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@ Version control is a system that records changes to a file or set of
files over time so that you can recall specific versions later.
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LocAL VERSION CONTROL SYSTEM

Local Computer

Checkout Version Database

file m

@ rcs (still in use).

@ This system keeps patch sets (the differences between files).
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CENTRALIZED VERSION CONTROL SYSTEM

Computer A Central VCS Server

Checkout
Version Database
file

Computer B

Checkout

file

e CVS, Subversion, Perforce.

@ It has been the standard for version control for many years.
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DISTRIBUTED VERSION CONTROL SYSTEM

Server Computer

Version Database

Computer A

file

Version Database

Computer B

Version Database

version 1

o Git, Mercurial, Bazaar or Darcs.

@ "Distributed-is-the-new-centralized" .
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SHORT HISTORY OF GIT

@ Linux kernel project.
o Learn from BitKeeper.

o Initially designed and developed by Linus Torvalds in 2005.
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ADVANTAGES OF GIT

Speed and simple design.

Strong support for non-linear development (thousands of parallel
branches).

Fully distributed.

Able to handle large projects like the Linux kernel efficiently.

Free and open source.
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WHAT MAKES DIFFERENCE?

Checkins over time

( Version 1 ) ( Version 2 ) ( Version 3 ) ( Version 4 ) ( Version 5 )

A3

- a

@ Other systems tend to store data as changes to a base version of
each file.
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THE wWAY OF GIT

Checkins over time

= 0 & & (v«sw)

>

o Git stores data as snapshots of the project over time.
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INTRODUCTION
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WORKFLOWS OF GIT

Local Operations

(working ) ( staging ) (gitdlfaekwy)
directory area (repository)

o Modify files in working directory.
@ Add snapshots of them to staging area.
e Do a commit: store snapshot permanently to Git directory.
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Basic USAGE
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SETTING UP

Identify yourself:
e $ git config --global user.name " cli9”

e $ git config --global user.email " cli9@ncsu.edu”
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IRECTORY MIC

INITIALIZING

Set up a project:

r.email

Working 014 Fall/Group
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ADDING

Keep things tracked and check status often

." to unst
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COMMITTING

Once files are staged:
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[e]e]e]e] Jele]ele]

DIFFERENCES

By default, HEAD points to the most recent commit.
o

4§ git add README.txt
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REMOTE

Add a remote sever, like GitHub:
]

from origin.
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WORKING WITH SSH KEY

Add the public key to GitHub account:
o
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HisTORY

Check history:

i g1t log
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6 2014 -04(
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Basic USAGE
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UNDO

e § git checkout -~ ...: go back to the point since the last commit.
e § git reset ... unstage files.

e § git rm ...: different from $ rm ...
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SUBDIRECTORY MIGRATING
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GOAL

@ Move "codebase” from the github.ncsu.edu to github.com.
@ Don't move other folders in the repository.

@ Preserve the Git commit history for the directory we are moving.
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SUBDIRECTORY MIGRATING
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FroM HERE (STEP 1)

Get files ready for the move:
@ 7 Don’'t mess up the original repo
e $ git clone git@github.ncsu.edu:cli9/Example.git
e $ cd Example
o # Don't affect remote server
e $ git remote rm origin
@ # Only keep the codebase folder
e $ git filter-branch --subdirectory-filter codebase -- --all
@ $ mkdir codebase
e $ git add .

e $ git commit
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SUBDIRECTORY MIGRATING
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To THERE (STEP 2)

Merge files into new repository:
@ 7 Don’'t mess up the original repo
e $ git clone git@github.com:cli9/Example-Pub.git
e $ cd Example-Pub
@ # Add a remote repo
@ $ git remote add repo-A-branch ./Example
o # Merge!
e $ git pull repo-A-branch master
@ $ git remote rm repo-A-branch
@ 7 Push to github.com
e $ git push
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BRANCHING
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BRANCHING MODEL
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BRANCHING
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SIMPLIFIED VERSION
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BRANCHING
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GETTING TO KNOW COMMIT

5bld3..
blob size
= Tasting Library
mhis Ubeaey 15 usea to tast
iy progects
98cad..
commit | size 92ec2.. / 9lle7..
tree l size i
tree 92ec2 :: h'°b size
5bld3 | README The MIT License
author scott ) —_—
blob 91le7 LICEMSE Compright (€ <peams <eopyright
committer | Scott blob |cbasa |test.rb Perwission is hereby grented,

initigl commit of my project -
cbala. .
blob I size

require ‘rubygess’
regsire 'ge'

modile Tast
module Tester

o Commit object has the metadata and a pointer to the root of
project tree object so it can re-create that snapshot when needed.
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MurTtiPLE COMMITS

