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ABSTRACT
With new treatments and novel technology available, precision medicine has become a key topic in the
new era of healthcare. Traditional statistical methods for precision medicine focus on subgroup discovery
through identifying interactions between a few markers and treatment regimes. However, given the large
scale andhighdimensionality ofmoderndatasets, it is difficult to detect the interactions between treatment
and high-dimensional covariates. Recently, novel approaches have emerged that seek to directly estimate
individualized treatment rules (ITR) via maximizing the expected clinical reward by using, for example, sup-
port vector machines (SVM) or decision trees. The latter enjoys great popularity in clinical practice due to
its interpretability. In this article, we propose a new reward function and a novel decision tree algorithm
to directly maximize rewards. We further improve a single tree decision rule by an ensemble decision tree
algorithm, ITR random forests. Our final decision rule is an average over single decision trees and it is a soft
probability rather than a hard choice. Depending on how strong the treatment recommendation is, physi-
cians canmake decisions based on ourmodel alongwith their own judgment and experience. Performance
of ITR forest and treemethods is assessed through simulations alongwith applications to a randomized con-
trolled trial (RCT) of 1385 patients with diabetes and an EMR cohort of 5177 patients with diabetes. ITR for-
est and treemethods are implemented using statistical software R (https://github.com/kdoub5ha/ITR.Forest).
Supplementary materials for this article are available online.

1. Introduction

Many diseases, such as Type 2 diabetes (T2D), have a com-
plex andmultifactorial pathophysiology. Treatment of T2D typ-
ically begins with lifestyle modification and metformin, a med-
ication that lowers blood glucose by reducing glucose produc-
tion in the liver and enhancing muscle glucose uptake (Arakaki
et al. 2014). When lifestyle modification and metformin are
insufficient to control blood glucose, additional medications are
necessary. There are several options for second- and third-line
therapies for T2D, including sulfonylureas, thiazolidinediones,
dipeptidyl peptidase-4 (DPP-4) inhibitors, sodium-glucose co-
transporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-
1) receptor agonists, and insulin. Different therapeutic drug
classes have different mechanisms in treating T2D, resulting in
some advantages and/or disadvantages, limitations, and adverse
effects. Clinical guidelines provide less clarity regarding opti-
mal second- and third-line therapies (Diamant et al. 2014; Forst
et al. 2014). The unclear advantages of a combination of drug
regimens and the increased potential for adverse effects make
glucose lowering therapy increasingly complex (Bergenstal, Bai-
ley, and Kendall 2010; Nyenwe et al. 2011). So far, there is no
consensus for individualized treatment guidance on the selec-
tion of these treatments, especially when taking into account
treatment heterogeneity effects. There are increasing efforts to
develop individualized treatment rules (ITR) in the new era

CONTACT Jin Zhou jzhou@email.arizona.edu University of Arizona, Division of Epidemiology and Biostatistcis, Tucson, AZ -.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JCGS.

of precision medicine (Hayes et al. 2007; Cummings et al.
2010).

Traditional methods of personalized treatment sugges-
tions are based on ad hoc subgroup analyses or searching for
covariate–treatment interactions. These methods, however,
may suffer from a lack of efficiency or validity due to the curse
of dimensionality and multiple comparisons. Recent method-
ologies for developing ITR generally fall into three categories.
The first approach focuses on developing novel algorithms of
covariate–treatment interaction detection. For example, Su et al.
(2009) and Lipkovich et al. (2011) developed the interaction
tree methods by building splitting rules based on covariate–
treatment interaction tests. Su et al. (2012) then extended their
previous method to observational studies. The second category
is two-step methods (Cai et al. 2011; Zhao et al. 2013; Foster,
Taylor, and Ruberg 2011; Faries et al. 2013). The first step is
to estimate the differential treatment effect of each individual
patient measured by a score function. These scores are then
used as responses to establish a relationship with the covariates
as the second step. The third class of methods is based on value
functions which obtain optimal ITR by maximizing the value
function (Qian and Murphy 2011; Zhao et al. 2012; Zhang et al.
2012a). New methodologies have greatly extended our ability
to explore solutions for precision medicine, but these methods
have limitations. The results from interaction trees are easy to

©  American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America

http://www.tandfonline.com
https://doi.org/10.1080/10618600.2018.1451337
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2018.1451337&domain=pdf&date_stamp=2018-11-23
https://github.com/kdoub5ha/ITR.Forest
mailto:jzhou@email.arizona.edu
http://www.tandfonline.com/r/JCGS


850 K. DOUBLEDAY ET AL.

interpret, but since the covariate–treatment interactions are
maximized at each level of the tree, final trees do not connect
with any objective function. Thus, it is hard to define an optimal
solution for patients. Two-step methods usually need to impose
parametric or semi-parametric models to estimate a score func-
tion in the first stage and are subject to model misspecification.
Zhao et al. (2012) used a weighted classification framework and
support vector machine (SVM) to estimate optimal treatment
rules but solved the problem in the dual space. Consequently,
results are hard to interpret and adopt for clinicians. To widely
implement an ITR to inform clinical practice, interpretability
of the rule is key. To this end, many value function based
procedures have recently been proposed (Xu et al. 2015;
Laber and Zhao 2015; Zhang et al. 2015; Fu, Zhou, and Faries
2016). Among them, tree-based methods offer interpretability
and enjoy great popularity among clinicians (Su et al. 2009;
Lipkovich et al. 2011; Laber and Zhao 2015). In this article, we
also focus on the value function approach. We develop a recur-
sive partitioning tree algorithm and random forest procedure
to optimize the value function to obtain ITR.

The tree method was first proposed by Morgan and Son-
quist (1963), advanced by the development of classification and
regression trees (CART) (Breiman et al. 1984), and is use-
ful in partitioning the predictor space into meaningful sub-
groups which may elucidate some underlying structure relating
a response to predictors. Since an individual tree is known to
be highly variable, random forests (Breiman 2001), an exten-
sion of the bagging procedure (Breiman 1996), was proposed to
improve stability. However, both tree and random forest algo-
rithms are typically used for supervised learning where correct
outcome labels are provided. Recently Laber and Zhao (2015)
proposed a tree algorithm to optimize the value function and
search for ITR. Their method is different from original tree
algorithms in that they incorporate an objective function (i.e.,
value function) along with treatment labels through a “purity”
measure. Our proposed method may look similar as Laber and
Zhao’s (2015), but differs in the definition of the purity mea-
sure. We seek to maximize the value in a given node, con-
ditional on existing treatment assignments in all other previ-
ously defined terminal nodes. Unlike traditional regression or
classification tree methods where the error function (e.g., sum
of squared error, misclassification error) is the widely adopted
purity measure and is additive across all final nodes, the value
function is a type of overall average of the outcome. There-
fore, optimizing the value function within a single node as pro-
posed by Laber and Zhao (2015) may lead to a suboptimal
solution which cannot be translated to the overall optimized
value defined using all final nodes. When the decision signal
level is relatively weak, a single tree decision rule is highly vari-
able. Our random forest algorithm generates a decision rule
by averaging over all decision trees in the forest. The deci-
sion rule for a future patient is then a soft probability rather
than a hard choice. This feature is greatly needed in clini-
cal practice as the strength of the treatment recommendation
allows physicians to make a treatment choice using the deci-
sion rule along with their judgment and experience. A variable
importance measure similar to the one proposed by Breiman
(2001) is also developed as a tool for guiding clinical decision
making.

