25 Lecture 25, Apr 22

Announcements

- Course project due Wed, 4/29 @ 11:00AM.

Last Time

- Path algorithm.
- ALM (augmented Lagrangian method) or method of multipliers.

Today

- ADMM (alternating direction method of multipliers). A generic method for solving many regularization problems.
- Dynamic programming.
- HW7 solution sketch in Julia. http://hua-zhou.github.io/teaching/st790-2015spr/ hw07sol.html

ADMM

[菅 A definite resource for learning ADMM is (Boyd et al., 2011)
http://stanford.edu/~boyd/admm.html

- Alternating direction method of multipliers (ADMM).
- Consider optimization problem

$$
\begin{array}{cl}
\text { minimize } & f(\boldsymbol{x})+g(\boldsymbol{y}) \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y}=\boldsymbol{c} .
\end{array}
$$

- The augmented Lagrangian

$$
\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\lambda})=f(\boldsymbol{x})+g(\boldsymbol{y})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y}-\boldsymbol{c}\rangle+\frac{\rho}{2}\|\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y}-\boldsymbol{c}\|_{2}^{2} .
$$

- Idea: perform block descent on \boldsymbol{x} and \boldsymbol{y} and then update multiplier vector $\boldsymbol{\lambda}$

$$
\begin{aligned}
\boldsymbol{x}^{(t+1)} & \leftarrow \min _{\boldsymbol{x}} f(\boldsymbol{x})+\left\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y}^{(t)}-\boldsymbol{c}\right\rangle+\frac{\rho}{2}\left\|\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y}^{(t)}-\boldsymbol{c}\right\|_{2}^{2} \\
\boldsymbol{y}^{(t+1)} & \leftarrow \min _{\boldsymbol{y}} g(\boldsymbol{y})+\left\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}^{(t+1)}+\boldsymbol{B} \boldsymbol{y}-\boldsymbol{c}\right\rangle+\frac{\rho}{2}\left\|\boldsymbol{A} \boldsymbol{x}^{(t+1)}+\boldsymbol{B} \boldsymbol{y}-\boldsymbol{c}\right\|_{2}^{2} \\
\boldsymbol{\lambda}^{(t+1)} & \leftarrow \boldsymbol{\lambda}^{(t)}+\rho\left(\boldsymbol{A} \boldsymbol{x}^{(t+1)}+\boldsymbol{B} \boldsymbol{y}^{(t+1)}-\boldsymbol{c}\right)
\end{aligned}
$$

［宫 If we minimize \boldsymbol{x} and \boldsymbol{y} jointly，then it is same as ALM．We gain splitting by blockwise updates．
－ADMM converges under mild conditions：f, g convex，closed，and proper， \mathcal{L}_{0} has a saddle point．
－Example：Generalized lasso problem minimizes

$$
\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}+\mu\|\boldsymbol{D} \boldsymbol{\beta}\|_{1} .
$$

－Special case $\boldsymbol{D}=\boldsymbol{I}_{p}$ corresponds to lasso．Special case

$$
\boldsymbol{D}=\left(\begin{array}{ccccc}
1 & -1 & & & \\
& & \ldots & & \\
& & & 1 & -1
\end{array}\right)
$$

corresponds to fused lasso．Numerous applications．
－Define $\boldsymbol{\gamma}=\boldsymbol{D} \boldsymbol{\beta}$ ．Then we solve

$$
\begin{array}{cl}
\operatorname{minimize} & \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}+\mu\|\boldsymbol{\gamma}\|_{1} \\
\text { sujbect to } & \boldsymbol{D} \boldsymbol{\beta}=\boldsymbol{\gamma}
\end{array}
$$

－Augmented Lagrangian is

$$
\mathcal{L}_{\rho}(\boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\lambda})=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}+\mu\|\boldsymbol{\gamma}\|_{1}+\boldsymbol{\lambda}^{\top}(\boldsymbol{D} \boldsymbol{\beta}-\boldsymbol{\gamma})+\frac{\rho}{2}\|\boldsymbol{D} \boldsymbol{\beta}-\gamma\|_{2}^{2}
$$

