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MGLM: An R Package for Multivariate
Categorical Data Analysis
by Juhyun Kim, Yiwen Zhang, Joshua Day, Hua Zhou

Abstract Data with multiple responses is ubiquitous in modern applications. However, few tools are
available for regression analysis of multivariate counts. The most popular multinomial-logit model
has a very restrictive mean-variance structure, limiting its applicability to many data sets. This article
introduces an R package MGLM, short for multivariate response generalized linear models, that
expands the current tools for regression analysis of polytomous data. Distribution fitting, random
number generation, regression, and sparse regression are treated in a unifying framework. The
algorithm, usage, and implementation details are discussed.

Introduction

Multivariate categorical data arises in many fields, including genomics, image analysis, text mining,
and sports statistics. The multinomial-logit model (Agresti, 2002, Chapter 7) has been the most popular
tool for analyzing such data. However, it is limiting due to its specific mean-variance structure and
the strong assumption that the counts are negatively correlated. Models that address over-dispersion
relative to a multinomial distribution and incorporate positive and/or negative correlation structures
would offer greater flexibility for analysis of polytomous data.

In this article, we introduce an R package MGLM, short for multivariate response generalized
linear models. The MGLM package provides a unified framework for random number generation,
distribution fitting, regression, hypothesis testing, and variable selection for multivariate response
generalized linear models, particularly four models listed in Table 1. These models considerably
broaden the class of generalized linear models (GLM) for analysis of multivariate categorical data.

MGLM overlaps little with existing packages in R and other softwares. The standard multinomial-
logit model is implemented in several R packages (Venables and Ripley, 2002) with VGAM (Yee, 2010,
2015, 2017) being the most comprehensive. We include the classical multinomial-logit regression model
in MGLM not only for completeness, but also to complement it with various penalty methods for vari-
able selection and regularization. If invoked by the group penalty, MGLM is able to perform variable
selection at the predictor level for easier interpretation. This is different from the elastic net penalized
multinomial-logit model implemented in glmnet (Friedman et al., 2010), which does selection at the
matrix entry level. Although MGLM focuses on regression, it also provides distribution fitting and
random number generation for the models listed in Table 1. VGAM and dirmult (Tvedebrink, 2010)
packages can estimate the parameters of the Dirichlet-multinomial (DM) distribution using Fisher’s
scoring and Newton’s method respectively. As indicated in the manual (Yee, 2017), the convergence
of Fisher’s scoring method may be slow due to the difficulty in evaluating the expected information
matrix. Further the Newton’s method is unstable as the log-likelihood function may be non-concave.
As explained later, MGLM achieves both stability and efficiency via a careful algorithmic design. In
SAS, PROC LOGISTIC can fit multinomial-logit model. In Matlab, the mnrfit function fits multinomial-
logit regression. Alternative link functions (probit, loglog, complementary loglog) are implemented
only for ordinal responses. Other regression models in Table 1 are not implemented in either SAS or
Matlab.

There are some limitations to the MGLM. First, MGLM only handles nominal responses; ordinal
responses are not incorporated in current implementation. MGLM also does not allow covariates to
take a different value for each category, which can be useful in applications such as modeling consumer
choice among a discrete number of products (Yee, 2015, Chapter 14). Lastly, current implementation of
MGLM does not permit parameter constraints.

MGLM provides standard errors for all estimates, reports significance of regression covariates
based on the Wald test (default) or the likelihood ratio test (LRT), and outputs the AIC (Akaike
information criterion) and BIC (Bayesian information criterion) of the fitted model to aid model choice
by users. Model selection via regularization is automated by computing the solution path on a grid of
tuning parameter values and then reporting the regularized estimate with minimal BIC. With large
data sets in mind, we pay particular attention to computational efficiency. For numerical examples in
this article, we report the run times whenever possible. The results are obtained on a laptop with Intel
Core i7 CPU @ 2.9GHz and 16G memory using MGLM 0.1.0 under R 3.4.3.
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Model No. regress. param. Correlation MGLM code

Multinomial p(d− 1) Negative dist='MN'
Dirichlet-multinomial pd Negative dist='DM'
Negative multinomial p(d + 1) or pd + 1 Positive dist='NegMN'
Gen. Dirichlet-multinomial 2p(d− 1) Negative and positive dist='GDM'

Table 1: Multivariate generalized linear model implemented in the MGLM package. d is the number
of categories and p is the number of predictors in the regression model.

Multivariate generalized linear models (MGLM)

This section details the models implemented in MGLM. Table 1 summarizes the multivariate models
implemented in the R package. They are multivariate analogs of binomial, beta-binomial, and negative
binomial models. For each model, we specify the probability mass function of the response vector y,
the link function that relates distribution parameters to covariates, and the log-likelihood function of a
finite sample. We start from the classical multinomial-logit model.

Multinomial (MN) model

The probability mass function of a d dimensional multinomial sample y = (y1, . . . , yd)
T with batch

size m = ∑d
j=1 yj and parameter p = (p1, . . . , pd) is

f (y|p) =
(

m
y

) d

∏
j=1

p
yj

j .

The parameter p is linked to the covariate vector x ∈ Rp via the multinomial-Poisson transformation
(Baker, 1994; Lang, 1996)

pj =
exT βj

∑j′ e
xT βj′

, j = 1, . . . , d,

where β1, . . . , βd ∈ Rp are the regression coefficients. For identifiability, we constrain βd = 0 and only
estimate β1, . . . , βd−1, which are collected in the regression coefficient matrix B ∈ Rp×(d−1). Given
independent observations (yi, xi), i = 1, . . . , n, the log-likelihood is
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yij
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Because the log-sum-exponential mapping (η1, . . . , ηd)
T 7→ ln ∑j eηj is convex (Boyd and Vanden-

berghe, 2004, p72), the log-likelihood function is concave. This nice feature makes maximum likelihood
estimation relatively easy for multinomial-logit model. Unfortunately, convexity is lost in other models
listed in Table 1.

