25 Lecture 25, Apr 22

Announcements

• Course project due Wed, 4/29 @ 11:00AM.

Last Time

- Path algorithm.
- ALM (augmented Lagrangian method) or method of multipliers.

Today

- ADMM (alternating direction method of multipliers). A generic method for solving many regularization problems.
- Dynamic programming.
- HW7 solution sketch in Julia. http://hua-zhou.github.io/teaching/st790-2015spr/ hw07sol.html

ADMM

I → A definite resource for learning ADMM is (Boyd et al., 2011) http://stanford.edu/~boyd/admm.html

- Alternating direction method of multipliers (ADMM).
 - Consider optimization problem

minimize
$$f(\boldsymbol{x}) + g(\boldsymbol{y})$$

subject to $\boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{y} = \boldsymbol{c}$.

– The augmented Lagrangian

$$\mathcal{L}_{\rho}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{\lambda}) = f(\boldsymbol{x}) + g(\boldsymbol{y}) + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{y} - \boldsymbol{c} \rangle + \frac{\rho}{2} \|\boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{y} - \boldsymbol{c}\|_{2}^{2}.$$

– *Idea*: perform block descent on \boldsymbol{x} and \boldsymbol{y} and then update multiplier vector $\boldsymbol{\lambda}$

$$\begin{aligned} \boldsymbol{x}^{(t+1)} &\leftarrow \min_{\boldsymbol{x}} f(\boldsymbol{x}) + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{y}^{(t)} - \boldsymbol{c} \rangle + \frac{\rho}{2} \|\boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{y}^{(t)} - \boldsymbol{c}\|_{2}^{2} \\ \boldsymbol{y}^{(t+1)} &\leftarrow \min_{\boldsymbol{y}} g(\boldsymbol{y}) + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x}^{(t+1)} + \boldsymbol{B}\boldsymbol{y} - \boldsymbol{c} \rangle + \frac{\rho}{2} \|\boldsymbol{A}\boldsymbol{x}^{(t+1)} + \boldsymbol{B}\boldsymbol{y} - \boldsymbol{c}\|_{2}^{2} \\ \boldsymbol{\lambda}^{(t+1)} &\leftarrow \boldsymbol{\lambda}^{(t)} + \rho(\boldsymbol{A}\boldsymbol{x}^{(t+1)} + \boldsymbol{B}\boldsymbol{y}^{(t+1)} - \boldsymbol{c}) \end{aligned}$$

IF If we minimize x and y jointly, then it is same as ALM. We gain splitting by blockwise updates.

- ADMM converges under mild conditions: f, g convex, closed, and proper, \mathcal{L}_0 has a saddle point.
- Example: Generalized lasso problem minimizes

$$\frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \mu \|\boldsymbol{D}\boldsymbol{\beta}\|_1$$

- Special case $D = I_p$ corresponds to *lasso*. Special case

$$\boldsymbol{D} = \begin{pmatrix} 1 & -1 & & \\ & \ddots & & \\ & & 1 & -1 \end{pmatrix}$$

corresponds to *fused lasso*. Numerous applications.

- Define $\gamma = D\beta$. Then we solve

minimize
$$\frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \mu \| \boldsymbol{\gamma} \|_1$$

sujbect to $\boldsymbol{D} \boldsymbol{\beta} = \boldsymbol{\gamma}.$

- Augmented Lagrangian is

$$\mathcal{L}_{
ho}(oldsymbol{eta},oldsymbol{\gamma},oldsymbol{\lambda}) = rac{1}{2} \|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|_2^2 + \mu \|oldsymbol{\gamma}\|_1 + oldsymbol{\lambda}^{ op}(oldsymbol{D}oldsymbol{eta} - oldsymbol{\gamma}) + rac{
ho}{2} \|oldsymbol{D}oldsymbol{eta} - oldsymbol{\gamma}\|_2^2.$$