－ADMM algorithm：

$$
\begin{aligned}
\boldsymbol{\beta}^{(t+1)} & \leftarrow \min _{\boldsymbol{\beta}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}+\boldsymbol{\lambda}^{(t) T}\left(\boldsymbol{D} \boldsymbol{\beta}-\gamma^{(t)}\right)+\frac{\rho}{2}\left\|\boldsymbol{D} \boldsymbol{\beta}-\boldsymbol{\gamma}^{(t)}\right\|_{2}^{2} \\
\boldsymbol{\gamma}^{(t+1)} & \leftarrow \min _{\boldsymbol{\gamma}} \mu\|\boldsymbol{\gamma}\|_{1}+\boldsymbol{\lambda}^{\top}\left(\boldsymbol{D} \boldsymbol{\beta}^{(t+1)}-\boldsymbol{\gamma}\right)+\frac{\rho}{2}\left\|\boldsymbol{D} \boldsymbol{\beta}^{(t+1)}-\gamma\right\|_{2}^{2} \\
\boldsymbol{\lambda}^{(t+1)} & \leftarrow \boldsymbol{\lambda}^{(t)}+\rho\left(\boldsymbol{D} \boldsymbol{\beta}^{(t+1)}-\boldsymbol{\gamma}^{(t+1)}\right)
\end{aligned}
$$

［宴 Update $\boldsymbol{\beta}$ is a smooth quadratic problem．Note the Hessian keeps constant between iterations，therefore its inverse（or decomposition）can be calculated just once，cached in memory，and re－used in each iteration．
［宫 Update γ is a separated lasso problem（elementwise soft－thresholding）．
－Remarks on ADMM：
－Related algorithms

* split Bregman iteration (Goldstein and Osher, 2009)
* Dykstra (1983)'s alternating projection algorithm
* ...

Proximal point algorithm applied to the dual.

- Numerous applications in statistics and machine learning: lasso, generalized lasso, graphical lasso, (overlapping) group lasso, ...
- Embraces distributed computing for big data (Boyd et al., 2011).
- Distributed computing with ADMM. Consider, for example, solving lasso with a huge training data set $(\boldsymbol{X}, \boldsymbol{y})$, which is stored on B machines. Denote the distributed data sets by $\left(\boldsymbol{X}_{1}, \boldsymbol{y}_{1}\right), \ldots,\left(\boldsymbol{X}_{B}, \boldsymbol{y}_{B}\right)$. Then the lasso criterion is

$$
\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}+\mu\|\boldsymbol{\beta}\|_{1}=\frac{1}{2} \sum_{b=1}^{B}\left\|\boldsymbol{y}_{b}-\boldsymbol{X}_{b} \boldsymbol{\beta}\right\|_{2}^{2}+\mu\|\boldsymbol{\beta}\|_{1} .
$$

The ADMM form is

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \sum_{b=1}^{B}\left\|\boldsymbol{y}_{b}-\boldsymbol{X}_{b} \boldsymbol{\beta}_{b}\right\|_{2}^{2}+\mu\|\boldsymbol{\beta}\|_{1} \\
\text { subject to } & \boldsymbol{\beta}_{b}=\boldsymbol{\beta}, \quad b=1, \ldots, B .
\end{array}
$$

Here $\boldsymbol{\beta}_{b}$ are local variables and $\boldsymbol{\beta}$ is the global (or consensus) variable. The augmented Lagrangian function is

$$
\mathcal{L}_{\rho}(\boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\lambda})=\frac{1}{2} \sum_{b=1}^{B}\left\|\boldsymbol{y}_{b}-\boldsymbol{X}_{b} \boldsymbol{\beta}_{b}\right\|_{2}^{2}+\mu\|\boldsymbol{\beta}\|_{1}+\sum_{b=1}^{B} \boldsymbol{\lambda}_{b}^{\top}\left(\boldsymbol{\beta}_{b}-\boldsymbol{\beta}\right)+\frac{\rho}{2} \sum_{b=1}^{B}\left\|\boldsymbol{\beta}_{b}-\boldsymbol{\beta}\right\|_{2}^{2} .
$$

