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ABSTRACT
Proximal Markov chain Monte Carlo is a novel construct that lies at the intersection of Bayesian computation
and convex optimization, which helped popularize the use of nondifferentiable priors in Bayesian statistics.
Existing formulations of proximal MCMC, however, require hyperparameters and regularization parameters
to be prespecified. In this article, we extend the paradigm of proximal MCMC through introducing a novel
new class of nondifferentiable priors called epigraph priors. As a proof of concept, we place trend filtering,
which was originally a nonparametric regression problem, in a parametric setting to provide a posterior
median fit along with credible intervals as measures of uncertainty. The key idea is to replace the nonsmooth
term in the posterior density with its Moreau-Yosida envelope, which enables the application of the gradient-
based MCMC sampler Hamiltonian Monte Carlo. The proposed method identifies the appropriate amount
of smoothing in a data-driven way, thereby automating regularization parameter selection. Compared
with conventional proximal MCMC methods, our method is mostly tuning free, achieving simultaneous
calibration of the mean, scale and regularization parameters in a fully Bayesian framework. Supplementary
materials for this article are available online.
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1. Introduction

When analyzing time series data, we are often interested in esti-
mating a slowly varying underlying trend with desired proper-
ties such as smoothness and shape restrictions. Smoothness can
be achieved by constraining the underlying trend to be piecewise
polynomial, while shape restrictions such as monotonicity and
convexity can be enforced by linear inequality constraints. Let
y ∈ R

n denote an observed time series and β ∈ R
n denote its

underlying trend; then estimating β is commonly posed as the
following constrained or penalized least squares problem

minimize
β∈Rn

1
2‖y − β‖2

2 + g(β), (1)

where g(β) is an indicator function encoding convex constraints
or a nonsmooth penalty function inducing sparsity. Differ-
ent choices of g(β) induce a variety of sequence approxima-
tion problems. Representative examples include isotonic regres-
sion (Barlow 1972), univariate convex regression (Groeneboom,
Jongbloed, and Wellner 2008), nearly-isotonic regression (Tib-
shirani, Hoefling, and Tibshirani 2011) and �1-trend filtering
(Steidl, Didas, and Neumann 2006; Kim et al. 2009; Tibshirani
2014).

As a nonparametric regression problem, the solution to
(1) only produces a point estimate. If we are interested in
uncertainty quantification, data-resampling techniques like the
bootstrap (Efron and Tibshirani 1994) can be adopted. The
bootstrap, however, does not address the issue of regularization
parameter selection. The bootstrap is only able to produce a
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confidence band with a given regularization parameter, which
is often selected with cross-validation.

To quantify uncertainty and automate regularization
parameter selection, many have placed (1) in a Bayesian
framework. Inspired by the Bayesian Lasso (Park and Casella
2008), Roualdes (2015) first introduced Bayesian Trend Filtering
(BTF), exploiting the Gaussian mixture representation of the
Laplace prior. Independent from Rouadle’s work, Faulkner and
Minin (2018) proposed a closely related smoothing method,
Shrinkage Prior Markov Random Fields (SPMRFs), which
places sparsity inducing shrinkage priors on the adjacent
differences of the elements of β . In addition to the Laplace
prior, Faulkner and Minin (2018) also investigated a more
aggressive horseshoe prior (Carvalho, Polson, and Scott 2010),
which demonstrated superior local adaptivity to abrupt changes
or jumps. Recently, Kowal, Matteson, and Ruppert (2019)
proposed dynamic shrinkage processes (DSP) for Bayesian
trend filtering with even stronger localized adaptivity to
irregular features through modeling dependence between the
local scale parameters.

The literature of Bayesian shape-restricted regression is vast
and diverse. Early works include Bayesian isotonic regres-
sion with piecewise linear models (Neelon and Dunson 2004),
Bayesian P-splines (Brezger and Steiner 2008), Bayesian mono-
tone regression with Bernstein polynomials (McKay Curtis and
Ghosh 2011). Two more recent methods are Bayesian shape-
restricted splines (Meyer, Hackstadt, and Hoeting 2011) and
Bayesian shape-restricted regression using Gaussian process
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priors (Lenk and Choi 2017), which can enforce both mono-
tonicity and convexity.

Our approach to Bayesian trend filtering takes advantage of
a relatively new Markov chain Monte Carlo (MCMC) sampling
scheme in the Bayesian imaging literature, namely the proxi-
mal MCMC methods (Pereyra 2016; Durmus, Moulines, and
Pereyra 2018; Pereyra, Mieles, and Zygalakis 2020). The current
paradigm of proximal MCMC methods requires variance and
regularization parameters to be fixed and predetermined. In this
work, we incorporate those parameters into posterior inference,
leveraging the data itself to automatically determine the appro-
priate amount of smoothing. We present two applications of
our proposed methodology, namely Proximal Bayesian Trend
Filtering (PBTF) and Proximal Bayesian Shape-Restricted Trend
Filtering (PBSRTF).

2. Background

We first review the nonparameteric function estimation with
�1-trend filtering as well as important concepts from convex
optimization needed to develop our Bayesian trend filtering
algorithms.

2.1. Nonparametric Estimation with �1-trend Filtering

Suppose that a time series y ∈ R
n observed over a grid of time

points x ∈ R
n is the superposition of a smooth trend β ∈ R

n

and Gaussian noise ε ∼ N (0, σ 2In), namely

yi = βi + εi, i = 1, 2, . . . , n, (2)

where the grid locations xi are strictly increasing, that is, x1 <

x2 < · · · < xn. For simplicity, we assume for now that a single
measurement is observed at each grid point and the grid points
are evenly spaced. We relax both assumptions later.

Kim et al. (2009) proposed �1-trend filtering to estimate β

with piecewise polynomial structure, by solving the following
regularized least squares problem

minimize
β∈Rn

1
2‖y − β‖2

2 + α‖D(k+1)
n β‖1, (3)

where α is a positive regularization parameter, D(k+1)
n ∈

R
(n−k−1)×n is the discrete difference operator or matrix of order

k + 1 and dimension n. To appreciate the effect of penalizing
the �1-norm of D(k+1)

n β , we explicitly write out the difference
operator for k = 0,

D(1)
n =

⎡
⎢⎢⎢⎢⎢⎣

−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
. . . . . .

