VERSION CONTROL: GITTING STARTED

Cai Li

October 2014

VERSION CONTROL: GIT

INTRODUCTION
900000000

WHAT 1S VERSION CONTROL?

NOT S0 LONG AGO.
INV_A GALAXY CLOSE BY-
T THIS STOPID
SUN v SATTLE! ThG

HEY GEORGE
\
WHAT'S pp? TS NOT STOPID
: - YooR smvm

VERSION CON-WHAT?

O WELL.

1 ACCIDEN' ¥
DELETED A ANoTHEe ONDER VERSION
Con: ?DL RIGHT?

MM)SCRPT

BIEE

@ Version control is a system that records changes to a file or set of
files over time so that you can recall specific versions later.

)N CONTRO

INTRODUCTION
0O@0000000

LocAL VERSION CONTROL SYSTEM

Local Computer

Checkout Version Database

file m

@ rcs (still in use).

@ This system keeps patch sets (the differences between files).

VERSION CONTROL: GIT

INTRODUCTION

[e]e] Jele]ele]e]e]

CENTRALIZED VERSION CONTROL SYSTEM

Computer A Central VCS Server

Checkout
Version Database
file

Computer B

Checkout

file

e CVS, Subversion, Perforce.

@ It has been the standard for version control for many years.

VERSION CONTROL: GIT

INTRODUCTION

[e]e]e] le]ele]ele]

DISTRIBUTED VERSION CONTROL SYSTEM

Server Computer

Version Database

Computer A

file

Version Database

Computer B

Version Database

version 1

o Git, Mercurial, Bazaar or Darcs.

@ "Distributed-is-the-new-centralized" .

VERSION CONTROL: GIT

INTRODUCTION

[e]e]e]e] Jele]ele]

SHORT HISTORY OF GIT

@ Linux kernel project.
o Learn from BitKeeper.

o Initially designed and developed by Linus Torvalds in 2005.

VERSION CONTROL: GIT

INTRODUCTION

[e]e]e]e]e] lejele]

ADVANTAGES OF GIT

Speed and simple design.

Strong support for non-linear development (thousands of parallel
branches).

Fully distributed.

Able to handle large projects like the Linux kernel efficiently.

Free and open source.

VERSION CONTROL: GIT

INTRODUCTION

[e]e]e]e]e]e] Jele]

WHAT MAKES DIFFERENCE?

Checkins over time

(Version 1) (Version 2) (Version 3) (Version 4) (Version 5)

A3

- a

@ Other systems tend to store data as changes to a base version of
each file.

VERSION CONTROL: GIT

INTRODUCTION

[e]e]e]ele]ele] Je]

THE wWAY OF GIT

Checkins over time

= 0 & & (v«sw)

>

o Git stores data as snapshots of the project over time.

VERSION CONTROL: GIT

INTRODUCTION

0O0000000e

WORKFLOWS OF GIT

Local Operations

(working) (staging) (gitdlfaekwy)
directory area (repository)

o Modify files in working directory.
@ Add snapshots of them to staging area.
e Do a commit: store snapshot permanently to Git directory.

VERSION CONTROL: GIT

Basic USAGE

900000000

SETTING UP

Identify yourself:
e $ git config --global user.name " cli9”

e $ git config --global user.email " cli9@ncsu.edu”

VERSION CONTROL: GIT

IRECTORY MIC

INITIALIZING

Set up a project:

r.email

Working 014 Fall/Group

NTRODUCTIO! / SUBDIRECTORY MIGRATING > > REFER

[e]e] Jele]ele]e]e]

ADDING

Keep things tracked and check status often

." to unst

RECTORY MIC

COMMITTING

Once files are staged:

NTRODUCTION / SUBDIRECTORY MIGRATING , REFER

[e]e]e]e] Jele]ele]

DIFFERENCES

By default, HEAD points to the most recent commit.
o

4§ git add README.txt

IRECTORY MIC

[e]e]e]e]e] lejele]

REMOTE

Add a remote sever, like GitHub:
]

from origin.

p It Up REFER

WORKING WITH SSH KEY

Add the public key to GitHub account:
o

[e]e]e]e]e]e]e] Jeo]

HisTORY

Check history:

i g1t log

u>
1 2014 -0400

2014 -0400

_.I] 14 -0400

6 2014 -04(

REFERE

Basic USAGE

000000000

UNDO

e § git checkout -~ ...: go back to the point since the last commit.
e § git reset ... unstage files.

e § git rm ...: different from $ rm ...