The ADMM algorithm runs as

- Update local variables $\boldsymbol{\beta}_{b}$ $\boldsymbol{\beta}_{b}^{(t+1)} \leftarrow \min \frac{1}{2}\left\|\boldsymbol{y}_{b}-\boldsymbol{X}_{b} \boldsymbol{\beta}_{b}\right\|_{2}^{2}+\boldsymbol{\lambda}_{b}^{\top}\left(\boldsymbol{\beta}_{b}-\boldsymbol{\beta}^{(t)}\right)+\frac{\rho}{2}\left\|\boldsymbol{\beta}_{b}-\boldsymbol{\beta}^{(t)}\right\|_{2}^{2}, \quad b=1, \ldots, B$, in parallel on B machines.
- Collect local variables $\boldsymbol{\beta}_{b}^{(t)}, b=1, \ldots, B$, and update consensus variable $\boldsymbol{\beta}$

$$
\boldsymbol{\beta}^{(t+1)} \leftarrow \min \mu\|\boldsymbol{\beta}\|_{1}+\sum_{b=1}^{B} \boldsymbol{\lambda}_{b}^{\top}\left(\boldsymbol{\beta}_{b}^{(t+1)}-\boldsymbol{\beta}\right)+\frac{\rho}{2} \sum_{b=1}^{B}\left\|\boldsymbol{\beta}_{b}^{(t+1)}-\boldsymbol{\beta}\right\|_{2}^{2}
$$

by elementwise soft-thresholding.

- Update multipliers

$$
\boldsymbol{\lambda}_{b}^{(t+1)} \leftarrow \boldsymbol{\lambda}_{b}^{(t)}+\rho\left(\boldsymbol{\beta}_{b}^{(t+1)}-\boldsymbol{\beta}^{(t+1)}\right), \quad b=1, \ldots, B
$$

[宫 The whole procedure is carried out without ever transferring distributed data sets $\left(\boldsymbol{y}_{b}, \boldsymbol{X}_{b}\right)$ to a central location!

Dynamic programming: introduction

- Divide-and-conquer: break the problem into smaller independent subproblems
- fast sorting,
- FFT,
- ...
- Dynamic programming (DP): subproblems are not independent, that is, subproblems share common subproblems.
- DP solves these subproblems once and store them in a table.
- Use these optimal solutions to construct an optimal solution for the original problem.
- Richard Bellman began the systematic study of DP in 50s.
- Some classical (non-statistical) DP problems:
- Matrix-chain multiplication,
- Longest common subsequence,
- Optimal binary search trees,
- ...

See (Cormen et al., 2009) for a general introduction

- Some classical DP problems in statistics
- Hidden Markov model (HMM),
- Some fused-lasso problems,
- Graphical models (Wainwright and Jordan, 2008),
- Sequence alignment, e.g., discovery of the cystic fibrosis gene in 1989,
- ...
- Let's work on the a DP algorithm for the Manhattan tourist problem (MTP), taken from Jones and Pevzner (2004, Section 6.3).

- MTP: weighted graph

Find a longest path in a weighted grid (only eastward and southward)

- Input: a weighted grid G with two distinguished vertices: a source $(0,0)$ and a sink (n, m).
- Output: a longest path $M T(n, m)$ in G from source to sink.

Brute force enumeration is out of the question even for a moderate sized graph.

