex set containing C'.
Equivalently, conv C' is the set generated by taking all convex combinations Y ", a;x;

of elements of C.

Figure 2.3 The convex hulls of two sets in R®. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Hight.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

The convex conical hull and affine hull of C are generated in a similar manner.
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Figure 2.5 The conic hulls (shown shaded) of the two sets of figure 2.3.

What is the affine hull of circle C = {x € R? : ||z||3 = 1}?

e (Carathéodory) For a nonempty set S C R", every point in conv S can be written as a
convex combination of at most n + 1 points from S. Furthermore, when S is compact,

conv S is also compact.

Convex functions

e A function f(x) on R" is convez if

flar+(1—-a)y) <af(x)+ (1 —a)f(y)

for all &,y and all « € [0, 1].

I= To define a convex function f(x) on R", it is convenient to allow the value co and

disallow the value —oo.

The set {x : f(x) < 0o} is a convex set called the essential domain of f and written

dom f. A convex function is proper if dom f # () and f(x) > —oo for all .

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.
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e If the inequality in the definition is strict on dom f when a > 0, § > 0, and « # vy,
then the function is said to be strictly convex.
e A function f(x) is concave if its negative — f(x) is convex.

I’& For concave functions we allow the value —oo and disallow the value oo.
e Examples of convex functions on R".

1. Affine function. Any affine function f(x) = a’x + b is both convex and concave.

2. Norm. Any norm (scalar homogeneity, triangle inequality and separates points)

on R" is convex.

3. Indicator function. The indicator function

0 xzeC

oc(x) =
ole) o x¢C

of a nonempty set C' is convex if an only if the set itself is convex.

4. Quadratic-over-linear function. The function f(z,y) = 2?/y, with dom f =

R x R, is convex.

225

y
f
7
4
/i
;

L1p

Figure 3.3 Graph of f(z,y) = z°/y.

5. log-sum-exp. The function f(x) = In(e®™ 4 --- + e*) is convex.
6. Geometric mean. The geometric mean f(x) = [[, xil/n is concave.

7. Log-det. The function f(X) = Indet X is concave on S} . (Two proofs below.)

e Sublevel sets {x : f(x) < ¢} of a convex function f(x) are convex. If f(x) is continuous

as well, then all sublevel sets are also closed.

The converse is not true. For example, the sublevel set {x € R% : 1 — z25 < 0} is

closed and convex, but the function 1 — x1x5 is not convex on the domain Ri ={x:

T Z O,ZL'Q Z 0}
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o (Jenen’s inequality) A function f(z) is convex if and only if

/ <Z Oéﬂi) < Z i f(x:),
i=1 i=1
for all a; > 0 and Y " a; = 1.
The probabilistic version states f[E(X)] < E[f(X)].

e (First order condition, support hyperplane inequality) If f(x) is differentiable on the

open convex set C'; then a necessary and sufficient condition for f(x) to be convex is

fly) = f(z) + df (z)(y — =)

for all &,y € C. Furthermore, f(x) is strictly convex if and only if strict inequality
holds for all y # «.

f)
f(2)+ V() (y —z)

Figure 3.2 If f is convex and differentiable, then f(z)+V f(z)?(y—=z) < f(y)
for all z, v € dom f.

e (Second order condition) Let f(x) be a twice differentiable function on the open convex
set C' C R™. If its Hessian matrix d?f(x) is psd for all x, then f(x) is convex. When
d*f(x) is pd for all x, f(x) is strictly convex.
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12 Lecture 12, Feb 25

Announcements

e HW3 due today @ 11:59PM. Commit to your master branch and tag.

e HW14 posted (Linear Programming). Due next Friday Mar 6 @ 11:59PM (7).

Last Time

e Convex sets and convex functions.

Today

e Convex functions (cont’d).

e Overview of optimization softwares.

Convex function (cont’d)

e (Closure properties of convex functions often offer the easiest way to check convexity.

. (Nonnegative weighted sums) If f(x) and g(x) are convex and « and § are non-

negative constants, then o f(x) + Sg(x) is convex.

(Composition) h(x) is convex and increasing, and g(x) is convex and finite, then

the functional composition f(x) = h o g(x) is convex.

(Composition with affine mapping) If f(x) is convex, then the functional compo-
sition f(Ax + b) of f(x) with an affine function Az + b is convex.

(Pointwise maximum and supremum) If f;(x) is convex for each fixed i € I, then
g(x) = sup,¢; fi(x) is convex provided it is proper. Note the index set I may be

infinite.

(Pointwise limit) If f,,(x) is a sequence of convex functions, then lim,, oo fin ()

is convex provided it exists and is proper.

(Integration) If f(x,vy) is convex in x for each fixed y and p is a measure, then

the integral g(xz) = [ f(z,y)du(y) is convex provided it is proper.

= It is generalization of the nonnegative weighted sum rule.

(Minimum) If f(z,y) is jointly convex in (x,y), then g(x) = inf,cc f(x,y) is

convex provided it is proper and C' is convex.
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I’= Product of two convex functions is not necessarily convex. Counter example:
x3 = zz?®. However if both functions are convex, nondecreasing (or nonincreasing),

and positive functions on an interval, then the product is convex.
Example: The function f(x) = xpj + - - + 2}, the sum of the k largest components
of x € R", is convex.

I’& This is hint for HW3 Q3.

Proof. Write the function f as
f(®) =max{z;, + - +x; : 1 <y <iy<---ip <n},

i.e., the maximum of all possible sums of k different components of . Since it is the

pointwise maximum of (Z) linear functions, it is convex. O]

Example: Dominant eigenvalue of a symmetric matrix

Amax (M) = max x” Mx

llzll=1

is convex in M since it is pointwise maximum of linear functions. Similarly the mini-

mum eigenvalue A\, (M) is concave in M.
I’ Sum of k£ largest eigenvalues is convex on S™.
More on composition rule. Scalar composition f = h o g, where h : R — R and
g:R— R:
— f is convex if h is convex and nondecreasing, and g is convex.
— fis convex if h is convex and nonincreasing, and ¢ is concave.
— f is concave if h is concave and nondecreasing, and ¢ is concave.
— f is concave if h is concave and nonincreasing, and g is convex.
I'= Remember by f”(z) = h"(g9(x))g'(z)? + W/ (g9(x))g”(x). But same results apply to
non-differential functions as well.
Vector composition f(x) = ho g(x) = h(gi(x),...,gx(x)), where g; : R" — R and
h:RF— R.
— fis convex if h is convex, h is nondecreasing in each argument, and g; are convex.
— fis convex if h is convex, h is nonincreasing in each argument, and g; are concave.

— f is concave if h is concave, h is nondecreasing in each argument, and g¢; are

concave.
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I’ Remember by d*f(x) = Dg(x)"d*h(g(x))Dg(x) + (Dh(g(x)) @ I,,)d*g(x). But
same results apply to non-differential functions as well.

e The epigraph of a function f(x) is the set
epif ={(z,r): f(x) < r}.

e A function f(x) is convex if and only if its epigraph is a convex set.

epif |

Figure 3.5 Epigraph of a function f, shown shaded. The lower boundary,
shown darker, is the graph of f.

e Example: The matriz fractional function
flx,Y)=2"Y 'z

is convex on domain R" x S} . This generalizes the convexity of quadratic-over-linear
function f(x,y) = 2%/y on R x R, .

= This is hint for HW3 Q5 and Q10.

Proof (by epigraph). The epigraph of matrix fractional function is

epif = {(z,Y,t):Y =0,2Y 'z <t}

_ {(m,Y,t): (;; f) 50,Y>0},

which is convex. The second equality is from the linear algebra fact that a block matrix

(7 2)

is psd if and only if A is psd, the Schur complement C — BT A~'B is psd, and
(I-AA)B=0(Bec(C(A)). O
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I’= Same argument yields joint convexity of the matrix function f(X,Y) = XTY !X

mXn n
on R ><S++.

I’= (Singular case) The result can be further extended to show that the function

' XTY " Xu Xuel(Y)

XY= 00 Xu¢ClY)

on R™*™ x 8% is jointly convex in X and Y for any choice of u.

e (Line theorem) A function is convex if and only if it is convex when restricted to a line
that intersects its domain. That is f(x) is convex if and only if for any € domf and

v € R", then function
g(t) = f(z +tv)

is convex on dom g = {t :  + tv € domf}.

= Not sure if a function is convex? Generate a bunch of lines through the domain

and plot. If any of them are not convex, the function is not convex.

e Example: Concavity of Indet €2 on S%,. This generalizes the concavity of Inz for

x> 0.

I’& This is hint for HW3 Q10.

Proof. Let X € S and V € S". Then

g(t) = Indet(X +tV)
= Indet X'V2(I +tX V2V X~ Y2 X1/2
= Indet X + Indet(I 4+t X2V X1/

= Indet X + ) In(1+ Ait),

i=1
where )\; are eigenvalues of X ~/2V X ~1/2. ¢(t) is concave in ¢ thus Indet function is

concave too. 0

Log-convexity

e A positive function f(x) is said to be log-convez if In f(x) is convex.

e A log-convex function is convex. Why?
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e Log-convex functions enjoy the same closure properties 1 through 7. In part 2 (com-

position rule), g is convex and h is log-convex.

In addition the collection of log-convex functions is closed under the formation of

products and powers.

I’= Not all rules apply to log-concave functions! For instance, nonnegative sum of

log-concave functions is not necessarily log-concave.
e Examples:

1. The beta function

1
B(z,y) = / w1 —w)V " du
0

is log-convex. Why?

2. The gamma function

is log-convex. Why?

3. The moment function
M@)= [ () dn
0

where f is density of a nonnegative random variable, is log-convex. Why?

4. The Riemmann zeta function

1 [os] l,s—l
Cs) = r<s)/0 1

is log-convex. Why?

5. The Normal cdf

1 v 2
(I)(l’):\/—2_7r/ €7u /zdu

is log-concave. See (Boyd and Vandenberghe, 2004, Exercise 3.54).

e Example: Concavity of Indet 2 on S} . This generalizes the concavity of Inz for
x> 0.

I’= This is hint for HW3 Q10.
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Proof by log-concavity. Integration of the multivariate Gaussian density with pd co-

variance X
1 _ N
f(a:) = W| det 2| 1/26 2 /2
produces
1 -1
|det B|V?2 = —— o= X /2
(27'(')”/2

This identity can be restated in terms of the precision matrix Q = X" as
Indet 2 = nln(27) — 21n / e /2 g

The integral on the right is log-convex. Why? Is the integral log-concave? Thus

In det 2 is concave. ]

Hierarchy of convex optimization problems

In ST758, we spent a fair amount of time on the LS (least squares) problem. In this course,
we study LP (linear programming), QP (quadratic programming), SOCP (second-order cone
programming), SDP (semidefinite programming), and GP (geometric programming), with

an emphasis on statistical applications and software implementation.

convex problems

more general
cone problems A

SDP
SOCP GP
QP LP

more specific
LS

Optimization softwares

Like computer languages, getting familiar with good optimization softwares broadens the

scope and scale of problems we are able to solve in statistics.
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e Following table lists some of the best convex optimization softwares. Use of Gurobi

and /or Mosek is highly recommended.

I’= Gurobi is named after its founders: Zonghao Gu, Edward Rothberg, and Robert
Bixby. Bixby founded the CPLEX at IBM, while Rothberg and Gu led the CPLEX

development team for nearly a decade.

e Difference between modeling tool and solvers.

— Solvers (Gurobi, Mosek, ...) are concrete software implementation of optimization

algorithms.

— Modeling tools such as cvx and Convex.jl (Julia analog of cvx) implement the
disciplined convex programming (DCP) paradigm proposed by Grant and Boyd
(2008). http://stanford.edu/~boyd/papers/disc_cvx_prog.html. DCP pre-
scribes a set of simple rules from which users can construct convex optimization
problems easily.

Modeling tools usually have the capability to use a variety of solvers. But mod-
eling tools are solver agnostic so users do not have to worry about specific solver

interface.

‘LP MILP SOCP MISOCP SDP GP NLP MINLP | R Matlab Julia Python | Cost

JuMP.jl v v

Convex.jl

o

v
v

A

CVX

Gurobi
Mosek
CPLEX
SCS
SeDuMi
SDPT3
KNITRO

A YA Y YA N N NI N RN
AR NI N NN
AR N N N N N N NN
AR NIER N NN
AN N NN
AN NN N N YA
AR N NEN
AR SN NI

v v v

A
A

» OO O » » »|» O

LP = Linear Programming, MILP = Mixed Integer LP, SOCP = Second-order cone pro-
gramming (includes QP, QCQP), MISOCP = Mixed Integer SOCP, SDP = Semidefinite
Programming, GP = Geometric Programming, NLP = (constrained) Nonlinear Program-
ming (includes general QP, QCQP), MINLP = Mixed Integer NLP, O = Open source, A =

Free academic license
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Set up Gurobi on the teaching server

1.

Gurobi 6.0 has been installed on the teaching server at
/use/local/gurobi600

But you have to obtain a license (free) first in order to use it.

Register for an account on http://www.gurobi.com/account. Be sure to use your

edu email and check Academic as your account type.

. After confirmation of your academic account, log into your account and request a free

academic license at http://www.gurobi.com/download/licenses/free-academic.

Run grbgetkey command on the teaching server and enter the key you obtained in
step Bl Place the file at |/home/USERID/.gurobi/

Now you should be able to use Gurobi in Matlab, R, and Julia.

Set up Mosek on the teaching server

1.

Mosek 7 has been installed on the teaching server at
/usr/local/mosek/7/
License file is already put into your home directory.

/home/unityID/mosek/mosek.1lic

. You should be able to use Mosek in Matlab or R already.

Set up CVX on the teaching server

1.

CVX v2.1 has been installed on the teaching server at
/use/local/cvx

But you have to obtain a license (free) first in order to use it.

Request a free academic (professional) license at http://cvxr.com/cvx/academic/
using your edu email. Your will receive the license file 1icense.dat by email. Place
the license file at |/home/USERID/ . cvx/

. Within Matlab, type

cvx_setup /home/hzhou3/.cvx/cvx_license.dat

Now you should be able to use CVX in Matlab.
I'& The standard license comes with free solvers SeDuMi and SDPT3. The Academic

license also bundles with Gurobi and Mosek.
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13 Lecture 13, Mar 2

Announcements

e HW4 (LP) deadline extended to Mon, Mar 16 @ 11:59PM.

e HW5 (QP, SOCP) posted. Due Fri, Mar 20 @ 11:59PM. http://hua-zhou.github.
io/teaching/st790-2015spr/ST790-2015-HW5. pdf

Last Time

e Convex and log-convex functions.

e Overview of optimization softwares.

Today

e LP (linear programming).

Linear programming (LP)
e A general linear program takes the form
minimize ¢’z
subject to Ax =1b
Gx < h.

Linear program is a convex optimization problem, why?

