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Statistical methods generating individualized treatment rules (ITRs) often focus
on maximizing expected benefit, but these rules may expose patients to excess
risk. For instance, aggressive treatment of type 2 diabetes (T2D) with insulin
therapies may result in an ITR which controls blood glucose levels but increases
rates of hypoglycemia, diminishing the appeal of the ITR. This work proposes
two methods to identify risk-controlled ITRs (rcITR), a class of ITR which
maximizes a benefit while controlling risk at a prespecified threshold. A novel
penalized recursive partitioning algorithm is developed which optimizes an
unconstrained, penalized value function. The final rule is a risk-controlled deci-
sion tree (rcDT) that is easily interpretable. A natural extension of the rcDT
model, risk controlled random forests (rcRF), is also proposed. Simulation stud-
ies demonstrate the robustness of rcRF modeling. Three variable importance
measures are proposed to further guide clinical decision-making. Both rcDT
and rcRF procedures can be applied to data from randomized controlled trials
or observational studies. An extensive simulation study interrogates the per-
formance of the proposed methods. A data analysis of the DURABLE diabetes
trial in which two therapeutics were compared is additionally presented. An
R package implements the proposed methods (https://github.com/kdoub5ha/
rcITR).
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1 INTRODUCTION

In precision medicine, treatment selection is carried out based on an individual’s particular set of characteristics. Optimiz-
ing clinical benefit, or treatment efficacy, is often the primary objective of a treatment recommendation, but secondary
complications and risks should also be considered. Numerous statistical methods propose constructing individualized
treatment rules (ITRs) to optimize efficacy,1-9 including our previous work.10 ITRs that optimize treatment efficacy with
respect to several outcomes are a natural extension. For instance, Lizotte et al11 proposed a reward function that scans
across all linear combinations of trade-offs between the outcomes under consideration. Examining trade-offs between
outcomes is commonly investigated in developing optimal dosing strategies (eg, Thall et al12) where striking a balance
between response to treatment and toxicity is desired. Lipkovich et al2 proposed to balance efficacy and risk via specify-
ing a joint distribution of efficacy and risk scores, and used a splitting criteria based on an additive model that maximized
the weighted group effects for efficacy and risk. Their method, however, assumed training data were from a randomized
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trial. Laber et al13 avoided explicit trade-offs in ITR specification by returning a set of treatment recommendations
demonstrating significant differential benefit in all outcomes.

Alternatively, one could construct treatment rules that maximize an expected clinical benefit while controlling
expected risk at a given threshold. For instance, Wang et al14 estimated the marginal mean efficacy and risk scores under
a value-based framework (Qian and Murphy5). They provided two solutions to this constrained optimization problem,
model-based benefit-risk learning (BR-M) and benefit-risk O-learning (BR-O). BR-M determines optimal ITR through
estimating treatment contrasts for efficacy and risk scores. Treatment contrasts were modeled using a linear function of
predictors, subjecting this approach to the potential for model misspecification leading to a suboptimal rule. BR-O is an
extension of the outcome weighted learning method.8 They utilized support vector machines (SVM) and kernel tricks
to solve optimal risk-controlled ITR. However, nonlinear kernels (eg, Gaussian) in BR-O introduce substantial compu-
tational cost in problems of modest dimensionality. Variable importance measures were proposed for BR-O as a rank
ordering of coefficient magnitude. For both BR-M and BR-O, interpreting the final rule is difficult. Note that the methods
proposed both here and by Wang et al14 conceptualize “riskε as an undesirable, measurable outcome that is potentially
correlated with treatment assignment and patient profile.

In this work, two nonparametric, risk-controlled ITR (rcITR) estimation procedures are proposed. Both methods uti-
lize decision trees15,16 to identify an ITR with maximized expected treatment efficacy while maintaining expected risk
within a clinically relevant threshold. This constrained problem was solved by formulating an objective function that
maximizes expected efficacy while penalizing rules with expected risk greater than a clinically relevant threshold. The
proposed approach avoids specifying trade-offs as was the case in Lizotte et al.11 Instead, prespecification of a clinically
relevant risk threshold is utilized in a constrained optimization-like framework to obtain a high efficacy rule that con-
trols expected risk at the specified threshold. The proposed objective function is closely related to that proposed by Wang
et al,14 but has the advantage of preferring rules with lower risk, given similar efficacy. This corresponds well to patient
preferences for treatment choices in the real world. Decision trees are employed to optimize the objective function. The
resulting model is called a risk-controlled decision tree (rcDT). Traditional decision trees are comprised of a series of local-
ized (ie, node-specific) models, and single tree models are highly variable. Accordingly, the rcDT model is extended to
risk-controlled random forests (rcRF). rcRF aggregates rcDT learners with notable advantages. First, unbiased risk esti-
mates can be obtained from the out-of-bag sample and leveraged in model selection. Second, rcRF is robust as it aggregates
several weaker rcDT learners. Third, rcRFs can return a hard rule (ie, treat or not) and a probability measure to assess
the strength of the treatment recommendation. Finally, rcRF naturally offers variable importance measures relevant to
ITRs. Both rcDT and rcRF can be applied to randomized controlled trial data as well as observational studies. Perfor-
mance of rcDT and rcRF procedures was assessed through extensive simulation studies. Data analysis was performed
using randomized controlled trial data from the DURABLE (DURAbility of Basal vs Lispro mix 75/25 insulin Efficacy)
trial.17

In summary, our contribution in this paper is: (1) development of two non-parametric rcITR estimation procedures
using decision trees (rcDT) and random forests (rcRF); (2) implementation of three variable importance measures for an
rcRF model; (3) extensive assessment of rcDT and rcRF methods via simulation studies; (4) demonstration of rcDT and
rcRF procedures by analysis of DURABLE trial data; (5) implementation of rcDT and rcRF methods in a publicly available
software package rcITR ( https://github.com/kdoub5ha/rcITR) using the statistical computing language R.18

2 STATISTICAL FRAMEWORK

Given a finite sample of n observations from a population of interest, the observed data are (yi, ri, xi, ai) for i = 1, 2, … ,n.
Values of yi, ri ∈ R correspond to patient efficacy and risk scores, xi ⊂ Rp is the p-dimensional vector of covariates,
and ai ∈ {0, 1} is the binary treatment indicator. Observed data is a realization from the underlying distribution  =
(Y,R,X,A). Without loss of generality, larger values of Y and smaller values of R are assumed to be desirable. Define the
propensity score pi = Pr(ai|xi) ∈ (0, 1), that is, the probability of receiving treatment ai given the covariates. For random-
ized controlled trials (RCTs) the value of pi is viewed as fixed (eg, assuming two treatments and a 1:1 allocation ratio, then
pi = 0.5). In observational studies, pi can be estimated using logistic regression.19,20 A treatment rule d maps the predictor
space to the treatment space, that is, d ∶ X → A such that d(xi) ∈ {0, 1}. Let Ed(Y) and Ed(R) correspond to the expected
efficacy and risk under rule d, respectively.

We aim to maximize the expected efficacy while controlling expected risk at a clinically relevant level.14 Specifically,
we seek to find do that solves

https://github.com/kdoub5ha/rcITR
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{
maxd Ed(Y)
subject to Ed(R) ≤ 𝜏,

(1)

where 𝜏 is a predefined clinically relevant bound for the expected risk. When Pr(ai|xi) is strictly positive, Ed(Y) and Ed(R)5

can be estimated as,

VY (d) = Ed(Y) =

( n∑
i=1

wi

)−1 ( n∑
i=1

wiyi

)
, (2)

VR(d) = Ed(R) =

( n∑
i=1

wi

)−1 ( n∑
i=1

wiri

)
, (3)

where wi = I(ai = d(xi))(P̂r(ai|xi))−1.
The current work aims to solve an optimization problem closely related to (1). Under a recursive partitioning frame-

work, a splitting criterion needs to be defined that increases the “purity” of the daughter nodes relative to the common
parent node. To that end, the constrained optimization problem (1) is translated to an unconstrained one,

L(d) = Ed[Y] − 𝜆
(
Ed[R] − 𝜏

)
, (4)

where 𝜆 > 0 penalizes rules with expected risk greater than 𝜏, that is, ER(d) > 𝜏. L(d) acts as a purity measure in the sense
that an increase in L(d) indicates either an increase in expected efficacy, a decrease in expected risk, or an increase in
risk accompanied by an acceptable increase in efficacy (see Appendix S1 for more details). The optimal partition of the
data is selected such that L(d) is maximized and 𝜆 is treated as a tuning parameter. Note that optimizing L(d) does not
necessarily imply that E[Y] is maximized when the risk constraint in system 1 is satisfied since rules with expected risk
less than 𝜏 contribute positive values to L(d). Optimizing L(d) prefers rules with lower expected risk (for fixed expected
efficacy), which is reflective of patient preferences. This differentiates the proposal from translating the optimization as a
difference of convex functions as was done by Wang et al.14 Given a set of values for 𝜆, the rule both maximizing L(d) and
satisfying E[R] < 𝜏 can be selected, thereby enforcing the constraint from 1. In summary, the proposed splitting criteria
balances expected efficacy and risk such that rules with smaller risk are preferred for fixed expected efficacy. See Section 3
for details about the optimization.