In summary, our contribution in this article is: (1) develop-
ment of a value function ensemble tree algorithm, ITR forest,
to generate an ITR; (2) ITR treatment probability estimation via
an ITR forest; (3) implementation of variable importance mea-
sure to guide decision making; (4) demonstration of the meth-
ods through simulation, randomized controlled trials (RCT),
and electronic medical record (EMR) examples. The software
package ITR.Forest implemented by the statistical comput-
ing language R (R Core Team 2017) along with documentation
is available at https://github.com/kdoub5ha/ITR.Forest.

2. Methods

2.1. Value Function and Individualized Treatment Rules

We are given a random sample of size N from a large popula-
tion. For each unit i in the sample, where i = 1, . . . ,N, let ti
be the treatment assignment, yi be the response, and xi be the
p× 1 vector of baseline covariates or markers. (Y ,T ,X ) is the
generic random variable of {(yi, ti, xi)}. We let X j represent the
jth covariate, where j = 1, . . . , p. We denote the distribution
of P by (Y ,T ,X ), with E being the expectation with respect
to P . For a binary treatment regime, ti indicates whether the
treatment of interest is received, with ti = 1 indicating that the
subject received active treatment and ti = 0 indicating that the
subject received control, that is, ti ∈ {0, 1}. Using the potential
outcome notation, let yi(0) denote the outcome under control
and yi(1) the outcome under treatment. We observe ti and yi,
where yi = tiyi(1) + (1 − ti)yi(0). Let r(X ) denote a vector of
binary ITR that is a function of the subjects’ baseline covariates
X . For any given individualized treatment recommendation r,
we let P r be the distribution of (Y ,T ,X ) given that T = r(X ).
Throughout our article, we use I as an indicator operator, where
I(x) takes value 1 or 0 if the scalar x is “true” or “false,” respec-
tively. When applied to a vector or matrix, I is an element-wise
operator.

The research question for individualized treatment rec-
ommendation or subgroup identification is only valid when
multiple treatment options are available for the same sub-
ject. If only one treatment option is allowed or available
for certain subjects, the optimal treatment is the only avail-
able one. Therefore, without loss of generality, our popu-
lation space � is defined as � = {X |Pr(t|X ) ∈ (0, 1),∀t ∈
{0, 1}}. Since dP = Pr(Y |X,T )Pr(T |X )Pr(X ) and dP r =
Pr(Y |X,T )I(T = r(X ))Pr(X ), we have, dP r

dP = I(T=r(X ))

Pr(T |X )
. The

expected value of treatment benefit with respect to r is

V (r) = Er(Y ) =
∫

YdP r =
∫

Y
dP r

dP dP

= E
[
I(T = r(X ))

Pr(T |X )
Y
]

. (1)

Our goal is to estimate ro, such that, ro ∈ argmaxr V (r) (Qian
andMurphy 2011; Zhao et al. 2012; Laber andZhao 2015; Zhang
et al. 2012a). Using double expectation rule, we have

V (r) = E
[
I(T = r(X ))

Pr(T |X )
Y
]

= E
{
E
[
I(T = r(X ))

Pr(T |X )
Y
∣∣∣∣T ,X

]}
= E [I(r(X ) = 1) {E(Y |T = 1,X ) − E(Y |T = 0,X )}]

+E {E(Y |T = 0,X )} .
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Therefore, our optimizer maximizingV (r) with respect to r is

ro(X ) = I (E(Y |T = 1,X ) > E(Y |T = 0,X )) . (2)

The interpretation of equation (2) is straightforward: simply
assign a treatment to patients who can benefit more from
it. Equation (2) also connects our method with other per-
sonalized treatment suggestion methods such as the contrast
function D(X ) = E(Y |T = 1,X ) − E(Y |T = 0,X ) that was
defined and estimated by Cai et al. (2011) and Foster, Taylor,
and Ruberg (2011) to generate ITR. In the context of precision
medicine, people often assume that the responsesY are from the
following model Y = β0 + g(X ) + T × D(X ) + ε, where β0 is
the overall mean, both g(X ) and D(X ) are functions of base-
line markers and centered at 0. Based on equation (2), it is easy
to see that the optimal solution is ro(X ) = I(D(X ) > 0). There-
fore, our method also targets the treatment by marker interac-
tions, similar to the interaction tree approaches (Su et al. 2009;
Lipkovich et al. 2011).

With multivariate X , using fully nonparametric methods
and incorporating nonlinear functions for approximating ro(X )

are extremely valuable, especially when D(X ) takes a complex
form (Foster, Taylor, and Ruberg 2011). However, these meth-
ods are subject to the curse of dimensionality and pose chal-
lenges inmaking inferences about the resulting ITR and its asso-
ciated value function.On the other hand, ifD(X ) is estimated by
imposing parametric or semiparametric models on E(Y |X,T ),
the plug-in estimate of ro(X ) may lead to a much lower popula-
tion average outcome compared to that of the true ro(X ) (Qian
and Murphy 2011). One may reduce model misspecification
by including nonlinear bases and selecting important variables
via regularized estimation (Qian and Murphy 2011; Imai and
Strauss 2010). However, it remains challenging to efficiently
choose nonlinear basis functions to achieve an optimal bias and
variance trade-off.

2.2. ITR Tree and Forest

Wepropose a nonparametric approach thatmaximizes the value
function using a recursive partitioning algorithm and extend
this method to generate random forests. We consider a study
designed to assess a binary treatment effect on a continuous
response with a number of baseline covariates present, either
continuous or categorical. Our goal is to search for a treatment
assignment with maximized value function. The value function
is evaluated by the observed data and is estimated by

V̂ (r) =
( N∑

i=1

I(ti = r(xi))
P̂r(ti|xi)

yi

)/( N∑
i=1

I(ti = r(xi))
P̂r(ti|xi)

)
(3)

where P̂r(ti|xi) is an estimated propensity score and is typi-
cally estimated using logistic regression in observational stud-
ies (Rosenbaum and Rubin 1983). This estimator of the value
is referred to as the inverse probability weighted estimator
(IPWE). We also incorporate the augmented inverse probabil-
ity weighted estimator (AIPWE) used by Zhang et al. (2012b) in
our investigation. The AIPWE protects against misspecification
of P̂r(ti|xi). For RCT, P̂r(ti|xi) = 0.5, assuming a 1 : 1 allocation
ratio.