...
...

0 0 . . . −1 1 0
0 0 . . . 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

(n−1)×n.

When k = 0, the penalty term ‖D(1)
n β‖1 = ∑n−1

i=1 |βi+1 − βi|
is also known as the one-dimensional total variation denoising
penalty (Rudin, Osher, and Fatemi 1992; Steidl, Didas, and
Neumann 2006) in signal processing, or the fused lasso penalty
(Tibshirani et al. 2005) in statistics. The penalty incentivizes

recovery of piecewise constant solutions. Higher-order differ-
ence matrices are defined recursively as D(k+1)

n = D(1)

n−kD(k)
n .

Choosing order k = 1, 2, and 3 incentivizes the recovery of
piecewise linear, quadratic, and cubic solutions, respectively.
Difference matrices of order higher than 4 are rarely of interest.

To handle irregular grids, namely when the time points x ∈
R

n are strictly increasing but possibly unevenly spaced, Tibshi-
rani (2014) proposed replacing D(k+1)

n with the adjusted differ-
ence matrix D(x,k+1)

n . The first-order difference matrix remains
the same, that is, D(x,1)

n = D(1)
n ; for k ≥ 1 the adjusted difference

operators are now defined as

D(x,k+1)
n

= D(x,1)
n−k diag

(
k

xk+1 − x1
, . . . ,

k
xn − xn−k

)
D(x,k)

n for k = 1, 2, . . .

Note when x1 = 1, x2 = 2, . . . , xn = n, the adjusted difference
matrix D(x,k+1)

n coincides with D(k+1)
n .

A variety of iterative and non-iterative algorithms have been
proposed to compute a solution to (3). The ones that are relevant
to this work are the dynamic programming algorithm by John-
son (2013) and the ADMM algorithm by Ramdas and Tibshirani
(2016). Remarkably, the dynamic programming approach can
solve (3) exactly in O(n) steps for k = 0. Building on top of the
dynamic programming algorithm, the ADMM algorithm solves
(3) iteratively for k = 1, 2, and 3.

As discussed in Kim et al. (2009), adding additional
shape restrictions to �1-trend filtering is straightforward.
For example, one might require the underlying trend to be
monotone-increasing. The isotonic �1-trend filtering problem is
formulated as

minimize
β∈Rn

1
2
‖y − β‖2

2 + α‖D(x,k+1)
n β‖1

subject to β1 ≤ β2 ≤ · · · ≤ βn.

The monotonicity constraint β1 ≤ β2 ≤ · · · ≤ βn can be written
compactly as D(1)

n β ≥ 0, where ≥ represents elementwise
inequality.

In addition to monotonicity, another common shape restric-
tion is convexity. The underlying trend β is convex if

β2 − β1
x2 − x1

≤ β3 − β2
x3 − x2

≤ . . . ≤ βn − βn−1
xn − xn−1

, (4)

which can be written compactly as D(x,2)
n β ≥ 0.

For the rest of this article, we will work with the general case
where we may have multiple observations per grid point. We
assume that observations yij come from the model

yij = β(xi) + εij, εij
iid∼ N (0, σ 2),

i = 1, 2, . . . , n, j = 1, 2, . . . , wi, (5)

where β(x) is the underlying trend function that we seek to
estimate and wi is the number of observations at a particular grid
location xi. We assume that the underlying function β(x) has
piecewise polynomial structure. Allowing multiple observations
at a given grid location is useful as real data is often discrete.
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2.2. Relevant Concepts from Convex Optimization

We next review concepts from convex optimization central to
our proposed framework, specifically projection and proximal
mappings which are the algorithmic primitives that we will use
to build our Bayesian trend filtering methods.

In convex analysis, the indicator function ιA(β) of a set A ⊂
R

n takes on the value of 0 when β ∈ A and the value of +∞
when β /∈ A. The familiar 0–1 indicator function 1A(β), which
takes on the value of 1 when β ∈ A and 0 when β /∈ A is
an invertible transformation the indicator function from convex
analysis, namely 1A(β) = exp(−ιA(β)). The projection of a
point β onto a set A, denoted by PA(β), is a point in A that is
closest in Euclidean distance to β .

PA(β) = arg min
η∈A

‖η − β‖2.

The projection PA(β) exists and is unique when A is closed and
convex,.

The proximal map of the function g is the following operator

proxg(β) = argmin
η∈Rn

[
g(η) + 1

2
‖β − η‖2

2

]
.

An additional positive parameter λ is often added to control
proximity,

proxλg(β) = argmin
η∈Rn

[
g(η) + 1

2λ
‖β − η‖2

2

]
.

Following the notation in prior proximal MCMC papers, we
write proxλg(β) as proxλ

g (β).
When g is an indicator function of a set A, the proximal

operator is the projection onto A. Consequently, proximal maps
generalize projection operations. Proximal maps play an impor-
tant role in modern machine learning due to the fact that many
nonsmooth penalties often have unique proximal mappings that
either have explicit formulas or can be computed efficiently. In
this article, we take advantage of two such proximal mappings,
namely the proximal maps of ‖β‖1 and ‖D(1)

n β‖1. The proximal
map of ‖β‖1 is the celebrated soft-threshold operator[

proxλ
g (β)

]
i
=

{
βi |βi| ≤ λ

sgn(βi)(|βi| − λ)+ βi| > λ
, (6)

while the proximal map of ‖D(1)
n β‖1 is the solution to the fused

Lasso problem (Tibshirani et al. 2005):

proxλ
g (β) = argmin

η∈Rn

1
2
‖β − η‖2

2 + λ‖D(1)
n η‖1, (7)

which can be solved exactly in linear time via dynamic program-
ming (Johnson 2013). We use these two proximal maps as a
subroutine to perform a key computation, namely the epigraph
projection, which we will describe later.

The λ-Moreau-Yosida envelope of a function g is given by

gλ(β) = min
η∈Rn

g(η) + 1
2λ

‖η − β‖2
2.

The envelope function gλ has several important properties. First,
gλ is convex when g is convex. Second, gλ is always differentiable

even if g is not, and its gradient can be expressed in terms of the
proximal map of λg, namely

∇gλ(β) = 1
λ

[
β − proxλ

g (β)
]

.