Figure 4.4 Geometric interpretation of an LP. The feasible set P, which
is a polyhedron, is shaded. The objective ¢’« is linear, so its level curves
are hyperplanes orthogonal to ¢ (shown as dashed lines). The point z* is
optimal; it is the point in P as far as possible in the direction —c.
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e The standard form of an LP is

minimize @
subject to Ax =1b
x >~ 0.

To transform a general linear program into the standard form, we introduce the slack
variables s = 0 such that G + s = h. Then we write € = £* — ~, where x* = 0
and = > 0. This yields the problem

minimize ¢

subject to A(xt —x7) =

inz", £, and s.

I’= Slack variables are often used to transform a complicated inequality constraint to

simple non-negativity constraints.

e The inequality form of an LP is

minimize ¢’z

subject to Gz =< h.

I’ Some softwares, e.g., solveLP in R, require an LP be written in either standard or

inequality form. However a good software should do this for you!
e A piecewise-linear minimization problem

minimize max (a; x + b;)

i=1,....m
can be transformed to an LP
minimize ¢
subject to alx +b; <t, i=1,...,m,

in « and t. Apparently

minimize max |a;x + b;|

1= RARRS)
and
minimize max (a] x + b;)

i=1,....,m
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are also LP.

I’= Any convex optimization problem

minimize fy(x)
subject to  fi(x) <0, i=1,...,m

T .
a;x=2"0, i=1,...,p,

(2

where fy, ..., fin are convex functions, can be transformed to the epigraph form

minimize ¢

subject to  fo(x) —t <0
file) <0, i=1,...,m
alx="b, i=1,...,p

in variables & and t. That is why people often say linear program is universal.

e The linear fractional programming

L clz+d

minimize ————

elx+ f

subject to Ax =0b

Gx <h
eflx+f>0

can be transformed to an LP

minimize ¢’y + dz

subject to Gy —zh =<0

Ay —2b=0
ely+fz=1
z2>0

in y and z, via transformation of variables
T d

Vg P CT i
See Boyd and Vandenberghe| (2004, Section 4.3.2) for proof.

e Example. Compressed sensing (Candes and Taol |2006; |[Donoho, 2006)) tries to address
a fundamental question: how to compress and transmit a complex signal (e.g., musical

clips, mega-pixel images), which can be decoded to recover the original signal?
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{.
A # |

Emmanuel Candes. (Photo cour- Terence Tao. (Phoio courtesy of
tesy of Emmanuel Candes.) Reed Hutchinson/UCLA.)

Suppose a signal x € R" is sparse with s non-zeros. We under-sample the signal by
multiplying a measurement matrix y = Ax, where A € R™*" has iid normal entries.
(Candes et al. (2006]) show that the solution to

minimize ||z

subject to Ax =1y

exactly recovers the true signal under certain conditions on A when n > s and m ~
sln(n/s). Why sparsity is a reasonable assumption? Virtually all real-world images
have low information content.

The ¢; minimization problem apparently is an LP, by writing x = 7 — x~,
minimize 17 (z* +x7)
subject to Azt —xz7) =y

xt =0,z > 0.

Let’s work on a numerical example. http://hua-zhou.github.io/teaching/st790-2015spr/
demo_cs.html
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Wavelet Coefficients

x 10

Figure 1. Normal scenes [rom everyday life are compressible with respect (o a basis of wavelets. (left)
A test image. (top) One standard compression procedure is to represent the image as a sum of wavelels.
Here, the coefficients of the wavelets are plotted, with large coefficients identifying wavelets that make a
significant contribution to the image (such as identifying an edge or a texture). (right) When the wavelets
with small coefficients are discarded and the image is reconstructed from only the remaining wavelets,
itis nearly indistinguishable from the original. (Photos and figure courtesy of Emmanue! Candes.)

e Example. Quantile regression (HW4). In linear regression, we model the mean of
response variable as a function of covariates. In many situations, the error variance is
not constant, the distribution of y may be asymmetric, or we simply care about the
quantile(s) of response variable. Quantile regression offers a better modeling tool in

these applications.
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In 7-quantile regression, we minimize the loss function
FB) =) p:(yi —x!'B),
i=1

where p;(2) = 2(7 — 1{.<0y). Writing y — X8 = r* — 7~ this is equivalent to the LP

minimize 717r" + (1 - 7)17r"
subject to r" —r" =y — X3
rt >0, >0
in ™, r~, and 3.

Example: ¢; regression (HW4). A popular method in robust statistics is the median
absolute deviation (MAD) regression that minimizes the ¢; norm of the residual vector
lly — XB||;. This apparently is equivalent to the LP

minimize 17 (r* +77)

subject to " —r =y - X3

rt>=0,r">0
inr*, 7, and G.
2 /1 regression = MAD = 1/2-quantile regression.
Example: /., regression (Chebychev approximation). Minimizing the worst possible
residual ||y — X 3|« is equivalent to the LP
minimize ¢

subject to —t <y, —xiB<t, i=1,...,n
in variables 3 and t.

Example: Dantzig selector (HW4). |Candes and Tao| (2007)) propose a variable selection
method called the Dantzig selector that solves

minimize || X7 (y — X8)||s

p
subject to Z 1B;] <t,

Jj=2

which can be transformed to an LP. Indeed they name the method after George

Dantzig, who invented the simplex method for efficiently solving LP in 50s.

121



I’= Apparently any loss/penalty or loss/constraint combinations of form
{01, s, quantile} x {¢q, {, quantile},

possibly with affine (equality and/or inequality) constraints, can be formulated as an
LP.

Example: 1-norm SVM (HW4). In two-class classification problems, we are given train-

ing data (@;,v;), t = 1,...,n, where x; € RP are feature vectors and y; € {—1,1} are

class labels. Zhu et al. (2004) propose the 1-norm support vector machine (svm) that

achieves the dual purpose of classification and feature selection. Denote the solution

of the optimization problem

n p
minimize Z [1 — Y (60 + Z ngﬁj)]
j=1 .

=1

p
subject to [|Blh =Y |8 <t

J=1

by Bo(t) and B(t). 1-norm svm classifies a future feature vector & by the sign of fitted
model

A~

f®) =6+ 2B

Many more applications: Airport scheduling (Copenhagen airport uses Gurobi), airline
flight scheduling, NFL scheduling, match.com, KTEX, ...
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14 Lecture 14, Mar 4

Announcements

e HW4 (LP) deadline extended to Mon, Mar 16 @ 11:59PM.

e HW5 (QP, SOCP) posted. Due Fri, Mar 20 @ 11:59PM. http://hua-zhou.github.
io/teaching/st790-2015spr/ST790-2015-HW5. pdf

Last Time

e LP (linear programming).

Today
e QP (quadratic programming).

e SOCP (second order cone programming).

More LP

e In the worst k error regression (HW3), we minimize Y%, 7|y where [r|q)y > |rf@) >
-+ > |r|m) are order statistics of the absolute values of residuals |r;| = |y; — ! B].
This can be solved by the LP

minimize kt + 172
subject to —tl —z<y— XB <tl+ =z
z>~0

in variables 8 € RP, t € R, and z € R".

e Our catalogue of linear parts: composition of ¢; (absolute values), , (max), check

loss (quantile), hinge loss (svm), sum of k largest component, ... with affine functions.

Quadratic programming (QP)

e A quadratic program (QP) has quadratic objective function and affine constraint func-
tions
minimize (1/2)x’ Pz + q'x +r
subject to Gx < h
Ax =0,
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where we require P € S} (why?).

Figure 5.1: Geometric interpretation of quadratic optimization. At the optimal point z* the
hyperplane {z | alz = b} is tangential to an ellipsoidal level curve.

e Example. The least squares problem minimizes ||y — X 3||3, which obviously is a QP.

e Example. Least squares with linear constraints. For example, nonnegative least squares
(NNLS)

minimize (1/2)||y — XB||3

subject to B > 0.

I'= In NNMF (nonnegative matrix factorization), the objective || X — VW can be
minimized by alternating NNLS.

e Example. Lasso regression (Tibshirani, |1996; Donoho and Johnstone, [1994) minimizes

the least squares loss with ¢; (lasso) penalty

o 1
minimize §||y — Bol — X B3 + MBI,
where A > 0 is a tuning parameter. Writing 3 = 87 — 37, the equivalent QP is
TP Lot T xT 117" + -
minimize 5(,3 -B7) X (I-— | X(B"—-87)+
n
T 117 + _ T/ At -
y' (T-=—) X(B" = 87) + M7(B" + )
subject to BT >=0,8" >0
in 3" and 3.
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FIGURE 8.8. Profiles of ridge coefficients for the prostate cancer ezample, as Coefficients are plotted versus s =t/ > 1 |3;|. A vertical line is drawn at s = 0.36,

the tuning parameter X is va'ried. 'Coe].ﬁcients are plotted versus df(\), the effective the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
degrees of freedom. A vertical line is drawn at df = 5.0, the value chosen by profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
cross-validation. and so are computed only at the points displayed; see Section 3.4.4 for details.

Example: Elastic net (Zou and Hastie, 2005))

L 1
minimize 7y — Aol — X B3 + A8l + (1 - a)[1B]5),
where A > 0 and « € [0, 1] are tuning parameters.

Example: Generalized lasso
e 1 2
minimize §Hy—XﬁH2+)\HDﬁH1,

where A > 0 is a tuning parameter D is a fixed regularization matrix. This generates

numerous applications (Tibshirani and Taylor 2011)).

Example: Image denoising by anisotropic penalty. See HW5.

Example: (Linearly) constrained lasso

. 1
minimize §Hy—5ol—XﬁHg+)\H5”1
subject to GB <X h
AB =1b,

where A\ > 0 is a tuning parameter.
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e Example: The Huber loss function
r? Ir| < M
MQ2r|—=M) |r|>M

is commonly used in robust statistics. The robust regression problem
n
minimize Y ¢(y; — fo — @ B)
i=1

can be transformed to a QP
minimize w’ w4+ 2M17v
subject to —u—v<y— XBu+w
O0<u=M1l,v>0

in u,v € R" and 8 € RP. Hint: write |r;| = (|ri| A M) + (|ri| = M)y = u; + v;.

2
\
1.5} \\
—~ \\
3
Z 1 \
£ \

0.5 \

U5 -1 —o5 0 05 1 15

u

Figure 6.4 The solid line is the robust least-squares or Huber penalty func-
tion ¢nun, with M = 1. For |u| < M it is quadratic, and for |u| > M it

grows linearly.

e Example: Support vector machines (SVM, HW5). In two-class classification problems,
we are given training data (x;,y;), i = 1,...,n, where &; € R™ are feature vector and
y; € {—1,1} are class labels. Support vector machine solves the optimization problem

n

minimize Z [1 —Yi (50 + zp: xz‘jﬁj)
j=1

i=1

+AlIBl3,
+

where A > 0 is a tuning parameters. This is a QP.
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Second-order cone programming (SOCP)
e A second-order cone program (SOCP)
minimize flax
subject to [[Ax + bl <clxz+d;, i=1,...,m
Fr=g

over ¢ € R". This says the points (A;z + b;, ¢/« + d;) live in the second order cone

(ice cream cone, Lorentz cone, quadratic cone)

Q" ={(z,t) : [z < t}
in R+,
I'= QP is a special case of SOCP. Why?

e When ¢; = 0 for ¢« = 1,...,m, SOCP is equivalent to a quadratically constrained
quadratic program (QCQP)

minimize (1/2)z” Pyx + ql
subject to (1/2)z' Px +qlz+7r; <0, i=1,...,m
Ax =0,

where P, € S,4=0,1,...,m. Why?

e Example: Group lasso (HW5). In many applications, we need to perform variable
selection at group level. For instance, in factorial analysis, we want to select or de-
select the group of regression coefficients for a factor simultaneously. Yuan and Lin
(2006) propose the group lasso that

G
1
minimize [y — fol = XBI3 + A D wyllB,l2

g=1
where 3, is the subvector of regression coefficients for group g, and w, are fixed group
weights. This is equivalent to the SOCP

. | 117
minimize 5,@ X' (I-— ) X8+
n

. 117 <
Yy (I—— ) XB+ 2D wyt,
g=1

n
subject to  [|B,ll2 <t,, g=1,...,G,
in variables B and tq,...,tq.

I’ Overlapping groups are allowed here.
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Example. Sparse group lasso

G
I |
minimize 1y — fol = XB3+ Al Bl + 2 ) wy 1By

g9=1

achieves sparsity at both group and individual coefficient level and can be solved by
SOCP as well.

——Gene 1 ——Gene 1

——Gene 2 ——Gene 2

1L——Gene 3 1l——Gene 3
0.5 0.5

Estimate
Estimate
o

1 15 10 5
L A=) % (A, 1=0.75)

——Gene 1
——Gene 2
——Gene 3

0.5

Estimate
(=]
Estimate

-0.5 -0.5

%5 20 15 10 5 %5 20 15 10 5
% (A, 1=0.5) % (1, /1=0)

& Apparently we can solve any previous loss functions (quantile, /1, composite quan-

tile, Huber, multi-response model) plus group or sparse group penalty by SOCP.
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15 Lecture 15, Mar 16

Announcements

e HW4 (LP) due today 11:59PM.

e HW5 (QP, SOCP) due this Fri, Mar 20 @ 11:59PM.

Last Time
e QP (quadratic programming).

e SOCP (second order cone programming).

Today
e SOCP (cont’d).

SOCP (cont’d)

e Example. Square-root lasso (Belloni et al., 2011]) minimizes

ly — Bol — X Bl[2 + All Bl

by SOCP. This variant generates the same solution path as lasso (why?) but simplifies
the choice of A.

