
ARTICLE
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Summary
Biobanks linked to massive, longitudinal electronic health record (EHR) data make numerous new genetic research questions feasible.

One among these is the study of biomarker trajectories. For example, high blood pressure measurements over visits strongly predict

stroke onset, and consistently high fasting glucose andHb1Ac levels define diabetes. Recent research reveals that not only themean level

of biomarker trajectories but also their fluctuations, or within-subject (WS) variability, are risk factors for many diseases. Glycemic vari-

ation, for instance, is recently considered an important clinical metric in diabetesmanagement. It is crucial to identify the genetic factors

that shift the mean or alter the WS variability of a biomarker trajectory. Compared to traditional cross-sectional studies, trajectory anal-

ysis utilizes more data points and captures a complete picture of the impact of time-varying factors, including medication history and

lifestyle. Currently, there are no efficient tools for genome-wide association studies (GWASs) of biomarker trajectories at the biobank

scale, even for just mean effects. We propose TrajGWAS, a linear mixed effect model-based method for testing genetic effects that shift

the mean or alter the WS variability of a biomarker trajectory. It is scalable to biobank data with 100,000 to 1,000,000 individuals and

many longitudinal measurements and robust to distributional assumptions. Simulation studies corroborate that TrajGWAS controls the

type I error rate and is powerful. Analysis of eleven biomarkers measured longitudinally and extracted from UK Biobank primary care

data for more than 150,000 participants with 1,800,000 observations reveals loci that significantly alter the mean or WS variability.
Introduction

Biomarker trajectories are important phenotypes that

reflect the evolution of an individual’s health or disease

progression.1–3 With the increasing use of electronic

health records (EHRs) linked with biobanks, large scale

and repeatedly measured EHR-based quantitative labora-

tory-derived phenotypes are becoming highly influential

in genetic studies of human health.4–6 For example, a

recent LabWAS tool demonstrates the broad impact of us-

ing such ‘‘real world’’ measurements for genetic association

studies.7 LabWAS summarizes longitudinal measurements

by taking the mean for analyses. Although proven to be

robust, this approach may lose power by ignoring the

many rich features in the whole trajectories. Identifying

genetic and clinical factors associated with these longitudi-

nal trajectories can quantify the susceptibility to the onset

of disease and disease progression, which ultimately offers

new opportunities for early clinical prevention.1,8–10

Besides mean level trajectory patterns, the biomarker

fluctuations may also differ between individuals; some

individuals show higher levels of variation around

their mean than others (Figure 1). This intra-individual

variability or within-subject (WS) variability11,12 has been

shown to be an important risk factor for disease. For

example, among diabetes patients, visit-to-visit intra-indi-

vidual fasting glucose variability is a risk factor for the
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development of vascular complications,13–15 independent

of the glycemic control of the mean; blood pressure vari-

ability has been associated with the increased risk of heart

failure16 and stroke.11 Experimental research has revealed

the biological basis of glycemic variability and diabetic kid-

ney injury.17 WS variability in reaction times has also been

suggested as a leading endophenotype for neurocognitive

disorders, such as attention deficit hyperactivity disorder

and schizophrenia.18,19 As the wearable devices gain

more and more popularity, WS variability becomes a

clinical metric of disease management, such as the glucose

coefficient of variability output from the continuous

glucose monitoring (CGM) device report.20,21

WS variability differs from the between-subject (BS) vari-

ability, which also has recently attracted much attention.

