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Abstract
The availability of vast amounts of longitudinal data from electronic health
records (EHRs) and personal wearable devices opens the door to numerous
new research questions. In many studies, individual variability of a longitudinal
outcome is as important as the mean. Blood pressure fluctuations, glycemic
variations, and mood swings are prime examples where it is critical to identify
factors that affect the within-individual variability. We propose a scalable
method, within-subject variance estimator by robust regression (WiSER), for the
estimation and inference of the effects of both time-varying and time-invariant
predictors on within-subject variance. It is robust against the misspecification of
the conditional distribution of responses or the distribution of random effects.
It shows similar performance as the correctly specified likelihood methods but
is 103 ∼ 105 times faster. The estimation algorithm scales linearly in the total
number of observations, making it applicable to massive longitudinal data sets.
The effectiveness of WiSER is evaluated in extensive simulation studies. Its
broad applicability is illustrated using the accelerometry data from theWomen’s
Health Study and a clinical trial for longitudinal diabetes care.
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1 INTRODUCTION

Electronic health records (EHRs) and personal wearable
devices generate massive longitudinal measurements. In
many studies, the within-subject (WS) (intraindividual)
variability of certain responses is of primary scientific
interest, not their mean levels. Here are a few examples.
Blood pressure variability is associated with the

increased risk of stroke (Rothwell et al., 2010b) and
received intensive attention. Rothwell et al. (2010a) ana-
lyze data from a large randomized clinical trial of over
18,000 individuals comparing two classes of blood pressure
lowering medications. They find that calcium-channel

blockers reduce blood pressure variability, whereas
𝛽-blockers increase systolic blood pressure variability,
explaining part of the difference in the reduction of stroke
risk of people on the two regimens.
Glycemic variation may play an important role in

the development of diabetes complications (DeVries,
2013; Ceriello et al., 2019). Zhou et al. (2018) analyze
data from the Veterans Affairs Diabetes Trial where
fasting glucose is measured repeatedly in over 1700
veterans. High blood glucose variability is associated
with increased cardiovascular disease in patients with
type 2 diabetes (T2D) even after accounting for mean
levels.
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The popularity of smart phones and handheld devices
makes ecological momentary assessment (EMA) methods
powerful tools in modern behavioral, social, and psycho-
logical studies. Compared to retrospective self-reports
collected at research or clinic visits, which are subject
to recall bias, EMA repeatedly samples subjects’ current
behaviors and experiences in real time (Heron et al.,
2017; Russell and Gajos, 2020). EMA generates enormous
amounts of longitudinal data and sparks newmethodology
development (Ruwaard et al., 2018).Mood swings, defined
as mood fluctuations measured on the Visual Analogue
Scale, are intensively studied EMA outcomes (Ruwaard
et al., 2018, Chapter 5). They are linked to stress, substance
abuse, depressive symptoms, and mood disorders. These
applications need effective methods to identify the covari-
ates (risk factors, genetic variants, environmental factors)
that affect the intraindividual variances. Analyzing such
longitudinal data is challenging. First, the model needs to
properly account for the correlation of longitudinal mea-
surements. Second, the model needs to discern sources
of variation at the mean level, between subjects (BS), and
WS. Third, the real data often violate the statistical model’s
distribution assumptions. Lastly, the scale of EHR and
personal wearable device data makes computation chal-
lenging. These sources not only generate data for amassive
number of individuals, for example, UK Biobank (Sudlow
et al., 2015) has EHR data on 2 × 105 individuals and the
Million Veteran Project (MVP) (Gaziano et al., 2016) has
EHR data on 7 × 105 individuals, but also for a massive
number of longitudinalmeasurements, for example, Apple
Watches sample heart rate every 5 min in standby mode
and continuously as 5 s averages during workouts (Tison
et al., 2018). The large size in the longitudinal dimension
is particularly damaging to computing. Methods such
as linear mixed models (LMMs) and generalized estima-
tion equation (GEE) scale as the cube of the longitudinal
dimension because of inversion of the covariancematrices.

1.1 Previous work and our
contributions

Current applications employ heuristic strategies to calcu-
late subject-level longitudinal variation such as standard
deviation (SD), average real variability (ARV), or coef-
ficient of variation (CV), and then model them as the
responses with covariates (Ivarsdottir et al., 2017; Smit
et al., 2018). This framework implicitly assumes that an
individual’s variability is constant over time, and cannot
be affected by time-varying covariates. Additionally, this
approach does not recognize that these SDs can be based
on very different numbers of observations, as is often the
case in health applications. Figure 1 depicts a hypothetical

F IGURE 1 Within-subject variability changes with
time-varying covariates such as medication use. Patient 1 has higher
blood pressure (BP) variability than Patient 2 before starting
medication due to gender. After starting BP lowering medications,
Patient 1 (on a calcium channel-blocker) has decreased BP
variability and Patient 2 (on a 𝛽-blocker) has increased BP
variability. WiSER models both time-varying and time-invariant
influences on within-subject BP variability. This figure appears in
color in the electronic version of this article, and any mention of
color refers to that version

but commonly observed scenario where the WS variabil-
ity is affected by both time-varying (e.g., medication use)
and time-invariant features (e.g., gender). Regressing the
subject-level variability summaries on predictors leads to
serious bias (Barrett et al., 2019). In a simulation experi-
ment inWeb Appendix F, we demonstrate that this heuris-
tic approach can lead to serious inflation of type I error and
power loss.
LMMs are powerful tools for modeling variation in the

longitudinal setting (Verbeke andMolenberghs, 2009; Fitz-
maurice et al., 2011). Motivated by a smartphone-based
EMA study of adolescent smoking behavior, Hedeker et al.
(2008) introduce a mixed-effects location-scale model for
longitudinal data that allows both WS and BS variability
to be modeled through covariates. They model the mood
assessment 𝑦𝑖𝑗 of student 𝑖 at occasion 𝑗 ∈ {1, 2, … , 𝑛𝑖} as

𝑦𝑖𝑗 = 𝒙
𝑇
𝑖𝑗
𝜷 + 𝑣𝑖 + 𝜖𝑖𝑗,

where 𝒙𝑖𝑗 is the 𝑝 × 1 vector of regressors typically includ-
ing the intercept and 𝜷 is the corresponding regression
coefficients. The random intercepts 𝑣𝑖 are independently
distributed as normal with mean zero and variance 𝜎2𝑣.
The errors 𝜖𝑖𝑗 are independently distributed as normalwith
mean zero and variance 𝜎2𝜖 , independent of 𝑣𝑖 . Here 𝜎2𝑣 rep-
resents the BS variance and 𝜎2𝜖 represents theWS variance.
To allow covariates to influence BS and WS variances,
a log-linear model is employed: 𝜎2𝑣𝑖 = exp(𝒖

𝑇
𝑖
𝜶), 𝜎2𝜖𝑖𝑗 =

exp(𝒘𝑇
𝑖𝑗
𝝉). The variances are subscripted by 𝑖 and 𝑗 to
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indicate that their values change depending on the values
of the covariates 𝒖𝑖 and 𝒘𝑖𝑗 (and their parameters). The
WS variance can further vary across individuals beyond
the contribution of the covariates by 𝜎2𝜖𝑖𝑗 = exp(𝒘