- ADMM algorithm:

$$\begin{split} \boldsymbol{\beta}^{(t+1)} &\leftarrow \min_{\boldsymbol{\beta}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_{2}^{2} + \boldsymbol{\lambda}^{(t)T} (\boldsymbol{D} \boldsymbol{\beta} - \boldsymbol{\gamma}^{(t)}) + \frac{\rho}{2} \| \boldsymbol{D} \boldsymbol{\beta} - \boldsymbol{\gamma}^{(t)} \|_{2}^{2} \\ \boldsymbol{\gamma}^{(t+1)} &\leftarrow \min_{\boldsymbol{\gamma}} \mu \| \boldsymbol{\gamma} \|_{1} + \boldsymbol{\lambda}^{\mathsf{T}} (\boldsymbol{D} \boldsymbol{\beta}^{(t+1)} - \boldsymbol{\gamma}) + \frac{\rho}{2} \| \boldsymbol{D} \boldsymbol{\beta}^{(t+1)} - \boldsymbol{\gamma} \|_{2}^{2} \\ \boldsymbol{\lambda}^{(t+1)} &\leftarrow \boldsymbol{\lambda}^{(t)} + \rho (\boldsymbol{D} \boldsymbol{\beta}^{(t+1)} - \boldsymbol{\gamma}^{(t+1)}) \end{split}$$

I \square Update β is a smooth quadratic problem. Note the Hessian keeps constant between iterations, therefore its inverse (or decomposition) can be calculated just once, cached in memory, and re-used in each iteration.

If Update γ is a separated lasso problem (elementwise soft-thresholding).

- Remarks on ADMM:
 - Related algorithms

- * split Bregman iteration (Goldstein and Osher, 2009)
- * Dykstra (1983)'s alternating projection algorithm
- * ...

Proximal point algorithm applied to the dual.

- Numerous applications in statistics and machine learning: lasso, generalized lasso, graphical lasso, (overlapping) group lasso, ...
- Embraces distributed computing for big data (Boyd et al., 2011).
- Distributed computing with ADMM. Consider, for example, solving lasso with a huge training data set (\mathbf{X}, \mathbf{y}) , which is stored on *B* machines. Denote the distributed data sets by $(\mathbf{X}_1, \mathbf{y}_1), \ldots, (\mathbf{X}_B, \mathbf{y}_B)$. Then the lasso criterion is

$$\frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_{2}^{2} + \mu \| \boldsymbol{\beta} \|_{1} = \frac{1}{2} \sum_{b=1}^{B} \| \boldsymbol{y}_{b} - \boldsymbol{X}_{b} \boldsymbol{\beta} \|_{2}^{2} + \mu \| \boldsymbol{\beta} \|_{1}.$$

The ADMM form is

minimize
$$\frac{1}{2} \sum_{b=1}^{B} \|\boldsymbol{y}_{b} - \boldsymbol{X}_{b}\boldsymbol{\beta}_{b}\|_{2}^{2} + \mu \|\boldsymbol{\beta}\|_{1}$$
subject to $\boldsymbol{\beta}_{b} = \boldsymbol{\beta}, \quad b = 1, \dots, B.$

Here β_b are local variables and β is the global (or consensus) variable. The augmented Lagrangian function is

$$\mathcal{L}_{\rho}(\boldsymbol{\beta},\boldsymbol{\gamma},\boldsymbol{\lambda}) = \frac{1}{2}\sum_{b=1}^{B} \|\boldsymbol{y}_{b} - \boldsymbol{X}_{b}\boldsymbol{\beta}_{b}\|_{2}^{2} + \mu \|\boldsymbol{\beta}\|_{1} + \sum_{b=1}^{B} \boldsymbol{\lambda}_{b}^{\mathsf{T}}(\boldsymbol{\beta}_{b} - \boldsymbol{\beta}) + \frac{\rho}{2}\sum_{b=1}^{B} \|\boldsymbol{\beta}_{b} - \boldsymbol{\beta}\|_{2}^{2}.$$

The ADMM algorithm runs as

- Update local variables $\boldsymbol{\beta}_b$ $\boldsymbol{\beta}_b^{(t+1)} \leftarrow \min \frac{1}{2} \| \boldsymbol{y}_b - \boldsymbol{X}_b \boldsymbol{\beta}_b \|_2^2 + \boldsymbol{\lambda}_b^{\mathsf{T}} (\boldsymbol{\beta}_b - \boldsymbol{\beta}^{(t)}) + \frac{\rho}{2} \| \boldsymbol{\beta}_b - \boldsymbol{\beta}^{(t)} \|_2^2, \quad b = 1, \dots, B,$ *in parallel* on *B* machines.