Variance quantitative trait loci (vQTLs) analysis seeks

to identify loci that show different trait variances

among groups of individuals with different variant

genotypes.22–25 Such phenotypic variance heterogeneity

can be caused by gene-by-environment interaction,

selection, epistasis, or phantom vQTLs. vQTL analysis is

typically performed on a cross-sectional cohort, while

TrajGWAS requires longitudinal data. In contrast to vQTL,

TrajGWAS investigates genetic contributions to the WS

variability instead of BS variability. Thus, TrajGWAS and

vQTL analyses can provide complementary insights into

the etiology of a disease. As an interesting example, we
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Figure 1. Illustration of TrajGWAS
TrajGWAS identifies the genetic factors that
shift the mean or alter the within-subject
(WS) variability of a biomarker trajectory
(e.g., blood pressure measurements over
visits), which changes with time-varying co-
variates (e.g., medication history) or time-
invariant covariates (e.g., sex).
find that the well-known FTO (MIM: 610966) vQTL for

body mass index (BMI)26 (p value ¼ 1:163 10�102) is not

associated with the WS variability (p value ¼ 1:183 10�4)

at the genome-wide significance level.

Identifying genome-wide genetic contributions to

longitudinal trajectories, including both mean and WS

variability, is both methodologically and computationally

challenging. Despite recent efforts,27–29 no existing

software is able to analyze massive longitudinal traits at

the biobank scale. The linear mixed effect model (LMM)

is a powerful and popular method for longitudinal data

analysis. Generalizations such as the mixed-effects loca-

tion scale model30 allow for simultaneous modeling of

the mean and variability of the longitudinal measurement,

increase power, and reduce bias. It leverages information

across individuals to produce more precise estimates.31

However, the expensive numerical integration required

in each iteration prohibits many modern data applica-

tions. For example, the run times of the full likelihood

approach with MixWILD software32,33 on two simulated

datasets with 1,000 individuals and ten observations

per individual ranged from 40 min to 10þ h depending

on the different modeling assumptions being made.

MLwiN,34 a multi-level model (a type of mixed effect

model), has been used to estimate the mean trajectories

while accounting for the change in scale and variance

of measures over time.1 However, none of these tools

were designed for modern genome-wide scans. The heuris-

tic strategies being employed in practice involve a two-

stage model: (1) summarize a subject-level measure of the

variation of the longitudinal measurement such as stan-

dard deviation (SD), average real variability (ARV), or the

coefficient of variation (CV); (2) model those as the re-

sponses with covariates.12,35,36 This framework makes an
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implicit assumption that an individ-

ual’s variability remains constant over

time and cannot be affected by time-

varying covariates (Figure 1). Yet intra-

individual variability is affected by

both time-varying (e.g., medication

use or adherence to the treatment

regime) and time-invariant features

(e.g., sex and genes). Regressing the

subject-level variability summaries on

predictors leads to serious bias.31 The

simulation study in supplemental

methods, section C, shows that,

without properly adjusting for time-
varying covariates, the heuristic method can seriously

inflate the type I error.

Building upon our recent methods, within-subject vari-

ance estimator by robust regression (WiSER),37 we derive

an ultra-fast score test, which only requires fitting one

null model across the whole genome-wide set. This testing

strategy scales linearly in the number of individuals. We

also develop and implement a saddlepoint approximation

(SPA) for our score test to ensure well-controlled type I error

rates for single rare variant testing with minor allele fre-

quencies (MAFs) as low as 0.001.

Material and methods

An LMM framework for testing genetic effects on the

trajectory mean and WS variability
Ourmodeling assumptions are as follows. Assume there arem inde-

pendent individuals, individual ihasni longitudinalmeasurements

of a biomarker, and n ¼Pm
i¼1ni is the total number of observations.

Consider an LMM for modeling different sources of variation in a

biomarker in the longitudinal setting

yij ¼xT
ijbþ gibg þ zT

ijgi þ εij; (Equation 1)

where yij is individual i’s measurement at occasion j˛f1;2;.;nig,
xij is the p31 vector of regressors with corresponding regression

coefficients b, gi is the genotype dosage of individual i with corre-

sponding genetic mean effect bg , and zij is the q31 vector of cova-

riates with corresponding random effects gi. The WS variability is

captured by the random terms εij with mean zero and inhomoge-

neous variance

s2
εij
¼ exp

�
wT

ij tþ gitg þui

�
; (Equation 2)

wherewij is the [31 vector of covariates with corresponding fixed

effects t, tg is the genetic effect on the WS variability, and ui is a



random intercept. We assume that the random effects ðgT
i ;uiÞT are

independent of εij, have mean zero, and have covariance

Var

�
gi

ui

�
¼Sgu ¼

 
Sg sgu

sT
gu s2

u

!
:

Covariates xij, zij, and wij typically contain an intercept and can

include both time-invariant covariates, e.g., sex and baseline mea-

surements, and time-varying covariates, e.g., age at measurement,

medication history, and life-style indicators. Individuals can have

varying numbers of observations, which do not need to be

aligned.

Given a longitudinal biomarker of interest, our primary goal is

to test (1) the mean effect of genotype, H0 : bg ¼ 0, i.e., whether

a genotype shifts the mean of the biomarker trajectory; (2) the

WS variance effect of genotype, H0 : tg ¼ 0, i.e., whether a geno-

type changes the WS variation of the biomarker trajectory around

its mean; and (3) the joint effect, H0 : bg ¼ tg ¼ 0, i.e., whether a

genotype affects either the mean, or the WS variation, or both.

Although for the models in Equation 1 and Equation 2 we use

scalar gi to represent a single genotype, our method and

software can also test a group of genotypes or gene-by-environ-

ment (G 3 E) effects.

Themodels inEquation1 andEquation2 are similar to amultiple

location scale model considered by Dzubur et al.,33 who assume

normality of the random effects ðgT
i ;uiÞT and εij and resort to the

maximum likelihood estimation (MLE). Because each iteration of

the MLE algorithm requires expensive numerical integration, it is

not only distributionally restrictive but also computationally

prohibitive. Both limitations prevent its application to genome-

wide association studies (GWASs) of biobank data. Instead, we

employ our recent estimation method, WiSER,37 which is robust

to the misspecification of the trait distribution (conditional on

random effects) and the random effects distribution. The estima-

tion algorithm is free of numerical integration and scales linearly

in the total number of longitudinal measurements. For example,

the run times of the full likelihood approach with the MixWILD

software32,33 on two simulated datasets with 1,000 individuals

and ten observations per individual range from 40 min to 10þ h

according to the different modeling assumptions being made,

while WiSER takes less than half a second.

Briefly, the WiSER estimator is defined as

bb; bbg ¼ arg min
b;bg

1

2

Xm
i¼1

�
y i �Xib� gibg

�T�
V ð0Þ

i

��1�
y i �Xib� gibg

�

bt ; btg ; bSg ¼ arg min
t;tg ;Sg

1

2

Xm
i¼1

tr
��

V ð0Þ
i

��1

Ri

�
V ð0Þ

i

��1

Ri

�
;

(Equation 3)

where Ri ¼ ðy i � Xi
bb � gibbgÞðy i � Xi

bb � gibbgÞT � V iðt;tg ;SgÞ,

V i

�
t; tg ;Sg

�¼
0BBBB@

exp
�
wT

i1t þ gitg
�

1

exp
�
wT

ini
t þ gitg

�
1CCCCA

þ ZiSgZ
T
i ;

(Equation 4)

and Vð0Þ
i ¼ V iðtð0Þ; tð0Þg ;Sð0Þ

g Þ is an initial estimator of VarðY iÞ.
Model parameters are the mean fixed effects b and bg , WS variance

fixed effects t and tg , and the random effects covariance Sg. In the
The Ameri
special case V ð0Þ
i ¼ Ini , WiSER reduces to a method of moments