Dirichlet-multinomial (DM) model

The mean-variance structure of the MN model does not allow over-dispersion, which is common
in real data. DM distribution models the probability parameter p in the MN model by a Dirichlet
distribution. The probability mass of a d-category count vector y over m = ∑j yj trials under DM with
parameter α = (α1, . . . , αd), αj > 0 and proportion vector p ∈ ∆d = {(p1, . . . , pd) : pj ≥ 0, ∑j pj = 1}
is
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f (y|α) =
∫
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where (a)k = a(a + 1) · · · (a + k− 1) for nonnegative integer k denotes the rising factorial. The last
equality is due to the identity Γ(a + k)/Γ(a) = (a)k (Graham et al., 1994). Because the data yj and
parameter αj are intertwined in the gamma (or rising factorial) terms and do not factorize, the DM
distribution does not belong to the exponential family. To incorporate covariates, the inverse link
function

αj = exT βj , j = 1, . . . , d

relates the parameter α = (α1, . . . , αd) of the DM distribution to the covariates x. The log-likelihood
for independent data points (yi, xi), i = 1, . . . , n, takes the form
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with B = (β1, . . . , βd) ∈ Rp×d collecting all regression coefficients. The log-likelihood, as a difference
of two convex terms, is not concave in general.

Negative multinomial (NegMN) model

The counts Yj in both MN and DM models are negatively correlated, restricting their use for counts
with positive correlation. The NegMN distribution provides a natural model for positively correlated
count data. The probability mass of a count vector y under a NegMN distribution with parameter
(p1, . . . , pd+1, φ), ∑d+1

j=1 pj = 1, pj, φ > 0, is

f (y|p, φ) =
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m

)(
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m!

(
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) d
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p
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j pφ
d+1,

where (φ+m−1
m ) =

(φ)m
m! is the general binomial coefficient. The parameter φ and the data m do not

factorize. Therefore, NegMN does not belong to the exponential family when φ is unknown. We use
the inverse link functions

pj =
exT αj

1 + ∑d
j=1 exT αj

, 1 ≤ j ≤ d, pd+1 =
1

1 + ∑d
j=1 exT αj

, φ = exT β

to relate the covariates x to distribution parameter (p1, . . . , pd+1, φ). Let B = (α1, . . . , αd, β) ∈ Rp×(d+1)

collect all the regression coefficients. Given n independent data points (yi, xi), i = 1, . . . , n, the log-
likelihood is
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which in general is not concave in αj and β.

In some applications the over-dispersion parameter φ may not depend on the covariates x. MGLM
offers the option to model the responses yi to share a common dispersion parameter φ, without linking
it to the covariates. In this case, the log-likelihood is
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The model size is pd + 1 and MGLM outputs the estimates (α̂1, . . . , α̂d, φ̂) and their standard errors.

Generalized Dirichlet-multinomial (GDM) model

In the previous three models, the multivariate counts have either pairwise negative correlation
(MN and DM) or pairwise positive correlation (NegMN). It is possible to relax these restrictions by
choosing a more flexible mixing distribution for the probability vector p in MN model. Connor and
Mosimann (1969) suggest a generalization of the Dirichlet distribution that meets this challenge. The
resulting admixed distribution, called the GDM distribution, provides a flexible model for multivariate
categorical data with a general correlation structure (Bouguila, 2008; Zhou and Lange, 2010).

The probability mass of a count vector y over m = ∑j yj trials under GDM with parameter
(α, β) = (α1, . . . , αd−1, β1, . . . , βd−1), αj, β j > 0, is

f (y|α, β) =
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, (1)

where zj = ∑d
k=j yk. Again it is clear that the GDM distribution does not belong to the exponential

family, since the parameter αj, β j and data yj, zj do not factorize.

We propose the inverse link functions

αj = exT αj , β j = exT βj , 1 ≤ j ≤ d− 1,

to relate the covariates x and parameter (α1, . . . , αd−1, β1, . . . , βd−1) of the GDM distribution (1).
Let B = (α1, . . . , αd−1, β1, . . . , βd−1) ∈ Rp×2(d−1) collect all the regression coefficients. Given n
independent data points (yi, xi), the log-likelihood is
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Again the log-likelihood is not concave in general.

Which model to use?

When there are no covariates, multinomial model is a special case of the DM models, which in turn
is a sub-model of the GDM model. That is, MN ⊂ DM ⊂ GDM. The distribution fitting function
MGLMfit reports the p-value of the LRT for comparing the fitted model with the most commonly
used multinomial model. NegMN model does not have such a relationship with any of the other
three models. Therefore, no LRT is performed when dist="NegMN" in the distribution fitting function
MGLMfit.

For regression, there is no nesting structure among the models in Table 1. The regression function
MGLMreg outputs AIC and BIC of the fitted model to aid users in choosing an appropriate regression
model for their data.
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Standard errors and testing

Standard errors for both distribution fitting (MGLMfit) and regression estimates (MGLMreg) are calculated
based on the observed information matrix, as it provides a reasonable approximation to the expected
information matrix and is even preferred as argued by Efron and Hinkley (1978).

Unlike regression for univariate responses, the MGLM regression parameter is a matrix B =
(β1, . . . , βde

) ∈ Rp×de with each row Bk,· corresponding to the effects of one predictor. Here de = d− 1
(MN), d (DM), d+ 1 (NegMN), or 2(d− 1) (GDM). Therefore, the hypotheses for testing the significance
of the k-th covariate are:

H0 : ‖BT
k,·‖2 = 0 vs Ha : ‖BT

k,·‖ 6= 0.

By default, MGLMreg assesses the significance of each predictor by the Wald test. Let

Σ̂ = I−1
obs(B̂) = [−∇2`(B̂)]−1 ∈ Rpde×pde

be the inverse of the observed information matrix at the maximum likelihood estimate (MLE) B̂. Then
the Wald statistic is computed as

Wk = B̂k,·Σ̂k,k B̂
T
k,·,

where Σ̂k,k is the sub-matrix of Σ̂ obtained by selecting rows and columns corresponding to the entries
of Bk,·. Wk is asymptotically distributed as a chi-square distribution with de degrees of freedom under
the null distribution, yielding the p-values reported by MGLMreg. Users can also easily invoke the LRT
by calling MGLMreg with option LRT=TRUE. LRT requires more computation than Wald test as it needs
to perform MLE on p sub-models.