Moreover, ∇gλ is λ−1-Lipschitz since proximal operators are
firmly nonexpansive (Combettes and Pesquet 2011). Finally and
perhaps most importantly, gλ converges pointwise to g as λ

tends to 0 (Rockafellar and Wets 2009). In short, we see that
the Moreau-Yosida envelope of a nonsmooth function g is a
Lipschitz-differentiable, arbitrarily close approximation to g. In
this work, we will rely on the Moreau-Yosida envelope of indica-
tor functions. Since the proximal map of an indicator function
ιE (β) is the projection PE (β), its Moreau-Yosida envelope is
gλ(β) = 1

2λ
‖β − PE (β)‖2

2, where ‖β − PE (β)‖2 is also denoted
as dE (β), namely the distance of β to E .

The Moreau-Yosida approximation is the key technical ingre-
dient behind the proximal MCMC framework of Durmus,
Moulines, and Pereyra (2018) which our algorithmic framework
extends. We next review their prior formulation of the proximal
MCMC method.

3. Proximal MCMC

Many modern machine learning applications employ log-
concave models of the form

π(β) ∝ exp{−U(β)} and U(β) = f (β) + g(β), (8)

where f is a Lipschitz-differentiable convex negative log-
likelihood function and g is a lower-semicontinuous convex
penalty function that shrinks the estimator toward some desired
prior structure. The model in (2) that underlies the �1-trend-
filtering problem is an example of such a log-concave model,
where

f (β) = 1
2σ 2 ‖y − β‖2

2 and g(β) = α‖D(k+1)
n β‖1.

Note that if we absorb σ 2 into the regularization parameter
α, then computing the Maximum a Posteriori (MAP) estimate
of β in this log-concave model is equivalent to solving the
nonparameteric problem (3).

Given such a log-concave model, we may wish to facilitate
uncertainty quantification and posterior inference by computing
posterior samples. Unfortunately, while there are many scalable
methods for computing the MAP estimate of β , for example
the Split-Bregman (Goldstein and Osher 2009) and Chambolle-
Pock (Chambolle and Pock 2011) algorithms, sampling from
the posterior distribution (8) is not as straightforward. Con-
ventional high-dimensional MCMC algorithms, such as the
Unadjusted Langevin Algorithm (ULA) (Roberts et al. 1996),
Metropolis-Adjusted Langevin Algorithm (MALA) (Rossky,
Doll, and Friedman 1978; Roberts et al. 1996), Hamiltonian
Monte Carlo (HMC) (Neal 2011), rely on gradient mappings that
in turn require U to be Lipschitz-differentiable or at least differ-
entiable. These differentiability requirements can be extremely
limiting, as they rule out many commonly used nonsmooth
penalty functions g.

To make efficient high-dimensional MCMC algorithms
applicable for nonsmooth U, Pereyra (2016) proposed replacing
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U with a Lipschitz-differentiable approximation, namely the λ-
Moreau-Yosida envelope of U, and then employing MALA to
sample from the derived surrogate density (Px-MALA). Dur-
mus, Moulines, and Pereyra (2018) proposed a slightly differ-
ent strategy with the Moreau-Yosida regularized Unadjusted
Langevin Algorithm (MYULA), by replacing g with its Moreau-
Yosida approximation gλ in (8) to obtain the surrogate density

πλ(β) ∝ exp{−f (β) − gλ(β)}. (9)

Under additional assumptions on g, the surrogate density (9)
is proper and converges to the original density (8) in total-
variation norm (Durmus, Moulines, and Pereyra 2018). More-
over, if g is Lipschitz, then the total-variation norm of (8) and (9)
is bounded linearly in λ. The MYULA algorithm simply applies
ULA to the surrogate density (9):

β l+1 =
(

1 − γ

λ

)
β l − γ∇f (β l)

+γ

λ
proxλ

g (β l) + √
2γ ζ l+1, (10)

where ζ l+1 is n-dimensional Brownian motion and γ is the
step size of ULA. A Metropolis-Hastings correction step can
be added to remove the asymptotic bias associated with Euler-
Maruyama discretization that is common to Langevin algo-
rithms. An extension of the MYULA algorithm is to com-
bine several gradient evaluations to accelerate its convergence
(SK-ROCK) (Pereyra, Mieles, and Zygalakis 2020). The recent
review paper Durmus, Moulines, and Pereyra (2022) provides an
overview for proximal MCMC methods and their applications in
imaging inverse problems.

A hallmark application of proximal MCMC is Bayesian image
deblurring, where β is a high-dimensional latent image, f is
the negative log-likelihood that models blurring and additive
Gaussian noise that together corrupt the latent image, and
g is a total variation penalty that incentivizes the recovery
of a latent image with sharp edges (Durmus, Moulines, and
Pereyra 2018; Pereyra, Mieles, and Zygalakis 2020; Durmus,
Moulines, and Pereyra 2022). In this context, the posterior of
interest is

π(β | y) ∝ exp
{
−‖y − Hβ‖2

2
2σ 2 − α TV(β)

}
, (11)

where H is a blur operator, TV(β) is the total-variation semi-
norm of β (Chambolle 2004), y is the corrupted image signal
we observe, σ 2 is the noise variance, and α is a positive regu-
larization parameter that trades off the emphasis between data
fit and smoothness in the estimated image. In the framework
of Durmus, Moulines, and Pereyra (2018) and Pereyra, Mieles,
and Zygalakis (2020), the variance σ 2 and the regularization
parameter α need to be manually selected by an expert or
determined by an empirical Bayesian method (Vidal et al. 2020;
De Bortoli et al. 2020). In this article, we propose to use a new
construct that we refer to as epigraph priors and HMC sampling
to incorporate σ 2 and α into posterior inference in the context of
Bayesian trend filtering. Consequently, this work demonstrates
how proximal MCMC can be applied as a statistical method-
ology in a unified and complete Bayesian framework. Figure 1
illustrates four examples of posterior fits using our fully Bayesian
proximal MCMC method for trend filtering.