98cal.. 34ac2.. f30ab..
commit | size commit | size commit | size
tree 92ec? tree 184ca tree Ode24
author Scott -t parent 98cad - [parent 34ac2
committer | Scott author | seott auther | scott
inittal commit of my profeet committer | Scott committer | Scott
fixed bup #1328 - stock odd feature #32 - obility to
overflon under certain o new formets to the central
J y
Snapshot A Snapshot B Snapshot C

@ The next commit stores a pointer to the commit that came
immediately before it.
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WHAT 1S BRANCH

master

I 3

I 3
[
W
=1
&

98ca?’ 3d4ac2

testing

e HEAD is a pointer to the local branch youre currently on.

@ Branch is a lightweight movable pointer (cheap).
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ONE AHEAD OF ANOTHER

master

98cad | 34ac?2 * £30ab < c2b%e

testing

o Fast-forward merge: move the pointer forward.
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DIVERGENT COMMITS

Snapshot to
Merge Into

Common
Ancestor

)

master

i

-

c4

)

c3

)

TII
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I

Snapshot to
Merge In
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BRANCHING
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How DoEs MERGE WORK

@ Three-way merge made by the 'recursive’ strategy.
o New commit has more than one parent.

o Automatically.
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BRANCHING WORKFLOWS

master (< |

develop

topic




BRANCHING
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ANOTHER WAY TO GO

experiment

master

@ Rebase: take the patch of the change introduced in C3 and reapply
it on top of C4.

o Followed by fast-forward merge.

o Different history, same results.
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BRANCHING OUT

° : start a new branch.
° . switch to it.
° : check the current branch.
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MASTER BRANCH

There is a bug in version 2.0:
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DEVELOP BRANCH

Sync with master branch:
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REFERE

DEBUGGING

Debug in develop branch, now it's ahead of master branch:
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MERGING

Bug fixed for a new release version:
o

(]
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TAGGING

Tag a new release:

< = —
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5

54
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diff —-—git a/codebase/bug.txt b/codebase/bug.txt
deleted file mode 100644

index 6685723..0000000

——— a/codebase/bug.txt

+++ fdev/mull
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BRANCHING

0000000000000 000e

GH-PAGES BRANCH

$ git checkout gh-pages
$ git rm -rf .
$ git add index.html

$ git commit -a -m " First pages commit”

$ git push origin gh-pages
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WRraPp IT Up
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GIT CHEATING SHEET

o Identity:
o $ git config ——global user.name ...: identify user name.
o $ git config —-global user.email ... identify user email.

Set up a repo:

o $ git init: start a local repo.

o $ git clone ...: clone a repo from local or remote repo.
Add and Commit:

o § git add ...: stage files.

o § git add -A: stage all.

o § git stash: stash the changes away.

o $ git commit -m "...": commit changes.

e Undo:
o § git reset ...: unstage files.
o $ git checkout - ...: restore changes.

o $ git rm ... delete files.
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WRraPp IT Up
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GIT CHEATING SHEET (CONT’D)

@ Check and Inspection:
. status of files.
- display differences.
. display differences of staged files.

o Remote:
° 1 connect to remote repo.
° . disconnect to remote repo.
° . push changes to remote repo.
° : update local repo with remote changes.
° : download objects from remote repo.
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GIT CHEATING SHEET (CONT’D)

@ Branch and Merge:
° . create a new branch.
: add a remote branch.
. switch to a branch.
: create a new branch and switch to it.
. delete a branch.
. delete a remote branch.
: merge changes from another branch.
: merge changes from another branch.
° : merge changes from remote branch.

o History and Tag
° . create a tag for release version.
. display information of a version.
. add a tag to remote repo.
. show history of commits.
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B0o0OKS AND RESOURCES

Chacon, Scott (2009). Pro Git. New York: Apress.
Free from here: (http://git-scm.com/book)

Transfer a subdirectory:
(http://gbayer.com /development/moving-files-from-one-git-
repository-to-another-preserving-history/)

A successful Git branching model:
(http://nvie.com/posts/a-successful-git-branching-model /)

Try Git: (https://try.github.io/)

Git Real: (https://www.codeschool.com/courses/git-real)

Git Real 2: (https://www.codeschool.com/courses/git-real-2)
GitGuys: (http://www.gitguys.com/)
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