- Collect local variables $\boldsymbol{\beta}_{b}^{(t)}, b = 1, \dots, B$, and update consensus variable $\boldsymbol{\beta}$

$$\boldsymbol{\beta}^{(t+1)} \leftarrow \min \mu \|\boldsymbol{\beta}\|_1 + \sum_{b=1}^B \boldsymbol{\lambda}_b^{\mathsf{T}}(\boldsymbol{\beta}_b^{(t+1)} - \boldsymbol{\beta}) + \frac{\rho}{2} \sum_{b=1}^B \|\boldsymbol{\beta}_b^{(t+1)} - \boldsymbol{\beta}\|_2^2$$

by elementwise soft-thresholding.

- Update multipliers

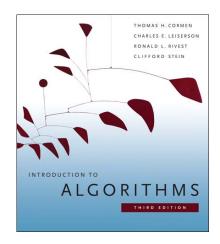
$$\boldsymbol{\lambda}_{b}^{(t+1)} \leftarrow \boldsymbol{\lambda}_{b}^{(t)} + \rho(\boldsymbol{\beta}_{b}^{(t+1)} - \boldsymbol{\beta}^{(t+1)}), \quad b = 1, \dots, B$$

IP The whole procedure is carried out without ever transferring distributed data sets $(\boldsymbol{y}_b, \boldsymbol{X}_b)$ to a central location!

Dynamic programming: introduction

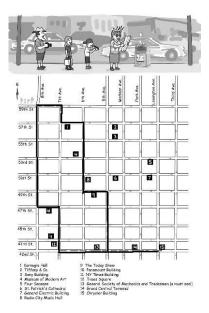
- Divide-and-conquer: break the problem into smaller independent subproblems
 - fast sorting,
 - FFT,
 - ...
- *Dynamic programming* (DP): subproblems are not independent, that is, subproblems share common subproblems.
- DP solves these subproblems once and store them in a table.
- Use these optimal solutions to construct an optimal solution for the original problem.
- Richard Bellman began the systematic study of DP in 50s.
- Some classical (non-statistical) DP problems:
 - Matrix-chain multiplication,
 - Longest common subsequence,
 - Optimal binary search trees,
 - ...

See (Cormen et al., 2009) for a general introduction

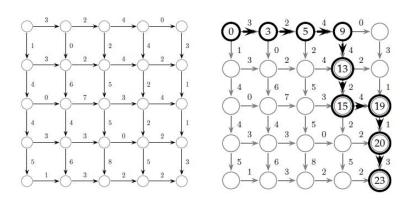


- Some classical DP problems in statistics
 - Hidden Markov model (HMM),
 - Some fused-lasso problems,

- Graphical models (Wainwright and Jordan, 2008),
- Sequence alignment, e.g., discovery of the cystic fibrosis gene in 1989,
- ...
- Let's work on the a DP algorithm for the Manhattan tourist problem (MTP), taken from Jones and Pevzner (2004, Section 6.3).



• MTP: weighted graph



Find a longest path in a weighted grid (only eastward and southward)

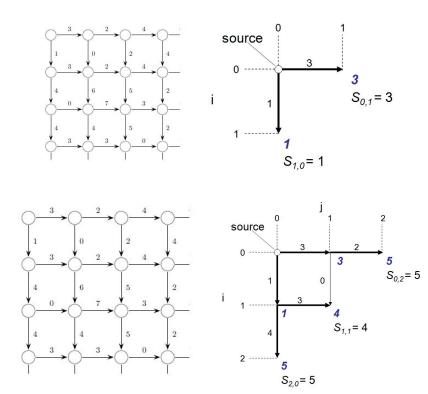
- Input: a weighted grid G with two distinguished vertices: a source (0,0) and a sink (n,m).
- Output: a longest path MT(n,m) in G from source to sink.