A demo example: http://hua-zhou.github.io/teaching/st790-2015spr/demo_lasso.
html

e Example: Image denoising by ROF model. See HW5 Q4.

e A rotated quadratic cone in R"2 is

Q:H_z = {(m,tl,tg) : ||:1:||§ S Qtltg,tl Z O,tg Z 0}

A point & € R""! belongs to the second order cone Q™" if and only if

I, 0 0
0 —1/vV2 1/V2|=
0 1/V/2 1/V2

belongs to the rotated quadratic cone Q.
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I’& Gurobi allows users to input second order cone constraint and quadratic con-

straints directly.
= Mosek allows users to input second order cone constraint, quadratic constraints,

and rotated quadratic cone constraint directly.

e Following sets are (rotated) quadratic cone representable sets:

(Absolute values) |z| <t < (x,t) € Q2.
(Euclidean norms) ||z|, <t < (x,t) € Q™.
— (Squared Euclidean norms) ||z||3 <t < (x,t,1/2) € Q2.
(Ellipsoid) For P € S? and if P = F'F, where F € R™*, then
(1/2)z" Pz + "z +r <0

o afPr<2tt+cle+r=0

& (Fz,t,1) c Q"2 t+clz+r=0.
Similarly,

|F(z—c)ll: <t (y,t) Q" y=F(z—c)

I’ This fact shows that QP and QCQP are instances of SOCP.
— (Second order cones) ||[Ax + bl < cl'z+d< (Ax+b,c’z +d) € QL.
— (Simple polynomial sets)
{(ta) t] < Vo, 20 = {(t2):(tz1/2) € Q}}
{tz):t>xz>00 = {(tz): (V2,z2,t) € Q’}
{(t,2) 12222208 = {(t,2): (x,5,1),(s,2,1/8) € Q}
{t,2):t>2°30>0} = {(t,z):(z,s,1),(s51/8,2), (25 z) € Q’}
{(t,z):t > 2P V/* >0}, k>2 can be represented similarly

{(t,z):t>2 2 2>0} = {(t,z):(s11/2), (\/5,&0,8) c Q’}

t,x

{tay) > 2Pyt y 208 = {2y (2,2) € Q% (2,9/2,5),(s,1/2,2) €

— (Geometric mean) The hypograph of the (concave) geometric mean function
Kgm = {(wat) € Rn+1 : (x1x2 t xn)l/n Z t,w t O}

can be represented by rotated quadratic cones. See (Lobo et al., |1998) for deriva-

tion. For example,

Kém - {(1'1,1'2,75) : V T1T9 Z t,xl,l'g Z 0}
- {(«Tl,l‘g,t) : (\/525,(1)1,,1’2) S Qi}
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— (Harmonic mean) The hypograph of the harmonic mean function (n=* Y7, ;") -

can be represented by rotated quadratic cones

-1
n
(n_IZm;1> >t,e =0
i=1
n
& n_lzxi_l <y,x>=0
i=1

n
& 1z > 1,Zzi:ny,wt0

i=1

n
& QxiziZQ,Zzi:ny,a:EO,zEO
i=1

e (V2,1,2) € QL 1Tz =ny,x =0,z = 0.
— (Convex increasing rational powers) For p,q € Z, and p/q > 1,

KP4 = {(z,t) 1 2" < t,2 > 0} = {(z,1) : (t1,1p-q, @) € K2 }.

— (Convex decreasing rational powers) For any p,q € Z,

K 7%= {(x,t): 27?1 <t,x >0} ={(2,t) : (x1,,t1,,1) € KPry.

— (Power cones) The power cone with rational powers is
K4 = {(a:,y) ceR} xR: |yl < Hx?j/qj} :
j=1

where pj;, q; are integers satisfying 0 < p; < ¢; and Z?’:l pi/g; = 1. Let g =
lem(qy, ..., q,) and

Then it can be represented as

ly| < (2120 -+~ 25)1

21 == Zg = 20, Bs141 = 70 = Zsy = T2, Zsp_ 141 = " =23 = Tn.

I'= References for above examples: Papers(Lobo et al.| [1998; |Alizadeh and Goldfarb,
2003) and book (Ben-Tal and Nemirovski, 2001, Lecture 3). Now our catalogue of
SOCP terms includes all above terms.

I’& Most of these function are implemented as the built-in function in the convex

optimization modeling language cvx.
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e Example. ¢, regression with p > 1 a rational number
minimize |y — X3,

can be formulated as a SOCP. Why? For instance, £3/, regression combines advantage

of both robust /; regression and least squares.

I’ norm(x, p) is a built-in function in the convex optimization modeling language

CVX.
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16 Lecture 16, Mar 18

Announcements

e HW5 (QP, SOCP) due this Fri, Mar 20 @ 11:59PM.

e HW6 (SDP, GP, MIP) posted http://hua-zhou.github.io/teaching/st790-2015spr/
ST790-2015-HW6.pdf. Due Mon, Mar 30 @ 11:59PM.

e HW4 (LP) solution sketch posted. http://hua-zhou.github.io/teaching/st790-2015spr/

hwO4sol.html

Last Time

e SOCP (cont’d).

Today

e SDP (semidefinite programming).

e GP (geometric programming).

Semidefinite programming (SDP)

FiG. 1. A simple semidefinite program with x € R%, F(x) € R"*, Figure 4.1: Plot of spectrahedron § = {(z,y,2) € R* | A(z,,2) = 0}

e A semidefinite program (SDP) has the form

minimize ¢’z

subject to z1Fy + -+ + 2, F, + G 20 (LMI, linear matrix inequality)
Ax = b,
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where G, F,...,F, € S*, A € R”" and b € R".
I’ When G, Fi, ..., F, are all diagonal, SDP reduces to LP.

The standard form SDP has form

minimize tr(CX)
subject to tr(A;X)=10b;, i=1,...,p
X =0,
where C, Ay,..., A, € S".
An inequality form SDP has form
minimize ¢’z
subject to 1A+ -+ 1,A, 2 B,
with variable € R", and parameters B, A,..., A, € S", c € R".

Exercise. Write LP, QP, QCQP, and SOCP in form of SDP.

Example. Nearest correlation matrix. Let C" be the convex set of n x n correlation

matrices
C={XeS:z;=1i=1,...,n}
Given A € S™, often we need to find the closest correlation matrix to A

minimize ||A — X||r
subject to X € C.
This projection problem can be solved via an SDP
minimize ¢
subject to [|[A — X|lp <t
X = X7, diag(X) =1
X >0

in variables X € R™"™ and t € R. The SOC constraint can be written as an LMI

tI vec(A — X)) .0
vec(A — X)T t -

by the Schur complement lemma.
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e Eigenvalue problems. Suppose
Alx) = Ao+ 1141+ 1, A,

where A; € S™, i = 0,...,n. Let \i(x) > \(x) > -+ > A\p(x) be the ordered
eigenvalues of A(x).

— Minimize the maximal eigenvalue is equivalent to the SDP
minimize ¢
subject to A(x) < tI

in variables £ € R™ and t € R.

= Minimizing the sum of k largest eigenvalues is an SDP too. How about

minimizing the sum of all eigenvalues?

I’= Maximize the minimum eigenvalue is an SDP as well.
— Minimize the spread of the eigenvalues A\;(x) — A, () is equivalent to the SDP
minimize t; —t,,
subject to t,I < A(x) 2,1
in variables * € R" and t4,1,, € R.
— Minimize the spectral radius (or spectral norm) p(x) = max;—1__m, |A\i(x)| is equiv-
alent to the SDP
minimize ¢
subject to —tI < A(x) XtI
in variables € R" and t € R.

— To minimize the condition number x(x) = A\ (x)/\n(x), note \j(x)/ A (x) < t
if and only if there exists a p > 0 such that uI < A(x) < utl, or equivalently,
I < u'A(x) < tI. With change of variables y; = x;/u and s = 1/u, we can
solve the SDP

minimize ¢
subject to I <X sAg+y1 41+ -y, A, I tI

s >0,

in variables y € R" and s,t > 0. In other words, we normalize the spectrum by

the smallest eigenvalue and then minimize the largest eigenvalue of the normalized

LMI.
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— Minimize the ¢; norm of the eigenvalues [Ai(x)| + - -+ + [\, (2)] is equivalent to
the SDP

minimize tr(A") + tr(A7)
subject to A(x) = AT — A~
At >=0,A" =0,
in variables € R" and A", A~ € S".

— Roots of determinant. The determinant of a semidefinite matrix det(A(x)) =
[T:%, Ai(z) is neither convex or concave, but rational powers of the determinant
can be modeled using linear matrix inequalities. For a rational power 0 < ¢ <

1/m, the function det(A(x))? is concave and we have

t < det(A(z))"

41(:[:) Z s O ( z )q > t
) T Amm - Y
= ZT h (Z) - 211222

where Z € R™*"™ is a lower-triangular matrix. Similarly for any rational ¢ > 0,

we have
t > det(A(x))™?

& Al@) z =0, ( 1<t
211222 * " Zmm =
ZT  diag(z)) =

for a lower triangular Z.

— Trace of inverse. trA(z)™t = >7" A\ '(x) is a convex function and can be mini-

mized using SDP

minimize trB

, B I
subject to = 0.
(I A(m))

Note trA(z)™' =" el A(x) 'e;. Therefore another equivalent formulation is
minimize Z t;
i=1
subject to e} A(x) 'e; < t;.
Now the constraints can be expressed by LMI

el A(x) 'e; <t & (A(a:) ei) = 0.

T
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I’= See (Ben-Tal and Nemirovski, 2001, Lecture 4, p146-p151) for the proof of above
facts.

= lambda max, lambda min, lambda_sum_largest, lambda_sum_smallest, det_rootn,

and trace_inv are implemented in cvx for Matlab.

[’& lambda max, lambda min are implemented in Convex. j1 package for Julia.

e Example. Experiment design. See HW6 Q1 http://hua-zhou.github.io/teaching/
st790-2015spr/ST790-2015-HW6 . pdf
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17 Lecture 17, Mar 23

Announcements

e HW6 (SDP, GP, MIP) due next Mon, Mar 30 @ 11:59PM. http://hua-zhou.github.
io/teaching/st790-2015spr/ST790-2015-HW6 . pdf

e Lecture pace too fast ® For this course I put priority on diversity over thoroughness of
topics. The goal is to introduce variety of tools that I consider useful but not covered in
standard statistics curriculum. That means, given time limitation, many details have
to be omitted. On the other hand, I have tried hard to point you to the best resources
[ know of (text book, lecture video, best software, ...) regarding these topics. It is your
responsibility to follow up, understand and do homework problems, and internalize the

material to become your own tools.

You can get help from
teachers, but you are
going to have to learn
“alot by yourself,
I siting alone in a
room.

meetville.com

Pr-&elss

For the convex optimization part, the most important thing is to keep a catalog of
problems that can be solved by each problem class (LP, QP, SOCP, SDP, GP) and get
familiar with the good convex optimization tools for solving them.

e On course project:

— Ideally I hope you can come up a project that benefits yourself. You’ve learnt a lot
tools from this course. Do something with them, that can turn into a manuscript,
a software package, or a blog, and most importantly, something that interests

yourself.

x Re-examine the computational issues in your research projects. Is that slow?
What’s the bottleneck? Would Rcpp or changing to another language like
Julia help? Is there an optimization problem there? Is that a convex prob-

lem? Can I do convex relaxation? Can I formulate the problem as a standard
problem class (LP, QP, ...)?
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x Create new applications by try different combinations of the terms in each
category. Say XXX loss + XXX penalty? Can they solve some problems

better (or faster) than current methods?

* Reverse engineering. Go over the examples and exercises in the textbook
(Boyd and Vandenberghe, 2004) and ask yourself “this is cool, can I apply

this to solve some statistical problems?”

*x Do not worry about how to satisfy the instructor. Think about doing some-
thing that benefit yourself in the long run. Be creative and do not be afraid
your idea dose not work. Even negative results are valuable; 1 appreciate
negative results as far as I see a strong motivation and efforts in them and
you provide some hindsights why the method does not work as you thought.
And seriously, you should write a blog for whatever negative results you got.

I think they have as much intellectual merits as published positive results.

“If your mentor handed you a sure-fire project, then it probably is dull.” (Kenneth
Lange)

RALBFWEALLE

Give a man a fish, he eats for a day. Teach him to fish, he will never go

hungry.

— If you really lack ideas, work on an active competition on kaggle.com. Provide

your best position in the leaderboard in your final project report.

— The final project report should look like a paper: introduction, motivation, method,

algorithm, simulation studies if necessary, real data analysis, conclusion.

e Up to technology? NVIDIA CUDA v7.0 was released last week. A new library
cuSOLVER provides a collection of dense and sparse direct solvers. https://developer.
nvidia.com/cusolver| This potentially opens up a lot GPU computing opportunities

for statistics.

Last Time

e SDP.

Today
e SDP (cont’d).
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SDP (cont’d)

e Singular value problems. Let A(x) = Ao+ 214, + -2, A,, where A; € RP*? and

01(x) > - - Ominfp,g} (£) > 0 be the ordered singular values.

— Spectral norm (or operator norm or matriz-2 norm) minimization. Consider min-

imizing the spectral norm ||A(x)|2 = oi(x). Note ||A|2 < t if and only if

tI A
AT A < 2T (and t > 0) if and only if (AT tI) > 0. This results in the SDP

minimize ¢

, tI  A(x)
subject to =0
A(x)T I

in variables £ € R™ and ¢t € R.

IS Minimizing the sum of k largest singular values is an SDP as well.

— Nuclear norm minimization. Minimization of the nuclear norm (or trace norm)
|A(x)||. = >, 0i(x) can be formulated as an SDP.

Argument 1: Singular values of A coincides with the eigenvalues of the symmetric

0 A
AT o)’

which has eigenvalues (o4, ...,0,, —0p, ..., —01). Therefore minimizing the nu-

matrix

clear norm of A is same as minimizing the ¢; norm of eigenvalues of the augmented

matrix, which we know is an SDP.

Argument 2: An alternative characterization of nuclear norm is || A = supjz,<; tr(A” Z).
That is

maximize tr(A’Z)

, I z7
subject to >0,
Z I

with the dual problem

minimize tr(U +V)/2

U A(:I;)T> o

bject t
subject to (A(a:) v
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Therefore the epigraph of nuclear norm can be represented by LMI

|A(z)]. <t
(AI(;) A(‘zf)T> =0, tr(U+V)/2<t.

Argument 3: See (Ben-Tal and Nemirovski, 2001, Proposition 4.2.2, p154).

= See (Ben-Tal and Nemirovski, 2001, Lecture 4, p151-p154) for the proof of above

facts.
I’& sigma max and norm nuc are implemented in cvx for Matlab.

I’ operator norm and nuclear norm are implemented in Convex. j1 package for Ju-

lia.

Example. Matrix completion. See HW6 Q2 http://hua-zhou.github.io/teaching/
st790-2015spr/ST790-2016-HW6 . pdf

Quadratic or quadratic-over-linear matrix inequalities. Suppose

Alx) = Ag+z1A+-- +1,A,
B(y) = By+yiBi+-- +yB,.

Then

by the Schur complement lemma.

I’= matrix frac() is implemented in both cvx for Matlab and Convex.jl package

for Julia.

General quadratic matrix inequality. Let X € R™*" be a rectangular matrix and
F(X)=(AXB)(AXB)" +CXD+ (CXD)" + E

be a quadratic matrix-valued function. Then

F(X)<Y

I (AXB)T 2o
AXB Y-E-CXD-(CXD)) ~

by the Schur complement lemma.
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e Another matrix inequality

X -0Y=(C'X'C)™*!
& Y=<Z,Z-0,X>CZC".

See (Ben-Tal and Nemirovski, 2001, 20.c, p155).
e Cone of nonnegative polynomials. Consider nonnegative polynomial of degree 2n
ft) =xTv(t) = zo + 21t + - 29, t>" > 0, for all ¢
The cone
K'={xcR™": f(t)=2"v(t) >0, forall t € R}
can be characterized by LMI
ft)y>0forallt ez, =(X, H;),i=0,...,2n, X € STl,

where H; € R"TDX(+1) are Hankel matrices with entries (H;)y = 1 if k+1 =4 or 0
otherwise. Here k,l € {0,1,...,n}.

Similarly the cone of nonnegative polynomials on a finite interval
K!,={xcR"™: f(t) =a"v(t) >0, for all ¢ € [a,b]}

can be characterized by LMI as well.