Figure 1. Example posterior fits for PBTF with noise level σ = 3. The standard deviation of the underlying trends is 9, thus, the signal-to-noise ratio is 3. Plots show data
points (green dots), posterior median (blue solid lines), 95% Bayesian credible intervals (light blue bands) and true trends (red dashed lines).
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4. Proximal Bayesian Trend Filtering

Our key methodological innovation that enables extending the
proximal MCMC framework to a fully Bayesian one is the use of
epigraph indicator functions to encode our structure-inducing
prior. Prior proximal MCMC methods typically replace a non-
smooth penalty g(β) = αh(β) with its Moreau envelope in the
posterior. The proximal operator is then evaluated as

proxλ
g (β) = proxλα

h (β),

where the proximal operator of h can be computed with an
efficient off-the-shelf algorithm. The gradient of gλ(β) can then
be computed as (β − proxλ

g (β))/λ, which is a well-known fact
about Moreau envelopes. However, the regularization param-
eter α is viewed as a hyperparameter in gλ and needs to be
determined prior to MCMC sampling. Although an empirical
Bayesian method (Vidal et al. 2020; De Bortoli et al. 2020)
can be used to estimate the appropriate α and σ 2, a fully
Bayesian treatment is desirable since it may have better pre-
cision due to being able to account for the uncertainty of α

and σ 2.
To incorporate α into posterior inference, an important con-

cept in convex analysis, epigraph, comes in handy. The epigraph
of a regularization function g is the set

E = {(β , α) ∈ R
n × R : g(β) ≤ α}.

The Moreau-Yosida envelope of ιE (β , α) is 1
2λ

d2
E (β , α), which

is jointly differentiable in β and α. The gradient of 1
2λ

d2
E (β , α)

is simply (β ,α)−PE (β ,α)
λ

, where PE denotes projection on to
E . Figure 2 provides a visualization of the envelope function
1

2λ
d2
E (β , α) when E = {(β , α) ∈ R

2 : |β| ≤ α} and λ =
0.01. Using 1

2λ
d2
E (β , α) as our prior regularization term, we can

further place hyperpriors on α, σ 2 and achieve fully Bayesian
inference within the proximal MCMC framework. Computing
with these priors relies on projection onto epigraphs which we
describe next.

Figure 2. A visualization of the distance function 1
2λ d2

E (β , α) whenE = {(β , α) ∈
R

2 : |β| ≤ α} and λ = 0.01.

4.1. Projection Onto Epigraph

Projection onto the epigraph of g depends on the proximal
mapping of g (see Theorem 6.36 of Beck 2017), namely

Pepi(g)(β , α) =
{

(β , α) g(β) ≤ α(
proxλ∗

g (β), α + λ∗
)

g(β) > α
, (12)

where λ∗ is root of the auxiliary function

F(λ) = g
(

proxλ
g (β)

)
− λ − α.

When proxλ
g (β) can be computed easily, we can compute the

root λ∗ of the function F(λ) using a simple bisection procedure.
We will need to perform projections onto two sets: the epi-

graph of the �1-norm

E1 = {(β , α) ∈ R
n × R++ : ‖β‖1 ≤ α},

and the epigraph of ‖D(1)
n β‖1

E2 =
{
(β , α) ∈ R

n × R++ : ‖D(1)
n β‖1 ≤ α

}
.

Since the proximal maps of ‖β‖1 and ‖D(1)
n β‖1 can be computed

in linear time, projections onto E1 and E2 can be done efficiently.
For projection onto E1, we set the initial bisection interval to be
(0, λmax) where λmax = ‖β‖∞ is the smallest value of λ such
that proxλ‖·‖1(β) = 0. For projection onto E2, we set the initial
bisection interval to be (0, λmax) where

λmax =
∥∥∥∥[

D(1)
n (D(1)

n )T
]−1

D(1)
n β

∥∥∥∥∞
,

is the smallest value of λ such that the solution to (7) is a multiple
of the all ones vector. It is easy to verify that F(0) > 0 when
(β , α) /∈ epi(g) and F(λmax) < 0 so that the root of the auxiliary
function is guaranteed to lie within (0, λmax).

In a manner akin to Ramdas and Tibshirani (2016), project-
ing onto E2 instead of projecting onto E1 alleviates numerical
issues associated with solving an ill-conditioned linear system,
since it enables us to work with a transformation matrix that is
one “order” lower. We will elaborate on this claim in Section 4.2.

4.2. Priors for Proximal Bayesian Trend Filtering

To obtain posterior trends with approximate piecewise polyno-
mial structure, we place a constrained “flat” prior on β to induce
sparsity and regularity, namely

π(β | α) = α−(n−k−1) exp {−ιE (β , α)} , (13)

where

E =
{
(β , α) ∈ R

n × R++ : ‖D(x,k+1)
n β‖1 ≤ α

}
.

Note that implicitly α must be positive in (13) and all our
subsequent equations. The term α−(n−k−1) reflects the fact that
we are constraining D(x,k+1)

n β to an (n − k − 1)-dimensional
�1-norm ball, which has volume proportional to αn−k−1. To
complete the model specification, we need to place additional
priors on σ 2 and α. For σ 2, the standard inverse Gamma prior
IG(s, r) suffices as the parameters s and r minimally influence the



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 943

posterior for small values. In contrast, some care is warranted for
choosing the prior for α. Ideally, we seek a prior that cancels the
term α−(n−k−1) to ensure a proper surrogate posterior density.

A natural strategy is to use a Gamma prior, which achieves
the goal of canceling out α−(n−k−1). Placing a �(n − k, μ) prior
on α, the joint prior on (β , α) becomes

π(β , α) = exp{−ιE (β , α) − μα}. (14)

Choosing a Gamma prior, however, requires us to choose large
μ values to impose a meaningful amount of shrinkage, which
makes �(n − k, μ) an informative prior since its variance is
(n − k)/μ2. In that case selecting an appropriate μ becomes
challenging and stymies our goal of operating within a fully
Bayesian framework.

Given these challenges with a Gamma prior, we propose
using a beta-prime prior. A beta-prime distribution, denoted as
β ′(s1, s2), has density

π(α) ∝ αs1−1(1 + α)−s1−s2 .

