
25 Lecture 25, Apr 22

Announcements

• Course project due Wed, 4/29 @ 11:00AM.

Last Time

• Path algorithm.

• ALM (augmented Lagrangian method) or method of multipliers.

Today

• ADMM (alternating direction method of multipliers). A generic method for solving

many regularization problems.

• Dynamic programming.

• HW7 solution sketch in Julia. http://hua-zhou.github.io/teaching/st790-2015spr/

hw07sol.html

ADMM

A definite resource for learning ADMM is (Boyd et al., 2011)

http://stanford.edu/~boyd/admm.html

• Alternating direction method of multipliers (ADMM).

– Consider optimization problem

minimize f(x) + g(y)

subject to Ax+By = c.

– The augmented Lagrangian

L
⇢

(x,y,�) = f(x) + g(y) + h�,Ax+By � ci+ ⇢

2
kAx+By � ck22.

– Idea: perform block descent on x and y and then update multiplier vector �

x(t+1) min
x

f(x) + h�,Ax+By(t) � ci+ ⇢

2
kAx+By(t) � ck22

y(t+1) min
y

g(y) + h�,Ax(t+1) +By � ci+ ⇢

2
kAx(t+1) +By � ck22

�(t+1) �(t) + ⇢(Ax(t+1) +By(t+1) � c)

187

If we minimize x and y jointly, then it is same as ALM. We gain splitting by

blockwise updates.

– ADMM converges under mild conditions: f, g convex, closed, and proper, L0 has

a saddle point.

• Example: Generalized lasso problem minimizes

1

2
ky �X�k22 + µkD�k1.

– Special case D = I
p

corresponds to lasso. Special case

D =

0

B@
1 �1

· · ·
1 �1

1

CA

corresponds to fused lasso. Numerous applications.

– Define � = D�. Then we solve

minimize
1

2
ky �X�k22 + µk�k1

sujbect to D� = �.

– Augmented Lagrangian is

L
⇢

(�,�,�) =
1

2
ky �X�k22 + µk�k1 + �T(D� � �) +

⇢

2
kD� � �k22.

– ADMM algorithm:

�(t+1) min
�

1

2
ky �X�k22 + �(t)T (D� � �(t)) +

⇢

2
kD� � �(t)k22

�(t+1) min
�

µk�k1 + �T(D�(t+1) � �) +
⇢

2
kD�(t+1) � �k22

�(t+1) �(t) + ⇢(D�(t+1) � �(t+1))

Update � is a smooth quadratic problem. Note the Hessian keeps constant

between iterations, therefore its inverse (or decomposition) can be calculated just

once, cached in memory, and re-used in each iteration.

Update � is a separated lasso problem (elementwise soft-thresholding).

• Remarks on ADMM:

– Related algorithms

188

⇤ split Bregman iteration (Goldstein and Osher, 2009)

⇤ Dykstra (1983)’s alternating projection algorithm

⇤ ...

Proximal point algorithm applied to the dual.

– Numerous applications in statistics and machine learning: lasso, generalized lasso,

graphical lasso, (overlapping) group lasso, ...

– Embraces distributed computing for big data (Boyd et al., 2011).

• Distributed computing with ADMM. Consider, for example, solving lasso with a huge

training data set (X,y), which is stored on B machines. Denote the distributed data

sets by (X1,y1), . . . , (XB

,y
B

). Then the lasso criterion is

1

2
ky �X�k22 + µk�k1 =

1

2

BX

b=1

ky
b

�X
b

�k22 + µk�k1.

The ADMM form is

minimize
1

2

BX

b=1

ky
b

�X
b

�
b

k22 + µk�k1

subject to �
b

= �, b = 1, . . . , B.

Here �
b

are local variables and � is the global (or consensus) variable. The augmented

Lagrangian function is

L
⇢

(�,�,�) =
1

2

BX

b=1

ky
b

�X
b

�
b

k22 + µk�k1 +
BX

b=1

�T

b

(�
b

� �) +
⇢

2

BX

b=1

k�
b

� �k22.

The ADMM algorithm runs as

– Update local variables �
b

�(t+1)
b

 min
1

2
ky

b

�X
b

�
b

k22 + �T

b

(�
b

� �(t)) +
⇢

2
k�

b

� �(t)k22, b = 1, . . . , B,

in parallel on B machines.