— (Even degree) Let n = 2m. Then

K, = {xeR" 2= (X1, H") + (X5, (a+b)H"' —abH""' — H"}"),
i=0,...,n,X; €S7T,X, €87}
— (0dd degree) Let n =2m + 1. Then
K., = {z¢ R oy = (X, H™, — aH™) + (X5, bH™ — H™ ),
i=0,...,n,X;,X, €8T}

I’5 References: paper (Nesterovl, 2000) and the book (Ben-Tal and Nemirovski, 2001,
Lecture 4, p157-p159).

e Example. Polynomial curve fitting. We want to fit a univariate polynomial of degree

n
f(t) = T+ l’1t + IQtQ + - l’ntn
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to a set of measurements (t;,v;), ¢ = 1,...,m, such that f(¢;) ~ y;. Define the

Vandermonde matrix

1oty 2 ... n
1ty t3 -+ 3
1oty t3 - "

then we wish Ax ~ y. Using least squares criterion, we obtain the optimal solution
xrs = (ATA)"'ATy. With various constraints, it is possible to find optimal x by
SDP.

1. Nonnegativity. Then we require € K7 ;.

2. Monotonicity. We can ensure monotonicity of f(¢) by requiring that f’(¢t) > 0 or
f'(t) <0. That is (x1, 229, ...,nx,) € KZ;I or —(x1,2x9,...,nx,) € Kzgl

3. Convexity or concavity. Convexity or concavity of f(t) corresponds to f”(t) > 0
or f’(t) < 0. That is (2z9,2x3,...,(n — 1)nz,) € KZ;2 or —(2x9,2x3,...,(n —
)nx,) € KZ;Q

I’ nonneg _poly_coeffs() and convex_poly_coeffs() are implemented in cvx. Not

in Convex. jl yet.
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18 Lecture 18, Mar 25

Announcements

e HW6 (SDP, GP, MIP) due next Mon, Mar 30 @ 11:59PM. http://hua-zhou.github.
io/teaching/st790-2015spr/ST790-2015-HW6 . pdf

e HW5 (QP, SOCP) solution sketch posted http://hua-zhou.github.io/teaching/
st790-2015spr/hw05s0l . html

e The teaching server is reserved for teaching purpose. Please do not run and store
your research stuff on it. Each ST790-003 homework problem should take no longer

than a few minutes. Most of them take only a couple seconds.

Last Time

e SDP (cont’d).

Today
e SDP (cont’d).

e GP (geometric programming).

SDP (cont’d)
e Example. Nonparametric density estimation by polynomials. See notes.

e SDP relaxation of combinatorial problems. An effective strategy to solve difficult
combinatorial optimization problem (NP hard) is to bound the unknown optimal value.
Upper bound is provided by any feasible point, while lower bound is often provided by

a convex relaxation of the original problem.

— SDP relaxation of binary optimization. Consider a binary linear optimization

problem

minimize ¢’z

subject to Az =b, x € {0,1}".
Note
7, €{0,1} & 2? =1, & X = zx’ , diag(X) = z.
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By relaxing the rank 1 constraint on X, we obtain an SDP relaxation
minimize ¢’x
subject to Az = b, diag(X) =z, X = xx’,
which can be efficiently solved and provides a lower bound to the original problem.

If the optimal X has rank 1, then it is a solution to the original binary problem
also. Note X = xx” is equivalent to the LMI

(1 mT)
~ 0.
z X

We can tighten the relaxation by adding other constraints that cut away part of
the feasible set, without excluding rank 1 solutions. For instance, 0 < x; < 1 and
0<X;; <1

— SDP relaxation of boolean optimization. For Boolean constraints @ € {—1,1}",

we note
r;€{0,1} & X = zx’ diag(X) = 1.

I’= References: Paper (Laurent and Rendl, 2005) and book (Ben-Tal and Nemirovskil,
2001, Lecture 4.3).

Geometric programming (GP)

e A function f: R" — R with domf = R" | defined as

Qn
n ?

fle) = cafay® -
where ¢ > 0 and a; € R, is called a monomzal.

e A sum of monomials
K

flx) = Z CoTIF LI . gk

k=1

where ¢, > 0, is called a posynomial.
e Posynomials are closed under addition, multiplication, and nonnegative scaling.
e A geometric program is of form

minimize fo(x)

subject to  fi(x) <



where fo, ..., f,, are posynomials and hi, ..., h, are monomials. The constraint > 0
is implicit.
I’= Is GP a convex optimization problem?

e With change of variable y; = In z;, a monomial

fl@) = cafiag? ol
can be written as
fla) = f(e¥r,. .. e¥) = c(e¥)™ - (V)™ = eaTerb’

where b = Inc. Similarly, we can write a posynomial as

K
J— a1k a2k ank
flx) = § CkT1 " To™ =" Ty
k=1
K
o 2 /‘ aly+b
— ek k7
k=1
where ay, = (aix, . .., anx) and by = Incy.

e The original GP can be expressed in terms of the new variable y

Ko
minimize Z %0kY ok
k=1
K;
subject to Zeaﬁy%i’“ <1, i=1,...
k=1

T . .
el Vthi— 1 y=1,...,p,

3

where a;,, g; € R". Taking log of both objective and constraint functions, we obtain

the geometric program in convex form

Ko
. . T
minimize In g e%orY+bok

k=1

K;
subject to In (Z eaﬁwbi’“) <0, i=1,...,m
k=1

gly+hi=0, i=1,... p.

IS Mosek is capable of solving GP. cvx has a GP mode that recognizes and transforms
GP problems.
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e Example. Logistic regression as GP. Given data (x;,v;), i = 1,...,n, where y; € {0,1}
and x; € R?, the likelihood of the logistic regression model is

sz'i (1— pi)liyi
i=1

_ ﬁ estB\" ( 1 )11’1‘
i1 \1+ ewiTIB 1+ e®

— =7 By, - ( 1 )

= e®i — .
H H 1+ ew?ﬁ

iy =1 =1

The MLE solves

minimize H e‘“’iTB H (1 + em?6> )

By =1 =1

Let z; = €%, j =1,...,p. The objective becomes

11 f[zjm”ﬁ <1+£[1,z;”“> :

iy =1 j=1 i=1

This leads to a GP

n
minimize H sthi

pyi=1 i=1

p
subject to sz_x” <s, i=1,....m
j=1

p
1+ ][+ <ti, i=1,....n,
j=1

in variables s € R™, t € R", and z € RP. Here m is the number of observations with

I’= How to incorporate lasso penalty? Let z;r — e , 27 = €% . Lasso penalty takes

j
the form eMPil = (z;rzj_)A

e Example. Bradley-Terry model for sports ranking. See ST758 HW8http://hua-zhou.
github.io/teaching/st758-2014fall/ST758-2014-HW8.pdf. The likelihood is

Vi vi
H (%’ + ’Yj) .

17-7
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MLE is solved by GP
minimize H ti?;j
4,7

subject to 1+, 'y <ty

in~v€R"and t € R™.
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19 Lecture 19, Mar 30

Announcements

e HWG6 (SDP, GP, MIP) deadline extended to this Wed, Apr 1 @ 11:59PM. Some hints
if you use Convex. j1 package in Julia for HWG6:

— Ql1(a): Convex.jl does not implement root determinant function but it imple-

ments the logdet function that you can use

— Q1(d): Convex.jl does not implement trace_inv function but you can easily

formulate it as an SDP

— Q4(a): Convex.jl does not model GP (geometric program), but you can use

change of variable y; = In z; and utilize the logsumexp function in Convex.jl

— Q4(b): Convex.jl does not have a log normcdf function but you can learn the
quadratic approximation trick from cvx https://github.com/cvxr/CVX/blob/

master/functions/%40cvx/log_normcdf.m

Last Time
e SDP (cont’d).

e GP (geometric programming).

Today
e Cone programming.
e Separable convex optimization in Mosek.
e Mixed integer programming (MIP).

e Planned topics for remaining of the course: algorithms for sparse and regularized
regressions, dynamic programming, EM /MM advanced topics: s.e., convergence and

acceleration, and online estimation.

Generalized inequalities and cone programming

e A cone K € R" is proper if it is closed, convex, has non-empty interior, and is pointed,

ie, z € Kand —z € K implies ¢ = 0.
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A proper cone defines a partial ordering on R" via generalized inequalities: x* <y y if

and only if y —x € K and « < y if and only if y — x € int(K).
Eg, X XY meansY — X €8S} and X <Y meansY — X € ST .

A conic form problem or cone program has the form

minimize ¢’z

subject to Fax +g <k 0
Ax =b.

The conic form problem in standard form is

minimize ¢’z
subject to x >k 0
Ax =b.

The conic form problem in inequality form is

minimize ¢’z

subject to Fx +g <k 0.

Special cases of cone programming.

— Nonnegative orthant {x|x = 0}: LP

— Second order cone {(x,t)|||z|]2 < t}: SOCP

— Rotated quadratic cone {(x,t;,t)|||z||3 < 2t1t5}: SOCP
Geometric mean cone {(z,t)|(J]z;)"/™ > y,x = 0}: SOCP
Semidefinite cone S’} : SDP

Nonnegative polynomial cone: SDP

— Monotone polynomial cone: SDP

Convex/concave polynomial cone: SDP

Exponential cone {(z,y,z)lye”’¥ < z,y > 0}. Terms logsumexp, exp, log,

entropy, lndet, ... are exponential cone representable.
e Where is today’s technology up to?

— Gurobi implements up to SOCP.
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— Mosek implements up to SDP.

— SCS (free solver accessible from Convex.jl) can deal with exponential cone pro-

gram.

— CvXx uses a successive approximation strategy to deal with exponential cone rep-
resentable terms, which only relies on SOCP.

http://web.cvxr.com/cvx/doc/advanced.html#successive

I’ cvx implements log det and log_sum_exp.

— Convex. jl accepts exponential cone representable terms, which can solve using
SCS.

I'& Convex. jl implements logsumexp, exp, log, entropy, and logistic_loss.
e Example. Logistic regression as an exponential cone problem

minimize — Z x! B+ Z In (1 + emiT'B) :
i=1

iryi=1
See cvx example library for an example for logistic regression. http://cvxr.com/cvx/
examples/
See the link for an example using Julia. http://nbviewer.ipython.org/github/
JuliaOpt/Convex.jl/blob/master/examples/logistic_regression.ipynb

e Example. Gaussian covariance estimation and graphical lasso
Indet(X) + tr(SX) — A||vecX||;

involves exponential cones because of the Indet term.

Separable convex optimization in Mosek
e Mosek is posed to solve general convex nonlinear programs (NLP) of form

minimize f(x) + c’x
subject to I; < gi(x) +alx <w;, i=1,...,m
I <z =<d”

Here functions f : R" — R and ¢; : R" — R, i = 1,...,m must be separable in

parameters.
e The example

minimize 1z — In(x; + 227)

subject to 27 + 23 < 1
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is not separable. But the equivalent formulation
minimize x; — In(x3)
subject to xf —l—mg <l,x1+2x0—23=0,235>0
is.
e It should cover a lot statistical applications. But I have no experience with its perfor-

mance yet.
e Which modeling tool to use?

— cvx and Convex. jl can not model general NLP.

— JuMP. jlin Julia can model NLP or even MINLP. See http://jump.readthedocs.
org/en/latest/nlp.html

Other topics in convex optimization
e Duality theory. (Boyd and Vandenberghel 2004, Chapter 5).

e Algorithms. Interior point method. (Boyd and Vandenberghe, |2004)) Part III (Chapters
0-11).

e History:

1. 1948: Dantzig’s simplex algorithm for solving LP.
2. 1984: first practical polynomial-time algorithm (interior point method) by Kar-

markar.
3. 1984-1990: efficient implementations for large-scale LP.

4. around 1990: polynomial-time interior-point methods for nonlinear convex pro-

gramming by Nesterov and Nemirovski.

5. since 1990: extensions and high-quality software packages.

Mixed integer programming
e Mixed integer program allows certain optimization variables to be integer.

e Current technology can solve small to moderately sized MILP and MIQP.

I’& cvx allows binary and integer variables.
Convex. jl for Julia does not allow integer variables.

JuMP. j1 for Julia allows binary and integer variables.
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e Modeling using integer variables. References (Nemhauser and Wolsey, [1999; |Williams,
2013).

— (Positivity) If 0 < x < M for a known upper bound M, then we can model the
implication (z > 0) — (z = 1) by linear inequality z < Mz, where z € {0, 1}.
Similarly if 0 < m < x for a known lower bound m. Then we can model the
implication (z = 1) — (x > 0) by the linear inequality = > mz, where z € {0, 1}.

— (Semi-continuity) We can model semi-continuity of a variable z € R, z € 0U|a, b]

where 0 < a < b using a double inequality az < x < bz where z € {0, 1}.

— onstraint satisiaction u 0Se we Know eu €r boun ona x—o. en
(Constraint satisfaction) Supp k the upper bound M T —b. Th

the implication (z = 1) — (a’x < b) can be modeled as
a’x <b+ M(1—2),

where z € {0,1}. Equivalently the reverse implication (a’x < b) — (z = 1) is

modeled as
a’r>b+(m—ez+e

where m < a’x —b is a lower bound. Collectively we model (a’x <) +> (2 =1)

as
a’r<b+M(1—2z2), a’x>b+ (m—ez+e
In a similar fashion, (z = 1) <+ (a’x > b) is modeled as
a’x >b+M(1—2), a’x<b+(m—e)z+e

using the lower bound m < a”x — b and upper bound M > a’x — b.

T

Combining both we can model equality a’« = b by modeling (z = 1) — (a’x = b

by
a’x <b+M(1—-2), a'z>b+m(l—2)
and (z = 0) = (a’x # b) by
a’x>b+(m—ez+e, a’x<b+(M+e)zm—¢ z+2—2<1,

where z; + 20 — 2z < 1 is equivalent to (z = 0) — (21 =0) V (22 = 0).
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— (Disjunctive constraints) The requirement that at least one out of a set of con-
straints is satisfied (z =1) = (afx < b;) V (alx < by) V.-V (alx < by) can be
modeled by

z=z14 -z > 1, aJT.’BSbj"’M(l_Zj)’ for all j,

where z; € {0,1} are binary variables and M > a] — b; for all j is a collective
upper bound.

The reverse implication (afx < b))V (alx < b)) V---V(alz <) = (z=1)is
modeld as

aJTa:Zb—i—(m—e)z—l—e, j=1,...,k,

with a lower bound m < a] x — b; for all j and z € {0,1}.

— (Pack constraints) The requirement at most one of the constraints are satisfied is
modeled as

— (Partition constraints) The requirement exactly one of the constraints are satisfied
is modeled as

a4 ta=1 ax<b+M1-z), forallj

— Boolean primitives.

x Complement

x|
0] 1
110
is modeled as —x =1 — .
x Congunction
Ty | Ay
010 0
110 0
0|1 0
111 1

z=(rxAy)ismodeled as z+ 1>z +y,x > 2,y > z.

x Disjunction
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—_ O = O8
_ = O Ol
— = O|<

is modeled as = +y > 1.

x Implication

rTly|lxr—y
010 1
110 0
01 1
171 1

is modeled as xz < .
— Special ordered set constraint: SOS1 and SOS2. See (Williams, 2013, Section 9.3)
or (Bertsimas and Weismantel, |2005)).