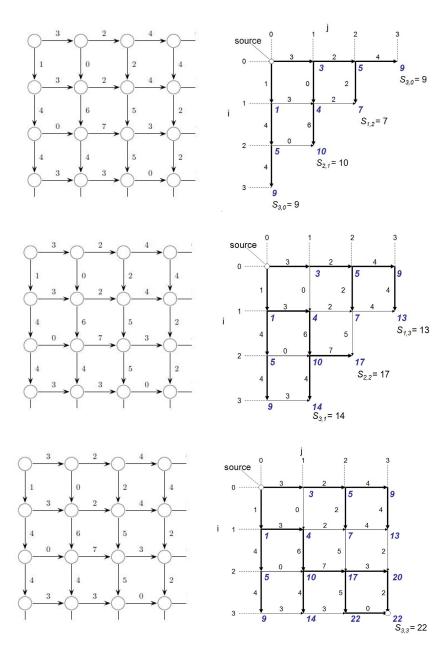
Brute force enumeration is out of the question even for a moderate sized graph.

• Simple recursive program.

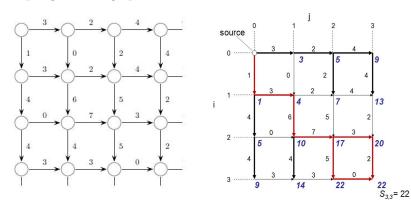
MT(n,m):

- If n = 0 or m = 0, return MT(0, 0)
- $-x \leftarrow MT(n-1,m)$ + weight of the edge from (n-1,m) to (n,m)
 - $y \leftarrow MT(n, m-1)$ + weight of the edge from (n, m-1) to (n, m)
- Return $\max\{x, y\}$
- Something wrong
 - -MT(n, m-1) needs MT(n-1, m-1), so as MT(n-1, m).
 - So MT(n-1, m-1) will be computed at least twice.
 - Dynamic programming: the same idea as this recursive algorithm, but keep all intermediate results in a *table* and reuse.
- MTP: dynamic programming
 - Calculate optimal path score for each vertex in the graph
 - Each vertex's score is the maximum of the previous vertices score plus the weight of the respective edge in between





• MTP dynamic programming: *path!*



Showing all back-traces!

- MTP: recurrence
 - Computing the score for a point (i, j) by the recurrence relation:

$$s(i,j) = \max \begin{cases} s(i-1,j) + \text{weight between } (i-1,j) \text{ and } (i,j) \\ s(i,j-1) + \text{weight between } (i,j-1) \text{ and } (i,j) \end{cases}$$

- The run time is mn for a n by m grid. (n = number of rows, m = number of columns)
- Remarks on DP:
 - Steps for developing a DP algorithm
 - 1. Characterize the structure of an optimal solution
 - 2. Recursively define the value of an optimal solution
 - 3. Computer the value of an optimal solution in a bottom-up fashion
 - 4. Construct an optimal solution from computed information
 - "Programming" both here and in linear programming refers to the use of a tabular solution method.
 - Many problems involve large tables and entries along certain directions may be filled out in parallel – fine scale *parallel computing*.

Application of dynamic programming: HMM

- Hidden Markov model (HMM) (Baum et al., 1970).
 - HMM is a Markov chain that emits symbols: Markov chain $(\mu, A = \{a_{kl}\})$ + emission probabilities $e_k(b)$
 - The state sequence $\pi = \pi_1 \cdots \pi_L$ is governed by the Markov chain

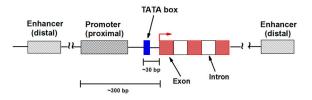
$$\mathbf{P}(\pi_1 = k) = \mu(k), \quad \mathbf{P}(\pi_i = l | \pi_{i-1} = k) = a_{kl}.$$

- The symbol sequence $\mathbf{x} = x_1 \cdots x_L$ is determined by the underlying state sequence π

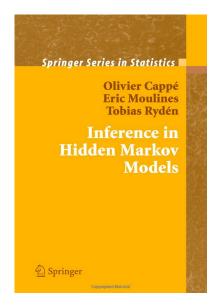
$$\mathbf{P}(\mathbf{x},\pi) = \prod_{i=1}^{L} e_{\pi_i}(x_i) a_{\pi_{i-1}\pi_i}.$$

- It is called *hidden* because in applications the state sequence is unobserved.