If we place a β ′(n − k, s2) prior on α, the joint prior for (β , α)

becomes

π(β , α) ∝ exp{−ιE (β , α) − (n − k + s2) log(1 + α)}. (15)

A β ′(s1, s2) distribution has mean s1
s2−1 and variance

s1(s1+s2−1)

(s2−2)(s2−1)2 . Consequently when s2 is relatively small, the
prior has high variance and becomes uninformative. What
makes this prior setup preferred over the one induced by the
Gamma prior in (14) is that even when s2 is small, we still have
−(n − k + s2) log(1 + α) as a strong penalty to impose a useful
measure of shrinkage. Therefore, the beta-prime prior is better
than the Gamma prior in terms of hyperparameter sensitivity.
Nonetheless, we will revisit using the Gamma prior later as it is
better suited for our second application PBSRTF. Why that is
the case will be discussed in Section 4.3.

Placing an IG(s, r) prior on σ 2 and a β ′(n − k, s2) prior on α,
our full posterior density reads

π(β , σ 2, α | y)

∝ (σ 2)−
m
2 −s−1 exp

{
−

∑n
i=1

∑wi
j=1(yij − βi)2 + 2r

2σ 2

− ιE (β , α) − (n − k + s2) log(1 + α)

}
, (16)

where m = ∑n
i=1 wi is the total number of observations. We can

rewrite (16) in a vectorized format

π(β , σ 2, α | y)

∝ (σ 2)−
m
2 −s−1 exp

{
− (ȳ − β)TW(ȳ − β) + SSE +2r

2σ 2

− ιE (β , α) − (n − k + s2) log(1 + α)

}
, (17)

where

ȳ = (ȳ1., ȳ2., . . . , ȳn.)
T,

W = diag(w1, w2, . . . , wn),

SSE =
n∑

i=1

wi∑
j=1

(yij − ȳi.)
2.

There is no simple algorithm for projection onto E when
k ≥ 1. To take advantage of the epigraph projection algorithms
described in Section 4.1, we consider the reparameterization
θ = T1β where

T1 =
[

I(k+1)×n
D(x,k+1)

n

]
, (18)

and I(k+1)×n is the matrix obtained by taking the first k + 1 rows
of a n-by-n identity matrix. In other words, we have θ [1:(k+1)] =
β[1:(k+1)] and θ [(k+2):n] = D(x,k+1)

n β . To better visualize the
reparameterization technique, we explicitly write out the repa-
rameterization scheme for xi = i, i = 1, 2, . . . , n and k = 1,⎡

⎢⎢⎢⎢⎢⎢⎢⎣

θ1
θ2
θ3
θ4
...

θn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
...
0 0 0 0 · · · 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β1
β2
β3
β4
...

βn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the transformation matrix T1 is a lower-triangular
banded matrix with k + 2 nonzero diagonals. This means that
given θ , we can retrieve β in O(n(k + 2)) operations using a
banded forward-solve step. The reparameterized posterior is

π(θ , σ 2, α | y)

∝ (σ 2)−
m
2 −s−1 exp

{
− (y − T−1

1 θ)TW(y − T−1
1 θ) + SSE +2r

2σ 2

− ιE ′
1
(θ , α) − (n − k + s2) log(1 + α)

}
, (19)

where

E ′
1 = {(θ , α) ∈ R

n × R++ : ‖θ [(k+2):n]‖1 ≤ α}.

Replacing ιE ′
1
(θ , α) with its Moreau-Yosida envelope, we arrive

at a smooth surrogate posterior

πλ(θ , σ 2, α | y)

∝ (σ 2)−
m
2 −s−1 exp

{
− (y − T−1

1 θ)TW(y − T−1
1 θ) + SSE +2r

2σ 2

− 1
2λ

d2
E ′

1
(θ , α) − (n − k + s2) log(1 + α)

}
, (20)

Projection onto E ′
1 can be accomplished by applying the �1-

norm epigraph projection process described in Section 4.1 to
θ [(k+2):n]. Working with this reparameterization raises some
potential computational challenges, however. When evaluating
the function value and calculating the gradient of (20), we need
to solve two linear systems, namely T−1

1 θ and T−T
1 W(y−T−1

1 θ).
As n and k increases, the condition number of T1 increases,
leading to numerical instability in the HMC sampler. To alleviate
this numerical issue, we can use the projection onto the epigraph
of ‖D(1)

n β‖1, described in Section 4.1. Borrowing the idea of
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Ramdas and Tibshirani (2016), we consider another reparam-
eterization scheme θ = T2β where

T2 =
[

Ik×n

diag
(

k
xk+1−x1

, · · · , k
xn−xn−k

)
D(x,k−1)

n

]
. (21)

The reparameterized density is now

π(θ , σ 2, α | y)

∝ (σ 2)−
m
2 −s−1 exp

{
− (y − T−1

2 θ)TW(y − T−1
2 θ) + SSE +2r

2σ 2

− ιE ′
2
(θ , α) − (n − k + s2) log(1 + α)

}
, (22)

where

E ′
2 = {(θ , α) ∈ R

n × R++ : ‖D(1)

n−kθ [(k+1):n]‖1 ≤ α}.

Similarly, projection onto E ′ can be achieved by applying the
‖D(1)

n β‖1 epigraph projection process to θ [(k+1):n]. The advan-
tage of using T2 as the reparameterization scheme is that the
“order” of T2 is one below that of T1, so that solving the linear
systems becomes more numerically stable. When n and k are
relatively small, however, using T2 requires solving (7), which is
more expensive than (6). Table 1 summarizes the approximate
cutoffs of when to use T1 and when to use T2, based on our
empirical studies. Table 1 does not include k = 0 and k = 3, since
Faulkner and Minin (2018) demonstrated that the shrinkage
property of the Laplace prior struggles to capture abrupt jumps
of piecewise constant underlying trends, resulting in a posterior
fit that is too wiggly. Our prior set up is analogous to the Laplace
prior, so that our method runs into the same issue. Meanwhile,
when k = 3, even T2 is extremely ill-conditioned and the HMC
sampler is hampered from exploring the parameter space mean-
ingfully. Therefore, we focus on the case where k = 1 (piecewise
linear) and k = 2 (piecewise quadratic).

Using T2 as the reparameterization matrix mitigates but
does not eliminate the ill-conditioning issue. As n increases,
it becomes more difficult for the HMC sampler to sufficiently
explore the parameter space due to numerical instability. We
will introduce a data preprocessing technique called thinning in
Section 5.2 as an alternative strategy to make PBTF applicable
for long sequences with large n.