– Collect local variables �(t)
b

, b = 1, . . . , B, and update consensus variable �

�(t+1) minµk�k1 +
BX

b=1

�T

b

(�(t+1)
b

� �) +
⇢

2

BX

b=1

k�(t+1)
b

� �k22

by elementwise soft-thresholding.

– Update multipliers

�(t+1)
b

 �(t)
b

+ ⇢(�(t+1)
b

� �(t+1)), b = 1, . . . , B.

The whole procedure is carried out without ever transferring distributed data sets

(y
b

,X
b

) to a central location!

189

Dynamic programming: introduction

• Divide-and-conquer : break the problem into smaller independent subproblems

– fast sorting,

– FFT,

– ...

• Dynamic programming (DP): subproblems are not independent, that is, subproblems

share common subproblems.

• DP solves these subproblems once and store them in a table.

• Use these optimal solutions to construct an optimal solution for the original problem.

• Richard Bellman began the systematic study of DP in 50s.

• Some classical (non-statistical) DP problems:

– Matrix-chain multiplication,

– Longest common subsequence,

– Optimal binary search trees,

– ...

See (Cormen et al., 2009) for a general introduction

• Some classical DP problems in statistics

– Hidden Markov model (HMM),

– Some fused-lasso problems,

190

– Graphical models (Wainwright and Jordan, 2008),

– Sequence alignment, e.g., discovery of the cystic fibrosis gene in 1989,

– ...

• Let’s work on the a DP algorithm for the Manhattan tourist problem (MTP), taken

from Jones and Pevzner (2004, Section 6.3).

• MTP: weighted graph

Find a longest path in a weighted grid (only eastward and southward)

– Input : a weighted grid G with two distinguished vertices: a source (0, 0) and a

sink (n,m).

– Output : a longest path MT (n,m) in G from source to sink.

Brute force enumeration is out of the question even for a moderate sized graph.

191

• Simple recursive program.

MT (n,m):

– If n = 0 or m = 0, return MT (0, 0)

– x MT (n� 1,m)+ weight of the edge from (n� 1,m) to (n,m)

y MT (n,m� 1)+ weight of the edge from (n,m� 1) to (n,m)

– Return max{x, y}

• Something wrong

– MT (n,m� 1) needs MT (n� 1,m� 1), so as MT (n� 1,m).

– So MT (n� 1,m� 1) will be computed at least twice.

– Dynamic programming: the same idea as this recursive algorithm, but keep all

intermediate results in a table and reuse.

• MTP: dynamic programming

– Calculate optimal path score for each vertex in the graph

– Each vertex’s score is the maximum of the previous vertices score plus the weight

of the respective edge in between

192

• MTP dynamic programming: path!

193

Showing all back-traces!

• MTP: recurrence

– Computing the score for a point (i, j) by the recurrence relation:

s(i, j) = max

(
s(i� 1, j) + weight between (i� 1, j) and (i, j)

s(i, j � 1) + weight between (i, j � 1) and (i, j)

– The run time is mn for a n by m grid.

(n = number of rows, m = number of columns)

• Remarks on DP:

– Steps for developing a DP algorithm

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Computer the value of an optimal solution in a bottom-up fashion

4. Construct an optimal solution from computed information

– “Programming” both here and in linear programming refers to the use of a tabular

solution method.

– Many problems involve large tables and entries along certain directions may be

filled out in parallel – fine scale parallel computing.

Application of dynamic programming: HMM

• Hidden Markov model (HMM) (Baum et al., 1970).

– HMM is a Markov chain that emits symbols:

Markov chain (µ,A = {a
kl

}) + emission probabilities e
k

(b)

– The state sequence ⇡ = ⇡1 · · · ⇡L

is governed by the Markov chain

P(⇡1 = k) = µ(k), P(⇡
i

= l|⇡
i�1 = k) = a

kl

.

– The symbol sequence x = x1 · · · xL

is determined by the underlying state sequence

⇡

P(x, ⇡) =
LY

i=1

e
⇡i(xi

)a
⇡i�1

⇡i .

– It is called hidden because in applications the state sequence is unobserved.