We now introduce how to grow a tree.
1. Initial Split. For a given space � = {xi, i =

1 . . . ,N|Pr(t|xi) ∈ (0, 1),∀t ∈ {0, 1}} ⊂ R
p or a single

node tree containing all patients, we start with an initial
split. This split is induced by a threshold, c, on a covari-
ate, for example, X1. If X1 is continuous, then the binary
decision r(X ) is considered as r(X ) = I(X1 ≤ c). If X1
is nominal with d distinct categories C = {c1, . . . , cd},
then the binary question becomes “Is X1 ∈ A?” for any
subset A ⊂ C. Observations answering “yes” go to the
left child node and observations answering “no” go to
the right child node. We assign the new treatment label
to the subject based on the child node in which that
subject is placed. For example, if the subject goes to left,
we consider the treatment decision as treated, otherwise
it is control. We define this process by a partition:{

�1 = {�|X j ≤ c}, r(�1) = t
}

and{
�2 = {�|X j > c}, r(�2) = t ′

}
, t, t ′ ∈ {0, 1},

where r(�) = t is defined as r(xi) = t, ∀xi ∈ �. The
value function V̂ (r) is then reevaluated using original
treatment assignment and the new assignment

V̂ ( j, c, t, t ′) =
(∑
i∈�1

I(ti = t )
P̂r(ti|xi)

yi +
∑
i∈�2

I(ti = t ′)
P̂r(ti|xi)

yi

)
/(∑

i∈�1

I(ti = t )
P̂r(ti|xi)

+
∑
i∈�2

I(ti = t ′)
P̂r(ti|xi)

)
.

The best split of the variable X s is the one that yields the
maximum value function among all permissible splits of
all markers as well as new treatment assignment, that
is, given a covariate X j and a split point c, we evaluate
value function when r(�1) = 1 and r(�2) = 0 versus
r(�1) = 0 and r(�2) = 1, that is,

V̂ ∗ = max
j,c,(t,t ′)∈{(0,1),(1,0)}

V̂ ( j, c, t, t ′).

After the initial split, the space is partitioned into two
subspaces or nodes, �1 and �2, each with a new treat-
ment label noted as r̂o(�1) and r̂o(�2), and an estimated
maximum value V̂ ∗ for current tree.

2. Second Split. We now proceed to the next split of both
nodes generated from initial step, �1 and �2. For each
node, without loss of generality, we denote it as�1. Start-
ing with all of the data in�1, consider a splitting variable
j, split point c, and define a new partition in subspace�1

as, �11 = �1⋂{�|X j ≤ c} and �12 = �1⋂{�|X j >

c}.We seek the splitting variable j, split point c, and treat-
ment assignment (t, t ′) ∈ {(0, 1), (1, 0)} that solves

max
j,c,(t,t ′ )∈{(0,1),(1,0)}∑

i∈�11
I(ti=t )
P̂r(ti|xi )yi +

∑
i∈�12

I(ti=t ′ )
P̂r(ti|xi )yi +

∑
i∈�2

I(ti=r̂o(xi ))
P̂r(ti|X i )

yi∑
i∈�11

I(ti=t )
P̂r(ti|xi ) +∑

i∈�12
I(ti=t ′ )
P̂r(ti|xi ) +∑

i∈�2
I(ti=r̂o(xi ))
P̂r(ti|X i )

,

and V̂ (∗) represents the maximized value of above func-
tion. This split will only be possible if V̂ (∗) is greater than
V̂ ∗ by a pre-defined level. The same procedure applies
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to splitting �2. We adopt a sequential splitting proce-
dure where the order in which nodes �1 and �2 are
split is random (Dusseldorp and Van Mechelen 2014).
Finally, we update partition of the space and the treat-
ment assignment r̂o for each subspace/node, as well as
the estimated maximum value V̂ ∗ for current tree.

3. Further Splits. At each step of the algorithm, we consider
all potential splits of every terminal node of the tree. We
then repeat the previous procedure shown in the second
split. The order of updating terminal nodes is random.
Again, for every node we retain a split if the overall value
function is increased by a certain level.

The algorithm stops when a split can no longer be found to
increase the value by a predefined threshold. In constructing the
initial tree, a terminal node is declared when any one of the fol-
lowing conditions is met: (1) the total number of observations
in the node is less than some preset minimum node size; (2)
the depth of the node is greater than some preset maximum tree
depth.

Our partitioning algorithm is a sequential algorithm as noted
by Dusseldorp and Van Mechelen (2014). However, such order
effects can be counterbalanced by random forest algorithm
when a random pre-selection of variables is employed (Strobl,
Malley, and Tutz 2009). The ITR is developed by maximizing an
overall value function, such that in determining c∗ we calculate
values based on all terminal nodes and their treatment assign-
ments. This differentiates our method from that used by Laber
and Zhao (2015). The algorithm stays the same for categorical
covariates when subspaces are defined by�1 = {�|X1 ∈ A} and
�2 = {�|X1 /∈ A}.

A random forest of ITR trees is then generated via bootstrap
sampling, often referred to as “bagging” (Breiman 2001). Bag-
ging averages many noisy but approximately unbiased models
and hence reduces the variance. From a bootstrap sample, an
ITR tree is grown with each split determined by maximizing the
value function of a randomly selected subset of m0 predictors.
For a set of p predictors we set m0 = max(

⌊
p/3

⌋
, 1) as sug-

gested by Friedman, Hastie, and Tibshirani (2001). Repeating
this procedure yields a random forest of uncorrelated ITR trees.
Our final recommended ITR for each subject is the average of
decisions over all trees in the ITR forest. A forest of J trees is
denoted by F = {τ j : j = 1, 2, . . . , J}, where each τ j is a sin-
gle tree. For an individual i, a single ITR tree votes for treat-
ment rτ j (xi) = 1 or for control rτ j (xi) = 0. Treatment assign-
ment based on forestF is calculated as pF = P̂r(rF (xi) = 1) =
1
J
∑J

j=1 rτ j (xi), which is leveraged to estimate the value function
for a forest as,

V̂ f orest (r) =
∑N

i=1
I(ti=r(xi ))[pF I(ti=1)+(1−pF )I(ti=0)]

P̂r(ti|xi ) yi∑N
i=1

I(ti=r(xi ))[pF I(ti=1)+(1−pF )I(ti=0)]
P̂r(ti|xi)

.

It was previously noted by Fu, Zhou, and Faries (2016) and Laber
and Zhao (2015) that the variance of the value estimated by
equation (3) may become unstable when using the raw outcome
Y . As a hedge against this instability residuals from amodel may
be used as the outcome measure. This gives Y ∗ = Y − m̂(X )

where m̂(X ) are predicted values from some model. Fu, Zhou,
and Faries (2016) and Laber and Zhao (2015) recommended

linear models and random forests to estimate m̂(X ), respec-
tively. For the remainder of this article, we use random forests
to estimate m̂(X ) unless otherwise noted. We use the R package
randomForestwith the defaults to estimate m̂(X )when ran-
dom forests are used to stabilize the variance (Liaw and Wiener
2002).Y ∗ is used to generate an ITR in training data and original
outcome Y is used to calculate maximized value by validation
data.