Replacing ιE ′
2
(θ , α) with its Moreau-Yosida envelope, the

surrogate posterior is now

πλ(θ , σ 2, α | y)

∝ (σ 2)−
m
2 −s−1 exp

{
− (y − T−1

2 θ)TW(y − T−1
2 θ) + SSE +2r

2σ 2

− 1
2λ

d2
E ′

2
(θ , α) − (n − k + s2) log(1 + α)

}
. (23)

Notice that (20) and (23) are now differentiable functions of
(θ , σ 2, α) on R

n × R++ × R++.

Table 1. Choice of reparameterization scheme for different n and k.

n ≤ 200 200 < n ≤ 1000 n > 1000

k = 1 T1 T2 Thinning needed
k = 2 T2 Thinning needed Thinning needed

For notational simplicity, in the rest of the manuscript we will
use π(θ , σ 2, α | y) to refer to both (19) and (22), πλ(θ , σ 2, α |
y) to refer to and (20) and (23), and (T, E ′) to refer to (T1, E ′

1)
and (T2, E ′

2). We overload notation in this way since proofs and
statements about these two surrogate densities are essentially the
same.

4.3. Adding Shape-Restrictions

Proximal MCMC presents a simple alternative framework to
traditional Bayesian hierarchical models that can easily con-
struct priors that encode multiple structural constraints. Similar
to nonparameteric isotonic trend filtering (Kim et al. 2009;
Ramdas and Tibshirani 2016), adding shape restrictions into our
framework is as straightforward as imposing linear inequalities.
For instance, if we believe that the underlying trend is monon-
tone increasing, we can enforce monotonicity by refining the
epigraph set E with a monotonicity constraint as follows

S = {(β , α) ∈ R × R++ : ‖D(x,k+1)
n β‖1 ≤ α, D(1)

n β ≥ 0}.

In addition to monotonicity, convexity can be encoded by the
linear inequalities in (4). By replacing ≥ with ≤, we get mono-
tone decreasing and concave restrictions. Combining mono-
tonicity and convexity is as simple as imposing two sets of linear
inequalities. Therefore, our framework can model eight types of
shape restrictions, namely increasing, decreasing, convex, con-
cave, increasing-convex, increasing-concave, decreasing-convex
and decreasing-concave. Lower or upper bounds on β can also
be enforced if warranted or desired.

Figure 3 illustrates examples of posterior fits using both
versions of our fully Bayesian proximal MCMC method for
trend filtering with and without shape-restrictions. For proof of
concept, projection ontoS can be achieved by any quadratic pro-
gramming solver. We report the results using the Gurobi solver
and leave for future work developing customized algorithms for
potentially greater scalability.

As alluded to earlier, for PBSRTF we consider a joint prior on
(β , α) that employs a Gamma prior on α

π(β , α) ∝ exp{−ιS(β , α) − μα}. (24)

The joint prior in (24) is almost identical to the one in (14);
we simply replaced E with S , where shape restrictions are also
present. There are several reasons to revisit a Gamma prior on
α. First, we can no longer interpret S as an �1-norm ball so that
it is unclear what the normalizing constant should be; contrast
this to the nonshape-restricted case where the normalizing con-
stant is α−(n−k−1). In fact, using α−(n−k−1) as the normalizing
constant for PBSRTF results in too much shrinkage. Second,
there are numerical challenges that make the sampler using
the beta-prime prior typically slower overall. We discuss these
challenges in the supplementary materials. Finally, issues of the
posterior being sensitive to the choice of μ, as we highlighted
in Section 4.2, are no longer prohibitively acute as in the non
shape-restricted case. In the case of PBSRTF, shape restrictions
impose a helpful dose of regularization on β , therefore, blunting
the influence of our choice of μ.

Using an inverse Gamma IG(s, r) as the prior for σ 2 and (24)
as the prior for (β , α), our full posterior density for PBSRTF is
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Figure 3. Example posterior fits for PBTF and PBSRTF with noise level σ = 1. The top row shows posterior fits of PBTF, and the bottom row shows posterior fits of PBSRTF.
From left to right, the enforced shape restrictions are increasing, convex, increasing-convex, and increasing-concave.

π(β , σ 2, α | y)

∝ (σ 2)−
m
2 −s−1 exp

{
− (ȳ − β)TW(ȳ − β) + SSE +2r

2σ 2

− ιS(β , α) − μα

}
. (25)

Replacing ιS(β , α) with its Moreau-Yosida envelope, results in
the surrogate posterior

πλ(β , σ 2, α | y)

∝ (σ 2)−
m
2 −s−1 exp

{
− (ȳ − β)TW(ȳ − β) + SSE +2r

2σ 2

− 1
2λ

d2
S(β , α) − μα

}
. (26)

Again, (26) is a differentiable function of (β , σ 2, α) on R
n ×

R++ × R++. Neither (23) nor (26) is log-concave, however,
so that Langevin algorithms are no longer suitable for MCMC
sampling. Therefore, we turn to Hamiltonian Monte Carlo as our
sampling engine.

4.4. Properties of the Surrogate Posteriors

We conclude this section, with two theorems that justify the
practice of replacing the nonsmooth part of the posterior by
its Moreau-Yosida envelope. The proofs are provided in the
supplementary materials.

Theorem 4.1. The surrogate posterior densities (20), (23), and
(26) are proper, that is,∫

Rn

∫
R++

∫
R++

πλ(θ , σ 2, α | y)dθdσ 2dα < +∞,

and

∫
Rn

∫
R++

∫
R++

πλ(β , σ 2, α | y)dβdσ 2dα < +∞.

Theorem 4.2. The surrogate posterior densities (20), (23), and
(26) converges to the original nonsmooth densities (19), (22),
and (25) in total-variation norm as λ ↓ 0, that is,

lim
λ↓0

∫
Rn

∫
R++

∫
R++

∣∣πλ(θ , σ 2, α | y) − π(θ , σ 2, α | y)
∣∣ dθdσ 2dα = 0,

and

lim
λ↓0

∫
Rn

∫
R++

∫
R++

∣∣πλ(β , σ 2, α | y) − π(β , σ 2, α | y)
∣∣ dβdσ 2dα = 0.