Apply the law of total expectation to Equation (4) and define 𝛿Y (X) = E[Y|X,A = 1] − E[Y|X,A = 0] and 𝛿R(X) =
E[R|X,A = 1] − E[R|X,A = 0]. Here 𝛿Y and 𝛿R correspond to the expected difference in efficacy and risk due to receiving
active treatment versus control. Equation (4) is then equivalent to,

L(d) = E{I(d(X) = 1) [𝛿Y (X) − 𝜆𝛿R(X)]} + Ȳ0 + R̄0 + 𝜆𝜏, (5)

where Ȳ0 and R̄0 are the mean efficacy and mean risk in the control group, respectively. From Equation (5) the optimal
rule satisfies L(d) = E{I(d(X) = 1) [𝛿Y (X) − 𝜆𝛿R(X)]} > 0. This can be interpreted as d(X) satisfying 𝛿Y (X)

𝛿R(X)
> 𝜆 among par-

ticipants assigned to treatment, that is, d(X) = 1. Note that this assumes 𝛿R(X) > 0. Thus, the ratio of expected benefit to
expected risk for those recommended to treatment must be “large enough,” which is captured by 𝜆.

Instead of modeling efficacy scores directly, residual efficacy scores are used as model inputs. The validity of this
follows from the fact that,

arg max
d

E[w ⋅ Y] = arg max
d

E[w ⋅ (Y − m(X))],

where m(X) is some function of X. Zhou et al9 demonstrated that using residuals from a regression of Y on X stabilizes
the variance of the expected efficacy estimator. Since efficacy is to be maximized and risk is to be constrained, analysis of
residuals is restricted to efficacy scores.14 The empirical estimate of the purity measure is,

L̂(d) =
∑n

i=1wi(yi − m̂(xi))∑n
i=1wi

− �̂�

(∑n
i=1wiri∑n
i=1wi

− 𝜏

)
, (6)



722 DOUBLEDAY et al.

where �̂� is the tuning parameter. For simplicity m̂(xi) were estimated from a linear regression of Y on X throughout the
rest of this work. Note that alternative models such as random forests can also be use to obtain m̂(xi).9,10

3 ESTIMATION OF RISK CONTROLLED ITRs

3.1 Risk-controlled decision trees

An rcDT model is constructed given values of 𝜆 and 𝜏. Recall that 𝜆 is a tuning parameter and 𝜏 is a fixed quantity
selected based on clinical relevance. First, an initial split is made using an exhaustive search of all possible cut points
across all candidate predictors. A class of candidate rules d(X) is constructed for continuous or ordinal covariates as
d(X) = I(Xj ≤ c) or d(X) = I(Xj > c)where c is a candidate cut point for covariate j (∀j ∈ {1 … p}). This partition is denoted
asΩ = Ω1 ⋃Ω2 whereΩ = {xi ∶ i = 1 … N},Ω1 = {xi ∶ xij ≤ c, i = 1 … N}, andΩ2 = {xi ∶ xij > c, i = 1 … N}. Further,
let Ω11 ∪ Ω12 = Ω1 represent a similar partition of Ω1. For instance, Ω11 = {xi ∶ xi ∈ Ω1

, xij′ ≤ c′, i = 1 … N} for splitting
covariate j′ and cut point c′. Through recursively splitting, the candidate rule do is selected which maximizes the purity
measure (Equation (6)). For j ∈ {1, … , p}, all possible candidate cuts c, and treatment assignments (d, d′) ∈ {(0, 1), (1, 0)}
for the two resulting subspaces, the initial and daughter node splits are estimated as

Initial Split of Ω

max
j,c,(d,d′)∈{(0,1),(1,0)}

(∑
i∈Ω1 ŵiyi∑

i∈Ω1 ŵi
+

∑
i∈Ω2 ŵ′

iyi∑
i∈Ω2 ŵ′

i

)

− 𝜆

[(∑
i∈Ω1 ŵiri∑
i∈Ω1 ŵi

+
∑

i∈Ω2 ŵ′
i ri∑

i∈Ω2 ŵ′
i

)
− 𝜏

]
,

Daughter Split of Ω1

max
j,c,(d,d′)∈{(0,1),(1,0)}

(∑
i∈Ω11 ŵiyi∑

i∈Ω11 ŵi
+

∑
i∈Ω12 ŵ′

iyi∑
i∈Ω12 ŵ′

i

)

− 𝜆

[(∑
i∈Ω11 ŵiri∑
i∈Ω11 ŵi

+
∑

i∈Ω12 ŵ′
i ri∑

i∈Ω12 ŵ′
i

)
− 𝜏

]

+
∑

i∈Ω2 ŵo
i yi∑

i∈Ω2 ŵo
i yi

− 𝜆

[(∑
i∈Ω2 ŵo

i ri∑
i∈Ω2 ŵo

i

)
− 𝜏

]
,

where ŵi =
I(ai=d(xi))

P̂r(ai|xi)
, ŵ′

i =
I(ai=d′(xi))

P̂r(ai|xi)
, and ŵo

i = I(ai=do(xi))
P̂r(ai|xi)

. In the daughter node purity measure d̂o is the estimated optimal
rule corresponding to the initial split of Ω. When considering a partition of daughter node Ω1, information from Ω2, the
other daughter node, is incorporated into the splitting criteria. This allows for risk to be properly controlled at the popu-
lation level throughout the entire construction of the tree. The following stopping criteria are employed: (1) no candidate
daughter split can be found to increase the purity of the tree, (2) parent nodes contain too few training observations,
and (3) treatment group sizes in parent nodes are not large enough. Each daughter node is selected for splitting in a ran-
dom order and splitting continues until a stopping criteria is reached. Note that stopping criterion (1) ensures that L(d)
functions as a proper purity measure (ie, the purity of the tree structure is guaranteed to increase after splitting a parent
node).

3.1.1 Pruning an rcDT for optimal tree selection

Optimal rcDT model selection consists of identifying risk penalty parameter 𝜆 and cost complexity (ie, tree size) param-
eter 𝛼. Out of a sequence of candidate values of 𝚲 = {𝜆s ∶ s = 1, 2, … , S}, select 𝜆 = 𝜆s and grow large tree Γs

0. Tree Γs
0

maximizes L(d) given in Equation (4) with 𝜆 = 𝜆s. Using a CART (Classification And Regression Tree) pruning proce-
dure, a sequence of cost-complexity parameter values based on the structure of tree Γs

0 is identified using the “weakest
link” criteria. Briefly, a sequence of subtrees Γs

M ≺ Γs
M−1 ≺ · · · ≺ Γs

1 ≺ Γs
0 is constructed where “≺” means “is subtree of.”
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Note that Γs
M is the root node and Γs

0 is the full tree. Each element Γs
m for fixed s and m = 1, 2, … ,M is constructed by

pruning off the branch from Γs
m−1 that results in the smallest reduction in value, that is, minimizes |L(Γs

m) − L(Γs
m−1)|.

The cost-complexity function for tree Γs
m is,

L𝛼(Γs
m) = L(Γs

m) − 𝛼 ⋅ |||Γ̃s
m
||| , (7)

where L(Γs
m) evaluates the purity measure in tree Γs

m. L(Γs
m) is obtained by evaluating Equation (6) for the decision

rule generated by tree Γs
m. Γ̃s

m is the set of terminal nodes of tree Γs
m and 𝛼 > 0 penalizes more complex mod-

els. A tree with larger L𝛼(Γs
m) is desirable. A unique sequence 𝛼0 < 𝛼1 · · · < 𝛼M corresponds to each subtree in the

optimally pruned sequence of subtrees. The optimal value of 𝛼 is selected via a k-fold cross-validation as proposed
previously.10

This procedure yields {Γs
∗ ∶ s = 1, 2, … , S}, a set of optimally pruned trees, one corresponding to each value in 𝚲.

The final tree Γ∗ is selected such that the cross-validated risk is less than 𝜏 and the reward is maximized. Defining a
parsimonious set of candidate values 𝝀 can considerably decrease the computational burden required. Values of 𝜆 are
roughly bounded by

0 < 𝜆 <
E(𝛿Y (X)) + Ȳ0 + R̄0

E(𝛿R(X)) − 𝜏
, (8)

where the right-hand side of the inequality is derived from Equation (5) and can easily be estimated from the training data.
In summary, rcDT model selection is completed in three main steps: (1) fit a large rcDT for each𝚲 = {𝜆s ∶ s = 1, 2, … , S},
(2) for each value of 𝜆s, select the optimally pruned subtreeΓs

∗ via cross-validation, and (3) from the set of optimally pruned
trees {Γs

∗ ∶ s = 1, 2, … , S}, obtain the final model Γ∗ that has the largest expected efficacy and maintains expected risk
at the 𝜏 level.