Regularization

The number of parameters, pde, in the multivariate response models can be unwieldy with a moderate
to large number of predictors. When the sample size n is limited or even smaller than pde, regulariza-
tion is necessary for variable selection, model interpretation, and improving the risk property of the
estimate. In general, the MGLMsparsereg function solves the regularized problem

min
B
−`(B) + J(B),

where ` is the log-likelihood function and J is a penalty term. The choice of J depends on specific
applications. We implemented three classes of penalties. Below, S is an index set for the set of
predictors subject to regularization, which can be selectively specified by the users.

In elementwise regularization (penalty='sweep'),

J(B) = ∑
k∈S

de

∑
j=1

Pη(|βkj|, λ),

where P is a scalar penalty function, λ is the penalty tuning constant, and η is a parameter indexing
member of a penalty family. Choices of the penalty families include: power family (Frank and Fried-
man, 1993), where Pη(|x|, λ) = λ|x|η , η ∈ (0, 2], and in particular lasso (Tibshirani, 1996) (η = 1) and
ridge (η = 2); elastic net (Zou and Hastie, 2005), where Pη(|x|, λ) = λ[(η − 1)x2/2 + (2− η)|x|], η ∈
[1, 2]; SCAD (Fan and Li, 2001), where ∂/∂|x|Pη(|x|, λ) = λ

{
1{|x|≤λ} + (ηλ− |x|)+/(η − 1)λ1{|x|>λ}

}
,

η > 2; and MC+ penalty (Zhang, 2010), where Pη(|x|, λ) =
{

λ|x| − x2/(2η)
}

1{|x|<ηλ}+ 0.5λ2η1{|x|≥ηλ}.
The special case of elastic net for the multinomial-logit model is also implemented in the popular
glmnet package by Friedman et al. (2010) using coordinate descent algorithm. MGLM implements a
generic accelerated proximal gradient method that applies to the following two penalties too.

In groupwise regularization (penalty='group'),

J(B) = λ ∑
k∈S
‖Bk,·‖2 = λ ∑

k∈S

 de

∑
j=1

β2
kj

1/2

.

The group penalty (Yuan and Lin, 2006; Meier et al., 2008) achieves variable selection at the predictor
level and leads to a more interpretable model.
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Shrinkage and sparsity in terms of the rank of B is achieved by the nuclear norm regularization
(penalty='nuclear')

J(B) = ||B||∗ = λ ∑
i

σi(B),

where σi(B)’s are the singular values of the matrix B. The nuclear norm ||B||∗ is a suitable convex
relaxation of the rank of a matrix parameter. It encourages low rank of the parameter matrix estimate
and has been successfully employed in the matrix completion problem (Mazumder et al., 2010),
regression with matrix covariates (Zhou and Li, 2014) and predicting at-bat results in baseball (?).

The wrapper function MGLMtune facilitates the tuning procedure by performing the regularized
estimation over a grid of 30 (default) tuning parameter values using warm start and reports the
optimal tuning parameter according to BIC. Users can also supply their own grid points.

Optimization algorithms and implementation

As the DM, NegMN, and GDM distributions do not belong to the exponential family, the usual
iteratively reweighted least squares method for maximum likelihood estimation of GLM does not
apply. The main issue lies in the difficulty of calculating the expected information matrix, which
involves evaluating numerous tail probabilities of the marginal distribution (Paul et al., 2005; Zhou
and Lange, 2010; Zhou and Zhang, 2012). On the other hand, Newton’s method suffers from instability
since the log-likelihood functions are non-concave in general.

For distribution fitting, Zhou and Lange (2010) derive stable algorithms based on the minorization-
maximization (MM) principle (Lange et al., 2000). Similar to the classical expectation-maximization
algorithm, MM algorithm increases the objective value at each iteration and converges to a stationarity
point of objective function under mild regularity conditions.

For regression models, Zhang et al. (2017) propose an iteratively reweighted Poisson regression
(IRPR) method for maximum likelihood estimation. Their derivation again hinges upon the MM
principle, resulting in the much desirable stability of the IRPR algorithm which is critical as the number
of parameters is potentially large.

In practice, MM algorithm may suffer from slow convergence especially in the proximity of the
optimum. MGLM organically combines the MM algorithm and the Newton’s method. At each
iteration, it computes both MM and Newton updates and chooses the one that results in a higher
log-likelihood. Thus, stability is ensured as the log-likelihood always increases. When sufficiently
close to the optimum, Newton’s method takes over and quickly converges to the MLE in just a few
iterations.

An added advantage of the MM algorithm is that it separates parameters and embraces parallel
computing (Zhou et al., 2010). Each iteration of the IRPR algorithm involves solving de independent
Poisson regressions (Zhang et al., 2017) that can be carried out in parallel. Building upon the parallel
package in R, the MGLMreg regression function supports multi-threading on a multi-core machine.

For sparse regression in the MGLMsparsereg function, we implemented the accelerated proximal
gradient (Nesterov) method (Zhang et al., 2017). Each iteration only involves evaluation of the gradient
of the negative log-likelihood, followed by the elementwise, groupwise, or singular value thresholding
according to the regularization being used, and thus scales well with the problem size.

The R package aspect

Three main functions of the MGLM package are MGLMfit for fitting multivariate distributions, MGLMreg
for fitting multivariate response regressions, and MGLMsparsereg for fitting sparse regressions. The
package adopts S4 object system. In this section, we demonstrate their basic usage using a simulated
RNA-seq data set. The R vignette included in the package provides more extensive examples.

The rnaseq data that comes with the package is simulated from the isoform package (Sun, 2014;
Sun et al., 2015) and mimics the real counts generated by the RNA-seq platforms. The simulation
mechanism follows the biological process and has nothing to do with the models in Table 1.

In this example, 6 exons are expressed in a gene. Each observation consists of the expression levels
(represented by counts) of each exon along with covariates totalReads, treatment, gender, and age
of an individual. 200 observations are simulated. In the generative model, exon expression levels
are affected by intercept, number of total reads (on log scale), and treatment. Age and gender are
unrelated to the exon counts.