Theorem 4.2 assures us that the surrogate density can approx-
imate the original posterior density arbitrarily well by choosing
a small enough λ. This is consistent with our experiments where
we observe that the posterior fit is visually smooth once λ is
sufficiently small. Note that λ should not be chosen to be too
small, however, as doing so will lead to numerical instability
since gradient evaluations involve division by λ. We discuss how
to properly choose λ for the two different applications in in the
supplementary materials. In practice, we recommend using the
default parameters in our software.

5. Posterior Computation

5.1. HMC Sampling

We apply Hamiltonian Monte Carlo (HMC) to sample from
the smoothed surrogate full posterior densities (20), (23), and
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(26). Software for the proposed method is available at https://
github.com/qhengncsu/ProxBTF.jl. We implement our method
with DynamicHMC.jl package in the Julia computing environ-
ment. According to its documentation, the package implements
a variant of the “No-U-Turn Sampler” (NUTS) of Hoffman and
Gelman (2014), as described in Betancourt (2017). We direct
readers to Betancourt (2017) for an accessible exposition on the
algorithmic details of the sampling scheme. Since the NUTS
algorithm operates on an unrestricted domain, we reparame-
terize σ 2 as elog σ 2 and α as elog α to model the two positive
parameters.

For PBTF, evaluating the function-gradient pair at any given
location requires O(n) operations. While using Gurobi as a black
box solver obscures the computational complexity of PBSRTF,
we observe empirically that the computation time of PBSRTF
also scales linearly with grid length n. This is likely due to the
fact that Gurobi can effectively exploit the sparse matrices in our
problem set up.

5.2. Thinning

As discussed in Section 4.2, PBTF may encounter numerical dif-
ficulties that accompany solving ill-conditioned linear systems.
While the difference epigraph projection technique alleviates
the ill-conditioning issue, it can not eliminate it; as n increases,
eventually the condition number of T2 will eventually become
problematic.

Another technique we propose to mitigate the ill-
conditioning issue is thinning, which is similar to the thinning
practice in R package glmgen Ramdas and Tibshirani (2016).
We first split the range of x into intervals of equal length. Grid
locations within the same interval are merged into a single
new grid location, which is a weighted average of the original
grid locations with weights being the numbers of observations.
The data points (xi, yij) are then horizontally shifted to the
merged grid locations. After HMC sampling, if we are interested
in the posterior median and confidence limits at the original
grid locations, we can recover them through interpolation.
We provide an illustration of thinning in the supplementary
materials.

6. Numerical Experiments

We compare the empirical performance of PBTF with Shrinkage
Prior Markov Random Fields (SPMRFs) by Faulkner and Minin
(2018) and Dynamic Shrinkage Processes (DSP) by Kowal, Mat-
teson, and Ruppert (2019). We note that DSP can be considered
as an extention of SPMRFs and the software of DSP1 in fact con-
tains an implementation of the hierarchical models described
in Faulkner and Minin (2018). Moreover, DSP uses customized
Gibbs samplers which in practice are more efficient than the
HMC sampler used by SPMRFs, thus, we primarily use the soft-
ware of DSP in our experiments. In Table 2, BTF-BL (Bayesian
Lasso prior or Laplace prior) and BTF-HS (horseshoe prior)
correspond to the models presented in Faulkner and Minin
(2018) while BTF-DHS (dynamic horseshoe prior) corresponds
to the model presented in Kowal, Matteson, and Ruppert (2019).
To investigate the relative strengths of different approaches,
we selected four underlying trends, namely piecewise linear,
smooth trend, sinusoid, and piecewise quadratic/cubic. We
assess the precision of each method with mean absolute devi-
ation (MAD), frequentist coverage probability (CP), and mean
credible interval width (MCIW). We also include the total CPU
time (TCPU), effective sample size of the slowest component
(min. ESS) and multivariate effective sample size (MESS) (Vats,
Flegal, and Jones 2019) as measures of sampling efficiency. The
detailed definitions of the summary statistics are given in the
supplementary materials.

Following Faulkner and Minin (2018) and Kowal, Matteson,
and Ruppert (2019), we used evenly spaced grid locations of
{1, 2, . . . , 100} and designed the underlying trends to have an
approximate standard deviation of 9. We added two levels of
Gaussian noise (σ = 3.0 and σ = 4.5) to the underlying
trends, generating 50 noisy sequences for each combination of
trend and noise level. For DSP, we used the default parame-
ters, ran an initial burn-in of 1000 iterations followed by 2500
posterior draws. For PBTF, we set s2 to be

√
n = 10, ran the

default warm-up stage in DynamicHMC.jl and made another
2500 posterior draws. Table 2 shows the summary statistics

1https://github.com/drkowal/dsp

Table 2. Summary statistics for DSP and PBTF, averaged over 50 generated sequences at noise level σ = 3.

True trend Method MAD (s.d.) MCIW CP TCPU(s) min. ESS MESS

Piece. Linear BTF-BL 0.87 (0.18) 4.3 0.95 12 2271 4018
BTF-HS 0.73 (0.19) 3.7 0.95 7 1368 3275

BTF-DHS 0.70 (0.18) 3.7 0.95 17 880 3120
PBTF (k = 1) 0.82 (0.17) 3.9 0.94 70 1902 2037

Smooth trend BTF-BL 0.98 (0.16) 5.1 0.96 12 1674 2440
BTF-HS 1.00 (0.15) 5.1 0.95 7 973 2491

BTF-DHS 1.02 (0.15) 5.1 0.95 17 150 1893
PBTF (k = 2) 0.87 (0.16) 4.3 0.95 896 857 2684

Sinusoid BTF-BL 0.80 (0.14) 4.6 0.97 12 2080 4120
BTF-HS 0.83 (0.14) 4.7 0.97 7 1203 2340

BTF-DHS 0.86 (0.14) 4.8 0.97 17 260 1884
PBTF (k = 2) 0.70 (0.14) 3.9 0.97 927 1207 3686

Piece. Quad./ Cubic BTF-BL 0.77 (0.12) 4.3 0.97 12 845 4223
BTF-HS 0.78 (0.15) 4.1 0.96 7 378 2585

BTF-DHS 0.82 (0.15) 4.2 0.95 17 180 2190
PBTF (k = 2) 0.70 (0.13) 3.8 0.96 931 1439 3326

https://github.com/qhengncsu/ProxBTF.jl
https://github.com/qhengncsu/ProxBTF.jl
https://github.com/drkowal/dsp
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for different methods averaged over 50 generated sequences
with σ = 3.0. The results for noise level σ = 4.5 can be
found in the supplementary materials, which exhibits a similar
pattern.