𝑇
𝑖𝑗
𝝉 + 𝜔𝑖),

where the random intercepts 𝜔𝑖 have mean 0 and vari-
ance 𝜎2𝜔. If𝜔𝑖 is specified as normal, then theWS variances
follow a log-normal distribution at the individual level.
Themixed-effects location scale model has been estimated
using Bayesian approaches by several authors, allowing for
more flexibility in assumed distributions (Rast et al., 2012;
Goldstein et al., 2017; Barrett et al., 2019).
The mixed-effects location scale model has many

advantages over the heuristic methods. It allows for
simultaneous modeling of the mean and variability of the
longitudinal measurement, increases power, and reduces
bias. It leverages information across individuals to get
more precise estimates (Barrett et al., 2019).
Lin et al. (1997) use a model similar to the mixed-

effects location scale model except that the WS vari-
ance has an inverse Gamma distribution whose mean is
related to WS predictors via the log-linear link. By using
quasi-likelihoods and method of moments (MoMs), they
avoid numerical integration. However, the WS predic-
tors are linked to the subject-level mean of WS variance,
which excludesmodeling time-varying covariate effects on
WS variability.
Dzubur et al. (2020) further expand the mixed-effects

location-scale model to a mixed-effects multiple location-
scale model that allows for multiple random effects in the
mean component. This model motivates us and is dis-
cussed in Section 2.1. However, fitting such a model is
extremely challenging because it requires numerical inte-
gration in each iteration. Another concern is that real
data can violate the restrictive distribution assumptions for
both the response and random effects and compromise the
estimation and inference.
We propose an estimation method, within-subject vari-

ance estimator by robust regression (WiSER), which is
robust to misspecification of the response (conditional
on random effects) and the random effects distributions.
WiSER is an MoM adaptation of the likelihood approach
by Dzubur et al. (2020). It is similar to Lin et al. (1997) but
allows time-varying predictors for WS variability. The esti-
mation algorithm avoids numerical integration and large
matrix inversion and scales linearly in the total number of
longitudinal measurements. WiSER’s close connection to
the quadratic estimating equation (QEE) is shown in Web
Appendix B. Table 1 contrasts WiSER estimates and run
timeswith those ofmaximum likelihood estimation (MLE)
as implemented in the MixWILD software (Hedeker and
Nordgren, 2013; Dzubur et al., 2020) on two simulated
data sets with 1000 individuals and 10 observations per
individual. MixWILD run times range from 40 min to

10+ h according to the different assumptions being made.
In contrast, WiSER takes less than 1 s to obtain point esti-
mates and confidence intervals, which are almost identical
to MLE. The WiSER method is introduced in the next sec-
tion and more extensive simulation studies are presented
in Section 5 to evaluate its estimation and inference accu-
racy in various scenarios.

2 MODEL

Table 2 summarizes the notation used in this article.

2.1 Method of moment estimator

We first motivate our method by developing an MoM esti-
mator for the mixed-effects multiple location scale models
(Dzubur et al., 2020)

𝑦𝑖𝑗 = 𝒙
𝑇
𝑖𝑗
𝜷 + 𝒛𝑇

𝑖𝑗
𝜸𝑖 + 𝜖𝑖𝑗, 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎

2
𝜖𝑖𝑗
),

𝜎2𝜖𝑖𝑗 = exp(𝒘
𝑇
𝑖𝑗
𝝉 + 𝓵

𝑇
𝜸𝜔𝜸𝑖 + 𝜔𝑖), 𝜔𝑖 ∼ 𝑁(0, 𝜎

2
𝜔),

(1)

where𝜎2𝜖𝑖𝑗 represents theWSvariance and𝓵𝑇𝜸𝜔 comes from
the Cholesky factor of the covariancematrix of the random
effects joint distribution(

𝜸𝑖
𝑤𝑖

)
∼ 𝑁

(
𝟎𝑞+1, 𝚺𝜸𝜔

)
.

We denote the Cholesky decomposition of the random
effects covariance matrix 𝚺𝜸𝑤 as

𝚺𝜸𝜔 =

(
𝚺𝜸 𝝈𝜸𝜔

𝝈𝑇𝜸𝜔 𝜎2𝜔

)
=

(
𝑳𝜸 𝟎

𝓵
𝑇
𝜸𝜔 𝓁𝜔

)(
𝑳𝑇𝜸 𝓵𝜸𝜔

𝟎𝑇 𝓁𝜔

)
,

where 𝑳𝜸 is a 𝑞 × 𝑞 lower triangular matrix with posi-
tive diagonal entries and 𝓁𝜔 > 0. The elements of 𝚺𝜸𝜔 are
expressed in terms of the Cholesky factors as

𝚺𝜸 = 𝑳𝜸𝑳
𝑇
𝜸 , 𝝈𝜸𝜔 = 𝑳𝜸𝓵𝜸𝜔, 𝜎2𝜔 = 𝓵

𝑇
𝜸𝜔𝓵𝜸𝜔 + 𝓁

2
𝜔.

The model (1) allows covariates to affect both WS vari-
ability and the mean. 𝒘𝑖𝑗 reflects covariates modeling
WS variability; it is not necessarily a subset of 𝒙𝑖𝑗 . 𝜸𝑖 in
the model for 𝜎2𝜖𝑖𝑗 allows random location effects, which
represent BS variability, to be correlated with the WS vari-
ability. To derive an MoM estimator, we note that the con-
ditional distribution of the response given random effects
is

𝒀𝑖|𝜸𝑖, 𝜔𝑖 ∼ 𝑁(𝑿𝑖𝜷 + 𝒁𝑖𝜸𝑖, 𝚺𝜺𝑖 ),
𝚺𝜺𝑖 = diag

(
𝜎2𝜖𝑖1 , 𝜎

2
𝜖𝑖2
, … , 𝜎2𝜖𝑖𝑛𝑖

)
. (2)
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TABLE 1 WiSER achieves nearly the same accuracy as the maximum likelihood estimate (as implemented in MixWILD) but is
103 ∼ 105 faster on two simulated data sets with 1000 individuals and 10 observations per individual. Displayed are point estimates with
standard errors in the parentheses. Simulation details are described in Sections 5.1–5.3

Maximum likelihood estimate (MixWILD)
Coefficient Truth WiSER Model 1 Model 2 Model 3
𝛽1 0.1 0.110 (0.037) 0.110 (0.037) 0.089 (0.034) 0.109 (0.035)
𝛽2 6.5 6.509 (0.013) 6.510 (0.013) 6.512 (0.010) 6.513 (0.010)
𝛽3 −3.5 −3.489 (0.013) −3.490 (0.013) −3.503 (0.011) −3.502 (0.010)
𝛽4 1.0 0.984 (0.013) 0.984 (0.013) 0.986 (0.010) 0.985 (0.010)
𝛽5 5.0 4.979 (0.012) 4.979 (0.013) 4.981 (0.010) 4.980 (0.010)
𝜏1 0.0 0.358 (0.037) 0.358 (0.017) 0.051 (0.031) 0.061 (0.029)
𝜏2 0.5 0.545 (0.029) 0.545 (0.018) 0.514 (0.021) 0.519 (0.021)
𝜏3 −0.2 −0.189 (0.027) −0.190 (0.018) −0.191 (0.020) −0.188 (0.020)
𝜏4 0.5 0.490 (0.024) 0.492 (0.019) 0.485 (0.021) 0.487 (0.020)
𝜏5 0.0 −0.012 (0.027) −0.012 (0.018) 0.009 (0.020) 0.010 (0.020)
Runtime (s) 0.37 2350 30,030 34,129