(MoM) estimate because the objective functions in Equation 3

are simply the least-squares losses for the first two moments of

Y i. Using an initial estimate V ð0Þ
i improves the estimation effi-

ciency of WiSER. In practice, we set the initial V ð0Þ
i according to

a least-squares estimator of t and Sg. WiSER enjoys a double

robustness property. It is robust to the misspecification of both

the distribution of random effects ðgT
i ;uiÞT and the distribution

of Y i conditional on random effects. In TrajGWAS, we

employ a score test that only requires fitting one null model,

with bg ¼ tg ¼ 0, across the genome-wide tests. Compared with

the Wald test proposed by German et al.,37 which requires fitting

WiSER for each genotype, it is much faster and enables fast longi-

tudinal trajectory GWAS analysis at biobank scale.
Robust and scalable score testing
Let q1˛R be the genetic effect bg or tg. We are interested in testing

the null hypothesis q1 ¼ 0. Let q2˛Rpþ[þqðqþ1Þ=2 collect all param-

eters in the null model. We first derive the score (gradient of the

WiSER loss function) cH1
under the full model and then evaluate

it under the null model, i.e., cH1
ð~qÞ, where ~q ¼ ð0; bq2Þ and bq2 is

the estimate under the null model. The generalized score test

statistic38 is

T ¼ 1

m

"Xm
i¼1

cH1 ;i
ð~qÞ
#T

V�1

cH1
ð~qÞ

"Xm
i¼1

cH1 ;i
ð~qÞ
#
;

where Vc is the variance of score c. The score test statistic T is

asymptotically distributed as c2
1 under the null model. In supple-

mental methods, section A, we show that the scores for testing

bg ¼ 0 and tg ¼ 0 are

Sbg ¼
Xm
i¼1

h
1T
ni

�
V ð0Þ

i

��1br i

i
gi ¼: cTbgg

and

Stg ¼ �
Xm
i¼1

8>>><>>>:1T
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26664
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�
V ð0Þ

i
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37775
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gi ¼: cT
tg
g

respectively. The quantities br i ¼ y i � Xi
bb, bRi, bt, and V ð0Þ

i are

readily available from the fitted null model. Calculation of each

score involves linear combination of the genotype dosages with

the coefficient vector cbg or ctg pre-computed and cached. In sup-

plemental methods, section A, we show that the calculation of

variance bVc costs Oð1Þ flops. Therefore, forming each score test

statistic costs OðmÞ flops, where m is the number of individuals,

usually much smaller than the total number of longitudinal

measurements n. This extreme computational efficiency makes

TrajGWAS easily scalable to biobank data with 105 � 106 samples

and millions of SNPs.
Saddlepoint approximation for rare variant testing
It is well-known that asymptotic score tests may yield deflated or

inflated type I errors at stringent significance levels for rare vari-

ants with MAF < 0.01.39,40 Figures 2A and 2B show that, when

testing a null variant with MAF ¼ 0:01, the score test shows defla-

tion in testing bg and inflation in testing tg . To calibrate the null
can Journal of Human Genetics 109, 433–445, March 3, 2022 435



Figure 2. Quantile-quantile (QQ) plots of
p values for simulation studies
(A and B) Quantile-quantile (QQ) plots of
p values from the score test for testing bg
(A) and for testing tg (B), where m ¼ 6,000,
ni ¼ 6 to 10, and minor allele frequency
(MAF) ¼ 0.01, based on 109 replicates.
(C andD) QQ plots of SPA-corrected p values
for testing bg (C) and for testing tg (D); sim-
ulations are based on m ¼ 6,000, ni ¼ 6 to
10, and minor allele frequency (MAF) ¼
0.01. SPA corrects the deflation or inflation
that occurs in the score test at low MAFs.
QQ plots for all simulation scenarios are
shown in Figures S2–S5.
distribution for score statistics when testing rare variants, we

apply a saddlepoint approximation (SPA).39–43 This approach

uses the entire cumulant generating function (CGF) to approxi-

mate the null distribution instead of the first two moments as in

the normal approximation and Satterthwaite method,44 resulting

in superior performance. For testing a single variant, we directly

use the score, Sbg or Stg , as the test statistic. Since the CGFs of Sbg
and Stg do not have a simple closed-form expression, we use the

empirical CGF based on the empirical moment generating func-

tion (MGF). Details are provided in the supplemental methods,

section B. Because the normal approximation of the score test per-

forms well near the mean of the distribution, to save on computa-

tion, we only apply SPA when the observed score statistic is large.