R> library("MGLM")
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R> data("rnaseq")
R> data <- rnaseq[, 1:6]
R> head(rnaseq, n = 3)

X1 X2 X3 X4 X5 X6 totalReads treatment gender age
1 295 65 19 114 54 20 28317494 0 0 57
2 213 126 12 96 50 4 20015549 0 0 67
3 322 147 23 245 42 19 35318251 0 1 37

R> dim(rnaseq)

[1] 200 10

Distribution fitting

We first ignore covariates and demonstrate distribution fitting and model selection with BIC and LRT.
The multi-categorical distribution fitting is performed by the function MGLMfit.

The primary inputs of the function are the multi-categorical count data in the format of data frame
or matrix and the distribution intended to fit. The user can also use the weight argument to specify
the weight of each observation. Initial values of the iterative algorithm can also be determined by
the user using init argument. The function also has epsilon, maxiters, and display to control the
convergence threshold, maximum number of iterations to run, and whether to display the result from
each iteration, respectively.

The outputs are returned in a list of class “MGLMfit”, including parameter estimates, their standard
errors, log-likelihood, AIC, BIC, number of iterations to converge. The inversed information matrices
and gradients are also returned, but are not printed, in order to keep the printed output concise. When
fitting DM and GDM distribution, we also perform LRT, testing against the null hypothesis of using
multinomial model. p-values of the LRTs are returned.

The following snippets fit the DM

R> system.time (
+ dmFit <- MGLMfit(data, dist = "DM")
+ )

user system elapsed
0.255 0.007 0.263

R> dmFit

estimate SE
alpha_X1 6.128117 0.327888
alpha_X2 2.413647 0.139676
alpha_X3 1.625627 0.099424
alpha_X4 6.822929 0.362568
alpha_X5 2.214236 0.129233
alpha_X6 0.784028 0.051369

Distribution: Dirichlet Multinomial
Log-likelihood: -4968.666
BIC: 9969.121
AIC: 9949.331
LRT test p value: <0.0001
Iterations: 6

and the GDM model

R> system.time(
+ gdmFit <- MGLMfit(data, dist = "GDM")
+ )

user system elapsed
0.380 0.019 0.399

R> gdmFit
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estimate SE
alpha_X1 3.741846 0.367088
alpha_X2 2.400909 0.815431
alpha_X3 1.558396 0.233136
alpha_X4 6.988354 1.164764
alpha_X5 20.689398 0.149279
beta_X1 8.026379 0.966502
beta_X2 11.038376 0.725978
beta_X3 8.961428 0.264520
beta_X4 2.702723 2.871718
beta_X5 4.854816 0.648271

Distribution: Generalized Dirichlet Multinomial
Log-likelihood: -4841.231
BIC: 9735.446
AIC: 9702.463
LRT test p value: <0.0001
Iterations: 59

Both dmFit and gdmFit give the LRT p-value for comparing the fitted model with the MN model.
In this example, both are significantly better than MN, with p-values� 0.05. To compare DM and
GDM, we can either compare their BICs or perform a formal LRT.

R> LRT <- -2 * (logLik(dmFit) - logLik(gdmFit))
R> pchisq(LRT, ncol(data) - 2, lower.tail = FALSE)

[1] 5.817352e-54

Both suggest that GDM provides a significantly better fit than DM.

The NegMN model

R> system.time(
+ negmnFit <- MGLMfit(data, dist = "NegMN")
+ )

user system elapsed
0.006 0.002 0.009

R> print(negmnFit)

estimate SE
p_X1 0.311486 0.001362
p_X2 0.106491 0.000850
p_X3 0.098373 0.000819
p_X4 0.350496 0.001425
p_X5 0.094263 0.000803
p_X6 0.021220 0.000389
phi 12.232569 1.229253

Distribution: Negative Multinomial
Log-likelihood: -20673.71
BIC: 41384.52
AIC: 41361.43
LRT test p value:
Iterations: 3

yields a much larger BIC than those of DM and GDM. LRT does not apply here, since NegMN is not a
sub-model of the other three.

Regression

The more interesting question is whether the covariates have a significant relationship to the responses.
Regressions are performed using function MGLMreg. First, the regression formula is required by the
MGLMreg function. When specifying the regression formula, the response matrix is on the left hand
side and the covariates on the right, following the convention in lm and glm. The model is specified
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using the dist argument. The input argument data is optional. When specified, the formula is built
based on the supplied data frame; otherwise, the function searches through the global environment
for the data elements. Similar to the distribution fitting function, weights of the observations can be
specified by the weight argument, and initial values can be supplied using init arguments. Parallel
computing is also implemented in the package. Setting parallel=TRUE and giving the number of cores
using the argument core invokes multi-threading. The other arguments used to control the algorithm
convergence and display include epsilon, maxiters, display, and LRT.

The output of MGLMreg is a list of class “MGLMreg”, containing the estimated regression coefficients,
their standard errors, Wald test statistics and their corresponding p-values for each predictor, log-
likelihood, AIC, BIC, gradient and Hessian matrix at the estimate, number of iterations, and fitted
values.

We fit the four regression models in Table 1 with all 5 covariates: intercept, number of total reads
(on log scale), treatment, age, and gender.

A few observations can be made from the following output. BIC indicates the GDM model as the
best fit, followed by the DM model. This is consistent with the distribution fitting results. Note that
the hypothesis testing results in the four models are different. In the MN model, all covariates are
significant; however, this is not true because age and gender have no effects in the generative model.
DM also wrongly identifies age as a significant predictor. Only the GDM model correctly identifies
true significant predictors.