Maximum likelihood estimate (MixWILD)
Coefficient Truth WiSER Model 1 Model 2 Model 3
𝛽1 0.1 0.149 (0.038) 0.150 (0.038) 0.156 (0.032) 0.151 (0.032)
𝛽2 6.5 6.514 (0.011) 6.514 (0.012) 6.515 (0.010) 6.515 (0.010)
𝛽3 −3.5 −3.503 (0.012) −3.503 (0.012) −3.511 (0.010) −3.512 (0.010)
𝛽4 1.0 1.031 (0.013) 1.032 (0.012) 1.032 (0.010) 1.032 (0.010)
𝛽5 5.0 5.007 (0.012) 5.008 (0.012) 5.004 (0.010) 5.004 (0.010)
𝜏1 0.0 0.237 (0.040) 0.238 (0.017) −0.080 (0.031) −0.081 (0.031)
𝜏2 0.5 0.540 (0.030) 0.536 (0.019) 0.532 (0.021) 0.531 (0.021)
𝜏3 −0.2 −0.213 (0.032) −0.213 (0.019) −0.229 (0.021) −0.228 (0.021)
𝜏4 0.5 0.471 (0.028) 0.464 (0.019) 0.495 (0.022) 0.494 (0.022)
𝜏5 0.0 0.051 (0.032) 0.050 (0.018) 0.014 (0.020) 0.015 (0.020)
Runtime (s) 0.49 2490 56,788 29,977

Then the iterated expectation formula yields the marginal
mean and covariance

𝔼(𝒀𝑖) = 𝔼[𝔼(𝒀𝑖|𝜸𝑖, 𝜔𝑖)] = 𝑿𝑖𝜷,
Var(𝒀𝑖) = 𝔼[Var(𝒀𝑖|𝜸𝑖, 𝜔𝑖)] + Var[𝔼(𝒀𝑖|𝜸𝑖, 𝜔𝑖)]

= diag
(
𝔼𝜎2𝜖𝑖1 , 𝔼 𝜎

2
𝜖𝑖2
, … , 𝔼 𝜎2𝜖𝑖𝑛𝑖

)
+ 𝒁𝑖𝚺𝜸𝒁

𝑇
𝑖
.

The expectation

𝔼𝜎2𝜖𝑖𝑗 = 𝔼 exp
(
𝒘𝑇
𝑖𝑗
𝝉 + 𝓵

𝑇
𝜸𝜔𝜸𝑖 + 𝜔𝑖

)
= exp

(
𝒘𝑇
𝑖𝑗
𝝉
)
𝔼 exp

(
𝓵
𝑇
𝜸𝜔𝜸𝑖 + 𝜔𝑖

)
evaluates to the moment generating function of a normal
random variable with mean 0 and variance 𝓵𝑇𝜸𝜔𝚺𝜸𝓵𝜸𝜔 +
𝜎2𝜔 + 2𝓵

𝑇
𝜸𝜔𝝈𝜸𝜔. Thus,

𝔼𝜎2𝜖𝑖𝑗 = exp
(
𝒘𝑇
𝑖𝑗
𝝉 + 0.5

(
𝓵
𝑇
𝜸𝜔𝚺𝜸𝓵𝜸𝜔 + 𝜎

2
𝜔 + 2𝓵

𝑇
𝜸𝜔𝝈𝜸𝜔

))
= 𝑒

(
𝚺𝜸𝜔

)
⋅ exp

(
𝒘𝑇
𝑖𝑗
𝝉
)
,

where the constant

𝑒(𝚺𝜸𝜔) = exp
(
0.5

(
𝓵
𝑇
𝜸𝑤𝓵𝜸𝜔 + 𝓁

2
𝜔 + 2𝓵

𝑇
𝜸𝜔𝑳𝜸𝓵𝜸𝜔

+ 𝓵
𝑇
𝜸𝜔𝑳𝜸𝑳

𝑇
𝜸𝓵𝜸𝜔

))
encapsulates the contribution to the population WS vari-
ance due to random effects. This leads to the expression
for the variance of 𝒀𝑖

𝑽𝑖(𝝉, 𝚺𝜸𝜔) = 𝑒(𝚺𝜸𝜔)
⎛⎜⎜⎝
exp

(
𝒘𝑇
𝑖1
𝝉
)

⋱

exp
(
𝒘𝑇
𝑖𝑛𝑖
𝝉
)⎞⎟⎟⎠

+ 𝒁𝑖𝚺𝜸𝒁
𝑇
𝑖
.

To obtain anMoM estimator for the model parameters, we
minimize the squared error between the subject empirical
covariance matrices and their theoretical ones

1

2

𝑚∑
𝑖=1

‖‖‖‖(𝒚𝑖 − 𝑿𝑖𝜷)(𝒚𝑖 − 𝑿𝑖𝜷)𝑇 − 𝑽𝑖(𝝉, 𝚺𝜸𝜔)‖‖‖‖
2

F
, (3)
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TABLE 2 Symbols used to describe the WiSER model

𝑚 ≜ number of subjects
𝑛𝑖 ≜ number of observations for subject 𝑖
𝑞 ≜ number of random effects
𝑝 ≜ number of fixed effects
𝓁 ≜ number of variables affecting within-subject (WS) variance
𝜷 ≜ 𝑝 × 1 coefficient vector of fixed effects
𝜸𝑖 ≜ 𝑞 × 1 coefficient vector of random effects of subject 𝑖 (random-location effects) with mean 𝟎 and variance 𝚺𝜸
𝝉 ≜ 𝓁 × 1 coefficient vector of WS effects
𝜔𝑖 ≜ random intercept in WS variance of subject 𝑖 (random-scale parameter) with mean 0 and variance 𝜎2𝜔
𝒚𝑖 ≜ 𝑛𝑖 × 1 vector of observed responses for subject 𝑖
𝑿𝑖 ≜ 𝑛𝑖 × 𝑝 matrix of fixed effects covariates for subject 𝑖
𝒁𝑖 ≜ 𝑛𝑖 × 𝑞 matrix of random effects covariates for subject 𝑖
𝑾𝑖 ≜ 𝑛𝑖 × 𝓁matrix of covariates affecting WS variance, 𝜎2𝜖𝑖𝑗 , for subject 𝑖
𝜺𝑖 ≜ 𝑛𝑖 × 1 vector of error term reflecting WS variance

where 𝜷 =
(∑

𝑖
𝑿𝑇
𝑖
𝑿𝑖
)−1(∑

𝑖
𝑿𝑇
𝑖
𝒚𝑖
)
is the ordinary least

squares estimate of 𝜷. Here ‖ ⋅ ‖F indicates the Frobenius
norm of a matrix.