An SOS1 constraint is a set of variables for which at most one variable in the
set may take a value other than zero. An SOS2 constraint is an ordered set of
variables where at most two variables in the set may take non-zero values. If two

take non-zeros values, they must be contiguous in the ordered set.

I’= Gurobi solver allows SOS1 and SOS2 constraints. JuMP. j1 modeling tool for
Julia accepts SOS1 and SOS2 constraints and pass them to solvers that support

them. cvx and Convex.jl dose not take SOS constraints.

e Example. Best subset regression. HW6 Q3. Consider

minimize ||y — fpl — XBH%
subject to || B0 < k.

Introducing binary variables z; € {0, 1} such that (5; # 0) — (z; = 1), then it can be
formulated as a MIQP

minimize ||y — ol — XB||3

subject to —Mz; < B; < Mz;
p

=1

where M > ||B||o. Alternatively, we may model cardinality constraint by SOS1 con-
straints {f;, z;} € SOS1, which does not need a pre-defined M.
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I= We should be able to do best subset XXX for all problems in HW4 /5 by formulating
a corresponding MILP, MIQP or MISOCP.

Example. Variable selection in presence of interaction. Consider variable selection for
linear regression with p predictors and their pairwise interactions. For better inter-
pretability, we may want to retain interaction terms only when their main effects are

in the model as well. We may achieve this by

n

2
o . -
minimize 5 Z (yi —u— Z%’jﬁj - injxij’ﬂjj’> + A (Z |BJ‘ + Z ’ﬁjj”>
j=1 7.3 Jj=1 g3’

i=1
subject to the logical constraints (8;;; # 0) — (8; # 0) A (B # 0).

Example. Sudoku. How to solve Sudoku using integer programming?
Define solution as a binary array X € {0,1}°*?%? with entries z;;; = 1 if and only if

(i, 7)-th entry is integer k. We need constraints

1. Each square in the 2D grid has exactly one value. So 22:1 T = L.

2. Each row 7 of the 2D grid has exactly one value out of each of the digits from 1
9
to 9. So ijl Tijp = 1.
3. Each column 7 of the 2D grid has exactly one value out of each of the digits from
1t09. So Y0 i = 1.
4. The major 3-by-3 grids have similar property. So Zle 22:1 Tituj+vk = 1, where
U,V €{0,3,6}.
5. Observed entries prescribe x;;,, = 1 if (4, j)-th entry is integer m.
Julia: http://nbviewer.ipython.org/github/JuliaOpt/juliaopt-notebooks/blob/
master/notebooks/JuMP-Sudoku. ipynb

Matlab: http://www.mathworks.com/help/optim/ug/solve-sudoku-puzzles-via-integer-pro
html

Optimization involving piecewise-linear functions can be formulated as MIP. See (Vielma
et al., 2010)).
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20 Lecture 20, Apr 1

Announcements

e HW6 (SDP, GP, MIP) due today @ 11:59PM. Don’t forget git tag your submission.

e A few more course project ideas added on http://hua-zhou.github.io/teaching/
st790-2015spr/project.html

Last Time
e Cone programming.
e Separable convex optimization in Mosek.

e Mixed integer programming (MIP).

Today

e Sparse regression.

Sparse regression: what and why?
e Famous lasso (Donoho and Johnstone, (1994 1995} (Tibshirani, |1996)
1 P
. 2
miimize 3lly ~ Al = XBIE + A3 13
]:
Why everyone does this?
— Shrinkage
— Model selection

— Computational efficiency (convex optimization)

e Why shrinkage? Idea of shrinkage dates back to one of the most surprising results in
mathematical statistics in the 20th century. Let’s consider the simple task of estimating

population mean(s).
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— How to estimate hog weight in Montana?
— How to estimate hog weight in Montana and tea consumption in China?

— How to estimate hog weight in Montana, tea consumption in China, and speed of
light?

e Stein’s paradox.

frs =Y

The James-Stein shrinkage estimator fi;q dominates the least squares estimate fi;g
when the number of populations m > 3!

e Observe independent y; ~ N(p;, 1), 1 =1,...,m.

Theorem 1. For m > 3, the James-Stein estimator fi;5 everywhere dominates the

MLE [} in terms of the expected total squared error; that is

Epllies — pllz < Bpllips — pl

for every choice of p.

— (1956) showed the inadmissibility of fi;q; his student James and himself
later proposed the specific form of fi;q in (James and Stein) |1961)).

— Message: when estimating many parameters, shrinkage helps improve risk prop-
erty, even when the parameters are totally unrelated to each other.
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e Efron’s famous baseball example (Efron and Morris|, [1977)).

Table 1.1: Batting averages z; = ﬁgMLE) for 18 major league players early in the 1970 season;
p; values are averages over the remainder of the season. The James—Stein estimates ﬂg']s) (1.35)
based on the z; values provide much more accurate overall predictions for the p; values. (By
coincidence, ji; and y; both average 0.265; the average of ,&Z(»Js) must equal that of ﬂgMLE).)

Name hits/AB ,LALZ('MLE) 15 ﬂ§ 19
Clemente 18/45 400  .346 .294
F Robinson 17/45 378 .208  .289
F Howard 16/45 366 .276  .285
Johnstone 15/45 833 .222 280
Berry 14/45 811 273 275
Spencer 14/45 S11 270 275
Kessinger 13/45 289 .263 .270
L Alvarado 12/45 267 .210  .266
Santo 11/45 244 269 .261
Swoboda 11/45 244 230 261
Unser 10/45 222 .264 .256
Williams 10/45 222 .256  .256
Scott 10/45 222 .303  .256
Petrocelli 10/45 222 .264 256
E Rodriguez 10/45 222 .226  .256
Campaneris 9/45 200 .286 .252
Munson 8/45 178 316 .247
Alvis 7/45 166 .200 .242
Grand Average 265 .265 .265

MLE empirical risk: 0.076. James-Stein (shrinkage towards average) empirical risk:
0.021

04 O
— + —true
o O MLE (0.076)
x  James-Stein (0.021)
0.35 ©
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e Stein’s effect is universal and underlies many modern statistical learning methods

e Empirical Bayes connection (Efron and Morris, 1973)

“Learning from the experience of the others” (John Tukey)
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e Why m > 37 Connection with transience/recurrence of Markov chains , 1971;
1992)

“A drunk man will eventually find his way home but a drunk bird may get lost forever.”
(Kakutani at a UCLA colloquium talk)

e Now we see the benefits of shrinkage. Lasso has the added benefit of model selection.
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus s =t/ Y7 | ;. A vertical line is drawn at s = 0.36,
the tuning parameter A is varied. Coefficients are plotted versus df(\), the effective the value chosen by cross-ualidation. Compare Figure 3.8 on page 65; the lasso
degres of frecdom. A vertical line i drawn af df — 5.0, the value chosen by profiles hit zero, while those for ridge do not. The profiles are piece-wise linar,
cross-validation. ! and so are computed only at the points displayed; see Section 3.4.4 for details.

FIGURE 8.8. Profiles of ridge cocfficients for the prostate cancer ezample, as

The left plot shows the solution path of ridge regression
p
minimize ||y — ol — XB||3 + )\Zﬁ?
j=1

for the prostate cancer data in HW4/5/6. The right plot shows the lasso solution path
on the same data set. We see both ridge and lasso shrink 3. But lasso has the extra

benefit of performing variable selection.

e A general sparse regression minimizes the criterion

F(8)+>_ P11, 2)

— f a differentiable loss function

x f(B) = |ly — XB3/2: linear regression
x f(8) = —£(B): negative log-likelihood (GLM, Cox model, ...)

*
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— P: the penalty function
— \: penalty tuning parameter

— 7 index a penalty family

e Power family penalty (bridge regression) (Frank and Friedman| 1993))

By(lwl, A) = Alw[?, - €10,2].

— n € (0,1): concave, n € [1,2]: convex

— n = 2: ridge, n = 1: lasso, n = 0: ¢y (best subset) regression

Power family

1.0

0.8

Penalty
0.6

0.4

0.2

0.0
1

0.0 0.2 0.4 0.6 0.8 1.0

Coefficient absolute value

e Elastic net penalty (Zou and Hastie, 2005)

By(lwl, A) =M —Dw?/2+ (2=n)lwl}, ne[l,2]

— Enet tries to combine both lasso and ridge penalty.

— n = 1: lasso, n = 2: ridge.

— [Friedman| (2008)) calls the (concave) log penalty generalized enet.
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Generalized elastic net

1.0

Fenalty

0.4

0.2

0.0
1

e SCAD (Fan and Li, 2001]),
Aw| lw| < A
Py(jw], A) = A% 4 P w228 ) € [, ]
N(n+1)/2 lw| > nA

— for small signals |w| < A, it acts as lasso; for large signals |w| > n\, the penalty

flattens and leads to the unbiasedness of the regularized estimate

(c) SCAD penalty

ooy s
theta

e Log penalty (Candes et al., 2008; |Armagan et al., 2013)

By(lw], A) = Aln(n + w]), >0
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e MC+ penalty (Zhang, [2010)

w? 2
By(jwl,A) = <A|w| - 5) Luf<xn) + 23 L uizrm, - 1> 0,

is quadratic on [0, \n] and flattens beyond An. Varying n from 0 to oo bridges hard
thresholding (¢, regression) to lasso (¢;) shrinkage.

Sparse regression: overview of algorithms

e Difficulties in minimizing

p

FB) > ByIB],N).

j=1
— Non-smooth. Not differentiable at 8; = 0.
— Possibility non-convex.

— Extremely high dimensions in modern applications. E.g., p ~ 10° in genetics.
e We discuss following algorithms.

— Convex optimization softwares if applicable.

Coordinate descent.

— Nesterov method (accelerated proximal gradient method).
— Path following algorithm.
e We have seen many examples where convex optimization softwares apply. For a convex

loss f and convex penalty P, write ; = B;-“ — B, where 5; = max{f;,0} and
B; = —min{g;,0}. Then we minimize the objective

FBY=B7)+ ) PyBf + 87N
j=1

subject to nonnegativity constraints ﬂ;r, B; > 0 using a convex optimization solver.

I’= To guarantee B;F and (; to be the positive and negative part of J;, we also need
the (non-convex) constraint 3;3; = 0. This condition can be dispensed in sparse
regression because the penalty function is an increasing function in (3 + 8;7). So the

solution will always put 3 or 85 to be 0.

e May not be efficient for extremely high dimensional, unstructured problems.
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21 Lecture 21, Apr 6

Announcements

e H'WG6 solution sketch posted: http://hua-zhou.github.io/teaching/st790-2015spr/
hwO6sol.html

Last Time

e Sparse regression: introduction.

Today

e Coordinate descent for sparse regression.

e Proximal gradient method.

Coordinate descent (CD)

e Idea: coordinate-wise minimization of 3;

1 .
B argming F(BIY, ., 80 85, 80 L BY) + P11, N)
for j=1,...,p

until objective value converges. Similar to the Gauss-Seidel method for solving linear

equations. Why objective value converges?
e Success stories

— Linear regression (Fu, [1998; Daubechies et al., 2004; Friedman et al., 2007; Wu
and Lange, 2008): GLMNET in R.
— GLM (Friedman et al., [2010): GLMNET in R.

— Non-convex penalties (Mazumder et al., 2011): SPARSENET in R.
e Why CD works for sparse regressions?

— Q1: Given a non-convez function f, if we are at a point  such that f is minimized

along each coordinate axis, is & a global minimum?

x Exercise: consider f(x,y) = (y — 2?)(y — 22?). Show that all directional

derivatives at (0,0) is nonnegative, but it is not a local minimum
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Answer: No.

— Q2: Same question, but for a convez, differentiable f.

‘:‘

o

SN0

}'\\\\\\\\\\‘?“?“‘:‘:’““. Y
!

A\ ¢
L

Answer: Yes. Why?

— Q3: Same question, but for a convex, non-differentiable f.

7

Answer: No.
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— Q4: Same question, but for h(z) = f(x) + >, g;(x;), where f is convex and

differentiable and g, are convex but not necessarily differentiable.
\

()

o
N

W)
T
4

",
KX
Nttt

x2
0
|

T T T
-4 -2 2

x1

Yes. Proof: for any v,

hy) — @) = fly) = flx)+ > [95(y;) — gi(x))]

> Vi) (y—=)+ Z[gj(yj) — g5(x5)]

= > IVif(@) (Y — 75) + g;(y;) — g5())]

J
> 0.

The first inequality is by supporting hyperplane inequality for f. The second
inequality is because h is minimized along z; coordinate thus by the first order

optimality condition
0€V;f(z)+ dg;(z;)
or equivalently
—V;f(x) € 0g;(x;).
Then, by the definition of subgradient,
9i(y;) — g5(x;) = =V, f(®)(y; — 7).

— This justifies the CD algorithm for sparse regression of form f(8)+>_%_, P,(|8;], A),

when both loss and penalty are convex.

— [T'seng (2001) rigorously shows the convergence of CD. For f continuous on com-
pact set {z : f(x) < f(x®)} and attaining its minimum, any limit point of CD

is a minimizer of f.
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e Example. Lasso penalized linear regression.

n

1
50,,3

i=1

— Update of intercept [

min 3 Z(yi — Bo— =] B)* + AZ 18,1
j=1

1
I S (TPr)
i=1
1 n
= =Y - B - 2lBY + A)
i=1
a0 I
= ﬁo +ﬁ;ri .
— Update of 3;
B+ are min — - — 8 — 278" — (B, — p1) + )| 5;]
j = arg ﬁjn Yi — Po i j P )T J
—1
I [ .. 1
= argr%yni [7}' _(Bj_ﬁj )$”] +)“ﬂj’
J i=1
T o @O\
= argmin 5 B; — B o + A5
J el
— 9T (6() m'TjT(t) A )
N J x|’
G N ]
where

1
ST(z,) = argmin _(z — 2)? + | = sgn(=)(|2] - 1)

is the soft-thresholding operator.

— Organize computation around residuals . Each coordinate update requires com-

puting 77" and update of ) - rt) 4 (8 — B

j
or less with structures.

(t+1)

e Example. Lasso penalized generalized linear model (GLM).

p
minimize f(8) + A Z 18],
j=1
where f is the negative log-likelihood of a GLM.
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— Method 1: Use Newton method to update coordinate 8; (Wu et al., 2009).

— Method 2 (IWLS): Each coordinate descent sweep is performed on the quadratic

approximation

1< -
5> w0~ al@ +AY 18]
i=1 j=1

where wgt) are the working weights and zi(t) are the working responses (Friedman
et al., 2010).

I’= IWLS becomes more popular because it needs much less exponentiations.
e Remarks on CD.