2.3. Pruning

A large tree likely suffers from overfitting as the tree growing
algorithm is greedy. Breiman et al. (1984) suggested a pruning
procedure that creates a set of optimally pruned subtrees of �0,
and selects the best subtree based on a tree complexity penalty.
The performance of an ITR tree is evaluated using

Vλ(�) = V (�) − λ · |� − �̃|, (4)

whereV (�) evaluates the total value in tree �.V (�) is obtained
by evaluating equation (3) for the decision rule generated by tree
�. �̃ is the set of terminal nodes of tree �, |� − �̃| is the num-
ber of internal nodes in �, and λ > 0 is a penalty based on tree
size. A tree with largerVλ(�) is desirable and a cross-validation
procedure is used to select tuning parameter λ.

Given a training dataset and a penalty parameter λ, a large
initial tree �0 and calculate V train

λ (�). Next, we want to trim
the “weakest” branch of �0. To find the “weakest” branch of �0,
consider each non-terminal node h of �0 and the branch �h,
which has h as its root node. The “weakest” branch of �0 satis-
fies the following conditions: (1) node h has the greatest num-
ber of parent nodes (i.e., is far away from the initial node of
�0) and (2) �0 − �h has the highest value among all branches
�h. V train

λ (�0 − �h) is the overall value of the initial tree after
branch�h is trimmed. The “weakest” branch is both the farthest
away from the root node of �0 and also contributes the small-
est additional value to the tree. Hence, if two branches, say �h1
and �h2 , have root nodes equidistant from the root node of �0,
we would prune �hi , which satisfies argi max{V train

λ (�0 − �hi )}.
This results in subtree �1 ≺ �0, where ≺ means “subtree of.”
Repeating this procedure until the tree is pruned back to the
root node results in a series of optimally pruned subtrees �M ≺
�M−1 ≺ · · · ≺ �1 ≺ �0 with �M being the null tree having no
splits. The optimal subtree will be the subtree which maximizes
equation (4), denoted as �m. The test sample is then run down
�m to obtain the validated valueV test

λ (�m). We repeat this pro-
cedure for every partitioned data pair (e.g., 5-fold) and calculate
the mean validated value for the given λ. The final λ is chosen
so that mean validated value is maximized over a sequence of
values of λ. A similar pruning procedure was used by Su et al.
(2009).

2.4. Variable ImportanceMeasure

When there are new markers introduced to assist in treatment
selection, it is important to evaluate their value in improving
population average outcomes, in our case ITR. We designed
a variable importance measure to evaluate which markers are
important for an ITR. Our variable importance algorithm is
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based on random forests (Breiman 2001) and was similarly used
in the interaction tree method (Su et al. 2009). First, a random
forest of ITR trees is constructed. For a bootstrap sampleLb, each
tree �b represents an ITR. Next, the sample not in Lb, L⊥

b , is sent
down the tree and the valueV (�b) computed as defined in equa-
tion (3). After permuting the jth marker in L⊥

b , the permuted
sample is evaluated by �b and Vj(�b) is recomputed. Finally,
the relative difference between V (�b) and Vj(�b) is recorded.
This procedure is repeated for B bootstrap samples. We define
the importance measureWj to be the average of relative differ-
ences overB bootstrap samples, that is,W j = 1

B
∑

b
V (�b)−Vj (�b)

V (�b)
.

Further details on the algorithm can be found in supplementary
material Algorithm 2 and Breiman (2001).

3. Simulation

This section contains simulated experiments designed to inves-
tigate the performance of the ITR forest and tree procedures.
Data are generated from the models outlined in Table 1. Each
dataset consists of a continuous response Y , a binary treatment
T , and four independent covariates X1,X2,X3,X4 from a unit
uniform distribution. Unless otherwise stated, simulation repli-
cates also include 10 excess noise predictors from a unit uniform
distribution.

Simulation A is an RCT design while simulations B–D are
observational study designs. Simulation models A and B have
a single tree structure. Models A.1 and B.1 produce a tree with
one split and two terminal nodes: an initial split is at X1 = 0.5
with the treatment sent to those with X1 < 0.5. Models A.2
and B.2 produce a tree with two splits and three terminal
nodes. The initial split is at X1 = 0.3 and the right child node is
further split at X3 = 0.1. Treatment is assigned to patients with
X1 > 0.3 and X3 > 0.1. Models C.1 and C.2 have well-defined
subgroups which benefit from treatment, but the ITR cannot
be defined by a tree structure. In model C.1, all patients benefit
from treatment with increasing values of X1 accompanied by
an increase in value defined by Equation (3). In model C.2,
patients with X1 + X3 > 1 benefit from treatment and those
with greater values ofX2 orX4 receive increased benefit. In both
C schemes, treatment effects are smooth functions of covariates.
Scheme D is a null model with no defined subgroup and should
produce a tree with no splits. We use accuracies of correctly
predicting treatment assignment given an ITR to evaluate the

performance of ITR trees and forests. Maximized value is also
used to evaluate the procedure, particularly in comparison with
other methods (Matsouaka, Li, and Cai 2014). For simulations
A and B, signal ratio is defined as θ = β1/β2. Signal ratio
compares the benefit of receiving treatment for those in the
subgroup (β1) with the benefit of receiving control for those
not in the subgroup (β2). We fix β2 = 1, and vary β1 so that
θ ∈ {1, 3, 5}. For simulation C, the linear interaction effect β is
varied from 1 to 5. For all simulations, models were trained on
n = 300, 500, and 800 observations and validated on n = 1000
observations. All simulation analyses used 100 replicates.

3.1. Pruning

Accuracy of the pruning procedure is reported in Table 2. It con-
tains the percent of correct sized trees after pruning and a sum-
mary of the selected penalty parameter λ values. The penalty λ

was selected using the method presented in section 2.3 with a 5-
fold cross validated estimate of λ. Values of λ vary depending on
sample size, effect size, and outcome variable as previously noted
by (Laber and Zhao 2015). Performance is notably better when
θ = 1 versus θ = 3 for simulations A.2 and B.2. This is likely
due to the treatment effect differential between those who bene-
fit from treatment versus those who benefit from control. While
stabilization of the variancemay address some of the issues asso-
ciated with this imbalance, a single tree structure may not be
powerful enough to overcome the effect difference. In general,
accuracies increase as sample size increases. For training sam-
ples of n = 800 the correct sized tree was grown at least 78%
of the time, with the exception of simulation scheme B.2. When
θ = 1 a training sample of n = 800 grew the correct sized tree in
67% of replicates. Scheme D is used to estimate the Type I error
rate. The null tree was selected in at least 99% of replicates for
scheme D.

A larger sample size example with n = 2500 observa-
tions from scheme B.2 with θ = 3 is reported (Figure 1). It
is used so that a large initial tree structure is generated. The
optimal λ = 0.04 was selected using 5-fold cross-validation.
The resulting optimal tree structure selects both correct
splitting variables and correct cut points and contains no
superfluous splits. Further details related to this example
can be found in the documentation of our software pack-
age (https://github.com/kdoub5ha/ITR.Forest).