2.2 Robust estimation byWiSER

The MoM estimator enjoys a “double robustness” prop-
erty. Unlike the usual sense where an estimator is robust
to a violation of either one of two assumptions, the MoM
estimator is robust to violation of both assumptions. It is
robust to the misspecification of both the distribution of
random effects (𝜸𝑖, 𝜔𝑖) and the conditional distribution of
𝒀𝑖 given (𝜸𝑖, 𝜔𝑖). The derivation only requires the condi-
tional moments

𝔼(𝒀𝑖|𝜸𝑖, 𝜔𝑖) = 𝑿𝑖𝜷 + 𝒁𝑖𝜸𝑖, Var(𝒀𝑖|𝜸𝑖, 𝜔𝑖) = 𝚺𝜺𝑖 .
Furthermore, the joint normality of random effects (𝜸𝑖, 𝜔𝑖)
is not critical. The only requirements are the existence of
the covariance matrix Var(𝜸𝑖, 𝜔𝑖) = 𝚺𝜸𝜔 and the expec-
tation 𝑒(𝚺𝜸𝜔) = 𝔼 exp(𝓵

𝑇
𝜸𝜔𝜸𝑖 + 𝜔𝑖). Because our scien-

tific interests lie in the nonintercept coefficients in 𝝉,
the constant term 𝑒(𝚺𝜸𝜔) is absorbed into the inter-
cept in 𝝉. The nuisance parameters 𝓁𝜔 and 𝓵𝜸𝜔, thus
𝜎2𝜔 and 𝝈𝜸𝜔, are not identifiable in (3); however, this
lends us robustness against the misspecification of ran-
dom effects distribution. If the primary interest is to esti-
mate 𝜎2𝜔 and 𝝈𝜸𝜔, then one invokes higher moments,
because they characterize the BS variance of WS vari-
ances, or uses the full likelihood approach. We seek
an estimation method that inherits the robustness and
computational simplicity of the MoM, while improv-
ing its statistical efficiency. This leads to the WiSER

estimator

𝜷 = argmin
𝜷

1

2

∑
𝑖

(𝒚𝑖 − 𝑿𝑖𝜷)
𝑇
(
𝑽
(0)
𝑖

)−1
(𝒚𝑖 − 𝑿𝑖𝜷)

�̂�, �̂�𝜸 = arg min
𝝉,𝚺𝜸

1

2

∑
𝑖

tr

((
𝑽
(0)
𝑖

)−1
𝑹𝑖

(
𝑽
(0)
𝑖

)−1
𝑹𝑖

)
,

(4)

where

𝑹𝑖 = (𝒚𝑖 − 𝑿𝑖𝜷)(𝒚𝑖 − 𝑿𝑖𝜷)
𝑇 − 𝑽𝑖(𝝉, 𝚺𝜸),

𝑽𝑖(𝝉, 𝚺𝜸) =
⎛⎜⎜⎝
exp(𝒘𝑇

𝑖1
𝝉)

⋱

exp(𝒘𝑇
𝑖𝑛𝑖
𝝉)

⎞⎟⎟⎠ + 𝒁𝑖𝚺𝜸𝒁𝑇𝑖 ,
(5)

and 𝑽(0)
𝑖
= 𝑽𝑖(𝝉

(0), 𝚺
(0)
𝜸 ) is an initial estimator of Var(𝒀𝑖).

We emphasize that the WS covariate matrices 𝑾𝑖 must
include an intercept, which encapsulates the population
level baseline WS variance plus BS variance of WS vari-
ances. Taking 𝑽(0)

𝑖
= 𝑰𝑛𝑖 , WiSER reduces to the MoM. In

practice, we find that setting initial 𝑽(0)
𝑖

to a least squares
estimator of 𝝉 and 𝚺𝜸 leads to good performance (see Sec-
tion 4). Iterating the WiSER procedure (4) improves esti-
mation accuracy. That is, before each round of WiSER, we
update𝑽(0)

𝑖
with the current WiSER estimates of 𝝉 and 𝚺𝜸

and repeat. In this paper, unless specified otherwise, we
report the results of setting 𝑽(0)

𝑖
to an initial least squares

estimate and then running two rounds of WiSER.

Remark 1. WiSER estimator (4) is a special case of
the quadratic estimation equation for estimating variance
parameters (Prentice, 1988; Zhao and Prentice, 1990; Ye
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and Pan, 2006; Leng et al., 2010). Specifically, in Web
Appendix B, we show that WiSER is equivalent to a spe-
cific quadratic GEE with a working covariance structure
assuming marginal normality of 𝒀𝑖 . This particular work-
ing covariance strikes a balance between statistical effi-
ciency and computational scalability.

3 STATISTICAL PROPERTIES

3.1 Consistency and asymptotic
normality

Theorem 1 establishes the consistency and asymptotic nor-
mality of theWiSER estimator under regularity conditions.
A sketch of the proof, following the M-estimation frame-
work (van derVaart, 1998), is given inWebAppendix D.We
use notation 𝜽 = (𝜷, 𝝉, vech𝚺𝜸) to collect allmodel param-
eters. vech𝑨 stacks the entries of the lower triangular part
of a squarematrix𝑨 into a long vector in the column-major
order. Corresponding to the WiSER empirical loss func-
tions in (4), we define the population criterion function

𝑓1(𝜽) =
1

2
(𝒀 − 𝑿𝜷)𝑇

(
𝑽(0)

)−1
(𝒀 − 𝑿𝜷),

𝑓2(𝜽) =
1

2

‖‖‖‖(𝑽(0))−1𝑹(𝑽(0))−1𝑹‖‖‖‖
2

F

with gradient ∇𝑓(𝜽) = [∇𝜷𝑓1(𝜽)
𝑇, ∇𝝉,vech𝚺𝜸 𝑓2(𝜽)

𝑇]𝑇 .
Explicit expressions for the gradient are detailed in Web
Appendix C.2. We make the following assumptions:

(A1) (Model) Observation tuples (𝒀𝑖, 𝑿𝑖, 𝒁𝑖,𝑾𝑖),
𝑖 = 1, … ,𝑚, are independently and identically
distributed (iid) from 𝐹 = 𝐹(𝜽0) and satisfy the
conditional moment conditions

𝔼(𝒀𝑖 ∣ 𝑿𝑖, 𝒁𝑖,𝑾𝑖) = 𝑿𝑖𝜷0,

Var(𝒀𝑖 ∣ 𝑿𝑖, 𝒁𝑖,𝑾𝑖) = 𝑽𝑖(𝝉0, 𝚺𝜸,0),

where 𝑽𝑖(𝝉, 𝚺𝜸) takes the form (5). We denote the
dimension of 𝒀𝑖 (number of observations for the 𝑖th
individual) by 𝑁𝑖 , which is random under 𝐹.

(A2) (Compactness) 𝜽 = (𝜷, 𝝉, vech𝚺𝜸) lieswithin a com-
pact set 𝚯 and 𝜽0 = (𝜷0, 𝝉0, vech𝚺𝜸,0) is in the inte-
rior of 𝚯.

(A3) (Identifiability) ‖𝔼∇𝑓(𝜽)‖2 > 0 under 𝐹 for any 𝜽 ≠

𝜽0 in 𝚯.
(A4) (Moment condition) Thesemoments are finite under

𝐹: 𝔼 ‖𝒀𝑖‖82, 𝔼𝜆2max(𝑾𝑇
𝑖
𝑾𝑖), 𝔼𝑁2𝑖 , and 𝔼𝜆

4
max(𝒁

𝑇
𝑖
𝒁𝑖).

Here 𝜆max(𝑴) is the maximal eigenvalue of a sym-
metric matrix𝑴.