3.2 Risk-controlled random forest

An rcRF is constructed by aggregating several rcDT predictors via bootstrap sampling of the training data, typically called
“bagging”.21 Given n training samples indexed by i = 1, 2, … ,n, draw bootstrap sample of size n with replacement from
the training samples. An rcDT model, denotedΓb, is then constructed from bootstrap sample. At each split max(⌊p∕3⌋, 1)
covariates are selected as candidates for splitting.22 Repeating this procedure B times yields an rcRF comprised of a set of
rcDT predictors, denoted as  = {Γb ∶ b = 1, 2, … ,B}.

Tuning of the risk penalty parameter 𝜆 for an rcRF is accomplished via risk estimation in the out-of-bag sample. Let
b represent the bth bootstrap sample for b = 1, 2, … ,B and ∗

b represent the bth out-of-bag sample corresponding to
b, that is, the observations not included in the bth bootstrap sample. Let �̂�i(Γb) denote the predicted treatment for the
ith observation derived from Γb. The cumulative predicted probability of recommendation to active treatment for the ith

sample up to the rth tree for r ≤ B is recorded as,

P̂r∗i,r(â = 1) =
(∑r

b=1 I(i ∈ 
∗
b)
)−1

r∑
b=1

�̂�i(Γb) ⋅ I(i ∈ 
∗
b). (9)

The estimator P̂r∗i,r(â = 1) is an ensemble estimator that was cross-validated using the out-of-bag sample and did not
rely on the training observations. Cumulative out-of-bag prediction allows for an estimator of risk in the forest up to the
rth tree, namely V̂

â∗
i,r

R (d). Tuning of 𝜆 is carried out by first setting 𝜆 = 𝜆0 using an initial value 𝜆0. An rcRF (denoted as 0)
is constructed and the risk estimate, R0, obtained using Equation (3). If |R0 − 𝜏| < 𝜀 for some 𝜀 > 0 then keep 0 as the
final model. The value of 𝜀 is user defined. If |R0 − 𝜏| > 𝜀 and R0 < 𝜏, then set 𝜆1 = 𝛿 ⋅ 𝜆0 for some 0 < 𝛿 < 1. Otherwise,
set 𝜆1 = 𝛿 ⋅ 𝜆0 for some 𝛿 > 1. Fit a new rcRF model using 𝜆 = 𝜆1 and iterate until the out-of-bag risk is controlled at the
𝜏 level within the specified 𝜀 tolerance. To avoid using a grid search of candidate values of 𝛿, we obtain the updated value
of 𝜆s+1 based on 𝜆s and out-of-bag risk from the current iteration, Rs. For instance, let 𝛿 =

(
1 + Rs−𝜏

𝜏

)
. This factor inflates

𝜆s, that is, 𝜆s+1 > 𝜆s, if the current risk estimate is greater than 𝜏, and decreases values of 𝜆 if the current risk estimate is
less than 𝜏.
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The probability of recommendation to treatment given in (9) is noted as a “soft” decision. A “hard” decision could
be defined as â∗

i,r = I(P̂r∗i,r(â = 1) > 0.5). However, more stringent thresholds could be used, for example, â∗
i,r = I(P̂r∗i,r(â =

1) > 0.8) to be assigned to treatment.

3.2.1 rcRF variable importance

Variable importance measures are defined for an rcRF through a permutation scheme applied to the out-of-bag sample.
Suppose we have an rcRF consisting of B rcDT learners. For the bth rule, run out-of-bag sample ∗

b down tree Γb to obtain
L̂∗(�̂�(Γb)). Let jm correspond to a covariate used in the construction of tree Γb. Permute the values of jm in the out-of-bag
sample and run the permuted data down treeΓb to obtain the objective value for the permuted covariate L̂∗m(�̂�(Γb)). Repeat
this for all predictors included in tree Γb. Record the variable importance measure for predictor jm derived from tree Γb
as VIb

m = {L̂∗
�̂�(Γb)) − L̂∗m{�̂�(Γb))}+, where (x)+ = x if x > 0; (x)+ = 0 if x ≤ 0. This considers a predictor as “important” if

permuting its values results in the objective function decreasing in value and quantifies the importance as the magnitude
of the decrease. The total importance of predictor jm is then the sum of importances across the B trees. Importances are
scaled to sum to one for ease of interpretation. This is called the total importance measure (ie, combines efficacy and risk
information). Two additional importance measures can be similarly defined, one of each for efficacy and risk. Estimation
of importance for efficacy and risk scores is accomplished by replacing L̂ with V̂ Y (d) and −V̂ R(d), respectively. Given
an rcRF model, the importance of a predictor is characterized in three ways, (1) a total importance which measures the
relative contribution of the predictor to maximizing the purity measure, (2) an efficacy importance which measures the
relative contribution of the predictor to achieving greater efficacy, and (3) a risk importance which measures the relative
contribution of the predictor to maintaining risk at the 𝜏 level.

4 SIMULATION STUDIES

Performance of rcDT and rcRF methods was assessed via simulation study (Table 1). Each scheme has 10 predictors,
X1,X2, … ,X10, generated from a uniform distribution. Treatment indicator A ∈ {0, 1} was simulated to mimic an RCT
design with a 1:1 allocation ratio to two treatment arms, that is, Pr(A|X) = 0.5. Random noise for efficacy scores was
generated from a standard normal distribution. For risk scores, random noise was generated as N(𝜇 = 0, 𝜎2 = 0.52). In all
schemes, the optimal rule for a plausible value of 𝜏 is defined by X1 and X2 detailed below. Efficacy and risk scores were
based on formulas presented in Table 1. Schemes A to C have risk controlled ITR defined by a rectangle. Schemes D and
E appeared in Wang et al14 and have a risk controlled ITR favoring linear and quadratic boundaries, respectively.

Scheme A has optimal treatment regions defined by the rectangle X1 ≤ 0.6 and X2 ≤ h. The value of h depends on the
desired risk constraint 𝜏. If risk constraint is ignored the optimal rule recommends observations with X1 ≤ 0.6 to active
treatment and all others to control, yielding efficacy score of 3.50 and a risk score of 3.20. For observations with X1 ≤ 0.6,
the expected benefit from receiving active treatment vs control decreases as X2 increases. For the entire population, larger
values of X2 increase expected risk from receiving treatment vs control. If no modeling was performed and all patients
were assigned to control, that is, the least risky rule, the expected risk is 1.90. Hence, risk constraints were set to be 𝜏 =
2.20, 2.50, 2.80. The optimal ITRs are defined by the rectangles X1 ≤ 0.6 and X2 ≤ h for h = 0.43, 0.65, 0.80, respectively.
This set of optimal ITRs recommends 27%, 39%, and 49% of observations to active treatment.

Scheme B has an optimal treatment region defined by the rectangle X1 ≤ 0.7 and X2 ≤ h. The value of h depends on
the desired risk constraint 𝜏. The unconstrained ITR recommends observations with X1 ≤ 0.7 ∩ X2 ≤ 0.7 to treatment and
control otherwise, with an efficacy score of 3.97 and risk score of 3.17. A constant efficacy reward of +2 is given to treated
observations with X1 < 0.7 and X2 < 0.7 and also to control observations with X1 > 0.7 or X2 > 0.7. The risk function
for Scheme B is identical to Scheme A. Assigning all observations to control has an expected risk of 2.40. Hence, risk
constraints of 𝜏 = 2.50, 2.75 and 3.00 are considered. The accompanying ITRs are defined by the rectangle X1 ≤ 0.7 and
X2 ≤ h for h = 0.20, 0.45, 0.60. These rules send 15%, 32%, and 42% of observations to active treatment. Simulation schemes
A and B are similar in that the risk score generating functions both depend on X2 in the same way (ie, (2X2 − 0.1)(2A − 1)).
In scheme A, the benefit received from a treatment / subgroup match (ie, [A = 1 and in S] OR [A = 0 and not in S])
decreases as X2 increases. In scheme B, the same treatment / subgroup match always yields a constant benefit of 3 units.
These two schemes were intended to assess performance under two “tree-favorable” scenarios where efficacy scales with
one of the covariates vs a constant “on/off” efficacy benefit.
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T A B L E 1 Simulation schemes

Scheme Model Subgroup S optimally assigned to treatment if 𝝉 = 𝝉∗

A Y = 3 − 2X3 + X4 𝜏∗ = +∞ → S = {X1 ≤ 0.6}

+(2 − 2X2)(I(x ∈ S) − I(x ∉ S))(2A − 1) + 𝜀Y 𝜏∗ = 2.80 → S = {X1 ≤ 0.6 ∩ X2 ≤ 0.80}

R = 3 + X3 − X4 + (2X2 + 0.1)(2A − 1) + 𝜀R 𝜏∗ = 2.20 → S = {X1 ≤ 0.6 ∩ X2 ≤ 0.43}

B Y = 1 − X3 + X4 + 3I(x ∈ S)I(A = 1) 𝜏∗ = +∞ → S = {X1 ≤ 0.7 ∩ X2 ≤ 0.7}

+3I(x ∉ S)I(A = 0) + 𝜀Y 𝜏∗ = 3.00 → S = {X1 ≤ 0.7 ∩ X2 ≤ 0.6}

R = 2 + 2X3 + X4 + (2X2 + 0.1)(2A − 1) + 𝜀R 𝜏∗ = 2.50 → S = {X1 ≤ 0.7 ∩ X2 ≤ 0.2}

C Y = 3 − 2X3 + X4 + 2(1 − max(X1,X2))I(x ∈ S)(2A − 1) 𝜏∗ = +∞ → S = {X1 ≤ 0.7 ∩ X2 ≤ 0.7}