Table . Simulation schemes for assessing the performance of ITR tree and forest methods.

Scheme Model Pr(T |X ) SubgroupA

A. Y = 2 + 2I(X2 < 0.5) + β1I(x ∈ A)T + β2[1 − I(x ∈ A)](1 − T ) + ε . X 1 < 0.5
A. Y = 2 + 2I(X2 < 0.5) + β1I(x ∈ A)T + β2[1 − I(x ∈ A)](1 − T ) + ε . X 1 > 0.3 and X3 > 0.1
B. Y = 1 + 2X2 + 4X4 + β1I(x ∈ A)T + β2[1 − I(x ∈ A)](1 − T ) + ε logit−1(−4 + 3X2 + 5X4) X 1 < 0.5
B. Y = 1 + 2X2 + 4X4 + β1I(x ∈ A)T + β2[1 − I(x ∈ A)](1 − T ) + ε logit−1(−4 + 3X2 + 5X4) X 1 > 0.3 and X3 > 0.1
C. Y = 6 + 2X 1 + βX2

1T + ε logit−1(−4 + 3X2 + 5X4) �

C. Y = 6 + 2T + 2X 1 + 2X3 + β I(X ∈ A) exp{X2 + X4}T + ε logit−1(−4 + 3X2 + 5X4) X 1 + X3 > 1
D Y = 1 + 2T + 2X 1 + 2X3 + ε logit−1(−6 + 3X 1 + 3X2 + 3X3 + 3X4) ∅

The A schemes are RCT design while B, C, and D schemes are observational study models. Models A. and B. have subgroups defined by a single variable and single cut
point which should produce a tree with a single split. Models A. and B. have subgroups defined by two variables and two cut points which should produce a tree with
two splits. Models C. and C. are linear interaction models with one and two interacting variables, respectively. Models C. and C. cannot be expressed by a single tree.
Model D has no subgroups and so should produce a null tree. Covariates X 1, X2, X3, X4 are independent and distributed as Uniform(0, 1). Errors ε ∼ N (0, 1). �
represents all samples and ∅ represents the null set. ITR: individualized treatment rule; RCT: randomized controlled trial.

https://github.com/kdoub5ha/ITR.Forest
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Table . Proportion (% interval) of correctly sized trees selected by the pruning procedure over  replicates.

θ = 3 θ = 1

Correct tree λ Correct tree λ

Scheme n proportion (% CI) Mean (min, max) proportion (% CI) Mean (min, max)

A.  . (., .) . (, .) . (., .) . (, .)
 . (., .) . (, .) . (., .) . (, .)
 . (., .) . (, .) . (., .) . (, .)

A.  . (., .) . (, .) . (., .) . (, .)
 . (., .) . (, .) . (., .) . (, .)
 . (., .) . (, .) . (., .) . (, .)

B.  . (., .) . (, .) . (., .) . (, .)
 . (., .) . (, .) . (., .) . (, .)
 . (., .) . (, .) . (., .) . (, .)

B.  . (., .) . (, .) . (., .) . (, .)
 . (., .) . (, .) . (., .) . (, .)
 . (., .) . (, .) . (., .) . (, .)

D  . (., .) . (, .) . (., .) . (, .)
 . (., .) . (, .) . (., .) . (, .)
 . (., .) . (, ) . (., .) . (, .)

Penalty parameter λ and its minimum and maximum (in parenthesis) obtained using five-fold cross-validation for the  replicates are shown. Schemes A and B have
θ = 1, 3 and all schemes presented were trained with samples of n = 300, 500, and . All replicates include  excess noise variables.

3.2. Accuracy

Accuracy of the ITR forest and tree methods is assessed for
simulations A-C. The choice of splitting variable and cut point
is summarized in the context of our pruning procedure by
generating a large tree, pruning the tree (per Section 2.3), and
using a validation sample of n = 1000 observations to assess
whether the correct treatment is assigned to a patient. Figure 2
presents the average and the standard deviation of the ITR
tree procedure accuracies over 100 simulation replicates. Signal
ratio, θ = 1, 3, 5 or linear interaction effect, β = 1, 3, 5 and
sample sizes are n = 300, 500, 800. Table 3 shows results from
constructing a single ITR forest.We generated a single dataset of
n = 300 observationswith θ, β = 3 for each simulation scheme,
and each dataset was fit with an ITR forest of 500 trees and an
ITR tree model with five-fold cross-validated pruning. Treat-
ment predictions from each model were obtained for a valida-
tion sample of n = 1000 observations. The top panel in Table 3
shows the patient level forest summary, the probability of being
assigned to active treatment using all trees in the ITR forest, for
a randomly selected subset of 10 validation individuals. IPWE is

shown for all schemes andAIPWEresults are shown for schemes
B and C. For ITR forest and tree methods, random forests were
used for variance stabilization. A linear model was initially used
for variance stabilization in scheme C, but ITR tree methods
both producednullmodels so random forestswere used instead.

A probability greater than 0.5 indicates a majority of trees
voted for active treatment, and active treatment would be
recommended for this individual. Otherwise, control would
be recommended. If the probability is close to 0.5, a treatment
recommendation may be withheld. We note that for a 500 tree
ITR forest the standard deviation for treatment assignment of
0.5 is 0.5/

√
500 = 0.022. Hence, when a treatment assignment

probability between 0.478 and 0.522, the decision may be
made in combination with a clinician’s experience. Subject 5
from scheme A.1, for instance, has a predicted probability of
benefiting from active treatment of 0.49. Although this gives
the optimal treatment recommendation for this patient of being
on control, the expertise of the patient’s physician should come
into play as well. This subject has covariate values X1 = 0.04
and X3 = 0.94, so that they satisfy the subgroup inclusion
criteria strongly for X3 but not for X1. In a few instances a

Figure . Example of the pruning procedure in Section . by a simulated example from schemeB.with θ = 3,  excess noise variables, and a training sample ofn = 2500
observations. Left: the full tree shown with each split represented by a three-component vector (splitting variable, splitting value, child node to which active treatment is
sent). Right: plot of -fold cross-validated penalized value function,V

λ
(�), (y-axis) with error bars plotted against the penalty parameter λ (x-axis). The optimally pruned

tree structure is embedded in the right panel.
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Figure . Percent of validation sample observations assigned to the correct treatment using the ITR tree method. Models were trained on n = 300 (circle),  (square),
and  (diamond) observations, pruned using a five-fold cross-validation estimator of penalty parameter λ, and validated using a sample of n = 1000 observations. Point
estimates and % equal tail intervals over  replicates are displayed. A. and A. use IPWE and AIPWE used otherwise. Signal ratios (θ ) and linear interaction effect (β)
were varied from  to . ITR: individualized treatment rule; IPWE: inverse probability weighted estimator; AIPWE: augmented inverse probability weighted estimator.