(A5) (Nonsingularity) The matrices

𝑨1(𝜽0) = 𝔼𝐹𝑿
𝑇
𝑖

(
𝑽
(0)
𝑖

)−1
𝑿𝑖,

𝑨2(𝜽0) = 𝔼𝐹

(
𝑾𝑇
𝑖
diag(𝑒𝑾𝑖𝝉0)𝑸𝑇𝑁𝑖

𝑪𝑇𝑞 (𝒁
𝑇
𝑖
⊗ 𝒁𝑇

𝑖
)

)

×
(
𝑽
(0)
𝑖
⊗ 𝑽

(0)
𝑖

)−1(𝑾𝑇
𝑖
diag(𝑒𝑾𝑖𝝉0)𝑸𝑇𝑁𝑖

𝑪𝑇𝑞 (𝒁
𝑇
𝑖
⊗ 𝒁𝑇

𝑖
)

)𝑇

are positive definite. 𝑪𝑞 is the 𝑞2 × 𝑞(𝑞 + 1)∕2 copy-
ing matrix such that 𝑪𝑞 ⋅ vech𝑴 = vec𝑴 for arbi-
trary 𝑞 × 𝑞 lower triangular matrix 𝑴 and 𝑸𝑛
is the 𝑛2 × 𝑛 diagonal selection matrix such that
diag(𝑴) = 𝑸𝑇𝑛 vec𝑴 for any 𝑛 × 𝑛 squarematrix𝑴.

(A6) (Boundedness) Entries of 𝑾𝑖 and (𝑽
(0)
𝑖
)−1 are uni-

formly bounded with probability 1.

Theorem 1. Under (A1)–(A6), the WiSER estimator �̂�𝑚 =
(𝜷𝑚, �̂�𝑚, vech �̂�𝜸𝑚

) defined by (4) is strongly consistent as
𝑚 → ∞ and

√
𝑚(�̂�𝑚 − 𝜽0) is asymptotically normal with

mean zero and covariance

𝑺(𝜽0) =

(
𝑨−11 (𝜽0) 𝑶

𝑶 𝑨−12 (𝜽0)

)
⋅
[
𝔼𝐹∇𝑓(𝜽0)∇𝑓(𝜽0)

𝑇
]

×

(
𝑨−11 (𝜽0) 𝑶

𝑶 𝑨−12 (𝜽0)

)
.

A few remarks are in order.

Remark 2. WiSER’s only structural assumption is the
conditional moment condition (A1), which guarantees
unbiasedness of the estimation equation 𝔼𝐹[∇𝑓(𝜽0)] =

𝟎. The mixed-effects multiple location scale model (1)
satisfies (A1) whenever the moment generating function
of the random effects (𝜸𝑖, 𝜔𝑖) exists (Section 2.1). This
relaxes normality assumptions on the conditional dis-
tribution of 𝒀𝑖 and the distribution of random effects
(𝜸𝑖, 𝜔𝑖).

Remark 3. Under (A1), the WiSER estimate 𝜷 is semi-
parametric efficient (Tsiatis, 2006); it has the smallest
asymptotic variance among all semiparametric estimators
of 𝜷.

Remark 4. If we assume that 𝑁𝑖 and the entries of 𝒁𝑖 are
bounded by a finite constant with probability 1, together
with the boundedness condition (A6), then the moment
condition (A4) reduces to just 𝔼 ‖𝒀𝑖‖42 < ∞.
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3.2 Sandwich estimator

We use the plug-in estimator

𝑨1,𝑚 =
1

𝑚

∑
𝑖

𝑿𝑇
𝑖
(𝑽

(0)
𝑖
)−1𝑿𝑖

𝑨2,𝑚 =
1

𝑚

∑
𝑖

(
𝑾𝑇
𝑖
diag(𝑒𝑾𝑖�̂�𝑚)𝑸𝑇𝑛𝑖

𝑪𝑇𝑞 (𝒁
𝑇
𝑖
⊗ 𝒁𝑇

𝑖
)

)(
𝑽
(0)
𝑖
⊗ 𝑽

(0)
𝑖

)−1

×

(
𝑾𝑇
𝑖
diag(𝑒𝑾𝑖�̂�𝑚)𝑸𝑇𝑛𝑖

𝑪𝑇𝑞 (𝒁
𝑇
𝑖
⊗ 𝒁𝑇

𝑖
)

)𝑇

for 𝑨1(𝜽0) and 𝑨2(𝜽0), respectively, and the empirical esti-
mator

𝑩𝑚 =
1

𝑚

∑
𝑖

∇𝑓(�̂�𝑚; 𝒚𝑖, 𝑿𝑖, 𝒁𝑖,𝑾𝑖)∇𝑓(�̂�𝑚; 𝒚𝑖, 𝑿𝑖, 𝒁𝑖,𝑾𝑖)
𝑇

(6)

for 𝑩(𝜽0). Then the sandwich estimator for the asymptotic
covariance of

√
𝑚(�̂�𝑚 − 𝜽0) is

𝑺𝑚 =

(
𝑨−1
1,𝑚

𝑶

𝑶 𝑨−12,𝑚

)
𝑩𝑚

(
𝑨−1
1,𝑚

𝑶

𝑶 𝑨−12,𝑚

)
.

The consistency of 𝑺𝑚 for estimating 𝑺(𝜽0) is guaranteed
by showing that the second and third derivatives of 𝑓𝑖 ,
𝑖 = 1, 2, are bounded above by an integrable function (Boos
and Stefanski, 2013, Theorem 7.3) under the moment con-
dition (A4). Details are omitted.

3.3 Hypothesis testing

We partition the parameter 𝜽 as 𝜽1 ∈ ℝ
𝑟 and 𝜽2 ∈

ℝ𝑝+𝓁+𝑞(𝑞+1)∕2−𝑟. In our applications, 𝜽1 is always a sub-
vector of (𝜷, 𝝉). Inference on the variance component 𝚺𝜸
is difficult due to the boundary conditions and is subject to
a parametric bootstrap. The Wald test statistic for testing
𝐻0 ∶ 𝜽1 = 𝜽10 is 𝑇𝑊 = (�̂�𝑚,1 − 𝜽10)

𝑇(𝑺𝑚,11)
−1(�̂�𝑚,1 − 𝜽10),

where 𝑺𝑚,11 is the subblock of the sandwich estimator 𝑺𝑚
corresponding to 𝜽1.𝑇𝑊 is asymptotically distributed as𝜒2𝑟
under𝐻0. A score test (Boos, 1992) can be derived but is not
pursued here.