- Simple recursive program.
$M T(n, m)$:
- If $n=0$ or $m=0$, return $\operatorname{MT}(0,0)$
$-x \leftarrow M T(n-1, m)+$ weight of the edge from $(n-1, m)$ to (n, m) $y \leftarrow M T(n, m-1)+$ weight of the edge from $(n, m-1)$ to (n, m)
- Return $\max \{x, y\}$
- Something wrong
- $M T(n, m-1)$ needs $M T(n-1, m-1)$, so as $M T(n-1, m)$.
- So $M T(n-1, m-1)$ will be computed at least twice.
- Dynamic programming: the same idea as this recursive algorithm, but keep all intermediate results in a table and reuse.
- MTP: dynamic programming
- Calculate optimal path score for each vertex in the graph
- Each vertex's score is the maximum of the previous vertices score plus the weight of the respective edge in between

- MTP dynamic programming: path!

Showing all back-traces!

- MTP: recurrence
- Computing the score for a point (i, j) by the recurrence relation:

$$
s(i, j)=\max \left\{\begin{array}{l}
s(i-1, j)+\text { weight between }(i-1, j) \text { and }(i, j) \\
s(i, j-1)+\text { weight between }(i, j-1) \text { and }(i, j)
\end{array}\right.
$$

- The run time is $m n$ for a n by m grid.

$$
\text { (} n=\text { number of rows, } m=\text { number of columns })
$$

- Remarks on DP:
- Steps for developing a DP algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Computer the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from computed information

- "Programming" both here and in linear programming refers to the use of a tabular solution method.
- Many problems involve large tables and entries along certain directions may be filled out in parallel - fine scale parallel computing.

Application of dynamic programming: HMM

- Hidden Markov model (HMM) (Baum et al., 1970).
- HMM is a Markov chain that emits symbols:

Markov chain $\left(\mu, A=\left\{a_{k l}\right\}\right)+$ emission probabilities $e_{k}(b)$

- The state sequence $\pi=\pi_{1} \cdots \pi_{L}$ is governed by the Markov chain

$$
\mathbf{P}\left(\pi_{1}=k\right)=\mu(k), \quad \mathbf{P}\left(\pi_{i}=l \mid \pi_{i-1}=k\right)=a_{k l} .
$$

- The symbol sequence $\mathbf{x}=x_{1} \cdots x_{L}$ is determined by the underlying state sequence π

$$
\mathbf{P}(\mathbf{x}, \pi)=\prod_{i=1}^{L} e_{\pi_{i}}\left(x_{i}\right) a_{\pi_{i-1} \pi_{i}}
$$

- It is called hidden because in applications the state sequence is unobserved.
- Wide applications of HMM.
- Wireless communication: IEEE 802.11 WLAN.
- Mobile communication: CDMA and GSM.
- Speech recognition (Rabiner, 1989)

Hidden states: text, symbols: acoustic signals.

- Haplotyping and genotype imputation

Hidden states: haplotypes, symbols: genotypes.

- Gene prediction (Burge, 1997)

- General reference book on HMM:

- Let's work on a simple HMM example. The Occasionally Dishonest Casino (Durbin et al., 2006)

- Fundamental questions of HMM:

```
Rolls (Observed data) 3154235314254132514636126626164...
Die (Hidden states) FFFFFFFFFFFFFFFFFFLLLLLLLLLLLLL...
```

- How to compute the probability of the observed sequence of symbols given known parameters $a_{k l}$ and $e_{k}(b)$?
Answer: Forward algorithm.
- How to compute the posterior probability of the state at a given position (posterior decoding) given $a_{k l}$ and $e_{k}(b)$?
Answer: Backward algorithm.
- How to estimate the parameters $a_{k l}$ and $e_{k}(b)$?

Answer: Baum-Welch algorithm.

- How to find the most likely sequence of hidden states?

Answer: Viterbi algorithm (Viterbi, 1967).