−I(x ∉ S)(2A − 1) + 𝜀Y 𝜏∗ = 2.20 → S = {X1 ≤ 0.65 ∩ X2 ≤ 0.65}

R = 2 + X3 + (max(X1,X2))(2A − 1) + 𝜀R 𝜏∗ = 1.90 → S = {X1 ≤ 0.44 ∩ X2 ≤ 0.44}

D Y = 1 − 2X1 + X2 − X3 + 2(1 − X1 − X2)(2A − 1) + 𝜀Y 𝜏∗ = +∞ → S = {X1 + X2 ≤ 1}

R = 2 + X1 + (1 + X1 − X2)(2A − 1) + 𝜀R 𝜏∗ = 2.25 → S = {1.2X1 + X2 ≤ 1}

𝜏∗ = 1.75 → S = {3X1 + X2 ≤ 1}

E Y = 1 − 2X1 + X2 − X3 + 8(1 − X2
1 − X2

2)(2A − 1) + 𝜀Y 𝜏∗ = +∞ → S = {X2
1 + X2

2 ≤ 1}

R = 2 + X1 + (X1 + X2 − 0.3)(2A − 1) + 𝜀R 𝜏∗ = 2.20 → S ≈ {X1.5
1 + X1.5

2 ≤ 0.861.5}

𝜏∗ = 2.00 → S ≈ {X1.3
1 + X1.3

2 ≤ 0.761.3}

Note: I(⋅) is an indicator function that evaluates to 1 if “⋅” is true and 0 otherwise.

Scheme C has an optimal treatment region defined as the rectangle X1 ≤ h and X2 ≤ h. The value of h depends on
the risk constraint 𝜏. The unconstrained optimal rule sends observations with X1 ≤ 0.7 ∩ X2 ≤ 0.7 to treatment and all
others to control, yielding an efficacy score of 3.52 and a risk score of 2.29. Observations with larger values of either X1
or X2 are at greater risk on treatment. Observations with larger values of either X1 or X2 receiving treatment are also
expected to have smaller efficacy scores if X1 ≤ 0.7 and X2 ≤ 0.7. Observations with X1 > 0.7 or X2 > 0.7 receiving control
receive an expected benefit of +1. Assigning all observations to control carries an expected risk of 1.75. Risk constraints
of 𝜏 = 1.90, 2.05, 2.20 are considered with optimal treatment regions defined by rectangles X1 ≤ h and X2 ≤ h for h =
0.44, 0.57, 0.65, respectively. These rules recommend 20%, 33%, and 43% of observations to treatment.

Scheme D has an optimal treatment region defined as a linear combination of X1 and X2. The slope of the line is
dependent on the risk constraint level 𝜏. The unconstrained rule recommends treatment if X1 + X2 ≤ 1 and control other-
wise, carrying an efficacy score of 0.670 with a risk score of 2.520. Assigning all observations to control lowers the expected
risk to 1.50. Risk constraints of 𝜏 = 1.75, 2.00, 2.25 were considered. Scheme E has an optimal treatment region defined
on an ellipse for efficacy scores and a linear function in the risk scores. The unconstrained rule sends observations with
X2

1 + X2
2 ≤ 1 to treatment providing an efficacy score of 3.62 and a risk score of 2.67. Recommending control to all patients

lowers risk to 1.80. Risk constraints of 𝜏 = 2, 2.1, 2.2 were considered.
Figure 1 presents an X-ray plot of the optimal treatment regimes under the risk constraints 𝜏. Regions colored black

indicate optimal assignment to control. Regions colored gray indicate an optimal recommendation of treatment at a par-
ticular risk threshold. As the risk threshold is relaxed, the shade of gray darkens to black, and a greater proportion of
patients are recommended to active treatment. For instance, in simulation scheme A, risk constraints of 𝜏 = 2.20, 2.50,
and 2.80 correspond to light, medium, and dark gray coloring, respectively.

Risk-controlled ITRs for all simulation studies were estimated using rcDT and rcRF methods along with comparator
methods, BR-M and BR-O (Wang et al14). Briefly, BR-M fits linear models to efficacy and risk outcomes using first-order
interactions between predictors and binary treatment indicator. Contrasts for efficacy and risk outcomes derived from
the fitted models are then used to explicitly derive the optimal treatment rule. BR-O is a machine learning algorithm
that translates the constrained optimization into an unconstrained O-learning problem with enforcement of risk control.
Readers are directed to Wang et al14 for further details on BR-M and BR-O model fitting.

Estimates of efficacy and risk along with treatment assignment accuracy were calculated and reported for each sim-
ulation from a 20 000 observation validation set. A total of 100 replicates for each simulation study were used. For each
simulation setting training sample sizes of n = 500 and 1000 were considered. For rcDT model, tuning parameters 𝜆 and 𝛼
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F I G U R E 1 Optimal treatment assignment at different risk threshold levels for 20 000 validation observations. Shaded regions in each
plot correspond to optimal treatment assignment under a given level of risk control (gray scale: active treatment; black: control)

were selected using 5-fold cross-validation. For rcRF model fitting, 𝜆 was selected using out-of-bag risk estimates. Each
rcRF model consisted of 500 rcDT predictors, and variable importance measure were calculated for each rcRF model.
Residuals for efficacy scores were estimated using fitted values from a linear model that regressed efficacy scores (Y) on
the 10 covariates (X). Efficacy and risk summaries are presented as mean (SD) and median (median absolute deviation).
Accuracy was calculated as proportion of the 20 000 validation observations recommended to the optimal treatment.
Mean and median accuracy summaries were similar and median was selected for presentation. The final two columns
of Tables 2 and 3 provide the percent of the 100 simulation replicates with mean validation set risk scores falling below
the specified threshold (𝜏) or below a 5% increase of 𝜏. Tables 2 and 3 summarize efficacy, risk, and accuracy results from
simulation studies A and D. Results from simulation studies B, C, and E are provided in Appendix S1 (Tables S1, S2, and
S3). BR-M models were fit using the procedure specified in Wang et al.14

In simulation scheme A, all four procedures control risk at the specified value of 𝜏. Consider 𝜏 = 2.50 and n = 1000
from simulation scheme A. Mean risk scores from rcDT, rcRF, BR-M, and BR-O were 2.491 (SD = 0.099), 2.465 (SD =
0.128), 2.499 (SD = 0.035), and 2.462 (SD = 0.109), respectively. This indicates that risk is controlled on average at the
𝜏 = 2.50 level. Tree-based modeling identified rules with greater efficacy scores on average than BR-M or BR-O. Mean
efficacy scores for rcDT, rcRF, BR-M, and BR-O methods were 3.350 (SD = 0.060), 3.329 (SD = 0.117), 3.203 (SD = 0.025),
2.831 (SD = 0.106), respectively. Note that for 𝜏 = 2.50 the optimal rule has an efficacy score of 3.38. Median accuracies
for rcDT, rcRF, BR-M, and BR-O were 95.2%, 95.8%, 83.4%, and 71.0%, respectively. In simulation scheme A, both BR-M
and BR-O tend to propose rules that control risk, but fail to optimize efficacy.

Simulation scheme D has an optimal treatment assignment regime defined by a linear combination of X1 and X2.
Consider 𝜏 = 1.75 with n = 1000 training observations. All three methods control risk at the specified level. Validation
set mean risk estimates for rcDT, rcRF, BR-M, and BR-O were 1.751 (SD = 0.053), 1.746 (SD = 0.038), 1.751 (SD = 0.026),
and 1.711 (SD = 0.063), respectively. A less conservative risk constraint of 𝜏 = 2.25 results in mean risk estimates for rcDT,
rcRF, BR-M, and BR-O of 2.228 (SD = 0.083), 2.237 (SD = 0.053), 2.256 (SD = 0.037), and 2.135 (SD = 0.098), respectively.
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T A B L E 2 Simulation results for scheme A

Opt Mean Mean Median Median % Risk % Risk
Risk (𝝉) Efficacy n Method Accuracy Risk Efficacy Risk Efficacy < 𝝉 < 1.05 ⋅ 𝝉

2.20 3.12 500 rcDT 0.863 (0.078) 2.173 (0.159) 2.900 (0.267) 2.149 (0.199) 2.853 (0.357) 57% 76%

rcRF 0.904 (0.032) 2.174 (0.088) 3.002 (0.128) 2.165 (0.090) 3.002 (0.128) 64% 93%