— Scalable to extremely large p with careful implementation, because most variables

keep parked at 0 at large A. Can be slow at smaller A\, where many (3, are non-zero.

— Active set strategy. Keep updating active predictors until convergence and then
check other predictors. See (Tibshirani et al., 2012).

— Warm start from large A\: move from sparser solutions to dense ones, using solu-

tion at previous A as initial value for next A.

— Coding in lower level language (C/C++, Fortran, Julia?) is almost necessary for
efficiency due to extensive looping.
I’ What Trevor Hastie calls the FFT trick: Friedman + Fortran + some nu-

merical Tricks = no waste flops.

— Wide applicability of CD: ¢; regression (Wu and Lange, [2008]), svim (Platt} (1999),
group lasso (block CD), graphical lasso (Friedman et al., 2008), ...
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22 Lecture 22, Apr 8

Last Time

e Coordinate descent for sparse regression.

Today

e Proximal gradient and accelerated proximal gradient method.

Proximal gradient and accelerated proximal gradient method: why?

e Because of applications in machine learning and statistics, there is a resurgence of
interests in first order optimization methods that use only gradient information since
90s.

e The classical gradient descent (steepest descent) method minimizes a differentiable
function f by iterating

2 — 20 _ v f(z0)

— Step size s can be fixed or determined by line search (backtracking or exact)
— Advantages

x HEach iteration is inexpensive.
* No need to derive, compute, store and invert Hessians; attractive in large
scale problems.

— Disadvantages

x Slow convergence (zigzagging).

(a)

(b)

Figure 10.6.1.  (a) Steepest descent method in a long, narrow “valley.” While more efficient than the
strategy of Figure 10.5.1, steepest descent is nonetheless an inefficient strategy, taking many steps to
reach the valley floor. (b) Magnified view of one step: A step starts off in the local gradient direction,
perpendicular to the contour lines, and traverses a straight line until a local minimum is reached, where
the traverse is parallel to the local contour lines.
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* Do not work for non-smooth problems.

2

T2
o

— Remedies

* Slow convergence:

- conjugate gradient method

- quasi-Newton
- accelerated gradient method

x Non-differentiable or constrained problems:

- subgradient method

- proximal gradient method
- smoothing method

- cutting-plane methods

Proximal gradient method
I’= A definite resource for learning about proximal algorithms is (Parikh and Boyd, 2013])
https://web.stanford.edu/~boyd/papers/prox_algs.html

e “Much like Newton’s method is a standard tool for solving unconstrained smooth min-
imization problems of modest size, prorimal algorithms can be viewed as an analogous
tool for nonsmooth, constrained, large-scale, or distributed versions of these problems.”

e The proximal mapping (or proz-operator) of a convex function g is
: 1 2
prox, (@) = argmin,, { g(u) + gllu —=|; | .

I’= Intuitively prox,(z) moves towards the minimum of g but not far away (proximal)
from the point «.
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Figure 1.1: Evaluating a proximal operator at various points,

e Fact: For a closed convex g, prox,(x) exists and is unique for all z.

I’= A function f(x) with domain R™ and range (—o0, 00| is said to be closed (or lower
semicontinuous) if every sublevel set {x : f(x) < ¢} is closed. Alternative definition
is f(x) < liminf,, f(x,,) whenever lim,, x,, = . Another definition is the epigraph
{(z,y) e R"xR: f(x) <y} is closed. Examples of closed functions are all continuous

functions, matrix rank, and set indicators.
e Examples of proximal mapping.
1. (Constant function) g(x) = c: prox,(x) = x.
2. (Indicator) g(x) = xc(x): projection operator

. 1
pro, () = argnin, xelw) + |~ al} ) = Pe(e).

I’& In this sense, proximal operator generalizes the projection operator to a closed

convex set.

3. (Lasso) g(x) = M|x||1: soft-thresholding (shrinkage) operator
: 1 5
prox,(x); = argmin, | Aug| + Q(uz — 1)

= sgn(z;)(|zi] = A)+.

Proof. If u; > 0, then stationarity condition dictates u; = (x; — A)y. If u; < 0,

then stationarity condition dictates u; = x; + A = —(—z; — A) 4. O
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4. (Group lasso) g(x) = A||x||2: group soft-thresholding
. 1
prox,(x¢) = argmin, (/\||u||2 + §||u - a:||§)

(1 =Mlzl)z [zl = A

0 otherwise .

Proof. Assuming ||ul|s > 0, stationarity condition says

u—x+ u=20
[[eel2
or equivalently
A
(1 + —) U= .
]2
Taking {5 norm on both sides shows ||u||s = ||| — A\. Therefore

()
uw=(l—-— ]
]2

is the global minimum, when ||z||s > X. For ||z|]2 < A, we have
1 2
llw =z + Allull
Loz Lo
= Ll + Sl = () + Aul.

1 1
> el + 5wl fulallzls + Alul;

1 1
= Sllels+ Sllels + (= [l2]2)
1
> el
Therefore u* = 0 is the global minimum. [

I'= When « is a scalar, it reduces to the soft thresholding operator sgn(z)(|z| —
A
5. (Nuclear norm) h(X) = M| X ||+: matrix soft-thresholding
pro, (X) = arguiny (AIY. + J1¥ - X3 )
— Udiag((o — ). )V
= S\(X),

where X = Udiag(o)V7 is the SVD of X. See ST758 (2014 fall) lecture notes
p159 for the proof.
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6. ...

I’= It is worthwhile to maintain a library of projection and proximal operators in Julia

because they form the building blocks of many machine learning algorithms.

Proximal gradient algorithm minimizes the composite function

hz) = f(x) + g(),

where f is convex and differentiable and g is a closed convex function with inexpensive

prox-operator by iterating
D = prox,, (2 — sV f(z"))

1
= argmin,, <g(u) + Q_SHU —z® 4 sz(w(t))Hg)

1
= argmin,, (g(u) + f(D) + V() (uw—2®) + 2—Hu — w(t)]@) .
s
Here s is a constant step size or determined by line search.

I'= Interpretation: from the third line, we see &**1) minimizes g(x) plus a simple

quadratic local model of f(x) around z®.

I’& Interpretation: the function on the third line
1
ha|z) = g(z) + f@") + V(@) (@ —2) + e — 2|3
s
majorizes f(x)+g(x) at current iterate £® when s < 1/L (why?). Therefore proximal
gradient is an MM algorithm as well.

I’ The function to be minimized in each iteration is separated in parameters ©

I’= When g is constant, proximal gradient method reduces to the classical gradient
descent (or steepest descent) method. When ¢ is indicator function x¢(x), proximal

gradient method reduces to the projected gradient method.
Example. Lasso regression
e 1
minimize iy ~ fo1 ~ XBI3 + A8l

where we identify f(8) = 1|y — 801 — X 3|2 and g(8B) = \||B||;. Then the proximal

2
gradient method iterates according to

= prox, (8" + sX"(y — XB))
= ST(BY + sXT(y — XBY), s\).

,6(t+1)

That is we do iterative soft-thresholding. Note the intercept is not penalized so we do

not apply soft-thresholding to it.
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e Convergence of proximal gradient method.

— Assumptions

x fis convex and V f(x) is Lipschitz continuous with parameter L > 0
* g is a closed convex function (so that prox,, is well-defined)

% optimal value h* = inf, h(x) is finite and attained at *
— Theorem: With fixed step size s = 1/L,

o Ll=® — ="}

h(x") — n*
() 57
Similar result for backtracking line search without knowing L.

— Same convergence rate as the classical gradient method for smooth functions:
O(1/€) steps to reach h(x®) — h* <e.

— Q: Can the O(1/t) rate be improved?
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23 Lecture 23, Apr 15

Announcements

o HWT7 posted http://hua-zhou.github.io/teaching/st790-2015spr/ST790-2015-HW7.
pdf

e Typo in lecture notes p167 (CD for lasso penalized least squares).

Last Time

e Proximal gradient algorithm.

Today

e Accelerated proximal gradient method.

Accelerated proximal gradient method

e Now we have a powerful tool, the proximal gradient method, for dealing with the
non-smooth term in sparse regression. But it converges slowly at the O(1/t) rate ®

Nesterov comes to the rescue ®
e History:

— Nesterov:

* Nesterov (1983): original acceleration method for smooth functions
* Nesterov] (1988): second acceleration method for smooth functions

* Nesterov| (2005): smoothing techniques for nonsmooth functions, coupled

with original acceleration method

* Nesterov (2007): acceleration for composite functions

— Beck and Teboulle (2009b): extension of Nesterovi (1983)) to composite functions
(FISTA).

— [Tseng (2008)): unified analysis of acceleration techniques (all of these, and more).
e FISTA: Fast Iterative Shrinkage-Thresholding Algorithm (Beck and Teboulle, 2009b)).
— Minimize

W) = fz) + g(),
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where f is convex and differentiable and ¢ is convex with inexpensive prox-

operator.

— FISTA algorithm: choose any x® = 2(-V; for t > 1, repeat

t—2
y « x4 t—l——l(w(til) —z(7?) (extrapolation)
z) «— prox, (y—sVf(y prox. grad. desc.
59

Step size s is fixed or determined by line search.

= Interpretation: proximal gradient step is performed on the extrapolated point
y based on the previous two iterates.

I’5 Physical interpretation of Nesterov acceleration? (Pointed to me by Xiang
Zhang) http://cs231n.github.io/neural-networks-3/#sgd

e Convergence of FISTA.

— Assumptions

* f is convex and V f(«) is Lipschitz continuous with parameter L > 0
* g is closed convex (so that prox,, is well-defined)

* optimal value h* = inf, h(x) is finite and attained at x*
— Theorem: With fixed step size s = 1/L,
0) _ x||2
2(t+1)2
Similar result for backtracking line search.

I'= Need O(1/+/e) iterations to get h(z®) — h* < e. To appreciate this acceler-
ation, to get close to optimal value within e = 10~*, proximal gradient method
requires up to 10* iterations, while accelerated proximal gradient method requires
up to 100 iterations.

e Improvement of convergence rate from O(1/t) to O(1/t?) is remarkable. Can we do
better? Nesterov says no. Formally
— Assumptions (smooth case)

x f is convex and differentiable
x V f(x) is Lipschitz continuous with parameter L > 0

* optimal value f* = inf, f(x) is finite and attained at x*
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— First order method: any iterative algorithm that selects * in
2 +span{V f(&*),..., V f(z*1)}

is called a first order method.
— Problem class: any function that satisfies the above assumptions.

— Theorem (Nesterov, [1983): for every integer t < (n — 1)/2 and every =, there

exist functions in the problem class such that for any first-order method

3 L|jz©® — x*|3
By _ x> 2207 7 112
f@) =125 (t+ 1)
I'= This says O(1/t?) is the best rate first order methods can achieve.

— Nesterov’s accelerated gradient method achieves the optimal O(1/t?) rate among
all first-order methods!

— Similarly FISTA achieves the optimal O(1/t?*) rate among all first-order methods
for minimizing composite function h(x) = f(x) + g(x). See (Beck and Teboulle,
2009b) for proof.

e Example. Lasso (n = 100, p = 500): 100 instances.

o
IS
37 -
9
S
°
8
RZ
I ©
£ o7
[a2)
?
°
- — ISTA
3 | — FISTA
o
- T T T T T T
0 200 400 600 800 1000

e Example. Lasso logistic regression (n = 100, p = 500): 100 instances.
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e Numerous applications of FISTA.

— Constrained optimization. When the projection to the constraint set C' is inex-

pensive, accelerated projected gradient method applies.
— Lasso: f(B8) + A7 18-
— Group lasso: f(8) + A, [18,lle-

— Matrix completion: (1/2)||Po(A) — Po(B)||% + A||B]|«
It yields an algorithm different from the MM algorithm we learned in ST758.

— Regularized matrix regression: f(B) + A||B||. (Zhou and Li, 2014).

e Remarks.
— Whenever we do (proximal) gradient method, use Nesterov’s acceleration. It is
“free” but makes a big difference in convergence rate.

— For regularization problems, warm start strategy may diminish the need for ac-

celeration.

— FISTA is not a monotone algorithm. See (Beck and Teboulle, [2009a)) for a mono-

tone version.
— In practice the Lipschitz constant L is unknown.

* Obtain an initial estimate of L using the fact a twice differentiable f has

Lipschitz continuous gradient with parameter L iff LT — d?f(x) is psd for
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all « iff the largest eigenvalue of Hessian is bounded above by L. For least
squares, we have L = Apa(X7TX). For logistic regression, we have L =
0.25Amax (X7 X).

x See (Beck and Teboulle, 2009b) for the line search strategy. Same 1/t* con-

vergence rate.

y « ity I;—T__i(w(t_l) — (72 (extrapolation)
Repeat (line search)
Tiemp < DProxXg(y —sVf(y))
s 4 s/2
until h(Ztemp) < M Tiemp|y)

t
w( ) < Ltemp

— For non-convex f, convergence to stationarity point. See (Beck and Teboulle,
20092, Theorem 1.3).

— Alternative Nesterov acceleration sequence. Original Nesterov acceleration se-
quence takes the form (starting from a(=2 = 0,71 = 1)

alt=2) —1
-1
2@ prox,,(y — sV f(y)) (prox. grad. desc.)

1+ (2at=1)2

y — 2tV (1) — z(t=2) (extrapolation)

(67

See (Beck and Teboulle, 2009b)). Same O(1/t?) convergence rate.
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24 Lecture 24, Apr 20

Announcements

e HW7 due Tue, 4/21 @ 11:59PM.

Last Time

e Accelerated proximal gradient algorithm.

Today

e Path algorithm.

o ALM.

Path algorithm for regularization problems
e In statistics and machine learning, regularization problems solve
minimizeg  f(8) + AJ(B)
for all A > 0.

— A controls the balance between model fit and model complexity.

— Most time we seek whole solution path, instead of solution at individual As.

Path algorithms trace the solution B()\) as a function of A.

Need a principled way to choose A (model selection).

e Example: Lasso solution path (n = 500, p = 100)
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etiet[1), 1.958c
T

28]

Observation: the solution path (in terms of \) is piece-wise linear.

e Example: Solution paths with various penalties (n = 500, p = 100)

enet 1], 25 enet[1.5], 33 enet[2], 25
5 10

5 10

power 1], 25 logl0), 53
I

Rle)

= 2 4 B 2 4 ) 5 10 15 20
log(1),4s scad(3.7), 28
5 1m

Observation: (1) The solution paths are piece-wise smooth for convex penalties, (2)

but may be discontinuous for non-convex penalties.

e How to derive path algorithm? Consider sparse regression f(8)+>_"_, P,(|3;], A) with

a convex penalty F,.
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1. Write down the Karush-Kuhn-Tucker (KKT) condition for solution B(\)

0 = vjf(6)+vﬁ_jpﬂ(|ﬁj|7)‘)’ for all ﬁj # 0
0 € ij(ﬂ> + 85jpn<|ﬂj|, )\), for all ﬁj =0.

2. Apply the implicit function theorem to the first set of equations to derive the path

direction for active 3; and determine when each of them hits zero.