- Forward algorithm:
- Calculate the probability of an observed sequence

$$
\mathbf{P}(\mathbf{x})=\sum_{\pi} \mathbf{P}(\mathbf{x}, \pi) .
$$

- Brute force evaluation by enumerating is impractical
- Define the forward variable

$$
f_{k}(i)=\mathbf{P}\left(x_{1} \ldots x_{i}, \pi_{i}=k\right)
$$

- Recursion formula for forward variables

$$
f_{l}(i+1)=\mathbf{P}\left(x_{1} \ldots x_{i} x_{i+1}, \pi_{i+1}=l\right)=e_{l}\left(x_{i+1}\right) \sum_{k} f_{k}(i) a_{k l} .
$$

- Algorithm:
* Initialization $(i=1): f_{k}(1)=a_{0 k} e_{k}\left(x_{1}\right)$.
* Recursion $(i=2, \ldots, L): f_{l}(i)=e_{l}\left(x_{i}\right) \sum_{k} f_{k}(i-1) a_{k l}$.
* Termination: $\mathbf{P}(\mathbf{x})=\sum_{k} f_{k}(L)$.

Time complexity $=(\# \text { states })^{2} \times$ length of sequence.

- Backward algorithm.
- Calculate the posterior state probabilities at each position

$$
\mathbf{P}\left(\pi_{i}=k \mid \mathbf{x}\right)=\frac{\mathbf{P}\left(\mathbf{x}, \pi_{i}=k\right)}{\mathbf{P}(\mathbf{x})}
$$

- Enough to calculate the numerator

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{x}, \pi_{i}=k\right) & =\mathbf{P}\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) \mathbf{P}\left(x_{i+1} \ldots x_{L} \mid x_{1} \ldots x_{i}, \pi_{i}=k\right) \\
& =\mathbf{P}\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) \mathbf{P}\left(x_{i+1} \ldots x_{L} \mid \pi_{i}=k\right) \\
& =f_{k}(i) b_{k}(i)
\end{aligned}
$$

- Recursion formula for the backward variables

$$
b_{k}(i)=\mathbf{P}\left(x_{i+1} \ldots x_{L} \mid \pi_{i}=k\right)=\sum_{l} a_{k l} e_{l}\left(x_{i+1}\right) b_{l}(i+1)
$$

- Algorithm:
* Initialization $(i=L): b_{k}(L)=1$ for all k
* Recursion $(i=L-1, \ldots, 1): b_{k}(i)=\sum_{l} a_{k l} e_{l}\left(x_{i+1}\right) b_{l}(i+1)$
* Termination: $\mathbf{P}(\mathbf{x})=\sum_{l} a_{0 l} e_{l}\left(x_{1}\right) b_{l}(1)$

Time complexity $=(\# \text { states })^{2} \times$ length of sequence

- The Occasionally Dishonest Casino.

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

- Parameter estimation for HMM - Baum-Welch algorithm.
- Question: Given n independent training symbol sequences $\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}$, how to find the parameter value that maximizes the \log-likelihood $\log \mathbf{P}\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{n} \mid \theta\right)=\sum_{j=1}^{n} \log \mathbf{P}\left(\mathbf{x}^{j} \mid \theta\right)$?
- When the underlying state sequences are known: Simple.
- When the underlying state sequences are unknown: Baum-Welch algorithm.
- MLE when state sequences are known.
- Let $A_{k l}=\#$ transitions from state k to l
$E_{k}(b)=\#$ state k emitting symbol b
The MLEs are

$$
\begin{equation*}
a_{k l}=\frac{A_{k l}}{\sum_{l^{\prime}} A_{k l^{\prime}}} \text { and } e_{k}(b)=\frac{E_{k}(b)}{\sum_{b^{\prime}} E_{k}\left(b^{\prime}\right)} . \tag{1}
\end{equation*}
$$

- To avoid overfitting with insufficient data, add pseudocounts

$$
\begin{aligned}
A_{k l} & =\# \text { transitions } k \text { to } l \text { in training data }+r_{k l} ; \\
E_{k}(b) & =\# \text { emissions of } b \text { from } k \text { in training data }+r_{k}(b)
\end{aligned}
$$