MN regression

R> system.time(
+ mnreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
+ treatment + age + gender, data = rnaseq, dist = "MN")
+ )

user system elapsed
0.142 0.006 0.149

R> print(mnreg)

Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
treatment + age + gender, data = rnaseq, dist = "MN")

Coefficients:
X1 X2 X3 X4 X5

[1,] 4.942732 5.009649 -3.792216 4.435434 4.027689
[2,] -0.112845 -0.170222 0.219277 -0.107260 -0.120928
[3,] -0.022655 -0.043099 2.745277 1.405742 0.092246
[4,] -0.006187 -0.009709 -0.005907 -0.010945 -0.009599
[5,] 0.032676 0.100389 0.020663 0.103859 0.009514

Hypothesis test:
wald value Pr(>wald)

(Intercept) 144.88789 1.634268e-29
log(totalReads) 69.92572 1.061922e-13
treatment 18364.13260 0.000000e+00
age 79.91023 8.762650e-16
gender 52.33670 4.601575e-10

Distribution: Multinomial
Log-likelihood: -7506.393
BIC: 15145.24
AIC: 15062.79
Iterations: 6

DM regression

R> system.time(
+ dmreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
+ treatment + age + gender, data = rnaseq, dist = "DM")
+ )
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user system elapsed
0.182 0.004 0.187

R> print(dmreg)

Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
treatment + age + gender, data = rnaseq, dist = "DM")

Coefficients:
X1 X2 X3 X4 X5 X6

[1,] -0.895850 -1.096921 -8.997414 -1.736871 -1.774227 -5.646822
[2,] 0.221988 0.186919 0.536572 0.252679 0.216672 0.347271
[3,] -0.679291 -0.686881 1.835585 0.707954 -0.546469 -0.543134
[4,] 0.010245 0.005227 0.009134 0.004252 0.006090 0.011642
[5,] -0.026177 0.040244 -0.052842 0.023178 -0.058339 -0.039139

Hypothesis test:
wald value Pr(>wald)

(Intercept) 14.579069 0.023796
log(totalReads) 8.502549 0.203547
treatment 1851.437449 0.000000
age 13.131512 0.040994
gender 4.133364 0.658634

Distribution: Dirichlet Multinomial
Log-likelihood: -4386.941
BIC: 8932.831
AIC: 8833.882
Iterations: 9

GDM regression

R> system.time(
+ gdmreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
+ treatment + age + gender, data = rnaseq, dist = "GDM")
+ )

user system elapsed
0.219 0.003 0.224

R> print(gdmreg)

Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
treatment + age + gender, data = rnaseq, dist = "GDM")

Coefficients:
alpha_X4 alpha_X1 alpha_X2 alpha_X3 alpha_X5 beta_X4

[1,] 5.987993 -7.056673 0.456088 -10.120738 2.639396 4.661089
[2,] -0.215099 0.555973 0.039553 0.720358 -0.016121 -0.140896
[3,] -0.047691 -0.329320 0.979359 0.099958 0.063393 0.628878
[4,] 0.006661 -0.004343 0.019361 0.008173 0.012397 0.003224
[5,] 0.233006 0.374838 -0.186420 -0.202417 0.144289 0.212071

beta_X1 beta_X2 beta_X3 beta_X5
[1,] -9.789127 7.095061 -9.530008 -1.687615
[2,] 0.713819 -0.222984 0.743146 0.133985
[3,] 0.746198 -1.591630 -0.923712 -0.042441
[4,] 0.000453 0.015945 0.012541 0.019188
[5,] 0.273256 -0.233121 -0.270428 0.122062

Hypothesis test:
wald value Pr(>wald)

(Intercept) 15.40109 0.118109
log(totalReads) 11.04187 0.354265
treatment 2549.23829 0.000000
age 16.42846 0.088007
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gender 10.72122 0.379646

Distribution: Generalized Dirichlet Multinomial
Log-likelihood: -4289.281
BIC: 8843.479
AIC: 8678.563
Iterations: 46

NegMN regression

There are two variants of NegMN regression, depending on whether to link over-dispersion parameter
to covariates. The default setting regBeta=FALSE instructs MGLMreg to fit the NegMN regression with
all observations sharing the same over-dispersion parameter value. There are pd + 1 parameters.

R> system.time(
+ negmnreg2 <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~
+ log(totalReads) + treatment + age + gender,
+ data = rnaseq, dist = "NegMN", regBeta = FALSE)
+ )

user system elapsed
0.196 0.004 0.201

R> print(negmnreg2)

Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
treatment + age + gender, data = rnaseq, dist = "NegMN",
regBeta = FALSE)

Coefficients:
$alpha

X1 X2 X3 X4
(Intercept) -13.587385 -13.521818 -22.380101 -14.131348
log(totalReads) 0.907716 0.850412 1.242922 0.915258
treatment -0.753113 -0.773507 2.014641 0.675195
age 0.002583 -0.000938 0.002916 -0.002141
gender -0.060696 0.007022 -0.069502 0.012499

X5 X6
(Intercept) -14.507698 -18.526425
log(totalReads) 0.899918 1.020360
treatment -0.638296 -0.730410
age -0.000824 0.008766
gender -0.083681 -0.093397

$phi
phi

31.6062

Hypothesis test:
wald value Pr(>wald)

(Intercept) 385.75540 3.223413e-80
log(totalReads) 368.08485 2.017976e-76
treatment 18377.52958 0.000000e+00
age 79.70906 4.103065e-15
gender 54.84662 4.978098e-10

Distribution: Negative Multinomial
Log-likelihood: -8746.689
BIC: 17657.63
AIC: 17555.38
Iterations: 35

regBeta=TRUE instructs MGLMreg to link over-dispersion parameter to covariates and there are p(d + 1)
regression coefficients. Small likelihood, larger AIC/BIC and slow convergence reflects the lack of fit
of this model.
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R> system.time(
+ negmnreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~
+ log(totalReads) + treatment + age + gender,
+ data = rnaseq, dist = "NegMN", regBeta = TRUE)
+ )

user system elapsed
9.866 0.023 9.898

R> print(negmnreg)

Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) +
treatment + age + gender, data = rnaseq, dist = "NegMN",
regBeta = TRUE)

Coefficients:
X1 X2 X3 X4

(Intercept) -17.648355 -17.582555 -26.462109 -18.204282
log(totalReads) 1.192057 1.134742 1.528500 1.200309
treatment -0.877324 -0.897715 1.890375 0.550944
age -0.013397 -0.016918 -0.013072 -0.018127
gender -0.101456 -0.033730 -0.110253 -0.028252