3. Use the second set of equations to determine when a zero coefficient 3; becomes

non-zero.

I’= Recall that the subdifferential 0f(x) of a convex function f(x) is the set of all
vectors g satisfying the supporting hyperplane inequality

fy) > flx)+g" (y — =)

for all y. For instance, subdifferential of f(x) = |z| is [-1,1] at = 0. If f(x) is
differentiable at &, then the set 0 f(x) reduces to the single vector V f(x).

Example: Lasso (Osborne et al., 2000; |[Efron et al.| 2004)
. 1 P
BV = arsmin 5lly — XG5+ 23161
j=1

For simplicity, we assume predictors and responses are centered so omit the intercept.

Stationarity condition (necessary and sufficient for global minimum in this case) says
0, ¢ ~X"(y — XB) + 2|8l
Let A= {j: B; # 0} index the non-zero coefficients. Then we have

Oy = —X4(y— XuBy)+ Asgn(By)
_>\1‘_Ac‘ =< —X:‘Zc(y — XA,BA) =< )\1|Ac|.

Applying the implicit function theorem to the first set of equations yields the path

following direction
d - _
2B = ~(XAX.) " sen(B,),

which effectively shows that non-zero coefficients 3 () and thus the subgradient vector
—X7.(y — X48.4()\)) moves linearly within a segment. The second set of equations
monitor the events a zero coefficient becomes non-zero. Therefore for each 3;, j € A, we

calculate when it (ever) hits 0. And for each f;, j € A°, we calculate when it becomes
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zero. Then the end of current segment (or start of next segment) is determined by the

event that happens soonest, where we update A and then continues.

The computational cost per segment is O(|.A|?). The number of segments is harder
to characterize though (Donoho and Tanner, 2010). Under certain conditions whole

(piece-wise linear) solution path is obtained at the cost of a regular least squares fit
(Efron et al., |2004]).

Example: Generalized lasso (Tibshirani and Taylor, 2011; Zhou and Lange, 2013])

1
Slly = XBI3+ NVB —dll + A|WB — e

Piece-wise linear path. Applications include lasso, fused lasso, polynomial trend filter-

ing, image denoising, ...

Example: Support vector machine (Hastie et al., 2004])

n A
22‘5;“ —yi(Bo +xB)]+ + §IIBII§-

Piece-wise linear path.

Example: Quantile regression and many more piece-wise linear solution paths (Rosset
and Zhu, 2007)).

Example: GLM lasso

F(B)+ A 16l
j=1

Approximate path algorithm (Park and Hastie, [2007) and exact path algorithm (Wu,
2011; Zhou and Wu, 2014) using ODE.

Example: Convex generalized lasso (Zhou and Wu, [2014])
fB)+AVB —d|i + AW — el|+

Applications include GLM (generalized) lasso, non-parametric density estimation, Gaus-

sian graphical lasso, ...

A very general path algorithm presented by [Friedman| (2008]) works for a large class of

convex/concave penalties, but is mysterious @.
Tuning parameter selection.

— A balances the model fit and model complexity.
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— Choosing A is critical in statistical applications.
— Commonly used methods

* Cross validation

* Information criteria:

AIC(\) = Hy_+()\>”2+2df(/\)
BIC(\) = Hy_+()\)”2+ln(n)df()\),

where g()\) = XB(\) and df()\) is the effective degrees of freedom of the
selected model at A

— Using Stein (1981)’s theory of unbiased risk estimation (SURE), Efron| (2004)

shows
df(\) = % gCOV(@i()‘)ayi) =E {tr (az—fy)\))}

under differentiability condition on the mapping gy ().
* least squares estimate: df = tr(X (X" X) ' X") =p
* ridge: df(\) = tr(X(XTX + MI)7'XT) = ¥ d5/(d7 + \), where d; are

J=1"3
singular values of X

% lasso (Zou et al. 2007): number of non-zero coefficients
x generalized lasso (Tibshirani and Taylor, [2011)
« group lasso (Yuan and Lin, |2006))

% nuclear norm regularization (Zhou and Li, [2014)

Augmented Lagrangian method (ALM)

e ALM is also called the method of multipliers.

e Consider optimization problem

minimize f(x)

subject to g¢;(x) =0, i=1,...,q.

— Inequality constraints are ignored for simplicity.

— Assume f and g; are smooth for simplicity.
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— At a constrained minimum, the Lagrange multiplier condition
q
i=1

holds provided Vg;(x) are linearly independent.

o Augmented Lagrangian:

q

Lof@,X) = J(@) + 3 Ngu() + 5D gila)”

=1

— The penalty term (p/2) >°7_, g;(2)? punishes violations of the equality constraints
9:(0).
Idea: optimize the Augmented Lagrangian and adjust A in the hope of matching

the true Lagrange multipliers.

— For p large enough (but finite), the unconstrained minimizer of the augmented

Lagrangian coincides with the constrained solution of the original problem.

— At convergence, the gradient pg;(x)Vg;(x) vanishes and we recover the standard

multiplier rule.

o Algorithm: take p initially large or gradually increase it; iterate

— find the unconstrained minimum
) mwin L,(z, A1)
— update the multiplier vector A
AT D pg(®), =1,

I Intuition for updating A: if () is the unconstrained minimum of £,(x, A), then

the stationarity condition says

q q
0 = V(@) +3 NVa@?)+pd_ gz V()
i=1 =1
= Vi) + Y N+ poi )] V().
i=1

I’ For non-smooth f, replace gradient V f by subdifferential 0f.
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e Example: Compressed sensing (or basis pursuit) problem seeks the sparsest solution

subject to linear constraints

minimize  ||x|y

subject to Az =b.
Take p initially large or gradually increase it; iterate according to

2040 min 2] + A, Az~ b) + Z]| Az ~ b} (lasso)
AED 0 AD L (A _ ),

Converges in a finite (small) number of steps (Yin et al., [2008))

e The matrix completion problem (HW6 Q2)

minimize || X||.

subject to Tij = Yij» (4,7) € Q

can be solved by ALM as well. It leads to an iterative singular value thresholding

procedure (Cai et al., |2010), which scales to very large problems.
e Remarks on ALM:

— History: The augmented Lagrangian method dates back to 50s (Hestenes| 1969;
Powell, 1969)).
Without the quadratic penalty term (p/2)||Ax —bl|3, it is the classical dual ascent
algorithm. Dual ascent algorithm works under a set of restrictive assumptions and
can be slow. ALM converges under much more relaxed assumptions (f can be

non differentiable, takes value oo, ...)
— Monograph by Bertsekas| (1982)) provides a general treatment.

— Same as the Bregman iteration (Yin et al., 2008) for basis pursuit (compressive

sensing).

— Equivalent to proximal point algorithm applied to the dual; can be accelerated
(Nesterov).
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25 Lecture 25, Apr 22

Announcements

e Course project due Wed, 4/29 @ 11:00AM.

Last Time
e Path algorithm.

e ALM (augmented Lagrangian method) or method of multipliers.

Today

e ADMM (alternating direction method of multipliers). A generic method for solving

many regularization problems.
e Dynamic programming: hidden Markov model, some fused lasso problems.

e HWT7 solution sketch in Julia. http://hua-zhou.github.io/teaching/st790-2015spr/
hwO7sol.html

ADMM

I'= A definite resource for learning ADMM is (Boyd et al., |2011))
http://stanford.edu/~boyd/admm.html

e Alternating direction method of multipliers (ADMM).
— Consider optimization problem

minimize f(x) + g(y)
subject to Ax + By = c.

— The augmented Lagrangian
Ly(@.y.X) = f(z) + g(y) + (A, Az + By — ¢) + £|| Az + By — cl;.

— Idea: perform block descent on  and y and then update multiplier vector A
AR min fl@)+ A9 Az + By —¢) + g||Aa: + By — ¢||2
y“ « ming(y) + AV, Az + By —¢) + gllAw(”” + By — cl3

A(H_l) — A(t) +p(Am(t+1) +By(t+1) _ C)
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I’= If we minimize & and y jointly, then it is same as ALM. We gain splitting by

blockwise updates.
— ADMM converges under mild conditions: f, g convex, closed, and proper, L, has

a saddle point.

e Example: Generalized lasso problem minimizes

1
Sl = XBI3 + 4 DB

— Special case D = I, corresponds to lasso. Special case

1 -1
corresponds to fused lasso. Numerous applications.

— Define v = D3. Then we solve

. 1
minimize Elly — X815+ plvlh
sujbect to DB = ~.

— Augmented Lagrangian is

1 T P
Lo(Bv,A) = 5lly - X812+ plvl: + AT(DB —~) + 5I1DB - ¥II3-

— ADMM algorithm:
1 i
U min glly = XA+ AY(DB = +) +51D8 — 4Ol
Y e min s+ XT(DBY — ) + FIDB
XD X0 (DAY — A

I'= Update 3 is a smooth quadratic problem. Note the Hessian keeps constant
between iterations, therefore its inverse (or decomposition) can be calculated just

once, cached in memory, and re-used in each iteration.
I’= Update ~ is a separated lasso problem (elementwise soft-thresholding).

e Remarks on ADMM:
— Related algorithms
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x split Bregman iteration (Goldstein and Osher, |2009)
x \Dykstral (1983)’s alternating projection algorithm

Proximal point algorithm applied to the dual.
— Numerous applications in statistics and machine learning: lasso, generalized lasso,

graphical lasso, (overlapping) group lasso, ...
— Embraces distributed computing for big data (Boyd et al., [2011)).

e Distributed computing with ADMM. Consider, for example, solving lasso with a huge
training data set (X, y), which is distributed on B machines. Denote the distributed

data sets by (X1,¥1),...,(Xp,yp). Then the lasso criterion is

B
1 1
Sy = XBIE+pllBl =5 D lvs — X813 + ull Bl
b=1

The ADMM form is
minimize lys — XuB,l5 + Bl

1

subject to B, =

Here 3, are local variables and 3 is the global (or consensus) variable. The augmented

DN =
o
| ||Mm

B8, b=1,...,B.

Lagrangian function is

1 B B B
Lo(B.7, ) = 5; lon = XoByl13 + ull Bl + bzlxmb - B) +§b21 18, — Bl
=1 = =

The ADMM algorithm runs as

— Update local variables 3,
o1
By minglly, — X8yl + AT (8, - BY) + 518, — BUIE b =1, B,

i parallel on B machines.
— Collect local variables Bl(f), b=1,...,B, and update consensus variable (3
B B
: p
AU minpBly+ Y N B - B) + 5D 18 - Bl
b=1

b=1

by elementwise soft-thresholding.

— Update multipliers
A XA ), b= b

I’= The whole procedure is carried out without ever transferring distributed data sets
(yp, Xp) to a central location!
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Dynamic programming: introduction
o Divide-and-conquer: break the problem into smaller independent subproblems

— fast sorting,

— FFT,

Dynamic programming (DP): subproblems are not independent, that is, subproblems

share common subproblems.

DP solves these subproblems once and store them in a table.

Use these optimal solutions to construct an optimal solution for the original problem.

Richard Bellman began the systematic study of DP in 50s.

Some classical (non-statistical) DP problems:

— Matrix-chain multiplication,
— Longest common subsequence,

— Optimal binary search trees,

See (Cormen et al., 2009) for a general introduction

THOMAS H.CORMEN
' CHARLES E. LEISERSON
RONALD L. RIVEST
‘ CLIFFORD STEIN
" =

1‘
Aooay

SN

INTRODUCTION TO

e Some classical DP problems in statistics

— Hidden Markov model (HMM),

— Some fused-lasso problems,
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— Graphical models (Wainwright and Jordan|, 2008)),

— Sequence alignment, e.g., discovery of the cystic fibrosis gene in 1989,

e Let’s work on the a DP algorithm for the Manhattan tourist problem (MTP), taken

from |Jones and Pevzner| (2004, Section 6.3).

e MTP: weighted graph

'fEJLUUL

uLDD[

][W
ﬂ[lD[

]

L

LI

i

be, s
O*@*Oﬁ@ ®)

Find a longest path in a weighted grid (only eastward and southward)

— Input: a weighted grid G with two distinguished vertices: a source (0,0) and a

sink (n, m).

— Output: a longest path MT(n,m) in G from source to sink.

Brute force enumeration is out of the question even for a moderate sized graph.
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e Simple recursive program.
MT(n,m):
— If n=0o0r m=0, return MT(0,0)

— x4 MT(n —1,m)+ weight of the edge from (n —1,m) to (n,m)
y < MT(n,m — 1)+ weight of the edge from (n,m — 1) to (n,m)

— Return max{z, y}
e Something wrong

— MT(n,m —1) needs MT(n—1,m — 1), so as MT(n — 1, m).

— So MT(n—1,m — 1) will be computed at least twice.

— Dynamic programming: the same idea as this recursive algorithm, but keep all
intermediate results in a table and reuse.

e MTP: dynamic programming

— Calculate optimal path score for each vertex in the graph

— Each vertex’s score is the maximum of the previous vertices score plus the weight

of the respective edge in between

L N O 0 1
N ./ -/ source 1
1 0 2 4 \' |
NP S | ' ; 3 :
O—0O—0—0— i soonsrs 3
1 6 2
0 7 3 _ | 1 SO," 3
1 1
N 3 ~ 3 0 \ L 1
I | i
Syo= 1
~ 3 ¢ B g & J
F—{( ) ——()——=()— 0 1 2
i source
1 0 2 :
! " i3 2
I £ 3 5
J/ \ o
1 0 Spp= o
4 6 5 2
] 0 7 3 Iy 3
. y — 1 4
1 4 5 2 4 S
\ 3 ~ 3 0 = P
| | | 3
S;0=95

192



~ 3 N 2~ 4 ~
L ./ o/ L,
1 0 2 4
— 3 N 2 LN 1 2
./ L 1 Nt
4 6 5 2
P 0 — 7 3 —~
\.‘ \_— .- . /"
4 4 5 2
Py 3 — 3 — 0
./ N L
£ 3 % 2 N
"\ J A L /"
1 0 2 4
—~ 3 —~ 2
N A
4 i3 5 2
~ 0 ~\ 7 Ve
L \_J '
4 4 5 2

PR B ey B g A e
Ly oA ./ L !
1 0 2 4
Ao X2 X
L A 1
4 [i] ki) 2
— 0 N 7 3
L \__/ A
4 4 5 2
e 3 — 3 \ 0 )
i NS L NS
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O : 4 :
3 5 9
1 0 2 Ss0=9
i
i 4 7
4 6 Si2=7
z 10
i S5,=10
1 2 3
source |
e 2 4
3 5 9
1 0 2 4
. 2 4
i 4 7 13
4 6 5 S15=13
5 7
10 17
4 4 Sy,=17
3
14
S;4=14
i
1 2 3
source '
61 ; 2 i 4
3 5 9
1 4
I 1 2 &
1 4 7 13
4 2
) 7 3
5 10 17 20
4 4 2
3 0
8 9 14 7 22
Sy9= 22
i
1 2 3
source ; :
P o2 4
3 5 9
1 4
; 2 4
i 4 7 13
4 6 2
i 7 3
10 17 20
4 4 2
s 3 0
9 14 22 22
5= 22



Showing all back-traces!
e MTP: recurrence
— Computing the score for a point (7, j) by the recurrence relation:

s(i — 1, 7) + weight between (i — 1, 5) and (4, 7)
s(i,j — 1) + weight between (i, — 1) and (3, j)

s(i,j) = max {

— The run time is mn for a n by m grid.