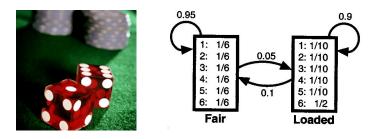
- Wide applications of HMM.
 - Wireless communication: IEEE 802.11 WLAN.
 - Mobile communication: CDMA and GSM.
 - Speech recognition (Rabiner, 1989)
 Hidden states: text, symbols: acoustic signals.
 - Haplotyping and genotype imputation
 Hidden states: haplotypes, symbols: genotypes.
 - Gene prediction (Burge, 1997)



• General reference book on HMM:



• Let's work on a simple HMM example. The Occasionally Dishonest Casino (Durbin et al., 2006)



• Fundamental questions of HMM:

- How to compute the probability of the observed sequence of symbols given known parameters a_{kl} and $e_k(b)$? Answer: Forward algorithm.
- How to compute the posterior probability of the state at a given position (posterior decoding) given a_{kl} and e_k(b)?
 Answer: Backward algorithm.
- How to estimate the parameters a_{kl} and $e_k(b)$? Answer: Baum-Welch algorithm.
- How to find the most likely sequence of hidden states?
 Answer: Viterbi algorithm (Viterbi, 1967).
- Forward algorithm:
 - Calculate the probability of an observed sequence

$$\mathbf{P}(\mathbf{x}) = \sum_{\pi} \mathbf{P}(\mathbf{x}, \pi).$$

- Brute force evaluation by enumerating is *impractical*
- Define the *forward variable*

$$f_k(i) = \mathbf{P}(x_1 \dots x_i, \pi_i = k).$$

- Recursion formula for forward variables

$$f_l(i+1) = \mathbf{P}(x_1 \dots x_i x_{i+1}, \pi_{i+1} = l) = e_l(x_{i+1}) \sum_k f_k(i) a_{kl}$$

– Algorithm:

- * Initialization (i = 1): $f_k(1) = a_{0k}e_k(x_1)$.
- * Recursion (i = 2, ..., L): $f_l(i) = e_l(x_i) \sum_k f_k(i-1)a_{kl}$.
- * Termination: $\mathbf{P}(\mathbf{x}) = \sum_k f_k(L)$.

Time complexity = $(\# \text{ states})^2 \times \text{length of sequence.}$

• Backward algorithm.

- Calculate the posterior state probabilities at each position

$$\mathbf{P}(\pi_i = k | \mathbf{x}) = \frac{\mathbf{P}(\mathbf{x}, \pi_i = k)}{\mathbf{P}(\mathbf{x})}.$$

Enough to calculate the numerator

$$\mathbf{P}(\mathbf{x}, \pi_i = k) = \mathbf{P}(x_1 \dots x_i, \pi_i = k) \mathbf{P}(x_{i+1} \dots x_L | x_1 \dots x_i, \pi_i = k)$$
$$= \mathbf{P}(x_1 \dots x_i, \pi_i = k) \mathbf{P}(x_{i+1} \dots x_L | \pi_i = k)$$
$$= f_k(i) b_k(i).$$

- Recursion formula for the *backward variables*

$$b_k(i) = \mathbf{P}(x_{i+1} \dots x_L | \pi_i = k) = \sum_l a_{kl} e_l(x_{i+1}) b_l(i+1).$$

- Algorithm:
 - * Initialization (i = L): $b_k(L) = 1$ for all k
 - * Recursion (i = L 1, ..., 1): $b_k(i) = \sum_l a_{kl} e_l(x_{i+1}) b_l(i+1)$
 - * Termination: $\mathbf{P}(\mathbf{x}) = \sum_{l} a_{0l} e_l(x_1) b_l(1)$

Time complexity = $(\# \text{ states})^2 \times \text{length of sequence}$

- The Occasionally Dishonest Casino.

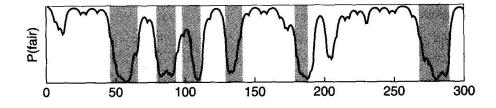


Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

- Parameter estimation for HMM Baum-Welch algorithm.
- Question: Given *n* independent training symbol sequences $\mathbf{x}^1, \ldots, \mathbf{x}^n$, how to find the parameter value that maximizes the log-likelihood log $\mathbf{P}(\mathbf{x}^1, \ldots, \mathbf{x}^n | \theta) = \sum_{j=1}^n \log \mathbf{P}(\mathbf{x}^j | \theta)$?
 - When the underlying state sequences are *known*: Simple.
 - When the underlying state sequences are unknown: Baum-Welch algorithm.