X5 X6 phi
(Intercept) -18.569609 -22.587821 7.543157
log(totalReads) 1.184315 1.304725 -0.285737
treatment -0.762503 -0.854624 0.125412
age -0.016804 -0.007213 0.015871
gender -0.124433 -0.134173 0.041254

Hypothesis test:
wald value Pr(>wald)

(Intercept) 291.48017 3.987668e-59
log(totalReads) 371.39226 3.232075e-76
treatment 18377.18774 0.000000e+00
age 81.70350 6.187095e-15
gender 54.79955 1.633654e-09

Distribution: Negative Multinomial
Log-likelihood: -8745.162
BIC: 17675.77
AIC: 17560.32
Iterations: 140

Sparse regression

The function MGLMsparsereg performs regularized estimation. Similar to MGLMreg, the inputs of the
sparse regression function include formula, data, dist, and the convergence controlling arguments.
The function also requires the tuning parameter lambda, and the penalty type argument penalty. The
outputs include the coefficient estimates, log-likelihood, AIC, BIC, degrees of freedom, and the number
of iterations.

We simulate 100 data points from a 5-variate DM model using 10 covariates. Only three of them (1,
3, and 5) have non-zero effects. For each 5-variate data point, batch size, or the total number of objects
that are put into 5 categories, is drawn from Bin(200, 0.8).

R> dist <- "DM"
R> n <- 100
R> p <- 10
R> d <- 5
R> set.seed(118)
R> m <- rbinom(n, 200, 0.8)
R> X <- matrix(rnorm(n * p), n, p)
R> alpha <- matrix(0, p, d)
R> alpha[c(1, 3, 5), ] <- 1
R> Alpha <- exp(X %*% alpha)
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R> Y <- rdirmn(size = m, alpha = Alpha)
R> length(m)

[1] 100

R> head(m)

[1] 167 160 162 159 156 157

R> head(Y)

[,1] [,2] [,3] [,4] [,5]
[1,] 24 7 112 15 9
[2,] 34 33 31 38 24
[3,] 0 0 0 0 162
[4,] 7 17 84 29 22
[5,] 0 33 0 123 0
[6,] 0 0 3 154 0

R> head(rowSums(Y))

[1] 167 160 162 159 156 157

We demonstrate the regularized estimation by group, nuclear norm, and element-wise penalization.

Variable selection by group penalty

With input lambda=Inf, MGLMsparsereg returns λmax, the maximum value the tuning parameter can
take such that not all regression coefficient estimates are 0.

R> pen <- "group"
R> ngridpt <- 30
R> spmodelfit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist,
+ lambda = Inf, penalty = pen)
R> maxlambda <- maxlambda(spmodelfit)
R> lambdas <- exp(seq(from = log(maxlambda), to = log(maxlambda / nrow(Y)),
+ length.out = ngridpt))

Tuning is performed on 30 grid points. The left panel of Figure 1 displays the BIC trace along the
solution path.

R> BICs <- rep(0, ngridpt)
R> AICs <- rep(0, ngridpt)
R> LogLs <- rep(0, ngridpt)
R> Dofs <- rep(0, ngridpt)
R> ptm <- proc.time()
R> for (j in 1:ngridpt) {
+ if (j == 1) {
+ B0 <- matrix(0, p, ncol(coef(spmodelfit)))
+ }
+ else B0 <- B_hat
+ select.fit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist,
+ lambda = lambdas[j], penalty = pen, init = B0)
+ B_hat <- coef(select.fit)
+ BICs[j] <- BIC(select.fit)
+ LogLs[j] <- logLik(select.fit)
+ AICs[j] <- AIC(select.fit)
+ Dofs[j] <- dof(select.fit)
+ }
R> proc.time() - ptm

user system elapsed
4.469 0.026 4.500

R> pen <- "group"
R> ngridpt <- 30
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Figure 1: Variable selection by the group penalty. Left: BIC trace. Right: Regularized estimate B̂(λ) at
the optimal λ displayed in gray scale.

R> spmodelfit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist,
+ lambda = Inf, penalty = pen)
R> maxlambda <- maxlambda(spmodelfit)
R> lambdas <- exp(seq(from = log(maxlambda), to = log(maxlambda / nrow(Y)),
+ length.out = ngridpt))

The right panel of Figure 1 displays the regularized estimate B̂(λ) at the tuning parameter value
with minimal BIC.

R> chosen.lambda <- lambdas[which.min(BICs)]
R> select <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist,
+ lambda = chosen.lambda, penalty = pen)

Alternatively, the function MGLMtune automates the tuning procedure and reports the regularized
estimate at the optimal tuning parameter value according to BIC.

R> selectTune <- MGLMtune(Y ~ 0 + X, dist = dist, penalty = pen, ngridpt = 30,
+ display = FALSE)

The option ngridpt sets the number of grid points ngrid and the sequence of tuning parameters is
equally spaced on the log scale within the interval [λmax/ngrid, λmax].

Low rank regression by nuclear norm regularization

Nuclear norm regularization is invoked by setting penalty="nuclear".

R> system.time (
+ select <- MGLMtune(Y ~ 0 + X, dist = "DM", penalty = "nuclear",
+ ngridpt = 30, display = FALSE))

user system elapsed
4.475 0.037 4.528

Figure 2 displays the BIC trace plot and the regularized estimate at optimal λ from the same data by
the nuclear norm penalty.

Select by entries

R> system.time (
+ select <- MGLMtune(Y ~ 0 + X, dist = "DM", penalty = "sweep", ngridpt = 30,
+ display = FALSE))
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Figure 2: Low rank regression by the nuclear norm penalty. Left: BIC trace. Right: Regularized
estimate B̂(λ) at the optimal λ displayed in gray scale.
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Figure 3: Select by parameter matrix entries with L1 norm penalty. Left: BIC trace. Right: Regularized
estimate B̂(λ) at the optimal λ displayed in gray scale.

user system elapsed
4.448 0.038 4.504

Figure 3 displays the BIC trace plot and the regularized estimate at optimal λ from the same data by
the element-wise lasso penalty.