subject received an incorrect treatment recommendation. In
scheme B.2, observations with X1 > 0.3 and X3 > 0.1 should
be assigned to active treatment, otherwise control. Subject 1
received an incorrect recommendation to be on active treat-
ment using both IPWE and AIPWE methods. This subject had
X1 = 0.72 and X3 = 0.02 and so strongly meets the subgroup
criteria for X1, but not for X3. In scheme C.1, all 10 subjects
were recommended to be on active treatment as was expected.
In scheme C.2, subject 10 was misclassified. This subject had

X1 = 0.94 andX3 = 0.16 so that the sum of these two covariates
is close to 1, leading to the misclassification. The bottom panel
of Table 3 shows the percent of all 1000 validation observations
from the ITR forest and ITR tree models which received correct
treatment assignments. A single ITR tree structure performed
well compared to the ITR forest. The ITR forest, however, has
the additional benefit of the soft treatment assignment proba-
bility and this is made clear in Table 4. The accuracy for RCT
simulations (A) was better than EMR simulations (B) due to the

Table . Upper Panel: probability (as %) of being assigned to active treatment using the ITR forest method.

Scheme A. Scheme A. Scheme B. Scheme B. Scheme C. Scheme C.

Pr1 Pr1 Pr1 Pr1 Pr1 Pr1

ID IPWE True2 IPWE True2 IPWE(AIPWE) True2 IPWE(AIPWE) True2 IPWE(AIPWE) IPWE(AIPWE) True2

 .    . (.)  . (.)  . () . (.) 
 .    . (.)  . ()  . (.) . (.) 
 .  .  . (.)  . (.)  . (.) . (.) 
 .  .  . (.)  . (.)  . (.) . (.) 
 .  .  . (.)  . (.)  . () . (.) 
 .  .  . (.)  . (.)  . (.) . (.) 
 .  .  . (.)  . (.)  . (.) . (.) 
 .  .  . (.)  . (.)  . (.) . (.) 
 .  .  . (.)  . (.)  . (.) . (.) 
 .  .  . (.)  . (.)  . (.) . (.) 

% Correct
ITR Forest .% .% % (.%) .% (.%) .% (.%) .% (.%)
ITR Tree % .% % (%) .% (.%) .% (–) .% (.%)

For each simulation scheme, an ITR forest is trained on  observations and validated on  observations with each forest consisting of  trees. Signal ratio of θ = 3
(A and B schemes) or interaction effect β = 3 (C schemes) is used. IPWE probabilities are estimated for all schemes and AIPWE probabilities are shown in parentheses
for EMR schemes B and C. Lower Panel: percent of all  validation observations assigned to the correct treatment group based on majority voting for the ITR forest
(top row) and an ITR tree (bottom row). In scheme C., the ITR tree using the AIPWE produced a null model. All subjects in simulation scheme C. should all benefit from
treatment, a “True”column is therefore excluded. All simulation replicates include  excess noise variables. 1 “Pr”: % of trees voting for treatment among the  trees in
ITR forest. 2 “True”: the known optimal treatment assignment. A treatment assignment of “” indicates active treatment and “” indicates control.

ITR: individualized treatment rule; IPWE: inverse probability weighted estimator; AIPWE: augmented inverse probability weighted estimator.
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Table . Averagemaximized value (standard deviation) for ITR forest, ITR tree, MIDAs by Laber and Zhao (), IT tree by Su et al. (), OWL via SVM by Zhao et al. (),
and random guessing, over  simulation replicates.

ITR Tree

Model p ITR Forest IPWE AIPWE MIDAs IT Tree OWL Random

A.  . (.) . (.) . (.) . (.) . (.) . (.) . (.)
A.  . (.) . (.) . (.) . (.) . (.) . (.) . (.)
A.  . (.) . (.) . (.) . (.) . (.) . (.) . (.)
B.  . (.) . (.) . (.) . (.) . (.) . (.) . (.)
B.  . (.) . (.) . (.) . (.) . (.) . (.) . (.)
B.  . (.) . (.) . (.) . (.) . (.) . (.) . (.)
C.  . (.) . (.) . (.) . (.) — . (.) . (.)
C.  . (.) . (.) . (.) . (.) — . (.) . (.)
C.  . (.) . (.) . (.) . (.) — . (.) . (.)
C.  . (.) . (.) . (.) . (.) . (.) . (.) . (.)
C.  . (.) . (.) . (.) . (.) . (.) . (.) . (.)
C.  . (.) . (.) . (.) . (.) . (.) . (.) . (.)
D  . (.) . (.) . (.) . (.) — . (.) . (.)

Models were trained on n = 300 observations with θ = 3 (A and B schemes) or β = 3 (C schemes), along with 10, 25, or  excess noise predictors (p). Reported mean
maximized value and standard derivation were estimated based on the validation samples of n = 1000 and  simulation replicates. Note that for all schemes larger
values are desired. The IT tree method failed to identify a rule in over 50% of replicates for C. and D so results are not included. ITR: individualized treatment rule; IPWE:
inverse probability weighted estimator; AIPWE: augmented inverse probability weighted estimator; MIDAs: minimum impurity decision assignments; IT tree: interaction
tree; OWL: outcome weighted learning; SVM: support vector machine.

need to estimate P̂r(ti|xi). Additionally, we investigated use of
training samples of n = 100, but found the smaller sample size
prohibitive to discovery of subgroups. Thus, only sample sizes
of n = 300 or greater are presented in this article.

3.3. Variable Importance

Variable importance measures are reported for simulated data
with sample sizes of n = 300, 500, and 800. All variable impor-
tance measures were estimated using a 500 tree ITR forest, and
the reported variable importance measures were scaled so that∑

j Wj = 1 for easier interpretation. We note that when excess
noise predictors were included in estimating variable impor-
tance, the excess predictors received at most 4% of the impor-
tance measure and typically received less than 0.1%. Hence, we
exclude noise variables from variable importance analysis in this
article. A summary of variable importance measures for simu-
lated data is presented in Figure 3. Note that for simulations A.1,
B.1, and C.1 the subgroup is defined by X1 and for simulations
A.2, B.2, C.2 the subgroup is defined by X1 and X3. IPWE was
used for scheme A while AIPWEwas used for schemes B and C.
The ITR forest procedure showed excellent ability to select the
correct subgroup defining variable(s) as most important. Since
the cut point in schemes A.2 and B.2 of X1 = 0.3 is farther from
the uniform (0, 1) boundary than the cut point for X3 of 0.1,
the variable importance measure for X1 was greater than X3.
This is because there are fewer observations sampled on average
with X3 < 0.1 than with X1 < 0.3. This point is illustrated in
the supplementarymaterial (Figure S1) by considering sampling
schemes with both cut points set at 0.3. If both cut points are
0.3 the variable importance measures for X1 and X3 were sim-
ilar. Scheme C.1 showed X1 as most important predictor once
n ≥ 500 and the effect size β ≥ 2. Scheme C.2 showed most of
the importance measures going to X1 and X3, even for smaller
training samples.