- MLE when state sequences are known.
 - Let $A_{kl} = \#$ transitions from state k to l $E_k(b) = \#$ state k emitting symbol b The MLEs are

$$a_{kl} = \frac{A_{kl}}{\sum_{l'} A_{kl'}} \text{ and } e_k(b) = \frac{E_k(b)}{\sum_{b'} E_k(b')}.$$
 (1)

- To avoid overfitting with insufficient data, add pseudocounts

$$A_{kl} = \# \text{ transitions } k \text{ to } l \text{ in training data } + r_{kl};$$

$$E_k(b) = \# \text{ emissions of } b \text{ from } k \text{ in training data } + r_k(b)$$

- MLE when state sequences are unknown: Baum-Welch algorithm.
 - *Idea*: Replace the counts A_{kl} and $E_k(b)$ by their expectations conditional on current parameter iterate (*EM algorithm*!)
 - The probability that a_{kl} is used at position *i* of sequence **x**:

$$\begin{aligned} \mathbf{P}(\pi_{i} = k, \pi_{i+1} = l | \mathbf{x}, \theta) \\ &= \mathbf{P}(\mathbf{x}, \pi_{i} = k, \pi_{i+1} = l) / \mathbf{P}(\mathbf{x}) \\ &= \mathbf{P}(x_{1} \dots x_{i}, \pi_{i} = k) a_{kl} e_{l}(x_{i+1}) \mathbf{P}(x_{i+2} \dots x_{L} | \pi_{i+1} = l) / \mathbf{P}(\mathbf{x}) \\ &= f_{k}(i) a_{kl} e_{l}(x_{i+1}) b_{l}(i+1) / \mathbf{P}(\mathbf{x}). \end{aligned}$$

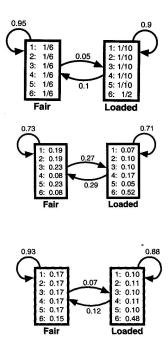
- So the expected number of times that a_{kl} is used in all training sequences is

$$A_{kl} = \sum_{j=1}^{n} \frac{1}{\mathbf{P}(\mathbf{x}^j)} \sum_{i} f_k^j(i) a_{kl} e_l(x_{i+1}^j) b_l^j(i+1).$$
(2)

• Baum-Welch Algorithm.

- Initialization: Pick arbitrary model parameters
- Recursion
 - * Set all the A and E variables to pseudocounts rs (or to zero)
 - * For each sequence $j = 1, \ldots, n$
 - · calculate $f_k(i)$ for sequence j using the forward algorithm
 - · calculate $b_k(i)$ for sequence j using the backward algorithm
 - · add contribution of sequence j to A(2) and E(??)
 - * Calculate the new model parameters using (1)
 - * Calculate the new log-likelihood of the model

- Termination: Stop if change in log-likelihood is less than a predefined threshold or the maximum number of iteration is exceeded
- Baum-Welch The Occasionally Dishonest Casino.



- Viterbi Algorithm:
 - Calculate the most probable state path

$$\boldsymbol{\pi}^* = \operatorname{argmax}_{\boldsymbol{\pi}} P(\boldsymbol{x}, \boldsymbol{\pi}).$$

- Define the Viterbi variable

 $v_l(i) = P$ (the most probable path ending in state k with observation x_i).