Discussion

This article introduces the MGLM package for analysis of multivariate categorical data. Distribution
fitting, regression, sparse regression, and random number generation are implemented in a simple
and unified framework. It timely responds to the current challenge of multivariate categorical data
analysis arising from modern technology such as RNA-seq. The R package is available on CRAN.

There are several possible extensions that would be useful to the package. Some of them include:

1. Alternative parameterization. Some models in Table 1 admits alternative parameterization. For
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instance, the DM distribution can be re-parameterized as

θ =
1

∑j αj
, pj =

αj

∑j′ αj′
, j = 1, . . . , d.

in terms of the proportion vector p = (p1, . . . , pd) ∈ ∆d and the overdispersion parameter θ > 0.
Appropriate inverse link function can be

pj =
exT βj

1 + ∑d−1
j′=1 exT βj′

, j = 1, . . . , d− 1,

θ = exT βd .

The multinomial-logit model can be treated as a special case with βd = 0. Zhou and Lange
(2010) discuss an algorithm for distribution fitting using this parameterization. Corresponding
estimation algorithm for the regression model needs to be devised and implemented. Similar
re-parameterization applies to the GDM model.

2. Alternative link function. Current version only implements the log link function for positive
distribution parameter and logit link for the probability vector. Inclusion of alternative link
functions such as probit and cloglog would expand the flexibility of the models.

3. Ordinal categorical responses. Multinomial-logit model can be adapted to ordinal categorical
responses (Agresti, 2002, Chapter 7). Parallel developments and implementation for the DM,
NegMN, and GDM models are worth considering.

4. Parameter constraints. Current version does not allow constraints among regression parameters.
MGLMreg calls glm.fit functions to fit weighted Poisson regressions in each iteration; we may
call functions from glmc package (Chaudhuri et al., 2006) instead to incorporate parameter
constraints.

5. The xij argument (Yee, 2015, Chapter 14). Current version assumes the same set of covariates for
all categories. Allowing covariates to take different values for each category can be useful, e.g.,
for discrete choice modeling in econometrics. The corresponding algorithm and implementation
are worth exploring.

The MGLM package for R is continually being developed.

Acknowledgments

The work is partially supported by NSF grants DMS-1127914, DMS-1310319 and NIH grants HG006139,
GM105785 and GM53275.

Bibliography

A. Agresti. Categorical Data Analysis. Wiley Series in Probability and Statistics. John Wiley & Sons,
New York, 2nd edition, 2002. ISBN 0-471-36093-7. [p1, 16]

S. G. Baker. The multinomial-poisson transformation. Journal of the Royal Statistical Society. Series D (The
Statistician), 43(4):pp. 495–504, 1994. ISSN 00390526. URL http://www.jstor.org/stable/2348134.
[p2]

N. Bouguila. Clustering of count data using generalized dirichlet multinomial distributions. IEEE
Transactions on Knowledge and Data Engineering, 20(4):462–474, 2008. ISSN 1041-4347. URL http:
//doi.org/10.1109/TKDE.2007.190726. [p4]

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, 2004.
ISBN 0-521-83378-7. [p2]

S. Chaudhuri, M. S. Handcock, and M. S. Rendall. Glmc: An R Package for Generalized Linear Models
Subject to Constraints, 2006. URL http://www.stat.washington.edu/handcock/combining. [p16]

R. J. Connor and J. E. Mosimann. Concepts of independence for proportions with a generalization of
the Dirichlet distribution. J. Amer. Statist. Assoc., 64:194–206, 1969. ISSN 0162-1459. [p4]

B. Efron and D. V. Hinkley. Assessing the accuracy of the maximum likelihood estimator: Observed
versus expected Fisher information. Biometrika, 65(3):457–487, 1978. ISSN 0006-3444. URL http:
//doi.org/10.1093/biomet/65.3.457. [p5]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

http://CRAN.R-project.org/package=glmc
http://www.jstor.org/stable/2348134
http://doi.org/10.1109/TKDE.2007.190726
http://doi.org/10.1109/TKDE.2007.190726
http://www.stat.washington.edu/handcock/combining
http://doi.org/10.1093/biomet/65.3.457
http://doi.org/10.1093/biomet/65.3.457


CONTRIBUTED RESEARCH ARTICLE 17

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties.
J. Amer. Statist. Assoc., 96(456):1348–1360, 2001. ISSN 0162-1459. URL http://doi.org/10.1198/
016214501753382273. [p5]

I. E. Frank and J. H. Friedman. A statistical view of some chemometrics regression tools. Technometrics,
35(2):109–135, 1993. ISSN 00401706. URL http://doi.org/10.2307/1269656. [p5]

J. H. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. ISSN 1548-7660. URL
http://www.jstatsoft.org/v33/i01. [p1, 5]

R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley Publishing
Company, Reading, MA, 2nd edition, 1994. ISBN 0-201-55802-5. A foundation for computer science.
[p3]

J. B. Lang. On the comparison of multinomial and Poisson log-linear models. J. Roy. Statist. Soc. Ser. B, 58
(1):253–266, 1996. ISSN 0035-9246. URL http://links.jstor.org/sici?sici=0035-9246(1996)58:
1<253:OTCOMA>2.0.CO;2-P&origin=MSN. [p2]

K. Lange, D. R. Hunter, and I. Yang. Optimization transfer using surrogate objective functions. J.
Comput. Graph. Statist., 9(1):1–59, 2000. ISSN 1061-8600. With discussion, and a rejoinder by Hunter
and Lange. [p6]

R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning large
incomplete matrices. Journal of Machine Learning Research, 11:2287–2322, 2010. [p6]

L. Meier, S. van de Geer, and P. Bühlmann. The group Lasso for logistic regression. J. R. Stat. Soc. Ser.
B Stat. Methodol., 70(1):53–71, 2008. ISSN 1369-7412. [p5]

S. R. Paul, U. Balasooriya, and T. Banerjee. Fisher information matrix of the Dirichlet-multinomial
distribution. Biom. J., 47(2):230–236, 2005. ISSN 0323-3847. [p6]