4 COMPUTATIONAL STRATEGY

The optimization task in WiSER (4) is a nonlinear least
squares problem and subject to standard algorithms such

as the Gauss–Newton and Levenberg–Marquardt meth-
ods. Our implementation, an open-source Julia package
WiSER.jl (2021), offers a choice of many open-source non-
linear programming solvers, such as Ipopt (Wächter and
Biegler, 2006) and NLopt (Johnson, 2020), and commer-
cial ones, such as KNITRO (Byrd et al., 2006). With careful
implementation, each iteration of the optimization algo-
rithms scales linearly in the total number of observations∑
𝑖
𝑛𝑖; therefore, WiSER can be applied to very large lon-

gitudinal data sets. In Web Appendix C, we provide a
detailed account of how to efficiently evaluate the objec-
tive function, gradient, and expected Hessian matrix. The
key is to utilize the Woodbury structure (Hager, 1989)
in 𝑽𝑖 and (𝑽

(0)
𝑖
)−1 to avoid the storage and computa-

tion of potentially large 𝑛𝑖 × 𝑛𝑖 matrices. Each iteration
costs 𝑂((

∑
𝑖
𝑛𝑖)𝓁𝑞

2 + 𝑞4) flops. Convergence is achieved
from a few to a few dozen iterations in most scenarios,
depending on the algorithm, solver, sample size, genera-
tive model, and signal-to-noise ratio. If users have the time
and resources, exploring different solvers and starting val-
ues may be worthwhile in some applications. We recom-
mend using the solution with the best objective value in
that case. Figure 2 demonstrates the linear scalability of
WiSER on simulated data sets. Run times scale linearly
with the number of independent individuals and with the
number of measures per individual (left panel); and the
average time per observation stabilizes quickly within one
million observations (right panel).
To get an initial estimate of𝑽(0)

𝑖
, we start from the regu-

lar least squares estimate of 𝜷

𝜷
(0)
=

(∑
𝑖

𝑿𝑇
𝑖
𝑿𝑖

)−1(∑
𝑖

𝑿𝑇
𝑖
𝒚𝑖

)
,

compute the corresponding residuals 𝒓(0)
𝑖
= 𝒚𝑖 − 𝑿𝑖𝜷

(0),
and then set 𝚺(0)𝜸 to be the minimizer of the least squares

criterion
∑
𝑖
‖offdiag(𝒓(0)

𝑖
𝒓
(0)𝑇
𝑖

− 𝒁𝑖𝚺𝜸𝒁
𝑇
𝑖
)‖2F. Here offdiag

(𝑴) sets the diagonal entries of a matrix𝑴 to zero. We ini-
tialize 𝝉(0) by regressing log(𝒓2

𝑖
) = (log 𝑟2

𝑖1
, … , log 𝑟2

𝑖𝑛𝑖
)𝑇 on

𝑾𝑖; that is,

𝝉(0) =

(∑
𝑖

𝑾𝑇
𝑖
𝑾𝑖

)−1[∑
𝑖

𝑾𝑇
𝑖
log(𝒓2

𝑖
)

]
.

5 SIMULATIONS

We evaluate WiSER’s estimation accuracy and confidence
interval coverage in two scenarios. The first (Section 5.1) is
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F IGURE 2 Computational complexity of WiSER scales linearly in the total number of observations. The left panel plots the total run
times versus the number of individuals; each line represents a fixed number of observations per individual. The right panel demonstrates that
the average time per observation stabilizes to a constant at large sample sizes. This figure appears in color in the electronic version of this
article, and any mention of color refers to that version

the LMM normal-normal model. The second (Section 5.2)
investigates the robustness of WiSER by using nonnor-
mal distributions for the conditional distribution of 𝒀𝑖
and distributions of the random effects (𝜸𝑖, 𝜔𝑖). In both
scenarios, nonintercept entries of covariate matrices 𝑿𝑖 ,
𝒁𝑖 , and 𝑾𝑖 are generated from independent standard
normal and the true regression coefficients are 𝜷true =
(0.1, 6.5, −3.5, 1.0, 5)𝑇 and 𝝉true = (0.0, 0.5, −0.2, 0.5, 0.0)𝑇 .
In Section 5.3, WiSER estimates are compared to the com-
putational intensive MLE on two representative simula-
tion replicates. In both scenarios, we vary subjects 𝑚 ∈

{1000, 2000, … , 6000} and observations per subject 𝑛𝑖 ∈
{10, 25, 50, 100, 1000}. Each simulation scenario was run
on 1000 replicates. These scenarios reflect the sample sizes
in the Action to Control Cardiovascular Risk in Diabetes
(ACCORD) trial in Section 6.2.

5.1 (Normal, Normal, Log-Normal)
model

We set the conditional distribution of 𝒀𝑖 to be a multi-
variate normal with mean 𝑿𝑖𝜷 + 𝒁𝑖𝜸𝑖 and covariance 𝚺𝜺𝑖
(2) and generate the random effects (𝜸𝑖, 𝜔𝑖) from the mul-
tivariate normal distribution with mean zero and covari-

ance

𝚺𝜸𝜔 =

⎛⎜⎜⎜⎜⎜⎝

1.5 0.5 0.3 0.2

0.5 1.0 0.2 0.1

0.3 0.2 0.5 0.05

0.2 0.1 0.05 1.0

⎞⎟⎟⎟⎟⎟⎠
.

𝜔 is a single random variable so the covariance matrix cor-
responds to three random location effects and one random
scale effect, where 𝜎2𝜔 = 1.0.

5.2 (Multivariate T, Multivariate
Gamma, Inverse Gamma) model

We set the conditional distribution of 𝒀𝑖 to be a multivari-
ate T with degree of freedom 𝜈 = 6, mean 𝑿𝑖𝜷 + 𝒁𝑖𝜸𝑖 , and
covariance 𝚺𝜺𝑖 , the random effects 𝜸𝑖 to be a multivari-
ate Gamma shifted to have mean 0, and the WS random
effect 𝜔𝑖 to be the natural logarithm of an inverse-gamma
random deviate. In Bayesian statistics, inverse-gamma is
commonly used as a conjugate prior for the variance of
a normal model. Parameters of the Gamma and inverse
Gamma deviates are chosen such that the covariance of
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(𝜸𝑖, 𝜔𝑖) is

𝚺𝜸𝜔 =

⎛⎜⎜⎜⎜⎜⎝

1.5 0.5 0.3 0.0

0.5 1.0 0.2 0.0

0.3 0.2 0.5 0.0

0.0 0.0 0.0 1.0

⎞⎟⎟⎟⎟⎟⎠
.

𝜸𝑖 is independent of 𝜔𝑖 here but WiSER does not require
this independence.
The parameter estimate mean squared error (MSE) for

the two simulation scenarios at each combination of sam-
ple size (𝑚) and observations per subject (𝑛𝑖) are shown in
Figure 3. TheMSEs for themajority of parameter estimates
are below 10−2. There are a few outliers when estimat-
ing 𝝉 in the (Multivariate T, Multivariate Gamma, Inverse
Gamma) simulation, reflecting difficulty with heavy-tail
distributions. Across all scenarios and parameters, the
maximum percentage of outliers is 4% and median is 1%.
These occur when the observations per individual are low
(𝑛𝑖 = 10), which can be remedied by choosing a different
starting point or using a different nonlinear optimization
solver. Coverage at 𝛼 = 0.05 for each scenario is reported
in Tables S.1 and S.2 (all close to the nominal value of 95%).
We also report results of these simulations under smaller
sample sizes (𝑚 = 250 and 𝑚 = 500) in Web Appendix G,
when asymptotic properties are less likely to hold.