3.4. Method Comparison

The maximized value of the ITR forest and tree methods
was compared to a few optimal treatment recommendation

methods. Methods considered were interaction trees (Su
et al. 2009) (IT tree), outcome weighted learning using
SVM (Zhao et al. 2012), and minimal node impurity mea-
sure (MIDAs) (Laber and Zhao 2015). ITR trees were pruned
using 5-fold cross-validation. Optimal tree size selection for
MIDAs was similar, but used a 10-fold cross-validation per the
suggestion in Laber and Zhao (2015). Random forests were
used to stabilize variance in MIDAs. Bayesian information
criterion (BIC) was used in IT tree methods along with the
amalgamation algorithm. Outcome weighed learning via SVM
used a linear kernel and five-fold cross-validation to find an
ITR in R package DTRlearn (Liu, Wang, and Zeng 2015).
We also include random guessing as a reference for arbitrary
treatment assignment. Each model was trained on n = 300
observations with θ = 3 or β = 3 and validated on n = 1000
observations. IPWE was used for simulation A.2 and AIPWE
used for the other simulations. Results are found in Table 4.
Simulations A.1 and B.1 were excluded from this section of the
article since the ITR tree and MIDAs methods are identical
estimators of rewards/value defined by equation (3) when the
tree structure consists of only a single split. Different number
of excess prognostic markers (noise) were included, generated
from a uniform distribution. Results for the null model D were
consistent for all methods and random guessing resulted in the
smallest value. ITR forest gave the best estimated maximized
value for all simulations considered, demonstrating the utility
of the ITR forest method and its robustness.

4. Data Applications

The ITR forest and tree methods were applied to RCT data
from the DURAbility of Basal versus Lispro mix 75/25 insulin
Efficacy (DURABLE) study (Buse et al. 2009) and an EMR
dataset from Clinical Practice Research Datalink (CPRD)
(https://www.cprd.com/intro.asp). DURABLE investigated two
treatments, a mix of 75% insulin lispro protamine suspension
and 25% lispro (LM75/25) vs. Glargine, in patients with type 2
diabetes with the objective of achieving glycemic control. CPRD
is an observational and intervention based research service that
operates as part of theUKDepartment ofHealth. EMRdatawere

https://www.cprd.com/intro.asp
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Figure . Variable importancemeasures for simulation studiesA, B, andCwithn = 300, 500, 800. Signal ratios of θ = 1, 3, 5 (A andB schemes) andβ = 1, 3, 5 (C schemes)
using ITR forest method with the IPWE for A schemes and AIPWE for B and C schemes. Gray scale indicates θ, β = 1 (black) to θ, β = 5 (light gray). The subgroup defining
variable(s) for models A., B., and C. isX 1 and for models A., B., and C. are X 1 andX3 . ITR: individualized treatment rule; IPWE: inverse probability weighted estimator;
AIPWE: augmented inverse probability weighted estimator.

obtained by Eli Lilly and Company to compare two injectable
treatments, basal insulin and glucagon-like peptide-1 receptor
agonists (GLP-1), in patients with type 2 diabetes in an effort
to control glycemic change (Lawson, Sherman, and Hollowell
1998). The outcome used for these models is percent change in
HbA1c from baseline. Optimal tree size was determined using
the pruning procedure outlined in Section 2.3 using a 5-fold
cross-validation estimator of λ. A random sample of 10 subjects
were set aside in each study to assess themodel performance and
the remaining individuals used to train the model. A 500 tree
ITR forest was constructed using all available variables.We com-
pared the ITR generated by both tree and random forest using
the 10 held-out individuals. Random forests were used to stabi-
lize the variance for both datasets.

4.1. DURABLE study

For the DURABLE study, the variables available at baseline were
fasting plasma glucose, insulin, 7-points glucose readings taken
throughout a day, weight, height, BMI (body mass index), dias-
tolic blood pressure, systolic blood pressure, heart rate, and
duration of diabetes in n = 1385 patients. Of the 1385 patients,
688 received LM75/25 and 697 received Glargine as control.
After setting aside 10 subjects for validation, the remaining
1375 observations were used to construct an ITR forest and

an ITR tree. The variable importance measure returned weight
as the most important predictor of treatment assignment using
the IPWE and AIPWE (Figure 5). A tree with two terminal
nodes was determined to be optimal for both IPWE andAIPWE
(Figure 4). There was correspondence between patient weight
receiving a plurality of the importance measure and being the
covariate selected for the initial split. Table 5 shows treatment
assignment using an ITR forest. Patients 1, 6, and 9were interest-
ing cases, receiving opposing decisions from the ITR forest and
ITR treemodels. These three patients had weights of 115 kg, 106
kg, and 129 kg and so were recommended to take Glargine by
the ITR tree. These results were consistent with the mechanism
of reactions. Glargine is a basal insulin which lowers the overall
blood glucose, and LM 75/25 is a pre-mixed insulin which cov-
ers both postprandial and basal glucose. Heavier patients need
more basal insulin and LM 75/25 may not deliver enough with-
out causing hypoglycemia. Therefore, Glargine works better for
these types of patients.

4.2. ElectronicMedical Records

The EMR dataset contained 5177 patient observations, 837
treated with GLP-1 and 4340 with basal insulin. Variables avail-
able at baseline were the indexed laboratory result, age, diabetes
duration, Charlson score, ethnicity, race, categorical body mass
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Figure . Estimated ITR for DURABLE RCT (left) and EMR (right) using a single ITR tree structure and optimal pruning as described in section .. RCT model was trained
using n = 1375 observations and EMRmodel was trained on n = 5167 observations. The IPWE and AIPWE for both datasets returned the same optimal tree. Each internal
node is defined by the triple (splitting variable, splitting value, child node to which active treatment, LM/ for DURABLE and GLP- for EMR, is sent). ITR: individualized
treatment rule; RCT: randomized controlled trial; EMR: electronic medical records; IPWE: inverse probability weighted estimator; AIPWE: augmented inverse probability
weighted estimator; DURABLE: Assessing the DURAbility of basal vs. lispro mix / insulin efficacy trial; LM/: mix of % insulin lispro protamine suspension and %
lispro (LM/); GLP-: glucagon-like peptide- receptor agonists.