194

• Wide applications of HMM.

– Wireless communication: IEEE 802.11 WLAN.

– Mobile communication: CDMA and GSM.

– Speech recognition (Rabiner, 1989)

Hidden states: text, symbols: acoustic signals.

– Haplotyping and genotype imputation

Hidden states: haplotypes, symbols: genotypes.

– Gene prediction (Burge, 1997)

• General reference book on HMM:

• Let’s work on a simple HMM example. The Occasionally Dishonest Casino (Durbin

et al., 2006)

195

• Fundamental questions of HMM:

– How to compute the probability of the observed sequence of symbols given known

parameters a
kl

and e
k

(b)?

Answer: Forward algorithm.

– How to compute the posterior probability of the state at a given position (posterior

decoding) given a
kl

and e
k

(b)?

Answer: Backward algorithm.

– How to estimate the parameters a
kl

and e
k

(b)?

Answer: Baum-Welch algorithm.

– How to find the most likely sequence of hidden states?

Answer: Viterbi algorithm (Viterbi, 1967).

• Forward algorithm:

– Calculate the probability of an observed sequence

P(x) =
X

⇡

P(x, ⇡).

– Brute force evaluation by enumerating is impractical

– Define the forward variable

f
k

(i) = P(x1 . . . xi

, ⇡
i

= k).

– Recursion formula for forward variables

f
l

(i+ 1) = P(x1 . . . xi

x
i+1, ⇡i+1 = l) = e

l

(x
i+1)

X

k

f
k

(i)a
kl

.

– Algorithm:

⇤ Initialization (i = 1): f
k

(1) = a0kek(x1).

⇤ Recursion (i = 2, . . . , L): f
l

(i) = e
l

(x
i

)
P

k

f
k

(i� 1)a
kl

.

⇤ Termination: P(x) =
P

k

f
k

(L).

Time complexity = (# states)2 ⇥ length of sequence.

• Backward algorithm.

196

– Calculate the posterior state probabilities at each position

P(⇡
i

= k|x) = P(x, ⇡
i

= k)

P(x)
.

– Enough to calculate the numerator

P(x, ⇡
i

= k) = P(x1 . . . xi

, ⇡
i

= k)P(x
i+1 . . . xL

|x1 . . . xi

, ⇡
i

= k)

= P(x1 . . . xi

, ⇡
i

= k)P(x
i+1 . . . xL

|⇡
i

= k)

= f
k

(i)b
k

(i).

– Recursion formula for the backward variables

b
k

(i) = P(x
i+1 . . . xL

|⇡
i

= k) =
X

l

a
kl

e
l

(x
i+1)bl(i+ 1).

– Algorithm:

⇤ Initialization (i = L): b
k

(L) = 1 for all k

⇤ Recursion (i = L� 1, . . . , 1): b
k

(i) =
P

l

a
kl

e
l

(x
i+1)bl(i+ 1)

⇤ Termination: P(x) =
P

l

a0lel(x1)bl(1)

Time complexity = (# states)2 ⇥ length of sequence

– The Occasionally Dishonest Casino.

• Parameter estimation for HMM – Baum-Welch algorithm.

• Question: Given n independent training symbol sequences x1, . . . ,xn, how to find the

parameter value that maximizes the log-likelihood logP(x1, . . . ,xn|✓) =
P

n

j=1 logP(xj|✓)?

– When the underlying state sequences are known: Simple.

– When the underlying state sequences are unknown: Baum-Welch algorithm.

197

• MLE when state sequences are known.

– Let A
kl

= # transitions from state k to l

E
k

(b) = # state k emitting symbol b

The MLEs are

a
kl

=
A

klP
l

0 A
kl

0
and e

k

(b) =
E

k

(b)P
b

0 E
k

(b0)
. (1)

– To avoid overfitting with insu�cient data, add pseudocounts

A
kl

= # transitions k to l in training data + r
kl

;

E
k

(b) = # emissions of b from k in training data + r
k

(b)

• MLE when state sequences are unknown: Baum-Welch algorithm.

– Idea: Replace the counts A
kl

and E
k

(b) by their expectations conditional on

current parameter iterate (EM algorithm!)