VERSION CONTROL: GIT

SUBDIRECTORY MIGRATING

@00

GOAL

@ Move "codebase” from the github.ncsu.edu to github.com.
@ Don't move other folders in the repository.

@ Preserve the Git commit history for the directory we are moving.

VERSION CONTROL: GIT

SUBDIRECTORY MIGRATING

(o] 1o}

FroM HERE (STEP 1)

Get files ready for the move:
@ 7 Don’'t mess up the original repo
e $ git clone git@github.ncsu.edu:cli9/Example.git
e $ cd Example
o # Don't affect remote server
e $ git remote rm origin
@ # Only keep the codebase folder
e $ git filter-branch --subdirectory-filter codebase -- --all
@ $ mkdir codebase
e $ git add .

e $ git commit

VERSION CONTROL: GIT

SUBDIRECTORY MIGRATING

[ele]]

To THERE (STEP 2)

Merge files into new repository:
@ 7 Don’'t mess up the original repo
e $ git clone git@github.com:cli9/Example-Pub.git
e $ cd Example-Pub
@ # Add a remote repo
@ $ git remote add repo-A-branch ./Example
o # Merge!
e $ git pull repo-A-branch master
@ $ git remote rm repo-A-branch
@ 7 Push to github.com
e $ git push

VERSION CONTROL: GIT

BRANCHING

®0000000000000000

BRANCHING MODEL

VERSION CONTROL: GIT

BRANCHING

0O®000000000000000

SIMPLIFIED VERSION

peogress on
“next rebease”

Ji@

VERSION CONTROL: GIT

BRANCHING

0O0®00000000000000

GETTING TO KNOW COMMIT

5bld3..
blob size
= Tasting Library
mhis Ubeaey 15 usea to tast
iy progects
98cad..
commit | size 92ec2.. / 9lle7..
tree l size i
tree 92ec2 :: h'°b size
5bld3 | README The MIT License
author scott) —_—
blob 91le7 LICEMSE Compright (€ <peams <eopyright
committer | Scott blob |cbasa |test.rb Perwission is hereby grented,

initigl commit of my project -
cbala. .
blob I size

require ‘rubygess’
regsire 'ge'

modile Tast
module Tester

o Commit object has the metadata and a pointer to the root of
project tree object so it can re-create that snapshot when needed.

VERSION CONTROL: GIT

BRANCHING

0000000000000 0000

MurTtiPLE COMMITS

98cal.. 34ac2.. f30ab..
commit | size commit | size commit | size
tree 92ec? tree 184ca tree Ode24
author Scott -t parent 98cad - [parent 34ac2
committer | Scott author | seott auther | scott
inittal commit of my profeet committer | Scott committer | Scott
fixed bup #1328 - stock odd feature #32 - obility to
overflon under certain o new formets to the central
J y
Snapshot A Snapshot B Snapshot C

@ The next commit stores a pointer to the commit that came
immediately before it.

5 JHING

0O000@000000000000

WHAT 1S BRANCH

master

I 3

I 3
[
W
=1
&

98ca?’ 3d4ac2

testing

e HEAD is a pointer to the local branch youre currently on.

@ Branch is a lightweight movable pointer (cheap).

)N CONTRO

BRANCHING

0000000000000 0000

ONE AHEAD OF ANOTHER

master

98cad | 34ac?2 * £30ab < c2b%e

testing

o Fast-forward merge: move the pointer forward.

)N CONTRO

BRANCHING
000000@0000000000

DIVERGENT COMMITS

Snapshot to
Merge Into

Common
Ancestor

)

master

i

-

c4

)

c3

)

TII

iss53

I

Snapshot to
Merge In

10N CONTROL: G

BRANCHING

0000000800000 0000

How DoEs MERGE WORK

@ Three-way merge made by the 'recursive’ strategy.
o New commit has more than one parent.

o Automatically.