BRM 0.876 (0.013) 2.200 (0.053) 2.988 (0.050) 2.197 (0.054) 2.986 (0.053) 51% 97%

BRO 0.740 (0.015) 2.190 (0.125) 2.590 (0.131) 2.180 (0.139) 2.577 (0.120) 58% 85%

1000 rcDT 0.888 (0.076) 2.199 (0.160) 2.968 (0.267) 2.238 (0.166) 3.061 (0.243) 41% 67%

rcRF 0.916 (0.021) 2.191 (0.077) 3.054 (0.107) 2.204 (0.074) 3.074 (0.101) 48% 96%

BRM 0.880 (0.012) 2.196 (0.041) 2.997 (0.036) 2.199 (0.038) 2.997 (0.036) 55% 99%

BRO 0.741 (0.012) 2.148 (0.090) 2.547 (0.095) 2.147 (0.091) 2.551 (0.091) 71% 97%

2.50 3.38 500 rcDT 0.930 (0.035) 2.491 (0.144) 3.325 (0.085) 2.485 (0.143) 3.332 (0.089) 51% 83%

rcRF 0.932 (0.028) 2.465 (0.109) 3.310 (0.085) 2.471 (0.084) 3.330 (0.060) 61% 95%

BRM 0.831 (0.013) 2.499 (0.054) 3.191 (0.034) 2.497 (0.061) 3.193 (0.036) 54% 100%

BRO 0.719 (0.027) 2.462 (0.152) 2.862 (0.148) 2.449 (0.154) 2.866 (0.147) 59% 86%

1000 rcDT 0.952 (0.036) 2.491 (0.099) 3.350 (0.060) 2.502 (0.089) 3.363 (0.053) 48% 92%

rcRF 0.958 (0.021) 2.461 (0.128) 3.329 (0.117) 2.488 (0.080) 3.359 (0.042) 55% 96%

BRM 0.834 (0.012) 2.496 (0.035) 3.203 (0.025) 2.494 (0.032) 3.207 (0.023) 60% 100%

BRO 0.710 (0.018) 2.430 (0.109) 2.831 (0.106) 2.415 (0.105) 2.829 (0.091) 74% 97%

2.80 3.46 500 rcDT 0.925 (0.031) 2.770 (0.165) 3.407 (0.059) 2.768 (0.182) 3.426 (0.053) 53% 82%

rcRF 0.929 (0.021) 2.746 (0.133) 3.395 (0.070) 2.754 (0.104) 3.401 (0.036) 71% 94%

BRM 0.838 (0.011) 2.796 (0.057) 3.289 (0.029) 2.794 (0.066) 3.287 (0.028) 54% 100%

BRO 0.780 (0.048) 2.746 (0.171) 3.115 (0.147) 2.756 (0.172) 3.135 (0.154) 60% 87%

1000 rcDT 0.946 (0.029) 2.797 (0.107) 3.438 (0.033) 2.799 (0.113) 3.443 (0.030) 51% 91%

rcRF 0.953 (0.019) 2.772 (0.091) 3.431 (0.026) 2.768 (0.092) 3.432 (0.030) 64% 96%

BRM 0.842 (0.010) 2.795 (0.043) 3.305 (0.022) 2.793 (0.044) 3.303 (0.024) 55% 100%

BRO 0.771 (0.030) 2.736 (0.107) 3.104 (0.103) 2.730 (0.114) 3.110 (0.105) 72% 99%

Abbreviations: “% Risk < 𝜏”, Percent of simulation replicates with validation set risk estimate less than 𝜏; “% Risk < 1.05 ⋅ 𝜏”, Percent of simulation replicates
with validation set risk estimate less than 1.05 ⋅ 𝜏; “Accuracy”, median (median absolute deviation) proportion receiving optimal treatment assignment; “Mean
Efficacy” and “Mean Risk”, mean (sd) summaries for predicted efficacy and risk scores; ‘Median Efficacy’ and “Median Risk”, median (median absolute
deviation) summaries for predicted efficacy and risk scores; “n”, Training sample size; “Opt Efficacy”, maximum achievable efficacy under the optimal
treatment assignment; “Risk”, Risk threshold.

Despite the true optimal treatment assignments aligning to a linear rule, both rcDT and rcRF are competitive with BR-M
and BR-O in maximizing efficacy. When 𝜏 = 1.75, mean validation set efficacy estimates from rcDT, rcRF, BR-M, and
BR-O models were 0.327 (SD = 0.049), 0.336 (SD = 0.040), 0.356 (SD = 0.025), and 0.278 (SD = 0.068). When 𝜏 = 2.25,
mean validation set efficacy estimates for rcDT, rcRF, BR-M, and BR-O models were 0.558 (SD = 0.028), 0.597 (SD =
0.016), 0.618 (SD= 0.010), and 0.572 (SD= 0.042), respectively. When 𝜏 is highly conservative, 𝜏 = 1.75, median accuracies
for rcDT, rcRF, BR-M, and BR-O were 92.4%, 94.1%, 96.8%, and 90.6%, respectively. Note that rcDT can approximate
the optimal treatment region for simulation scheme D with 𝜏 = 1.75 reasonably well as a narrow rectangle. When 𝜏 is
less conservative, for example, 𝜏 = 2.25, median accuracy for rcDT dropped to 86.4% while rcRF was 92.1%, (BR-M and
BR-O were 96.2% and 90.7%, respectively). This highlights the robustness of rcRF when the underlying optimal treatment
assignments may not conform to a rectangular region of the predictor space. Readers can peruse results from simulation
scheme E in Appendix S1 as another demonstration for the robustness of rcRF method.

Approximately 40% to 60% of simulation replicates across all methods for all simulation studies controlled risk at
the 𝜏 level in the validation set. Risk is controlled by rcRF, BR-M, and BR-O in the validation set in greater than 90% of
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T A B L E 3 Simulation results for scheme D

Opt Mean Mean Median Median % Risk % Risk
Risk (𝝉) efficacy n Method Accuracy Risk Efficacy Risk Efficacy < 𝝉 < 1.05 ⋅ 𝝉

1.75 0.36 500 rcDT 0.910 (0.024) 1.753 (0.071) 0.316 (0.066) 1.754 (0.062) 0.319 (0.068) 48% 90%

rcRF 0.935 (0.015) 1.753 (0.053) 0.338 (0.050) 1.747 (0.051) 0.335 (0.050) 53% 92%

BRM 0.956 (0.008) 1.755 (0.042) 0.354 (0.040) 1.754 (0.042) 0.354 (0.039) 46% 95%

BRO 0.901 (0.011) 1.726 (0.095) 0.290 (0.095) 1.726 (0.088) 0.294 (0.091) 62% 86%

1000 rcDT 0.924 (0.015) 1.751 (0.053) 0.327 (0.049) 1.750 (0.059) 0.332 (0.057) 51% 94%

rcRF 0.941 (0.014) 1.746 (0.038) 0.336 (0.040) 1.748 (0.038) 0.341 (0.037) 53% 99%

BRM 0.968 (0.006) 1.751 (0.026) 0.356 (0.025) 1.750 (0.025) 0.355 (0.029) 51% 100%

BRO 0.906 (0.009) 1.711 (0.063) 0.278 (0.068) 1.715 (0.056) 0.285 (0.057) 75% 98%

2.00 0.54 500 rcDT 0.873 (0.030) 2.009 (0.103) 0.477 (0.057) 2.000 (0.094) 0.481 (0.050) 49% 82%

rcRF 0.922 (0.018) 1.988 (0.060) 0.514 (0.033) 1.991 (0.070) 0.521 (0.035) 58% 98%

BRM 0.953 (0.009) 2.009 (0.038) 0.542 (0.020) 2.009 (0.034) 0.542 (0.019) 39% 98%

BRO 0.897 (0.021) 1.949 (0.117) 0.485 (0.081) 1.940 (0.122) 0.498 (0.078) 66% 91%

1000 rcDT 0.883 (0.016) 1.996 (0.071) 0.485 (0.039) 1.996 (0.072) 0.490 (0.038) 57% 90%

rcRF 0.928 (0.015) 1.989 (0.052) 0.517 (0.038) 1.989 (0.034) 0.523 (0.022) 62% 100%

BRM 0.965 (0.007) 2.004 (0.033) 0.544 (0.017) 2.004 (0.034) 0.543 (0.016) 40% 99%

BRO 0.899 (0.022) 1.924 (0.096) 0.473 (0.068) 1.923 (0.109) 0.481 (0.061) 78% 94%

2.25 0.62 500 rcDT 0.848 (0.023) 2.208 (0.118) 0.535 (0.040) 2.209 (0.111) 0.540 (0.040) 61% 89%

rcRF 0.908 (0.021) 2.215 (0.082) 0.584 (0.027) 2.221 (0.069) 0.591 (0.021) 67% 96%

BRM 0.948 (0.012) 2.258 (0.044) 0.615 (0.012) 2.256 (0.044) 0.616 (0.011) 42% 98%

BRO 0.894 (0.033) 2.124 (0.149) 0.558 (0.070) 2.124 (0.130) 0.569 (0.052) 81% 95%

1000 rcDT 0.864 (0.026) 2.228 (0.083) 0.558 (0.028) 2.243 (0.081) 0.560 (0.031) 58% 95%

rcRF 0.921 (0.013) 2.237 (0.053) 0.597 (0.016) 2.240 (0.050) 0.599 (0.016) 57% 99%