- Recursion for the Viterbi variables

$$v_l(i+1) = e_l(x_{i+1}) \max_k (v_k(i)a_{kl})$$

- Algorithm:
 - * Initialization (i = 0): $v_0(0) = 1$, $v_k(0) = 0$ for all k > 0
 - * Recursion $(i = 1, \ldots, L)$:

$$v_l(i) = e_l(x_i) \max_k (v_k(i-1)a_{kl})$$

ptr_i(l) = argmax_k(v_k(i-1)a_{kl})

* Termination:

$$\mathbf{P}(\mathbf{x}, \boldsymbol{\pi}^*) = \max_k (v_k(L)a_{k0})$$
$$\pi_L^* = \operatorname{argmax}_k (v_k(L)a_{k0})$$

* Traceback $(i = L, \ldots, 1)$: $\pi_{i=1}^* = \operatorname{ptr}_i(\pi_i^*)$

Time complexity = $(\# \text{ states})^2 \times \text{length of sequence}$

- Viterbi decoding - The Occasionally Dishonest Casino.

Rolls Die Viterbi	315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	6511664531326512456366646316366631623264552362666666625151631 LLLLLFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLL
Rolls Die Viterbi	222555441666566563564324364131513465146353411126414626253356 FFFFFFFFLLLLLLLLFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	366163666466232534413661661163252562462255265252266435353336 LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	233121625364414432335163243633665562466662632666612355245242 FFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Application of dynamic programming: fused-lasso

• Fused lasso (Tibshirani et al., 2005) minimizes

$$-\ell(\boldsymbol{\beta}) + \lambda_1 \sum_{k=1}^{p-1} |\beta_k - \beta_{k-1}| + \lambda_2 \sum_{k=1}^{p} |\beta_k|$$

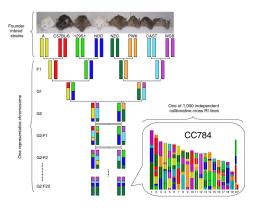
over \mathbf{R}^p for better recovery of signals that are both sparse and smooth

• In many applications, one needs to minimize

$$O_n(\mathbf{u}) = -\sum_{k=1}^n \ell_k(u_k) + \lambda \sum_{k=1}^{n-1} p(u_k, u_{k+1})$$

where u_t takes values in a finite space S and p is a penalty function. A *discrete* (combinatorial) optimization problem.

• A genetic example:

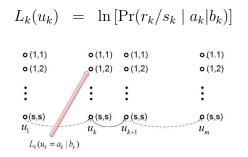


- Model organism study designs: inbred mice
- Goal: impute the strain origin of inbred mice (Zhou et al., 2012)
- Combinatorial optimization of penalized likelihood.
 - Minimize objective function

$$O(\mathbf{u}) = -\sum_{k=1}^{n} L_k(u_k) + \sum_{k=1}^{n-1} P_k(u_k, u_{k+1})$$

by choosing the proper ordered strain origin assignment along the genome

- $-u_k = a_k | b_k$: the ordered strain origin pair
- L_k : log-likelihood function at marker k matching imputed genotypes with the observed ones
- P_k : penalty function for adjacent marker k and k + 1 encouraging smoothness of the solution
- Loglikelihood at each marker. At marker k, $u_k = a_k | b_k$: the ordered strain origin pair; r_k/s_k : observed genotype for animal *i*. Log-penetrance (conditional log-likelihood) is

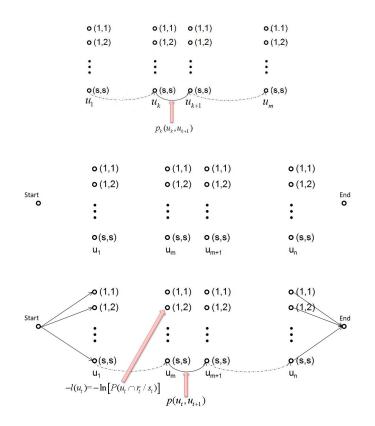


• Penalty for adjacent markers.

– Penalty $P_k(u_k, u_{k+1})$ for each pair of adjacent markers is

$$P_k(u_k, u_{k+1}) = \begin{cases} 0, & a_k = a_{k+1}, \ b_k = b_{k+1} \\ -\ln \gamma_i^p(b_{k+1}) + \lambda, & a_k = a_{k+1}, \ b_k \neq b_{k+1} \\ -\ln \gamma_i^m(a_{k+1}) + \lambda, & a_k \neq a_{k+1}, \ b_k = b_{k+1} \\ -\ln \psi_{ii}^{mp}(a_{k+1}, b_{k+1}) + 2\lambda, & a_k \neq a_{k+1}, \ b_k \neq b_{k+1}. \end{cases}$$

 Penalties suppress jumps between strains and guide jumps, when they occur, toward more likely states.