The last three trends, namely smooth trend, sinuoid and
piecewise quadratic/cubic are better approximated by piecewise
quadratic functions. However, in Table 2 we only report the
results of DSP using k = 1. This is partly because the software
of DSP does not contain an option to fit models with k = 2. That
being said, the software of SPMRFs2 does offer an option to fit
models with k = 2. Nevertheless, for the last three trends, when
going from k = 1 to k = 2, SPMRFs overall suffers a decrease in
MAD and CP in contrary to one’s expectation. These additional
simulation results can be found in the supplementary materials.
SPMRFs’ worse performance with k = 2, despite the underlying
trends being better approximated by piecewise quadratic func-
tions, may be attributed to the fact that it is inherently harder to
sample from higher-order trend filtering models. In our frame-
work, third-order PBTF alleviates part of that difficulty through
leveraging the fused lasso subroutine, providing the best MAD
and the narrowest confidence bands for the last three trends
while maintaining ideal coverage probability.

BTF-HS achieves higher precision than BTF-BL and PBTF
for piecewise linear trend, demonstrating stronger adaptivity to
abrupt turns. This is attributed to the superior shrinkage proper-
ties of global-local priors like the horseshoe prior. Unfortunately,
nonparametric analogues of the horseshoe prior are nonconvex,
for example, Smoothly Clipped Absolute Deviation (SCAD)
penalty (Fan and Li 2001) and Minimax concave Penalty (MCP)
(Zhang 2010). Projection onto the epigraph of a nonconvex
function is generally nontrivial. Therefore, it is not immediately
obvious how to replicate the horseshoe prior’s shrinkage prop-
erty in our framework and presents an interesting avenue for
future work. BTF-DHS achieved even better precision than BTF-
HS for piecewise linear trend through modeling dependence
between the local scale parameters. However, we also see that it
will behave slightly worse than BTF-HS when modeling smooth
underlying trends.

We note that DSP only applies to data on an evenly spaced
grid. The framework of SPMRFs is extended to unevenly spaced
grids for k = 0 and k = 1 in Faulkner and Minin (2018)
using methods based on integrated Wiener processes. However,
Faulkner and Minin (2018) did not further pursue the same for
k = 2 due to its complexity. PBTF, on the other hand, naturally
handles unevenly spaced grids for k = 1, 2 due to using the
adjusted difference matrix D(x,k+1)

n in its prior. In this section,
we employed an evenly spaced grid {1, 2, . . . , n} in pursuit of
simplicity and conformity. The real data analysis in Section 7
and the thinning example in the supplementary materials are
both examples of third-order PBTF being applied to unevenly
spaced grids.

7. Real Data Example

We apply PBTF and PBSRTF to the Munich dataset as a real
data example. We focus on two variables in the dataset, with the

2https://github.com/jrfaulkner/spmrf

response being rent per square meter in Munich, Germany, and
the covariate being floor space in square meters. The dataset was
first analyzed by Rue and Held (2005) using Gaussian Markov
Random Fields. Faulkner and Minin (2018) analyzed this data
as an illustration of SPMRFs being applied on an unevenly
spaced grid. The dataset has 2035 observations in total and the
covariate floor space has 134 distinct values. Other than second-
order and third-order PBTF models, we also present second-
order PBSRTF model fits with “decreasing” and “decreasing-
convex” as shape restrictions. In the former case, we model the
assumption that rent per square meter decreases as floor space
increases. In the latter case, we model an additional diminishing
returns effect.

We used s2 = 2 × √
134 for PBTF and set μ = 4.0

for PBSRTF to promote a bit more regularity. Figure 4 shows
the posterior fits of the four different models. All four mod-
els captured an overall decreasing trend. It is notable that the
confidence bands are narrower over intermediate values of
floor space, which is expected as there are more data points
over this range of floor spaces. Third-order PBTF produced a
more variable posterior median and a wider confidence band
than second-order PBTF, suggesting that third-order PBTF
models exhibit more adaptivity but may be prone to over-
fitting. We notice that posterior fits with shape restrictions
have much narrower confidence bands compared with their
unconstrained counterparts. This is because the shape restric-
tions introduce additional regularization that further reduces
variance.

8. Discussion

In this article, we introduced a new proximal MCMC method-
ology, which incorporates the variance parameter σ 2 and the
regularization parameter α into posterior inference. The key to
extending the conventional proximal MCMC paradigm to a fully
Bayesian one is to use epigraph priors to induce sparsity and
regularity. By substituting the nonsmooth components of the
posterior with its Moreau-Yosida envelope, we can work with a
differentiable surrogate density, on which HMC is be applied for
efficient MCMC sampling.

As a proof of concept, we explored the application of
the proposed methodology in Bayesian trend filtering. Com-
pared with existing Bayesian trend filtering methods, our
approach achieves higher precision for underlying trends that
are better approximated by piecewise quadratic functions.
To demonstrate the flexibility of our framework, we also
explored incorporating shape restrictions like monotonicity and
convexity.

Although we focused on Bayesian trend filtering in this work,
the strategy of combining an epigraph prior with proximal
MCMC readily applies to other types of nonsmooth estima-
tion problems. For example, modern optimization extensively
uses nuclear norms to induce low-rank structure, therefore,
a Bayesian version of low-rank matrix completion based on
projection onto the epigraph of nuclear norm is an interesting
future venue. It is also of great appeal to venture beyond convex
penalties and constraints for greater modeling power in struc-
tured regression problems.

https://github.com/jrfaulkner/spmrf
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Figure 4. Posterior fits on Munich dataset. Plots show data points (green dots), posterior median (blue solid lines), and 95% Bayesian credible intervals (light blue bands).

Supplementary Materials

Title: Supplement to “Bayesian Trend Filtering via Proximal Markov Chain
Monte Carlo”. (.pdf file)

Software: Julia-package “ProxBTF.jl” containing code to perform the
methods described in the article and scripts (R and Julia) to reproduce
the numerical experiments. (.zipped file)
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