VERSION CONTROL: GIT

BRANCHING
00000000800000000

BRANCHING WORKFLOWS

master (< |

develop

topic

BRANCHING

0000000008000 0000

ANOTHER WAY TO GO

experiment

master

@ Rebase: take the patch of the change introduced in C3 and reapply
it on top of C4.

o Followed by fast-forward merge.

o Different history, same results.

VERSION CONTROL: GIT

BRANCHI W REFERENCES

000000000000 0000

BRANCHING OUT

° : start a new branch.
° . switch to it.
° : check the current branch.

TROL: GIT

ODUCTIO! d : BRANCHING
00000000000800000

MASTER BRANCH

There is a bug in version 2.0:

YDUCTIO RECTORY M

000000000000

DEVELOP BRANCH

Sync with master branch:

DUCTIO!

REFERE

DEBUGGING

Debug in develop branch, now it's ahead of master branch:

TEETE T T

DIRECT(\ REFERE

00000000000 000!

MERGING

Bug fixed for a new release version:
o

(]

INTRODUCTION Basic USAGE SUBDIRECTORY MIGRATING BRANCHING WraAP IT Up REFERENCES
000000000 000000000 000 00000000000000080 000 o

TAGGING

Tag a new release:

< = —
0

<
0w e

B0 =

|2
5

54
5]
H

diff —-—git a/codebase/bug.txt b/codebase/bug.txt
deleted file mode 100644

index 6685723..0000000

——— a/codebase/bug.txt

+++ fdev/mull

'VERSION CONTROL: GIT

BRANCHING

0000000000000 000e

GH-PAGES BRANCH

$ git checkout gh-pages
$ git rm -rf .
$ git add index.html

$ git commit -a -m " First pages commit”

$ git push origin gh-pages

VERSION CONTROL: GIT

WRraPp IT Up
©00

GIT CHEATING SHEET

o Identity:
o $ git config ——global user.name ...: identify user name.
o $ git config —-global user.email ... identify user email.

Set up a repo:

o $ git init: start a local repo.

o $ git clone ...: clone a repo from local or remote repo.
Add and Commit:

o § git add ...: stage files.

o § git add -A: stage all.

o § git stash: stash the changes away.

o $ git commit -m "...": commit changes.

e Undo:
o § git reset ...: unstage files.
o $ git checkout - ...: restore changes.

o $ git rm ... delete files.

VERSION CONTROL: GIT

WRraPp IT Up

000

GIT CHEATING SHEET (CONT’D)

@ Check and Inspection:
. status of files.
- display differences.
. display differences of staged files.

o Remote:
° 1 connect to remote repo.
° . disconnect to remote repo.
° . push changes to remote repo.
° : update local repo with remote changes.
° : download objects from remote repo.

VERSION CONTROL: GIT

WRrap IT Up
000

GIT CHEATING SHEET (CONT’D)

@ Branch and Merge:
° . create a new branch.
: add a remote branch.
. switch to a branch.
: create a new branch and switch to it.
. delete a branch.
. delete a remote branch.
: merge changes from another branch.
: merge changes from another branch.
° : merge changes from remote branch.

o History and Tag
° . create a tag for release version.
. display information of a version.
. add a tag to remote repo.
. show history of commits.

VERSION CONTROL: G

B0o0OKS AND RESOURCES

Chacon, Scott (2009). Pro Git. New York: Apress.
Free from here: (http://git-scm.com/book)

Transfer a subdirectory:
(http://gbayer.com /development/moving-files-from-one-git-
repository-to-another-preserving-history/)

A successful Git branching model:
(http://nvie.com/posts/a-successful-git-branching-model /)

Try Git: (https://try.github.io/)

Git Real: (https://www.codeschool.com/courses/git-real)

Git Real 2: (https://www.codeschool.com/courses/git-real-2)
GitGuys: (http://www.gitguys.com/)

VERSION CONTROL: GIT

(
(
(
(
(
(
(

	Introduction
	Basic Usage
	Subdirectory Migrating
	Branching
	Wrap It Up
	References