W. Sun. Isoform: A Set of Tools for RNA Isoform Study Using RNA-Seq Data, 2014. URL http://www.bios.
unc.edu/~weisun/software/isoform.htm. R package version 0.99.2. [p6]

W. Sun, Y. Liu, J. J. Crowley, and et al. IsoDOT detects differential RNA-isoform expression/usage
with respect to a categorical or continuous covariate with high sensitivity and specificity. J. Amer.
Statist. Assoc., 110(511):975–986, 2015. ISSN 0162-1459. URL http://doi.org/10.1080/01621459.
2015.1040880. [p6]

R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B, 58(1):267–
288, 1996. ISSN 0035-9246. URL http://links.jstor.org/sici?sici=0035-9246(1996)58:1<267:
RSASVT>2.0.CO;2-G&origin=MSN. [p5]

T. Tvedebrink. Overdispersion in allelic counts and θ-correction in forensic genetics. Theoretical
Population Biology, 78(3):200–210, 2010. ISSN 0040-5809. URL http://doi.org/10.1016/j.tpb.
2010.07.002. [p1]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, New York, 4th
edition, 2002. ISBN 0-387-95457-0. URL http://www.stats.ox.ac.uk/pub/MASS4. [p1]

T. W. Yee. The VGAM package for categorical data analysis. Journal of Statistical Software, 32(10):1–34,
2010. ISSN 1548-7660. URL http://www.jstatsoft.org/v32/i10. [p1]

T. W. Yee. Vector Generalized Linear and Additive Models: With an Implementation in R. Springer-Verlag,
New York, USA, 2015. [p1, 16]

T. W. Yee. VGAM: Vector Generalized Linear and Additive Models, 2017. URL https://CRAN.R-project.
org/package=VGAM. R package version 1.0-4. [p1]

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc.
Ser. B Stat. Methodol., 68(1):49–67, 2006. ISSN 1369-7412. URL http://doi.org/10.1111/j.1467-
9868.2005.00532.x. [p5]

C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Ann. Statist., 38(2):
894–942, 2010. ISSN 0090-5364. URL http://doi.org/10.1214/09-AOS729. [p5]

Y. Zhang, H. Zhou, J. Zhou, and W. Sun. Regression models for multivariate count data. J. Comput.
Graph. Statist., 26(1):1–13, 2017. ISSN 1061-8600. URL http://doi.org/10.1080/10618600.2016.
1154063. [p6]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

http://doi.org/10.1198/016214501753382273
http://doi.org/10.1198/016214501753382273
http://doi.org/10.2307/1269656
http://www.jstatsoft.org/v33/i01
http://links.jstor.org/sici?sici=0035-9246(1996)58:1<253: OTCOMA>2.0.CO;2-P&origin=MSN
http://links.jstor.org/sici?sici=0035-9246(1996)58:1<253: OTCOMA>2.0.CO;2-P&origin=MSN
http://www.bios.unc.edu/~weisun/software/isoform.htm
http://www.bios.unc.edu/~weisun/software/isoform.htm
http://doi.org/10.1080/01621459.2015.1040880
http://doi.org/10.1080/01621459.2015.1040880
http://links.jstor.org/sici?sici=0035-9246(1996)58:1<267: RSASVT>2.0.CO;2-G&origin=MSN
http://links.jstor.org/sici?sici=0035-9246(1996)58:1<267: RSASVT>2.0.CO;2-G&origin=MSN
http://doi.org/10.1016/j.tpb.2010.07.002
http://doi.org/10.1016/j.tpb.2010.07.002
http://www.stats.ox.ac.uk/pub/MASS4
http://www.jstatsoft.org/v32/i10
https://CRAN.R-project.org/package=VGAM
https://CRAN.R-project.org/package=VGAM
http://doi.org/10.1111/j.1467-9868.2005.00532.x
http://doi.org/10.1111/j.1467-9868.2005.00532.x
http://doi.org/10.1214/09-AOS729
http://doi.org/10.1080/10618600.2016.1154063
http://doi.org/10.1080/10618600.2016.1154063


CONTRIBUTED RESEARCH ARTICLE 18

H. Zhou and K. L. Lange. MM algorithms for some discrete multivariate distributions. Journal of
Computational and Graphical Statistics, 19:645–665, 2010. [p4, 6, 16]

H. Zhou and L. Li. Regularized matrix regressions. Journal of Royal Statistical Society, Series B, 76(2):
463–483, 2014. [p6]

H. Zhou and Y. Zhang. EM vs MM: a case study. Computational Statistics & Data Analysis, 56:3909–3920,
2012. [p6]

H. Zhou, K. L. Lange, and M. A. Suchard. Graphical processing units and high-dimensional optimiza-
tion. Statistical Science, 25:311–324, 2010. [p6]

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser.
B Stat. Methodol., 67(2):301–320, 2005. ISSN 1369-7412. URL http://doi.org/10.1111/j.1467-
9868.2005.00503.x. [p5]

Juhyun Kim
Department of Biostatistics
University of California, Los Angeles
juhkim111@ucla.edu

Yiwen Zhang
KPMG LLP
Irvine, CA
zhangyiwen1015@gmail.com

Joshua Day
Department of Statistics
North Carolina State University
jtday2@ncsu.edu

Hua Zhou
Department of Biostatistics
University of California, Los Angeles
huazhou@ucla.edu

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

http://doi.org/10.1111/j.1467-9868.2005.00503.x
http://doi.org/10.1111/j.1467-9868.2005.00503.x
mailto:juhkim111@ucla.edu
mailto:zhangyiwen1015@gmail.com
mailto:jtday2@ncsu.edu
mailto:huazhou@ucla.edu

	MGLM: An R Package for Multivariate Categorical Data Analysis
	Introduction
	Multivariate generalized linear models (MGLM)
	Multinomial (MN) model
	Dirichlet-multinomial (DM) model
	Negative multinomial (NegMN) model
	Generalized Dirichlet-multinomial (GDM) model

	Which model to use?
	Standard errors and testing
	Regularization
	Optimization algorithms and implementation
	The R package aspect
	Distribution fitting
	Regression
	Sparse regression

	Discussion