– The probability that a
kl

is used at position i of sequence x:

P(⇡i = k,⇡i+1 = l|x, ✓)

= P(x,⇡i = k,⇡i+1 = l)/P(x)

= P(x1 . . . xi,⇡i = k)aklel(xi+1)P(xi+2 . . . xL|⇡i+1 = l)/P(x)

= fk(i)aklel(xi+1)bl(i+ 1)/P(x).

– So the expected number of times that a
kl

is used in all training sequences is

A
kl

=
nX

j=1

1

P(xj)

X

i

f j

k

(i)a
kl

e
l

(xj

i+1)b
j

l

(i+ 1). (2)

• Baum-Welch Algorithm.

– Initialization: Pick arbitrary model parameters

– Recursion

⇤ Set all the A and E variables to pseudocounts rs (or to zero)

⇤ For each sequence j = 1, . . . , n

· calculate f
k

(i) for sequence j using the forward algorithm

· calculate b
k

(i) for sequence j using the backward algorithm

· add contribution of sequence j to A (2) and E (??)

⇤ Calculate the new model parameters using (1)

⇤ Calculate the new log-likelihood of the model

198

– Termination: Stop if change in log-likelihood is less than a predefined threshold

or the maximum number of iteration is exceeded

• Baum-Welch – The Occasionally Dishonest Casino.

• Viterbi Algorithm:

– Calculate the most probable state path

⇡⇤ = argmax⇡P (x,⇡).

– Define the Viterbi variable

v
l

(i) = P (the most probable path ending in state k with observation x
i

).

– Recursion for the Viterbi variables

v
l

(i+ 1) = e
l

(x
i+1)max

k

(v
k

(i)a
kl

)

– Algorithm:

⇤ Initialization (i = 0): v0(0) = 1, v
k

(0) = 0 for all k > 0

⇤ Recursion (i = 1, . . . , L):

v
l

(i) = e
l

(x
i

)max
k

(v
k

(i� 1)a
kl

)

ptr
i

(l) = argmax
k

(v
k

(i� 1)a
kl

)

199

⇤ Termination:

P(x,⇡⇤) = max
k

(v
k

(L)a
k0

⇡⇤
L

= argmax
k

(v
k

(L)a
k0)

⇤ Traceback (i = L, . . . , 1): ⇡⇤
i=1 = ptr

i

(⇡⇤
i

)

Time complexity = (# states)2 ⇥ length of sequence

– Viterbi decoding - The Occasionally Dishonest Casino.

Application of dynamic programming: fused-lasso

• Fused lasso (Tibshirani et al., 2005) minimizes

�`(�) + �1

p�1X

k=1

|�
k

� �
k�1|+ �2

pX

k=1

|�
k

|

over Rp for better recovery of signals that are both sparse and smooth

• In many applications, one needs to minimize

O
n

(u) = �
nX

k=1

`
k

(u
k

) + �
n�1X

k=1

p(u
k

, u
k+1)

where u
t

takes values in a finite space S and p is a penalty function. A discrete

(combinatorial) optimization problem.

200

• A genetic example:

– Model organism study designs: inbred mice

– Goal : impute the strain origin of inbred mice (Zhou et al., 2012)

• Combinatorial optimization of penalized likelihood.

– Minimize objective function

O(u) = �
nX

k=1

L
k

(u
k

) +
n�1X

k=1

P
k

(u
k

, u
k+1)

by choosing the proper ordered strain origin assignment along the genome

– u
k

= a
k

|b
k

: the ordered strain origin pair

– L
k

: log-likelihood function at marker k - matching imputed genotypes with the

observed ones

– P
k

: penalty function for adjacent marker k and k + 1 - encouraging smoothness

of the solution

• Loglikelihood at each marker. At marker k, u
k

= a
k

|b
k

: the ordered strain origin pair;

r
k

/s
k

: observed genotype for animal i. Log-penetrance (conditional log-likelihood) is

L
k

(u
k

) = ln [Pr(r
k

/s
k

| a
k

|b
k

)]

• Penalty for adjacent markers.