5.3 Comparison with MLE

MLE for the mixed-effects multiple location scale model
(1) is implemented in a comprehensive GUI software
MixWILD (Dzubur et al., 2020), which wraps an effi-
cient FORTRAN MLE engine (Hedeker and Nordgren
(2013)). Unfortunately, despite its efficiency,MixWILD run
times and its GUI design prevent a full-scale comparison.
Instead, we choose the representative simulation replicate
with the median MSE for estimating 𝝉 by WiSER from the
smallest sample size scenario (𝑚 = 1000, 𝑛𝑖 = 10) and tally
the results by WiSER and MixWILD along with the true
parameter values in Table 1.
In Table 1, Models 1–3 represent different assumptions

MixWILD makes in the mixed-effects multiple location-
scale model (1). Model 1 assumes 𝝈𝜸𝜔 = 𝟎 and 𝜎2𝜔 = 0;
Model 2 assumes𝝈𝜸𝜔 = 𝟎; andModel 3 is themost general
model that estimates all parameters (𝜷, 𝝉, 𝚺𝜸 , 𝝈𝜸𝜔, 𝜎2𝜔).
Note WiSER can only estimate 𝜷, 𝝉, and 𝚺𝜸 because 𝝈𝜸𝜔
and 𝜎2𝜔 are not identifiable.We observe that (1)WiSER esti-
mates and standard errors for both 𝜷 and 𝝉 are almost iden-
tical to MLEs, differing only in the third decimal place,
(2) the run times of WiSER are 103 ∼ 105 times faster
than MLE, and (3) the standard errors of WiSER estimates

are overall larger (in the third decimal place) than those
from MLE, reflecting a slight loss of efficiency in WiSER
due to relaxing the distributional assumption. The effi-
ciency loss may have more impact for smaller sample sizes
where the differences in computation time will be less
pronounced. In these cases, likelihood-based methods are
preferred. In this scenario with four random effects, the
likelihood method requires numerical integration over 𝑄4
points (where Q is the number of Gaussian quadrature
knots in one dimension of the integration). The computa-
tional time difference, while still notable, will be less so in
a model with fewer random effects.

6 REAL DATA ANALYSES

6.1 An application to mobile health:
Women’s Health Study (WHS)
accelerometry data

Habitual, lengthy sedentary behavior is a risk factor for a
wide variety of long-term poor health outcomes that are
distinct from negative health consequences due to a lack
of regular exercise (moderate-to-vigorous physical activity)
(Owen et al., 2010). Understanding factors associated with
persistent sedentary behavior will lead to better-targeted
interventions to encourage breaks in sedentary behavior.
WHS is a randomized 2×2 factorial trial that took place
between 1994 and 2002 to investigate the effects of vita-
minE and aspirin in preventing cardiovascular disease and
cancer among healthy women in the United States (Ridker
et al., 2005). An ancillary study began in 2011, investigating
links with physical activity (Lee et al., 2018). Women were
sent accelerometers and asked to wear them for 7 days dur-
ing waking hours. We apply WiSER to these data, looking
at factors related to changes in the mean and WS variabil-
ity of step count. To avoid strong daily periodicity and prob-
lems synchronizing the data BS, we restrict to the twomost
active hours for each individual each day. Vector magni-
tude, a measure of physical activity intensity, is reported in
1-min epochs; these measurements are accumulated over
each hour in order to identify a person’s two most active
hours in each day (Santos-Lozano et al., 2013). We use the
number of steps taken over 5 min epochs during these 2 h
as our outcomes.
The initial response variable, total steps every 5 min, has

many zeros and a heavy tail. Although WiSER is robust
to distributional assumptions, we compare its estimated
mean effects 𝜷 to the standard LMM, which assumes nor-
mality. In order to achieve a more normal distribution (for
comparison with the LMM), we add 0.5 to each step count
and take the log10 transformation to use as the response
variable. The data set contains 2,534,015 observations on
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F IGURE 3 Mean squared error (MSE) of WiSER parameter estimates of 𝜷 (top row), 𝝉 (middle row), and 𝚺𝜸 (bottom row) under the
(Normal, Normal, Log-Normal) (left column) and (Multivariate T, Multivariate Gamma, Inverse Gamma) (right column) models. Each
scenario reports results from 1000 replicates. This figure appears in color in the electronic version of this article, and any mention of color
refers to that version
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15,390 individuals. Summary statistics are reported in Web
Appendix H. Table 3 lists the mean effect estimates 𝜷 by
LMM and WiSER on the left and the estimates of the WS
variability fixed effects 𝝉 by WiSER on the right. The esti-
mated mean effects 𝜷 by LMM and WiSER are almost
identical. Both LMM and WiSER also include a random
intercept and a random slope for the day the device was
worn (1–7). Their estimates are also similar and listed in
Web Appendix H. The variable hour refers to the hour of
the day (hour = 13 means during the 1 PM hour). WiSER
reveals factors that are associated with activity-level WS
variability. For example, compared to Sunday, the partic-
ipants have higher activity levels on Monday to Saturday
but the variability is reduced. This may reflect the pattern
that the twomost active hours coincide with rush hours on
weekdays, whereas they are more sporadic on weekends
(Althoff et al., 2017). Body mass index (BMI), hour of day,
age, and smoking status are found to be associatedwith the
WS activity variability. The negative association of age and
current smoking for the mean and variability in steps sug-
gests older and smoking individuals are more sedentary,
and thus a potential target population for interventions.
It takes our software package WiSER.jl 33 s to complete

four WiSER estimation rounds on the WHS accelerometry
data. LMM results come from the software packageMixed-
Models.jl (Bates et al., 2020). We are not successful obtain-
ing the MLE from MixWILD in a reasonable amount of
time, so no results from MixWILD are provided.

6.2 Which diabetes drug classes best
control glycemic variation?

Although average glycemic levels, for example, glycated
hemoglobin (HbA1c), was considered the gold standard for
assessing overall glycemic control (ADA, 2020), glycemic
variability may be an even more meaningful measure
in diabetes care (DeVries, 2013). Many pathophysiologic
mechanisms could explain how glucose fluctuations cause
vascular injury (Brownlee and Hirsch, 2006; Ceriello
et al., 2008). Despite its clinical significance, there is
no consensus on the optimal method for characterizing
glycemic variability, partially due to the lack of statistical
methodologies. Applying WiSER to the ACCORD trial, we
evaluate and compare the effects of four widely adopted
glucose lowering medication classes on both the mean
glucose levels and the intraindividual glycemic variability.
Our results show that metformin, meglitinides, and thia-
zolidinediones are more favorable treatments than insulin
or sulphonylureas for controlling glycemic variability.
ACCORD was a double-blinded, two-by-two factorial,

randomized, parallel treatment trial in which 10,251
participants were assigned to receive either an intensive

treatment targeting HbA1c of < 6.0% (42.1 mmol/mol)
or a standard treatment targeting HbA1c of 7.0–7.9%
(53–62.8 mmol/mol). Participants had T2D, HbA1c con-
centrations of 7.5% (58.5 mmol/mol) or more, and were
40–79 years old with a history of cardiovascular disease or
55–79 years old with evidence of significant atherosclero-
sis, albuminuria, left ventricular hypertrophy, or at least
two risk factors for cardiovascular disease (dyslipidemia,
hypertension, smoking, or obesity). During the study,
glucose concentrations were measured every 4 months
in the initial year, then annually up to a maximum of
84 months. The design and principal results of ACCORD
trial were reported previously (ACCORD et al., 2008;
Ismail-Beigi et al., 2010).
Our analysis uses all in-study glucose measures of

the full ACCORD study, 67,063 observations on 10,195
individuals. Data preparation details are provided in
Web Appendix I and summary statistics are reported in
Table S.3. In order to control glucose at specific levels
within each of the treatment arms in ACCORD, glycemic
management is well documented, including the type and
dose of medications taken at each visit throughout the
study period. Table 4 reports WiSER estimates of 𝜷 and
𝝉. In addition to the covariates in the table, we include a
random intercept and a random slope effect for treatment
month in the model. Their estimates are listed in Web
Appendix I. We follow Siraj et al. (2015) and use insulin
units per body weight in kg (adjusted insulin) instead of
raw total insulin units. We find the month of treatment,
BMI, age, race, cardiovascular disease history at baseline,
and adjusted insulin (combined dosage from Basal, Bolus,
and premixed), and certain oral medication classes to be
significantly associated with the mean and intraindivid-
ual variability of fasting plasma glucose. Interestingly,
adjusted insulin is associated with a lower mean and
sulphonylureas have little effect on the mean, but they
increase the intraindividual variability of fasting plasma
glucose. Meglitinides are associated with significantly
lower glucose variability. Sulphonylureas andmeglitinides
are both second-line oral therapies for T2D patients and
have similar clinical effects, but meglitinides lead to fewer
hypoglycemic events than sulphonylureas (Grant and
Graven, 2016). Although our findings require validation in
other clinical studies, they demonstrate the capability of
WiSER to characterize glucose variability using complex
longitudinal data and modifiable factors identified can be
used to develop future interventions.