Figure . Variable importancemeasures for DURABLE RCT and EMR diabetes data generated using a  tree ITR forest with IPWE (black) and AIPWE (gray). ITR: individual-
ized treatment rule; RCT: randomized controlled trial; EMR: electronicmedical records; IPWE: inverse probability weighted estimator; AIPWE: augmented inverse probability
weighted estimator; DURABLE: Assessing the DURAbility of basal vs. lispro mix / insulin efficacy trial.

index, and insurance status. The lab result is a measurement of
a patient’s average blood glucose level during the past 3 months
and Charlson score is a composite score of patient comorbidi-
ties. The pruning procedure selected a tree with two terminal
nodes for the IPWE and AIPWE (Figure 4). Index lab result
was selected as the splitting variable with patients having a lab
result lower than 12 being assigned to GLP-1 and basal insulin
otherwise. Treatment assignments are shown in Table 5. Vari-
able importance measures returned the Charlson score as the
most important predictor of treatment assignment for both the

IPWE and AIPWE (Figure 5). All 10 of the patients held out of
the training sample were recommended strongly to be on treat-
ment. All 10 patients had a lab score less than 12 leading to the
consistent recommendation of treatment among these patients.
These results are helpful for us to better decide on how to ini-
tiate first line injectable anti-diabetic treatments when patients
have failed on multiple oral medications. Our results indicate
that for patients with higher average blood glucose, it is better
to start with insulin treatment. For patients with lower average
blood glucose, GLP-1 treatment is recommended. The average

Table . Probabilities of  held-out subjects being assigned to treatment group using a  tree ITR forest for DURABLE and EMR studies.

DURABLE RCT EMR

Pr1

Subject Pr1 ITR Tree2 Original3 Subject IPWE(AIPWE) ITR Tree2 Original3

 .     ()  
 .     (.)  
 .    . (.)  
 .     ()  
 .    . (.)  
 .    . (.)  
 .     ()  
 .     ()  
 .    . (.)  
 .    . (.)  

Models were trained using all but  held-out subjects. Shown are: 1 “Pr”: % trees voting for treatment over  trees in ITR forest. 2 “ITR Tree”: Treatment assignment from
ITR tree. 3 “Original”: original treatment assignments. IPWE estimates are shown with AIPWE estimates in parentheses for EMR. IPWE and APIWE in “ITR Tree”procedure
generate the sameassignments in EMRstudy (th column). ForDURABLE trial, treatment assignmentof “”indicates LM/ and “”indicatesGlargine. For EMR, treatment
assignment of “” indicates GLP- and “” indicates basal insulin.

ITR: individualized treatment rule; RCT: randomized controlled trial; EMR: electronic medical records; IPWE: inverse probability weighted estimator; AIPWE: augmented
inverse probability weighted estimator; DURABLE: Assessing the DURAbility of basal vs. lispromix / insulin efficacy trial; LM/: mix of % insulin lispro protamine
suspension and % lispro (LM/); GLP-: glucagon-like peptide- receptor agonists.
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Table . Computational time, in seconds, for each ITR method.

ITR Tree

ITR Forest IPWE AIPWE MIDAs IT Tree OWL

Time (seconds) . . . . . ∗

EMR data from section were used to train eachmodel on a desktop computer with
an Intel(R) Core i- CPU @ . GHz with  GB of RAM. EMR data consisted
of n = 5177 observations with  covariates ( continuous,  categorical). ∗OWL
model failed to converge after  sec.

ITR: individualized treatment rule; IPWE: inverse probability weighted estimator;
AIPWE: augmented inverse probability weighted estimator; MIDAs: minimum
impurity decision assignments; IT tree: interaction tree; OWL: outcome weighted
learning.

blood glucose also indicates the disease progression. Patients
with lower blood glucose often have better beta cell function
where GLP-1 treatments work better.

The computational cost of each method is shown in Table 6
using these EMR data. Each tree using the value function as the
reward is grown in less than 25 s. The IT tree runs in 1.6 s and
ITR forest in 38 s. OWL is the slowest among all.

5. Discussion

Individualized treatment rules are increasingly being used
by clinical and intervention scientists to account for patient
response heterogeneity (Ludwig and Weinstein 2005; Hayes
et al. 2007). These treatment rules belong to the new era of
precision medicine (Piquette-Miller and Grant 2007; Ham-
burg and Collins 2010). Regression-based methods model the
response as a function of patient characteristics and treat-
ment, selecting treatments that maximize the predicted mean
outcome (Qian and Murphy 2011). However, because such
methods indirectly infer the optimal treatment rule through a
regression model, they are subject to model misspecification.
Direct methods are an alternative to regression-based indirect
methods that depend on modeling the conditional mean first.
Zhao et al. (2012) demonstrated that optimal treatment rules
can be estimated within a weighted classification framework
and solved the problem using support vector machines (SVM)
via the hinge loss (Cortes and Vapnik 1995). However, without
an interpretable and transparent representation of the model
behind these approaches, clinical investigators may be hesitant
to use the estimated treatment rule to inform clinical practice
or future research. In this article, we attempted to directly
maximize clinical response to estimate optimal individualized
treatment rule using a recursive partitioning tree algorithm. The
recursive partitioning tree method is a non-parametric search
procedure, easy to interpret, and handles high dimensional
and large scale modern datasets (e.g., genomics and EMR)
seamlessly. We used a random forest ensemble predictor to
mitigate the inherent instability of a single tree, which may be a
weak standalone predictor.

When there are new biomarkers introduced to assist in treat-
ment selection, it is important to evaluate their value in improv-
ing population average outcomes. A variable highly differen-
tially associated with yi(1) and yi(0) may not necessarily be
important for improving ITRs. This is somewhat similar to the
phenomenon observed in the risk prediction literature: a vari-
able highly significant in regression modeling may not result in

large improvement in prediction. We then developed variable
importance measures based on ITR forests, providing a mea-
sure of the overall influence of a covariate in predicting treat-
ment outcome. When the dimension of new markers is large,
it would be crucial to employ the cross-validation to correct for
the overfitting bias as suggested byZhao et al. (2012). Procedures
for efficiently selecting the informative markers warrant further
research.

The decision rule from an ITR tree with only a few splits
can make discussion of treatment between patients and health
care providers transparent. Through simulation for both RCT
andobservational designs, we demonstrate the accuracy and sta-
bility of our algorithms. The ITR forest outperforms compara-
ble methods in maximizing value function in all the non-trivial
scenarios considered in this article, demonstrating the robust-
ness of the ITR forest. The application to RCT and observa-
tional studies further validate the utility of this method. In gen-
eral, a composition of the ITR tree, forest and variable impor-
tance measure will give clinicians useful tools in considering
treatment regimens.We recommend that samples be adequately
large, so that identification of subgroups, assuming they exist, is
feasible.

There are several extensions of our method that can be pur-
sued. Incorporatingmultiple and continuous treatments into the
ITR tree and forest method can be achieved by modifying our
splitting criteria. Sample sizes for most clinical trials are pow-
ered for the primary objectives of those studies, and often not
for precision medicine or subgroup identifications. Therefore,
synthesizing evidence from multiple studies could potentially
develop a more robust ITR. Finally, it is known that the greedy
search approach induces a bias in variable selection toward vari-
ables withmore distinct values (Doyle 1973). Our tree and forest
methods can be further calibrated by incorporation of previous
efforts to correct this bias (Loh 2002).

Supplementary Materials

Supplementary materials provide details of the algorithms in
section 2 and additional graphics from section 3.3. Code used
for these analyses is available as an R package at https://github.
com/kdoub5ha/ITR.Forest
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