201

– Penalty P
k

(u
k

, u
k+1) for each pair of adjacent markers is

P
k

(u
k

, u
k+1) =

8
>>>>>><

>>>>>>:

0, a
k

= a
k+1, b

k

= b
k+1

� ln �p
i

(b
k+1) + �, a

k

= a
k+1, b

k

6= b
k+1

� ln �m
i

(a
k+1) + �, a

k

6= a
k+1, b

k

= b
k+1

� ln mp

ii

(a
k+1, bk+1) + 2�, a

k

6= a
k+1, b

k

6= b
k+1.

– Penalties suppress jumps between strains and guide jumps, when they occur,

toward more likely states.

• For each m = 1, . . . , n,

Om(um) = min
u1,...,um�1

h
�

mX

t=1

`t(ut) + �

m�1X

t=1

p(ut, ut+1)
i

beginning with O1(u1) = �`1(u1). And to proceed

Om+1(um+1) = min
um

h
Om(um)� `m+1(um+1) + p(um, um+1)

i

• Computational time is O(s4n), where n = # markers and s = is # founders.

• More fused-lasso examples.

202

– Johnson (2013) proposes the dynamic programming algorithm for maximizing the

general objective function
nX

k=1

e
k

(�
k

)� �
nX

k=2

d(�
k

, �
k�1),

where e is an exponential family log-likelihood and d is a penalty function, e..g,

d(�
k

, �
k�1) = 1{�k 6=�k�1

}

– Applications: L0-least squares segmentation, fused lasso signal approximator

(FLSA), ...

Take home message from this course

• Statistics, the science of data analysis, is the applied mathematics in the 21st century.

• In this course, we studied and practiced many (overwhelming?) tools for that help us

deliver results faster and more accurate.

– Operating systems: Linux and scripting basics

– Programming languages: R (package development, Rcpp, ...), Matlab, Julia

– Tools for collaborative and reproducible research: Git, R Markdown, sweave

– Parallel computing: multi-core, cluster, GPU

– Convex optimization (LP, QP, SOCP, SDP, GP, cone programming)

– Integer and mixed integer programming

– Algorithms for sparse regression

– More advanced optimization methods motivated by modern statistical and ma-

chine learning problems, e.g., ALM, ADMM, online algorithms, ...

– Dynamic programming

– Advanced topics on EM/MM algorithms (not really ...)

Of course there are many tools not covered in this course, notably Bayesian MCMC

machinery. Take a Bayesian course!

• Updated benchmark results. R is upgraded to v3.2.0 and Julia to 0.3.7 since beginning

of this course. I re-did the benchmark and did not see notable changes.

Benchmark code R-benchmark-25.R from http://r.research.att.com/benchmarks/

R-benchmark-25.R covers many commonly used numerical operations used in statis-

tics. We ported to Matlab and Julia and report the run times (averaged over 5 runs)

here.

203

Machine specs: Intel i7 @ 2.6GHz (4 physical cores, 8 threads), 16G RAM, Mac OS 10.9.5.

Test R 3.2.0 Matlab R2014a julia 0.3.7

Matrix creation, trans, deformation (2500⇥ 2500) 0.80 0.17 0.16

Power of matrix (2500⇥ 2500, A.1000) 0.22 0.11 0.22

Quick sort (n = 7⇥ 106) 0.64 0.24 0.62

Cross product (2800⇥ 2800, ATA) 9.89 0.35 0.37

LS solution (n = p = 2000) 1.21 0.07 0.09

FFT (n = 2400000) 0.36 0.04 0.14

Eigen-decomposition (600⇥ 600) 0.77 0.31 0.53

Determinant (2500⇥ 2500) 3.52 0.18 0.22

Cholesky (3000⇥ 3000) 4.08 0.15 0.21

Matrix inverse (1600⇥ 1600) 2.93 0.16 0.19

Fibonacci (vector) 0.29 0.17 0.65

Hilbert (matrix) 0.18 0.07 0.17

GCD (recursion) 0.28 0.14 0.20

Toeplitz matrix (loops) 0.32 0.0014 0.03

Escoufiers (mixed) 0.39 0.40 0.15

For the simple Gibbs sampler test, R v3.2.0 takes 38.32s elapsed time. Julia v0.3.7

takes 0.35s.

• Do not forget course evaluation: https://classeval.ncsu.edu/secure/prod/cesurvey/

204