BRM 0.962 (0.009) 2.256 (0.037) 0.618 (0.010) 2.255 (0.040) 0.618 (0.010) 46% 100%

BRO 0.907 (0.036) 2.135 (0.098) 0.572 (0.042) 2.130 (0.099) 0.575 (0.043) 87% 99%

Abbreviations: “% Risk < 𝜏”, Percent of simulation replicates with validation set risk estimate less than 𝜏; “% Risk < 1.05 ⋅ 𝜏”, Percent of simulation replicates
with validation set risk estimate less than 1.05 ⋅ 𝜏“Accuracy”, median (median absolute deviation) proportion receiving optimal treatment assignment; “Mean
Efficacy” and “Mean Risk”, mean (SD) summaries for predicted efficacy and risk scores; ‘Median Efficacy’ and “Median Risk”, median (median absolute
deviation) summaries for predicted efficacy and risk scores; “n”, Training sample size; “Opt Efficacy”, maximum achievable efficacy under the optimal
treatment assignment; “Risk”, Risk threshold.

simulation replicates at the 1.05 ⋅ 𝜏 level. For instance, in simulation scheme A with 𝜏 = 2.20 and training sample of size
n = 500, 64% of rcRF simulation replicates produced validation set risk estimates less than 𝜏 = 2.20 and 93% of simulation
replicates produced validation set risk estimates less than 1.05 ⋅ 𝜏 = 2.31. Due to the variability inherent in tree models,
rcDT modeling controlled risk at the 𝜏 and 5% excess of 𝜏 levels in 57% and 76% of simulation replicates, respectively,
under the same simulation settings. Risk estimates under the stated settings for rcDT simulation replicates ranged from
1.92 to 2.51 and risk estimates from rcRF ranged from 2.00 to 2.44.

While asymptotic properties of the proposed methods cannot be derived, simulation studies reveal that as training
sample size increases (1) accuracy of the rule increases, (2) efficacy increases, (3) risk is controlled closer to the 𝜏 level,
and (4) the rule becomes more stable (ie, precision estimates decrease). A summary of the computational cost associated
with model fitting for simulation schemes A and D is included in Appendix S1 (Table S8). Briefly, consider simulation
scheme A. When the training sample size is n = 500, rcDT model fitting was typically completed in under 1 minute, rcRF
in slightly more than 5 minutes, BR-M in under 1/10 of a second, and BR-O in 3 to 5 minutes. Times were fairly consistent
across different values of 𝜏. When the training sample size is n = 1000, model fitting was typically completed in under
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four minutes for rcDT, 7 to 12 minutes for rcRF (faster times for small 𝜏 values), under 1/10 of a second for BR-M, and 31
to 36 minutes for BR-O (shorter times for larger 𝜏 values). Note that BR-M is expected to be much faster than the other
methods since only simple linear model fits are required for estimating the treatment rule. As noted, the computational
cost of BR-O grows rapidly as dimensionality of the training data increases even modestly.14 The rcRF learner scales better
than BR-O as dimensionality increases. In addition, the computational cost of rcRF can be controlled by specifying the
number of decision trees and the depth of the individual rcDT learners. Variable importance measure summaries for each
simulation scheme are presented in Appendix S1.

To demonstrate use of rcDT and rcRF modeling when original treatment assignments were not randomized, model
fitting was performed using the efficacy and risk models outlined in simulation scheme D, but with original treatment
assignments generated from an observational study design as opposed to an RCT design (see Table S4 in Appendix S1).
This introduces additional variability to the modeling process as propensity scores are drawn from a generative model
and then used to generate treatment assignments. Under the observational design, rcDT and rcRF models have mean risk
scores above 𝜏 for smaller values of 𝜏. For 𝜏 = 1.75 and 2.00, risk is typically controlled. Under conservative risk thresh-
olds, higher risk is accompanied by higher efficacy on average (eg, around +25%). The proportion receiving the optimal
treatment assignment decreases slightly under the observational design, typically dropping by a couple of percentage
points.

5 ANALYSIS: DURABLE TRIAL

rcDT, rcRF, and BR-M methods were applied to the DURABLE trial.17,23 Briefly, the trial investigated the use of twice-daily
insulin lispro mix 75/25 (LMx75/25) vs once-daily basal insulin glargine (Glargine) in patients with type 2 diabetes. There
were 18 covariates available at baseline including body mass index, height, weight, adiponectin, systolic and diastolic
blood pressure, duration of diabetes, heart rate, HbA1c, fasting insulin, fasting glucose, and a 7-point self monitored
blood sugar measure taken throughout the day. Of the 2187 patients enrolled, 1498 were retained for analysis. A more
detailed patient flow diagram can be found in Appendix S1 (Figure S6). Patients were excluded from the analysis set if
they had incomplete follow up data or extreme values in either the covariates or outcomes. The primary efficacy out-
come was change in HbA1c from baseline to 24-week follow-up. The risk outcome was daily rate of hypoglycemia. Data
from this study are not publicly available. Table 4 presents baseline covariate summaries for the DURABLE analysis
dataset. All predictor values are well balanced at baseline between the two treatment groups. Mean decrease in HbA1c
from baseline to end of follow-up was 1.79 (SD = 1.44) and 1.87 (SD = 1.45) for Glargine and LMx75/25 groups, respec-
tively. Mean daily hypoglycemia event rates were 0.057 (SD = 0.069) and 0.074 (SD = 0.081) for Glargine and LMx75/25
groups, respectively. This provides some evidence that the more aggressive treatment, LMx75/25, yielded greater control
of HbA1c over the 24-week follow-up, accompanied by higher rates of hypoglycemia. Three risk constraints were con-
sidered (𝜏 = 0.063, 0.065, 0.067) spanning the range of risk values obtained from recommending all patients receive more
conservative (Glargine) to the more aggressive (LMx75/25) treatment. These risk control levels were selected to mirror
analyses performed by Wang et al.14

Modeling performance was assessed using a 1:1 random split of the available observations. A model was trained using
half of the data and validated using the other half. This was replicated 100 times for each modeling procedure. Each rcDT
model was trained using 5-fold cross validation to select tuning parameters. Each rcRF model was trained using a forest
of 500 trees with the tuning parameter selected using the out-of-bag estimate of risk. BR-M models were fit using the
procedure outlined in Wang et al.14 BR-O was not included here due to the high computational cost and the relatively good
performance of BR-M in the simulation studies. Estimates of the efficacy and risk from training and validation sets was
reported for each model fitting procedure. Results are summarized in Table 5. Risk is controlled close to the 𝜏 level in the
validation sets for all three procedures across all risk constraints. BR-M and rcDT tended to produce a more conservative
rule, especially as the risk constraint is relaxed, yielding more control over risk at the expense of loss in efficacy. rcRF
models not only control risk well on average in the validation sets, but also pick up more efficacy compared to rcDT
and BR-M methods. When 𝜏 = 0.063, rcDT, rcRF, and BR-M methods produced validation risk estimates of 0.0638 (SD =
0.0061), 0.0643 (SD = 0.0035), and 0.0614 (SD = 0.0054). The accompanying efficacy estimates were 1.79 (SD = 0.11), 1.80
(SD = 0.07), and 1.76 (SD = 0.11), respectively. When the risk constraint is relaxed to 𝜏 = 0.067, rcDT, rcRF, and BR-M
produced respective validation risk estimates of 0.0645 (SD = 0.0058), 0.0666 (SD = 0.0035), and 0.0648 (SD = 0.0057)
with validation efficacy estimates of 1.79 (SD = 0.12), 1.80 (SD = 0.06), and 1.79 (SD = 0.11), respectively.
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T A B L E 4 Cohort characteristics for DURABLE trial data

Glargine LMx75/25

Characteristic (n = 754) (n = 744) P-valuea

Reduction in HbA1c 1.79 (1.44) 1.87 (1.45) .300

Daily hypoglycemic event rate 0.0568 (0.0686) 0.0741 (0.0808) < .001

Baseline HbA1c 9.1 (1.2) 9.1 (1.3) .521

Duration diabetes 9.5 (6.0) 10.0 (6.4) .115

Heart rate 77.1 (10.0) 76.7 (10.1) .448

Systolic BP 132.0 (16.4) 131.5 (16.4) .526

Diastolic BP 78.4 (9.3) 78.3 (9.3) .910

BMI 31.7 (6.0) 31.8 (6.0) .719

Height 166.1 (10.9) 166.7 (10.5) .325

Weight 87.9 (20.9) 88.8 (20.9) .396

Glucose: Nighttime (3 AM) 198.8 (62.4) 197.6 (60.8) .705

Glucose: Evening after meal 240.9 (67.7) 240.6 (64.5) .934

Glucose: Evening before meal 205.4 (64.4) 202.2 (63.1) .330

Glucose: Noon after meal 233.9 (67.7) 234.3 (65.6) .923

Glucose: Noon before meal 205.1 (66.4) 206.1 (64.4) .761

Glucose: Morning after meal 252.3 (62.7) 256.1 (63.3) .247

Glucose: Morning before meal 198.2 (54.0) 194.9 (51.5) .227

Fasting insulin 9.8 (7.3) 10.1 (7.4) .402

Adiponectin 6.9 (5.2) 6.8 (5.5) .955

Fasting glucose 11.0 (3.5) 11.3 (3.7) .139

Abbreviations: BMI, body mass index; BP, blood pressure; HbA1c, Glycated hemoglobin; DURABLE trial, Assessing the DURAbility of Basal vs Lispro Mix
75/25 Insulin Efficacy.
a from two-sample t-test.