- MLE when state sequences are unknown: Baum-Welch algorithm.
- Idea: Replace the counts $A_{k l}$ and $E_{k}(b)$ by their expectations conditional on current parameter iterate (EM algorithm!)
- The probability that $a_{k l}$ is used at position i of sequence \mathbf{x} :

$$
\begin{aligned}
& \mathbf{P}\left(\pi_{i}=k, \pi_{i+1}=l \mid \mathbf{x}, \theta\right) \\
= & \mathbf{P}\left(\mathbf{x}, \pi_{i}=k, \pi_{i+1}=l\right) / \mathbf{P}(\mathbf{x}) \\
= & \mathbf{P}\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) a_{k l} e_{l}\left(x_{i+1}\right) \mathbf{P}\left(x_{i+2} \ldots x_{L} \mid \pi_{i+1}=l\right) / \mathbf{P}(\mathbf{x}) \\
= & f_{k}(i) a_{k l} e_{l}\left(x_{i+1}\right) b_{l}(i+1) / \mathbf{P}(\mathbf{x}) .
\end{aligned}
$$

- So the expected number of times that $a_{k l}$ is used in all training sequences is

$$
\begin{equation*}
A_{k l}=\sum_{j=1}^{n} \frac{1}{\mathbf{P}\left(\mathbf{x}^{j}\right)} \sum_{i} f_{k}^{j}(i) a_{k l} e_{l}\left(x_{i+1}^{j}\right) b_{l}^{j}(i+1) \tag{2}
\end{equation*}
$$

- Baum-Welch Algorithm.
- Initialization: Pick arbitrary model parameters
- Recursion
* Set all the A and E variables to pseudocounts r (or to zero)
* For each sequence $j=1, \ldots, n$
- calculate $f_{k}(i)$ for sequence j using the forward algorithm
- calculate $b_{k}(i)$ for sequence j using the backward algorithm
- add contribution of sequence j to $A(2)$ and E (??)
* Calculate the new model parameters using (1)
* Calculate the new log-likelihood of the model
- Termination: Stop if change in log-likelihood is less than a predefined threshold or the maximum number of iteration is exceeded
- Baum-Welch - The Occasionally Dishonest Casino.

- Viterbi Algorithm:
- Calculate the most probable state path

$$
\boldsymbol{\pi}^{*}=\operatorname{argmax}_{\boldsymbol{\pi}} P(\boldsymbol{x}, \boldsymbol{\pi}) .
$$

- Define the Viterbi variable

$$
\left.v_{l}(i)=P \text { (the most probable path ending in state } k \text { with observation } x_{i}\right) .
$$

- Recursion for the Viterbi variables

$$
v_{l}(i+1)=e_{l}\left(x_{i+1}\right) \max _{k}\left(v_{k}(i) a_{k l}\right)
$$

- Algorithm:
* Initialization $(i=0): v_{0}(0)=1, v_{k}(0)=0$ for all $k>0$
* Recursion $(i=1, \ldots, L)$:

$$
\begin{aligned}
v_{l}(i) & =e_{l}\left(x_{i}\right) \max _{k}\left(v_{k}(i-1) a_{k l}\right) \\
\operatorname{ptr}_{i}(l) & =\operatorname{argmax}_{k}\left(v_{k}(i-1) a_{k l}\right)
\end{aligned}
$$

* Termination:

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{x}, \boldsymbol{\pi}^{*}\right) & =\max _{k}\left(v_{k}(L) a_{k 0}\right. \\
\pi_{L}^{*} & =\operatorname{argmax}_{k}\left(v_{k}(L) a_{k 0}\right)
\end{aligned}
$$

* Traceback $(i=L, \ldots, 1): \pi_{i=1}^{*}=\operatorname{ptr}_{i}\left(\pi_{i}^{*}\right)$

Time complexity $=(\# \text { states })^{2} \times$ length of sequence

- Viterbi decoding - The Occasionally Dishonest Casino.

```
Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL
Rol1s 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLILILLLLLLLLLLLFFFLLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLILLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL
Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFFF
```