(n = number of rows, m = number of columns)
e Remarks on DP:

— Steps for developing a DP algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Computer the value of an optimal solution in a bottom-up fashion

4. Construct an optimal solution from computed information

— “Programming” both here and in linear programming refers to the use of a tabular

solution method.

— Many problems involve large tables and entries along certain directions may be

filled out in parallel — fine scale parallel computing.

Application of dynamic programming: HMM

e Hidden Markov model (HMM) (Baum et al., [1970).

HMM is a Markov chain that emits symbols:
Markov chain (u, A = {a}) + emission probabilities ey (b)

The state sequence m = my - - -7y, is governed by the Markov chain

P(m =k)=uk), Pm=IUmr_1=k) =au.

The symbol sequence x = x1 - - - xy, is determined by the underlying state sequence

s
L
P<X7 7T) = H Er; ('Ti)a’ﬂ’iflﬂ'i'
i=1
— It is called hidden because in applications the state sequence is unobserved.
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e Wide applications of HMM.

— Wireless communication: IEEE 802.11 WLAN.
— Mobile communication: CDMA and GSM.

— Speech recognition (Rabiner;, 1989)

Hidden states: text, symbols: acoustic signals.

— Haplotyping and genotype imputation
Hidden states: haplotypes, symbols: genotypes.

Gene prediction (Burge, 1997)

TATA box

Enhancer Promoter Enhancer
(distal) (distal)

ol e

s\ N

Exon Intron

~300 bp

e General reference book on HMM:

1

Olivier Cappé
Eric Moulines
Tobias Rydén

@ Springer

Copyrighted Material

e Let’s work on a simple HMM example. The Occasionally Dishonest Casino (Durbin

6t all, [2000)

0.95 0.9
1: 1/6 1: 1/10
2: 1/6 0.05 [|2:1110
3 16 P Ala 110
4 16 N 41710
5 1/6 0.1 5:1/10
6 1/6 6: 1/2
Fair Loaded
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e Fundamental questions of HMM:

Rolls (Observed data) 3154235314254132514636126626164. ..
Die (Hidden states) FFFFFFFFFFFFFFFFFFLLLLLLLLLLLLL. ..

— How to compute the probability of the observed sequence of symbols given known
parameters ag; and eg(b)?

Answer: Forward algorithm.

— How to compute the posterior probability of the state at a given position (posterior
decoding) given ay; and eg(b)?

Answer: Backward algorithm.

— How to estimate the parameters ay and e(b)?

Answer: Baum-Welch algorithm.

— How to find the most likely sequence of hidden states?
Answer: Viterbi algorithm (Viterbi, 1967)).

e Forward algorithm:

Calculate the probability of an observed sequence
P(x) =) P(x,7).

— Brute force evaluation by enumerating is impractical

— Define the forward variable
— Recursion formula for forward variables

fl<2 -+ 1) = P(l’l LT, Tl = l) = €l<$i+1) Z fk(i)akl.
k

— Algorithm:

« Initialization (i = 1): fr(1) = agrer(x1).

= 2, e L) fl(?,) = GZ(LUZ') Zk fk(l — 1)akl.
* Termination: P(x) =", fu(L).

* Recursion (i

Time complexity = (# states)? x length of sequence.
e Backward algorithm.
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— Calculate the posterior state probabilities at each position

P(x,m = k)

P(ms = k) = =5

— Enough to calculate the numerator

P(X,’]Ti = k’) = P(.I'l Ly, T = k’)P(.Z‘H_l .. .I'L’.Z'l XLy, T = k’)
= P(ZL‘l...ZEZ’,’ﬂ'i:k)P<JZZ‘+1...ZL’L|7Ti:]€)
= fu(@)bi(D).

— Recursion formula for the backward variables

bp(i) = P(xig1...xp|m=k) = Zaklel Tiv1)b(i 4+ 1).
!

— Algorithm:
« Initialization (i = L): bx(L) = 1 for all k
* Recursion (1 = L —1,...,1): by(i) = >, amer(xip1)bi(i + 1)
* Termination: P(x) = Zl aolel(xl)bl(l)
Time complexity = (# states)? x length of sequence

— The Occasionally Dishonest Casino.

P(fair)

0 50 100 150 200 250 300
Figure 3.6 The posterior probability of being in the state corresponding to
the fair die in the casino example. The x axis shows the number of the roll.
The shaded areas show when the roll was generated by the loaded die.

e Parameter estimation for HMM — Baum-Welch algorithm.

e Question: Given n independent training symbol sequences x!, ..., x", how to find the
parameter value that maximizes the log-likelihood log P(x', ..., x"[0) = 37, log P(x|0)?

— When the underlying state sequences are known: Simple.

— When the underlying state sequences are unknown: Baum-Welch algorithm.
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e MLE when state sequences are known.

— Let Ay = # transitions from state k to [
Ex(b) = # state k emitting symbol b

The MLEs are
A FE
QA = —k and Gk(b) = A (1)

l
> Awr >y Er(V)

— To avoid overfitting with insufficient data, add pseudocounts

Ap = # transitions k£ to [ in training data + ry;

Er(b) = # emissions of b from k in training data + ry(b)

e MLE when state sequences are unknown: Baum-Welch algorithm.

— Idea: Replace the counts Ay and FEy(b) by their expectations conditional on

current parameter iterate (EM algorithm!)
— The probability that ay; is used at position ¢ of sequence x:
P(m; =k, miy1 = U|x,0)
= Px,m=kmt=1)/Px)
= P(z1...z;,m =k)age(@ip1)P(zige ... xp|mie =1)/P(x)
= fe(Dame(zit)bi(i +1)/P(x).

— So the expected number of times that ay; is used in all training sequences is

Au= Y 7 O RDawelat )G + 1) ®)

j=1
e Baum-Welch Algorithm.

— Initialization: Pick arbitrary model parameters
— Recursion

* Set all the A and E variables to pseudocounts rs (or to zero)

* For each sequence j =1,...,n
- calculate fi (i) for sequence j using the forward algorithm
- calculate by (7) for sequence j using the backward algorithm
- add contribution of sequence j to A (2) and E (?7?)

x Calculate the new model parameters using

x Calculate the new log-likelihood of the model
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— Termination: Stop if change in log-likelihood is less than a predefined threshold

or the maximum number of iteration is exceeded

e Baum-Welch — The Occasionally Dishonest Casino.

0.95 0.9
(; 1: 1/6 1:1/100
2 1/6 0.05 [2:1/10
3 16 P~ Ala 10
4 16 M ] 4110
5 1/6 0.1 5:1/10
6 1/6 6 1/2
Fair Loaded
0.73 0.71
Cﬁ 0.19 1: 0.0Q
2: 0.19 0.27 2: 0.10

3: 023 Al 3 0.10

4: 0.08 (4 0.17
5: 0.23 0.29 5: 0.05

6: 0.08 6: 0.52
Fair Loaded
0.93 '0.88
1: 017 1. 0.10 :)
2: 0.17 0.07 2: 0.11
3: 0.17 3: 0.10
4: 017 ] 4 0.1
5: 017 0.12 5: 0.10
6: 0.15 6: 0.48
Fair Loaded

e Viterbi Algorithm:
— Calculate the most probable state path
7" = argmaxg P(x, 7).
— Define the Viterbi variable
v(7) = P(the most probable path ending in state k with observation ;).

— Recursion for the Viterbi variables

v(i+1) =e(xiq) mgx(vk(z')akl)

— Algorithm:
« Initialization (i = 0): vy(0) =1, v4(0) =0 for all k > 0
* Recursion (i =1,...,L):
u(i) = elx;) mkax(vk(i — 1ay)
ptr;(I) = argmax(vg(i — 1)ag)
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* Termination:

P(x,m) = max(un(L)ao

*

77 = argmax(vg(L)ako)

« Traceback (i = L,...,1): m/_, = ptr;(n})
Time complexity = (# states)? x length of sequence

— Viterbi decoding - The Occasionally Dishonest Casino.

Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls £651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls 222555441666566563564324364131513465146353411126414626253356
Die FEPFPPPPFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls 36616366646623253441266166116325256246225526525226643535333¢6
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEEE
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Application of dynamic programming: fused-lasso

e Fused lasso (Tibshirani et al. [2005) minimizes

p—1 P
—((B) + M\ Z 1Bk — Br—1] + Az Z | Bk
k=1 k=1

over RP for better recovery of signals that are both sparse and smooth

e In many applications, one needs to minimize

n n—1
Op(u) = — ng(uk) + A ZP(Um Up41)
k=1 =1

where u; takes values in a finite space § and p is a penalty function. A discrete

(combinatorial) optimization problem.

200



e A genetic example:
|| le ||
HI
Ll | iﬂ
-
o
i i

mosor

representat

G2:F20

— Model organism study designs: inbred mice

ccccccccccccccc

CC784

One of 1,000 independent

ssssss

llwm

— Goal: impute the strain origin of inbred mice (Zhou et al., 2012)

e Combinatorial optimization of penalized likelihood.

— Minimize objective function

O(u)

n n—1
- Z Ly (ur) + Z P (wg, ups1)
=1 =1

by choosing the proper ordered strain origin assignment along the genome

— uy = ag|by: the ordered strain origin pair

— Ly log-likelihood function at marker k - matching imputed genotypes with the

observed ones

— Py penalty function for adjacent marker k& and

of the solution

k + 1 - encouraging smoothness

e Loglikelihood at each marker. At marker k, uy = ax|by: the ordered strain origin pair;

1/ Sk: observed genotype for animal i. Log-penetrance (conditional log-likelihood) is

Lk(uk) = In [Pr(rk/sk ‘ ak|bk)]

o(1,1) o(1,1) o(1,1)

0(1,2) 0(12) 0(12)
/-
oss) &(s ) £(s8)
g /lfkﬂ R
LG4 =a,|b,)

e Penalty for adjacent markers.
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— Penalty Py (uy, ury1) for each pair of adjacent markers is

.

0, ap = k41, b = by1

—In~Y (bpg1) + A, ar = k41, bi # bry1
Pk(ukauk-i-l) =

—Iny"(agq1) + A, ar 7# ap41, bp = bry1

—In ;P (aks1, ber1) + 2N, ag # ags1, by # g

— Penalties suppress jumps between strains and guide jumps, when they occur,
toward more likely states.

o(1,1) o(1,1) o(1,1) o(1.1)
0(1,2) 0(1,2) o(12) 0(1,2)
o(s,s) R(ss)  p(ss) R(ss)
Sy L |
Pt )
o(1,1) o(1,1) o(1,1) o(1,1)
0(1,2) 0(1,2) 0(1,2) 0(12)
Start End
o . . . . o
o(s,s) o(s,s) oOf(s,s) o(s,s)
Uy Un Unmsq U,
1,1) o(1,1) o(1,1)
(1,2) 0(1,2) 0(12)
Start s
9/ eEss) ps)
u T U Upy s
—()=—In[Pay, 7 /)]
p(ut"ulﬂ)
e Foreachm=1,...,n,
m m—1
Om(um) = ul,fgg}ﬂﬂ [— Z&(Ut) + A Z p(“h“ﬂrl)}
t=1 t=1
beginning with O;(u1) = —¢1(u1). And to proceed
Om+1(Ums1) = r{}in [Om(um) — g1 (Umg1) +p(um,um+1)}

e Computational time is O(s*n), where n = # markers and s = is # founders.

e More fused-lasso examples.

202



Johnson| (2013)) proposes the dynamic programming algorithm for maximizing the

general objective function

n

Z €k(5k) —A Z d(ﬂk, ﬁkfl)v

k=2

where e is an exponential family log-likelihood and d is a penalty function, e..g,
d(Br, Br—1) = Lig26.-1}

Applications: Lg-least squares segmentation, fused lasso signal approximator

(FLSA), ...

Take home message from this course

e Statistics, the science of data analysis, is the applied mathematics in the 21st century.

e Being good at computing (both algorithms and programming) is a must for today’s

working statisticians.

e In this course, we studied and practiced many (overwhelming?) tools that help us

deliver results faster and more accurate.

Operating systems: Linux and scripting basics

Programming languages: R (package development, Repp, ...), Matlab, Julia
Tools for collaborative and reproducible research: Git, R Markdown, sweave
Parallel computing: multi-core, cluster, GPU

Convex optimization (LP, QP, SOCP, SDP, GP, cone programming)

Integer and mixed integer programming

Algorithms for sparse regression

More advanced optimization methods motivated by modern statistical and ma-

chine learning problems, e.g., ALM, ADMM, online algorithms, ...
Dynamic programming

Advanced topics on EM/MM algorithms (not really ...)

Of course there are many tools not covered in this course, notably the Bayesian MCMC

machinery. Take a Bayesian course!
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e Updated benchmark results. R is upgraded to v3.2.0 and Julia to 0.3.7 since beginning

of this course. I re-did the benchmark and did not see notable changes.

Benchmark code R-benchmark-25.R from http://r.research.att.com/benchmarks/
R-benchmark-25.R covers many commonly used numerical operations used in statis-
tics. We ported to MATLAB and Julia and report the run times (averaged over 5 runs)

here.

Machine specs: Intel i7 @ 2.6GHz (4 physical cores, 8 threads), 16G RAM, Mac OS 10.9.5.

Test R 3.2.0 MATLAB R2014a JULIA 0.3.7
Matrix creation, trans, deformation (2500 x 2500) 0.80 0.17 0.16
Power of matrix (2500 x 2500, A.1900) 0.22 0.11 0.22
Quick sort (n =7 x 109) 0.64 0.24 0.62
Cross product (2800 x 2800, AT A) 9.89 0.35 0.37
LS solution (n = p = 2000) 1.21 0.07 0.09
FFT (n = 2400000) 0.36 0.04 0.14
Eigen-decomposition (600 x 600) 0.77 0.31 0.53
Determinant (2500 x 2500) 3.52 0.18 0.22
Cholesky (3000 x 3000) 4.08 0.15 0.21
Matrix inverse (1600 x 1600) 2.93 0.16 0.19
Fibonacci (vector) 0.29 0.17 0.65
Hilbert (matrix) 0.18 0.07 0.17
GCD (recursion) 0.28 0.14 0.20
Toeplitz matrix (loops) 0.32 0.0014 0.03
Escoufiers (mixed) 0.39 0.40 0.15

For the simple Gibbs sampler test, R v3.2.0 takes 38.32s elapsed time. Julia v0.3.7
takes 0.35s.

e Do not forget course evaluation: https://classeval.ncsu.edu/secure/prod/cesurvey/
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