7 DISCUSSION

We demonstrated WiSER as an efficient tool for analyz-
ing WS variance with massive intensive longitudinal data.
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TABLE 3 WiSER identifies factors associated with mean and variation of women’s activity levels from the Women’s Health Study (WHS)
accelerometry data with 2.5 million observations on 15,390 women

LMM 𝜷 WiSER 𝜷
Covariate Estimate p-value Estimate p-value
(Intercept) 2.4789 <1e-99 2.5266 <1e-99
BMI −0.0169 <1e-99 −0.0169 <1e-99
Weekday: Mon 0.0842 <1e-99 0.0844 <1e-99
Weekday: Tues 0.0676 <1e-99 0.0678 <1e-81
Weekday: Wed 0.0650 <1e-99 0.0653 <1e-72
Weekday: Thurs 0.0570 <1e-99 0.0574 <1e-55
Weekday: Fri 0.0722 <1e-99 0.0724 <1e-89
Weekday: Sat 0.0735 <1e-99 0.0730 <1e-99
Hour −0.0029 <1e-99 −0.0037 <1e-45
Race: African American −0.0160 0.3216 −0.0166 0.3039
Race: Asian −0.0849 <1e-5 −0.0827 <1e-5
Race: Hispanic 0.0481 0.0214 0.0480 0.0135
Race: Native American −0.0109 0.8150 −0.0089 0.8493
Race: Other 0.0069 0.9058 0.0085 0.8893
Stairs 0.0134 <1e-22 0.0134 <1e-23
Age −0.0174 <1e-99 −0.0174 <1e-99
Smoker: Past 0.0034 0.4000 0.0028 0.4832
Smoker: Current −0.1492 <1e-43 −0.1497 <1e-36
Season: Spring −0.0047 0.4064 −0.0038 0.5025
Season: Summer 0.0050 0.3456 0.0048 0.3508
Season: Winter −0.0367 <1e-9 −0.0360 <1e-9
Total Minutes Worn (Daily) 0.0007 <1e-99 0.0007 <1e-99

WiSER 𝝉
Covariate Estimate p-value
(Intercept) −0.1551 0.0011
BMI 0.0010 0.0912
Weekday: Mon −0.0647 <1e-25
Weekday: Tues −0.0574 <1e-20
Weekday: Wed −0.0620 <1e-22
Weekday: Thurs −0.0633 <1e-23
Weekday: Fri −0.0818 <1e-40
Weekday: Sat −0.0813 <1e-40
Hour −0.0099 <1e-54
Race: African American −0.1078 <1e-5
Race: Asian 0.0413 0.1509
Race: Hispanic −0.0251 0.4420
Race: Native American 0.0597 0.3675
Race: Other 0.0276 0.8011
Age −0.0014 0.0058
Smoker: Past 0.0063 0.3006
Smoker: Current −0.0449 0.0036
Total Minutes Worn (Daily) −0.0003 <1e-52
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TABLE 4 WiSER estimates the effects of various factors on the mean glucose level and glycemic variation from the ACCORD data with
67,063 observations on 10,195 individuals

WiSER 𝜷 WiSER 𝝉
Covariate Estimate p-value Estimate p-value
Intercept 219.0090 <1e-99 8.4800 <1e-99
Visit Number −0.2144 <1e-94 −0.0078 <1e-27
BMI −0.0368 0.5230 −0.0138 <1e-7
Female −1.3908 0.0392 0.0229 0.3799
Baseline Age −0.7471 <1e-48 −0.0121 <1e-7
Race: Black −8.5492 <1e-22 0.2493 <1e-12
Race: Hispanic −2.2693 0.0801 0.2066 <1e-4
Race: Other −1.2686 0.2578 0.0836 0.0335
Baseline CVD History 0.9638 0.1594 0.0595 0.0236
Total Injected Insulin (units/kg body weight) −14.8855 <1e-61 0.8075 <1e-99
Sulphonylureas −0.5211 0.3407 0.3036 <1e-29
Metformin −5.5822 <1e-15 −0.1356 <1e-4
Meglitinides −13.4449 <1e-99 −0.3021 <1e-16
Thiazolidinediones −20.2340 <1e-99 −0.0194 0.4222

While relaxing the strict distributional assumptions in
mixed models, WiSER estimates show comparable effi-
ciency as the correctly specified MLE but take orders of
magnitude less time. However, when the interest lies in
estimating the random-scale variance 𝜎2𝜔, the random-
scale location covariances 𝓵𝜸𝜔, or individual-level esti-
mates of random effects 𝜸𝑖 or 𝜔𝑖 , the likelihood approach
should be used. Estimate of𝜔𝑖 can be useful for identifying
unusual subjects, for example, those that have extremely
high or lowWS variance. Another obvious application is to
use WiSER estimates as warm starts for likelihood meth-
ods. This strategy could reduce the number of iterations
in the expensive likelihood-based inference procedures.
WiSER can be extended in many directions, which we out-
line here.
We focused on quantitative outcomes as dictated by

our motivating examples. In principle, WiSER accom-
modates qualitative responses because only the condi-
tionalmoment condition is assumed. Alternatively, aswith
GEEs, we can apply a link function to the mean system-
atic component 𝑿𝑖𝜷 and model the intraindividual covari-
ance as 𝑽𝑖 = diag(𝑒0.5𝑾𝑖𝝉) ⋅ 𝑹𝑖 ⋅ diag(𝑒

0.5𝑾𝑖𝝉), where 𝑹𝑖 is
an 𝑛𝑖 × 𝑛𝑖 working correlation matrix. However, we lose
the obvious interpretation of WS and BS variability and
the computational scalability in the intensive longitudinal
measurement setting is a concern. The log-linear link for
theWS variance systematic component𝑾𝝉 can be relaxed
to any monotone, positive link function.
Consistency and asymptotic normality of WiSER for

fixed numbers of parameters are established assuming that
the observation tuples (𝒀𝑖, 𝑿𝑖, 𝒁𝑖,𝑾𝑖) are iid, recognizing
the great variability in the number of observations per indi-
vidual. The large 𝑛𝑖 (Xie and Yang, 2003) and diverging 𝑝

(Wang, 2011) asymptotics are particularly relevant in the
high-dimensional GEE models and needs to be investi-
gated in the WiSER setting.
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