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Application of dynamic programming: fused-lasso

- Fused lasso (Tibshirani et al., 2005) minimizes

$$
-\ell(\boldsymbol{\beta})+\lambda_{1} \sum_{k=1}^{p-1}\left|\beta_{k}-\beta_{k-1}\right|+\lambda_{2} \sum_{k=1}^{p}\left|\beta_{k}\right|
$$

over \mathbf{R}^{p} for better recovery of signals that are both sparse and smooth

- In many applications, one needs to minimize

$$
O_{n}(\mathbf{u})=-\sum_{k=1}^{n} \ell_{k}\left(u_{k}\right)+\lambda \sum_{k=1}^{n-1} p\left(u_{k}, u_{k+1}\right)
$$

where u_{t} takes values in a finite space \mathcal{S} and p is a penalty function. A discrete (combinatorial) optimization problem.

- A genetic example:

- Model organism study designs: inbred mice
- Goal: impute the strain origin of inbred mice (Zhou et al., 2012)
- Combinatorial optimization of penalized likelihood.
- Minimize objective function

$$
O(\mathbf{u})=-\sum_{k=1}^{n} L_{k}\left(u_{k}\right)+\sum_{k=1}^{n-1} P_{k}\left(u_{k}, u_{k+1}\right)
$$

by choosing the proper ordered strain origin assignment along the genome
$-u_{k}=a_{k} \mid b_{k}$: the ordered strain origin pair

- L_{k} : log-likelihood function at marker k - matching imputed genotypes with the observed ones
- P_{k} : penalty function for adjacent marker k and $k+1$ - encouraging smoothness of the solution
- Loglikelihood at each marker. At marker $k, u_{k}=a_{k} \mid b_{k}$: the ordered strain origin pair; r_{k} / s_{k} : observed genotype for animal i. Log-penetrance (conditional log-likelihood) is

$$
L_{k}\left(u_{k}\right)=\ln \left[\operatorname{Pr}\left(r_{k} / s_{k}\left|a_{k}\right| b_{k}\right)\right]
$$

- Penalty for adjacent markers.
- Penalty $P_{k}\left(u_{k}, u_{k+1}\right)$ for each pair of adjacent markers is

$$
P_{k}\left(u_{k}, u_{k+1}\right)= \begin{cases}0, & a_{k}=a_{k+1}, b_{k}=b_{k+1} \\ -\ln \gamma_{i}^{p}\left(b_{k+1}\right)+\lambda, & a_{k}=a_{k+1}, b_{k} \neq b_{k+1} \\ -\ln \gamma_{i}^{m}\left(a_{k+1}\right)+\lambda, & a_{k} \neq a_{k+1}, b_{k}=b_{k+1} \\ -\ln \psi_{i i}^{m p}\left(a_{k+1}, b_{k+1}\right)+2 \lambda, & a_{k} \neq a_{k+1}, b_{k} \neq b_{k+1}\end{cases}
$$

- Penalties suppress jumps between strains and guide jumps, when they occur, toward more likely states.

- For each $m=1, \ldots, n$,

$$
O_{m}\left(u_{m}\right)=\min _{u_{1}, \ldots, u_{m-1}}\left[-\sum_{t=1}^{m} \ell_{t}\left(u_{t}\right)+\lambda \sum_{t=1}^{m-1} p\left(u_{t}, u_{t+1}\right)\right]
$$

beginning with $O_{1}\left(u_{1}\right)=-\ell_{1}\left(u_{1}\right)$. And to proceed

$$
O_{m+1}\left(u_{m+1}\right)=\min _{u_{m}}\left[O_{m}\left(u_{m}\right)-\ell_{m+1}\left(u_{m+1}\right)+p\left(u_{m}, u_{m+1}\right)\right]
$$