• For each $m = 1, \ldots, n$,

$$O_m(u_m) = \min_{u_1, \dots, u_{m-1}} \left[-\sum_{t=1}^m \ell_t(u_t) + \lambda \sum_{t=1}^{m-1} p(u_t, u_{t+1}) \right]$$

beginning with $O_1(u_1) = -\ell_1(u_1)$. And to proceed

$$O_{m+1}(u_{m+1}) = \min_{u_m} \left[O_m(u_m) - \ell_{m+1}(u_{m+1}) + p(u_m, u_{m+1}) \right]$$

- Computational time is $O(s^4n)$, where n = # markers and s = is # founders.
- More fused-lasso examples.

 Johnson (2013) proposes the dynamic programming algorithm for maximizing the general objective function

$$\sum_{k=1}^{n} e_k(\beta_k) - \lambda \sum_{k=2}^{n} d(\beta_k, \beta_{k-1}),$$

where e is an exponential family log-likelihood and d is a penalty function, e...g, $d(\beta_k, \beta_{k-1}) = \mathbb{1}_{\{\beta_k \neq \beta_{k-1}\}}$

– Applications: L_0 -least squares segmentation, fused lasso signal approximator (FLSA), ...

Take home message from this course

- Statistics, the science of *data analysis*, is the applied mathematics in the 21st century.
- In this course, we studied and practiced many (overwhelming?) tools for that help us deliver results faster and more accurate.
 - Operating systems: Linux and scripting basics
 - Programming languages: R (package development, Rcpp, ...), Matlab, Julia
 - Tools for collaborative and reproducible research: Git, R Markdown, sweave
 - Parallel computing: multi-core, cluster, GPU
 - Convex optimization (LP, QP, SOCP, SDP, GP, cone programming)
 - Integer and mixed integer programming
 - Algorithms for sparse regression
 - More advanced optimization methods motivated by modern statistical and machine learning problems, e.g., ALM, ADMM, online algorithms, ...
 - Dynamic programming
 - Advanced topics on EM/MM algorithms (not really ...)

Of course there are many tools *not* covered in this course, notably Bayesian MCMC machinery. Take a Bayesian course!

• Updated benchmark results. R is upgraded to v3.2.0 and Julia to 0.3.7 since beginning of this course. I re-did the benchmark and did not see notable changes.

Benchmark code R-benchmark-25.R from http://r.research.att.com/benchmarks/ R-benchmark-25.R covers many commonly used numerical operations used in statistics. We ported to MATLAB and Julia and report the run times (averaged over 5 runs) here.

Test	R 3.2.0	Matlab R2014a	julia 0.3.7
Matrix creation, trans, deformation (2500×2500)	0.80	0.17	0.16
Power of matrix $(2500 \times 2500, A.^{1000})$	0.22	0.11	0.22
Quick sort $(n = 7 \times 10^6)$	0.64	0.24	0.62
Cross product $(2800 \times 2800, A^T A)$	9.89	0.35	0.37
LS solution $(n = p = 2000)$	1.21	0.07	0.09
FFT $(n = 2400000)$	0.36	0.04	0.14
Eigen-decomposition (600×600)	0.77	0.31	0.53
Determinant (2500×2500)	3.52	0.18	0.22
Cholesky (3000×3000)	4.08	0.15	0.21
Matrix inverse (1600×1600)	2.93	0.16	0.19
Fibonacci (vector)	0.29	0.17	0.65
Hilbert (matrix)	0.18	0.07	0.17
GCD (recursion)	0.28	0.14	0.20
Toeplitz matrix (loops)	0.32	0.0014	0.03
Escoufiers (mixed)	0.39	0.40	0.15

Machine specs: Intel i7 @ 2.6GHz (4 physical cores, 8 threads), 16G RAM, Mac OS 10.9.5.

For the simple Gibbs sampler test, R v3.2.0 takes **38.32**s elapsed time. Julia v0.3.7 takes **0.35**s.

• Do not forget course evaluation: https://classeval.ncsu.edu/secure/prod/cesurvey/