T A B L E 5 DURABLE trial analysis results comparing rcDT, rcRF, and BR-M methods

Risk (𝝉) Method Efficacy (Training) Efficacy (Validation) Risk (Training) Risk (Validation)

0.063 rcDT 1.835 (0.093) 1.789 (0.112) 0.0567 (0.0051) 0.0638 (0.0061)

rcRF 1.749 (0.089) 1.799 (0.065) 0.0520 (0.0035) 0.0643 (0.0035)

BR-M 1.847 (0.052) 1.756 (0.105) 0.0597 (0.0017) 0.0614 (0.0054)

0.065 rcDT 1.855 (0.098) 1.796 (0.122) 0.0579 (0.0054) 0.0641 (0.0059)

rcRF 1.921 (0.083) 1.804 (0.061) 0.0615 (0.0050) 0.0657 (0.0040)

BR-M 1.871 (0.057) 1.778 (0.111) 0.0620 (0.0020) 0.0630 (0.0057)

0.067 rcDT 1.855 (0.088) 1.792 (0.120) 0.0586 (0.0053) 0.0645 (0.0058)

rcRF 2.004 (0.027) 1.804 (0.064) 0.0677 (0.0010) 0.0666 (0.0035)

BR-M 1.889 (0.063) 1.792 (0.106) 0.0643 (0.0025) 0.0648 (0.0057)

Abbreviations: BR-M, model-based benefit-risk learning;14 rcDT, risk controlled decision tree; rcRF, risk controlled random forest.
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F I G U R E 2 DURABLE risk-controlled decision tree structure for controlling daily hypoglycemic event rate at 𝜏 = 0.063 or 0.065 (left)
and 𝜏 = 0.067 (right). Treatment recommendation (“GL”: Glargine; “LM”: LMx75/25) are given for terminal nodes in bold face. “Efficacy”,
Decrease in HbA1c from baseline to end of follow-up; “Risk”, Daily hypoglycemic event rate (# events / days follow-up). Internal nodes
contain the mean efficacy and risk scores from the training observations at the current node (annotated in upper right corner). Terminal
nodes (gray highlighted) display the node level mean efficacy and risk estimates

Since rcDT and rcRF methods appear to control risk close to the 𝜏 level in the validation sets, rcDT and rcRF models
were fit to the 1498 available observations from the DURABLE trial. Figure 2 presents rcDT structures fit using risk
thresholds of 𝜏 = 0.063, 0.065, and 0.067 hypoglycemic events per day. Identical tree structures were identified for daily
hypoglycemia event rates of 0.063 and 0.065. The first split is made on systolic blood pressure with a cut point of 130
mmHg. Patients with systolic blood pressure less than 130 mmHg and diastolic blood pressure less than 68 mmHg are
recommended to LMx75/25 while those with greater than 68 mmHg receive a treatment recommendation of Glargine.
Among patients with systolic blood pressure above 130 mmHg, those under 165 cm in height are recommended to be
on LMx75/25, and Glargine otherwise. This model for 𝜏 = 0.063 and 𝜏 = 0.065 controls risk in the training data at 0.060
hypoglycemic events per day. The training set efficacy estimate was a decrease in HbA1c of 1.946 mg/dL. When the risk
constraint is relaxed to control daily rates of hypoglycemia at 0.067, an additional split among patients with systolic blood
pressure greater than 130 mmHg and height above 165 cm is made on noon fasting glucose. Specifically, those with noon
fasting glucose values less than 179 mg/dL to LMx75/25 and those above 179 mg/dL are recommended to Glargine. This
model corresponding to 𝜏 = 0.067 controls risk in the training data at 0.061 hypoglycemic events per day. The training
set efficacy estimate was a decrease in HbA1c of 1.943 mg/dL. Both these models mirror the pattern observed in Table 5
where risk is over controlled in a training set and likely to be well controlled at the desired level in an external validation
data set.

Internal nodes of each rcDT structure contain the global efficacy and risk estimates associated with the partition. In
the upper right corner of each internal node is the place of that node in the order of splitting. For example, in the decision
tree corresponding to 𝜏 = 0.063 and 0.065 the initial partition sends patients with systolic blood pressure greater than 130
mmHg to LMx75/25 and Glargine otherwise. This results in global efficacy and risk estimates of 1.812 mg/dL decrease
in HbA1c and 0.062 hypoglycemic events per day, respectively. The second split results is on height (cut point = 165 cm)
within the group with higher systolic blood pressure. This second split yields efficacy and risk estimates of 1.857 mg/dL
decrease in HbA1c and 0.057 hypoglycemic events per day, respectively. This can be repeated until no partitions remain.
Terminal nodes display the efficacy and risk estimates for patients in that terminal node who received the recommended
treatment. For instance, those with systolic blood pressure less than 130 mmHg, diastolic blood pressure less than 68
mmHg, and receiving LMx75/25 had mean decrease in HbA1c of 2.111 mg/dL and an average of 0.084 hypoglycemic
events per day. In general, LMx75/25 recommendation carries with it a greater risk of hypoglycemia, but also a greater
decrease in HbA1c.

For each of the three risk constraints considered in the DURABLE analysis, an rcRF model was trained. Risk estimates
for rcRF models trained using 𝜏 = 0.063, 0.065, and 0.067 hypoglycemic events per day were 0.057, 0.064, and 0.068,
respectively. The associated decrease in HbA1c (efficacy) for each of the risk control values was 1.87, 1.97, and 2.01 for
𝜏 = 0.063, 0.065, and 0.067, respectively. Table 6 summarizes rcDT and rcRF predictions for 10 DURABLE patients. The 10
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T A B L E 6 DURABLE trial analysis summaries for 10 patients

Original 𝝉 = 0.063 𝝉 = 0.065 𝝉 = 0.067
ID Assignment Efficacy Risk Prob / Pred Prob / Pred Prob / Pred

1 Glargine 4.709 0.000 0.166 / 0 0.208 / 0 0.240 / 0

2 Glargine 3.361 0.012 0.186 / 0 0.240 / 0 0.312 / 0

3 LMx75/25 1.131 0.000 0.330 / 0 0.336 / 0 0.412 / 1

4 Glargine 0.973 0.048 0.408 / 1 0.510 / 1 0.558 / 1

5 Glargine 1.596 0.036 0.506 / 0 0.472 / 0 0.466 / 0

6 Glargine 2.136 0.006 0.516 / 0 0.540 / 0 0.586 / 1

7 LMx75/25 1.081 0.000 0.566 / 1 0.592 / 1 0.558 / 1

8 Glargine −1.102 0.094 0.676 / 1 0.664 / 1 0.666 / 1

9 LMx75/25 4.730 0.012 0.776 / 1 0.824 / 1 0.858 / 1

10 Glargine 1.495 0.018 0.784 / 1 0.802 / 1 0.844 / 1

Abbreviations: “Efficacy”, Observed decrease in HbA1c from baseline; “Original Assignment”, Treatment originally received; “Pred”, rcDT predicted treatment
from rcDT model (0 = Glargine; 1 = LMx75/25); “Prob”, rcRF probability of recommendation to LMx75/25; “Risk”, Observed daily hypoglycemia event rate.