- Computational time is $O\left(s^{4} n\right)$, where $n=\#$ markers and $s=$ is $\#$ founders.
- More fused-lasso examples.
- Johnson (2013) proposes the dynamic programming algorithm for maximizing the general objective function

$$
\sum_{k=1}^{n} e_{k}\left(\beta_{k}\right)-\lambda \sum_{k=2}^{n} d\left(\beta_{k}, \beta_{k-1}\right)
$$

where e is an exponential family log-likelihood and d is a penalty function, e..g, $d\left(\beta_{k}, \beta_{k-1}\right)=1_{\left\{\beta_{k} \neq \beta_{k-1}\right\}}$

- Applications: L_{0}-least squares segmentation, fused lasso signal approximator (FLSA), ...

Take home message from this course

- Statistics, the science of data analysis, is the applied mathematics in the 21st century.
- In this course, we studied and practiced many (overwhelming?) tools for that help us deliver results faster and more accurate.
- Operating systems: Linux and scripting basics
- Programming languages: R (package development, Rcpp, ...), Matlab, Julia
- Tools for collaborative and reproducible research: Git, R Markdown, sweave
- Parallel computing: multi-core, cluster, GPU
- Convex optimization (LP, QP, SOCP, SDP, GP, cone programming)
- Integer and mixed integer programming
- Algorithms for sparse regression
- More advanced optimization methods motivated by modern statistical and machine learning problems, e.g., ALM, ADMM, online algorithms, ...
- Dynamic programming
- Advanced topics on EM/MM algorithms (not really ...)

Of course there are many tools not covered in this course, notably Bayesian MCMC machinery. Take a Bayesian course!

- Updated benchmark results. R is upgraded to v3.2.0 and Julia to 0.3 .7 since beginning of this course. I re-did the benchmark and did not see notable changes.

Benchmark code R-benchmark-25.R from http://r.research.att.com/benchmarks/ R-benchmark-25.R covers many commonly used numerical operations used in statistics. We ported to Matlab and Julia and report the run times (averaged over 5 runs) here.

Machine specs: Intel i7 @ 2.6GHz (4 physical cores, 8 threads), 16G RAM, Mac OS 10.9.5.

Test	R 3.2 .0	MATLAB R2014a	JULIA 0.3.7
Matrix creation, trans, deformation (2500×2500)	0.80	$\mathbf{0 . 1 7}$	0.16
Power of matrix $\left(2500 \times 2500, A .^{1000}\right)$	0.22	$\mathbf{0 . 1 1}$	0.22
Quick sort $\left(n=7 \times 10^{6}\right)$	0.64	$\mathbf{0 . 2 4}$	0.62
Cross product $\left(2800 \times 2800, A^{T} A\right)$	9.89	$\mathbf{0 . 3 5}$	0.37
LS solution $(n=p=2000)$	1.21	$\mathbf{0 . 0 7}$	0.09
FFT $(n=2400000)$	0.36	$\mathbf{0 . 0 4}$	0.14
Eigen-decomposition (600×600)	0.77	$\mathbf{0 . 3 1}$	0.53
Determinant (2500×2500)	3.52	$\mathbf{0 . 1 8}$	0.22
Cholesky (3000×3000)	4.08	$\mathbf{0 . 1 5}$	0.21
Matrix inverse (1600×1600)	2.93	$\mathbf{0 . 1 6}$	0.19
Fibonacci (vector)	0.29	$\mathbf{0 . 1 7}$	0.65
Hilbert (matrix)	0.18	$\mathbf{0 . 0 7}$	0.17
GCD (recursion)	0.28	$\mathbf{0 . 1 4}$	0.20
Toeplitz matrix $($ loops $)$	0.32	$\mathbf{0 . 0 0 1 4}$	0.03
Escoufiers (mixed)	0.39	0.40	$\mathbf{0 . 1 5}$

For the simple Gibbs sampler test, R v3.2.0 takes 38.32s elapsed time. Julia v0.3.7 takes 0.35s.

- Do not forget course evaluation: https://classeval.ncsu.edu/secure/prod/cesurvey/