observations were selected across the range of rcRF predicted probabilities. For most observations, the probability of being
assigned to LMx75/25 from the rcRF model increases as the risk threshold is relaxed from 0.063 to 0.067 hypoglycemic
events per day. Consider Patient 1 who was originally assigned to Glargine, had an observed decrease in HbA1c of 4.7
mg/dL, and recorded no hypoglycemic events. This patient is recommended to remain on Glargine by the rcRF model
(probabilities of recommending LMx75/25 all below 0.25). All three rcDT models recommend Glargine as well. Patient 6
was also originally assigned to Glargine, but had a smaller observed decrease in HbA1c (2.1 mg/dL) compared to Patient 1,
and experienced 1 hypoglycemic event (0.006 per day over 24-week follow-up). For Patient 6, the rcRF model makes a weak
recommendation to switch to LMx75/25 when 𝜏 = 0.063 (P = .516). As 𝜏 increases the probability of recommending a
change of treatment to LMx75/25 rises to 0.540 (𝜏 = 0.065) and 0.586 (𝜏 = 0.067). The rcDT models recommend remaining
on Glargine when 𝜏 = 0.063 and 0.065 and switching to LMx75/25 when 𝜏 = 0.067. Since Patient 6 experienced a benefit
from Glargine and had a low rate of hypoglycemia (0.006 vs Glargine group mean of 0.057), the recommendation to switch
to active treatment is weak if desired risk control is highly conservative. Patient 10 was originally assigned to Glargine,
but had a much weaker response (1.5 mg/dL decrease in HbA1c) and higher daily rate of hypoglycemic events (0.018
events / day over 24-week follow-up). Hence, there is a strong recommendation of switching to LMx75/25 regardless of
risk control choice with rcRF probabilities all greater than 0.78 and all three rcDT models also recommend LMx75/25.
Finally, consider Patients 3 and 7. Both were originally assigned to LMx75/25, experienced similar efficacy responses
(decrease in HbA1c both roughly 1.1 mg/dL), and both with no hypoglycemic events. However, Patient 3 is recommended
to Glargine (except for and rcDT model with 𝜏 = 0.067) and Patient 7 is recommended to stay with the original assignment
of LMx75/25. Digging into the data we find that Patient 3 is taller than Patient 7 (172 vs 160 cm) with a slightly greater
systolic blood pressure measurement (140 vs 132 mmHg). Additionally, Patient 3 had blood glucose measures across all
seven time points throughout the day that were about 33% lower than Patient 7. From the tree structures in Figure 2 it
appears height and blood glucose measurement are driving the opposing treatment decisions for Patients 3 and 7.

Variable importance measures for the rcRF models are presented in Figure 3. Importance measures (total, efficacy,
and risk) for 𝜏 = 0.065 daily hypoglycemic events per day are summarized using box plots with individual points overlaid
each corresponding to one of the 100 rcRF models. Height, systolic blood pressure, and weight were the top three pre-
dictors for all importance measures. This indicates that they are the strongest predictors of treatment recommendation
among the available covariates. This corresponds to the rcDT models presented in Figure 2 as systolic blood pressure and
height appear within the first two layers of every tree, regardless of the risk constraint imposed. Notably, LMx75/25 more
effectively lowers postprandial blood glucose compared to basal insulin. The tree structures for the DURABLE data indi-
cate that patients with greater systolic blood pressure are recommended to LMx75/25. One possible explanation is that
patients with greater systolic blood pressure also consume more food at each meal and so the mix may yield greater ben-
efit to these patients. Notably, heart rate and blood glucose readings taken after a meal (either morning or evening) were
consistently among the top predictors in all three proposed importance measures.
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F I G U R E 3 Variable importance measures for DURABLE trial with risk control level of 𝜏 = 0.065 hypoglycemic events per day.
Columns correspond to total, efficacy, and risk importances. Importance measure for each predictor are displayed as points with a box plot
summary overlaid. Boxplots are ordered in each plot by mean variable importance

A variable importance measure was proposed by Wang et al14 to accompany their BR-O proposal. Using the same set
of predictors as this current work, their analysis identified baseline HbA1c, BMI, and fasting glucose as the three most
important predictors of treatment assignment. Height and weight, which are highly correlated with BMI, were identi-
fied by rcRF modeling as highly important predictors of treatment. Participant height and weight were the fourth and
sixth ranked predictors for BR-O. Postprandial glucose measures were identified by rcRF modeling, which may link to the
phenomena of postprandial reactive hypoglycemia,24,25 that is, elevated insulin levels trigger a hypoglycemic state. Given
that both postprandial glucose measures had increased importance specifically related to risk prediction, this corresponds
well with the current understanding of the relationship between food consumption, insulin production, and risk of hypo-
glycemia. Systolic blood pressure ranked 11th of 18 predictors in BR-O modeling, while it ranked in the top two predictors
in rcRF modeling. This potential link between blood pressure and treatment assignment warrants further investigation.

6 DISCUSSION

This work proposes two novel methods for discovery of risk-controlled ITRs, namely rcDT and rcRF. The goal of this
class of ITR is to balance the expected efficacy and risk for a given treatment regime, aiming to control the expected risk
at a predetermined, clinically meaningful threshold while achieving high efficacy. There is a pressing need for treatment
rules that are easy to interpret as this facilitates communication with patients about why a particular treatment is being
prescribed. To that end, the high interpretable rcDT model was developed. An rcDT model leverages a global estimator of
efficacy and risk to construct a purity measure that is a composition of expected efficacy and risk scores computed under
a “value”-based framework. The rcDT model, to our knowledge, is the only risk constrained optimization procedure
available for ITR discovery that results in an easily interpretable rule and can be applied to both RCT and observational
data. Additionally, the rcRF extension of rcDT is proposed. An rcRF model aggregates several bootstrap rcDT learners to
construct an rcITR. Three variable importance measures calculated from an rcRF model were defined corresponding to
the totality of the rule, efficacy, and risk. Importance measures can be directly compared for each predictor, representing
a distinct advantage over other proposed importance measures in this class of ITR. Simulation studies demonstrated the
robustness of the rcRF procedure (compared to rcDT, BR-M, and BR-O) to identify the optimal rcITR under a variety of
efficacy and risk structures (see simulation schemes D and E).

We opt not to simply enforce the risk constraint at each split during tree construction, that is, define the splitting
criterion as the constrained optimization 1. While this approach would surely control risk at the 𝜏 level, final rules may
produce suboptimal efficacy estimates. As an illustration, suppose risk was to be constrained at each split and an initial
partition of the data yields a set of candidate rules  such that ∀d ∈ , Ed(R) > 𝜏. Under these conditions, no splitting
would be performed as all candidate rules have expected risk above the threshold, and a null tree would be returned.
However, it may be possible that given some initial partition of the data, call it d1

o, with Ed(R) ≤ 𝜏, that there exists a second
partition of daughter node 1, call it d11

o , such that Ed11
o (R) ≤ 𝜏 and L(d11

0 ) > L(d1
o). Clearly, it would be preferred to consider

splitting past the initial partition in order to capture potential complexity in the underlying association between efficacy,
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risk, and the predictor space. The proposed purity measure would accommodate this complexity, whereas defining the
splitting criterion based on the constrained optimization directly would not.

In the analysis of the DURABLE trial data rcRF controlled risk close to the 𝜏 level while returning the greatest esti-
mates of efficacy compared to rcDT and BR-M procedures. The rcRF model also yielded a greater level of precision in risk
and efficacy estimation than rcDT and BR-M modeling. rcDT returned efficacy estimates from validation sets that were
close to those obtained using rcRF. In addition, rcDT models demonstrated the ability to control risk properly. A fitted
rcDT model to the DURABLE trial data identified systolic and diastolic blood pressure and height as the defining covari-
ates in the risk-controlled ITR. Analysis of the DURABLE trial data performed by Wang et al14 using an outcome weighted
learning approach with a linear kernel identified height, diastolic, and systolic blood pressure as the fourth, eighth, and
eleventh most important predictors out of 18 available. Their procedure identified baseline HbA1c, BMI, and fasting glu-
cose level as the most important predictors. Both rcRF and outcome weighted learning derived importance measures for
the DURABLE analysis did not change meaningfully across the risk constraints considered. As elevated blood pressure is
the most prevalent comorbidity condition among diabetes patients, systolic blood pressure is associated with poor patient
blood glucose control. Similarly, height and BMI may be acting as surrogate measures of the same risk factor. Since rcDT
and rcRF methods are able to control risk while achieving greater efficacy than linear ITR methods, this rule represents
an intriguing view into diabetes management.

The methods proposed accommodate treatment efficacy and risk heterogeneity via construction of subgroups con-
taining patients with similar baseline characteristics and subgroup specific treatment assignments. One can imagine that
changes in 𝜏 may result in different treatment recommendations for some patients, indicating there may be a functional
relationship between 𝜏 and the covariates. We defer further investigation of this relation to future research. The meth-
ods proposed here can easily be extended to include categorical predictors, multiple treatments, and multiple constraints.
Alternative endpoints can also be accommodated such as survival outcomes (Zhao et al26 investigated discovering ITRs for
censored time-to-event data). A notable downside to the current risk controlled ITR procedures that utilize either random
forests or SVMs is the computational cost associated with scaling for analyses with high dimensional data. Hence, ana-
lyzing predictors originating from the genome or proteome may not be feasible. Further work is needed to accommodate
high-dimensional predictor sets into the modeling procedures. Since trial data is often collected over multiple follow-ups,
the incorporation of time-varying covariates into risk-controlled modeling procedures warrants further exploration.

In conclusion, two novel methods were proposed for discovery of risk controlled ITR. The first, rcDT, is easy to inter-
pret and performs well under a variety of circumstances. The second, rcRF, while not interpretable is robust against a
wide variety of underlying rules as was demonstrated in the simulation studies. The rcRF model also allows for variable
importance measures to be defined, further elucidating the contribution of predictors to the ITR. It is our recommenda-
tion that rcDT and rcRF models should be used in tandem, such that an interpretable tree structure is obtained (rcDT)
along with importance measures from an rcRF model. This work contributes to a growing number of modern statistical
techniques aimed at deciding proper treatment rules based on both efficacy and risk considerations.
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