Following Bi et al.,39 SPA is applied when
���Sbg ��� > r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðcbg ÞVarðgÞ

q
and

��Stg �� > r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðctg ÞVarðgÞ

q
for testing bg and tg , respectively. In

this paper, we use r ¼ 0:75 for all analyses. A smaller value of r

leads to more tests having SPA applied and increased computa-

tional time. For the joint test of null hypothesis tg ¼ bg ¼ 0, we

compute p values for both Stg and Sbg and then take their har-

monic mean.45
Simulations
We carry out simulations to evaluate type I error rates and power

of TrajGWAS. For each subject, we generate the response accord-

ing to the models in Equation 1 and Equation 2. In our simula-

tions, the random mean effect gi is intercept only so Zi is a single

column of 1’s. Xi and W i contain a random time-invariant
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binary variable (0 or 1) in their second col-

umns, a time-invariant standard normal

variable in their third columns, and a

time-varying standard normal variable in

their fourth columns. The true regression

coefficients are b ¼ ð10:0;5:0;0:5;�0:3ÞT
and t ¼ ð0:25;0:3;�0:15;0:1ÞT . We

generate the random effects ðgi;uiÞ
from the multivariate normal distribution

with mean zero and covariance Sgu ¼�
2:0 0:0
0:0 0:1

�
For both type I error and power simula-

tions, we consider 12 scenarios with

different combinations of (1) sample sizes:

m ¼ 6;000 and m ¼ 100;000, (2) number
of repeated-measurements: ni ¼ 6 to 10 and ni ¼ 10 to 30, and

(3) MAF: 0.01, 0.05 and 0.3 for m ¼ 6;000 and 0.001, 0.05 and

0.3 for m ¼ 100;000. Results of both the score test and SPA are

reported.

Type I error

To evaluate type I error rates at genome-wide significance level a ¼
53 10�8, for each scenario we generate 1,000 datasets each with

106 variants following Hardy-Weinberg equilibrium, yielding 109

total replicates.39We report type I error rates for testing the genetic

contribution to both the mean, bg , and the WS variance, tg .

Power

To evaluate the power for testing tg and bg , we generate 100 data-

sets under the alternative model for each scenario. In each dataset,

the alternative model uses the parameters in simulations and con-

tains ten causal variants each with the same effect size, selected

specific to each scenario in order to show the spread of power.

We compare power of the score test and SPA at the significance

level a ¼ 53 10�8.

Application to the UK Biobank study
We conduct TrajGWAS analysis by using longitudinal biomarker

measures extracted from the UK Biobank primary care data,

including systolic blood pressure (SBP), diastolic blood pressure

(DBP), pulse pressure (PP), high-density lipoprotein (HDL) choles-

terol, low-density lipoprotein (LDL) cholesterol, total cholesterol

(TC), triglycerides, glucose (fasting and random), hemoglobin

A1C (HbA1c), and body mass index (BMI). Record-level access to

primary care data is obtained by requesting field 42040 (‘‘GP clin-

ical event records’’) from the UK Biobank showcase. We combine



Table 1. Empirical type I error rates for the simulation studies

Simulation conditions Empirical type I error rate (standard error) 3 10�8

Sample size m ni MAF bg score bg SPA tg score tg SPA Joint score Joint SPA

6,000 6 to 10 0.01 0.30 (0.17) 4.00 (0.63) 138.50 (3.72) 3.50 (0.59) 80.80 (2.84) 4.10 (0.64)

6,000 6 to 10 0.05 3.30 (0.57) 4.10 (0.64) 34.50 (1.86) 6.30 (0.79) 22.90 (1.51) 5.90 (0.77)

6,000 6 to 10 0.3 4.10 (0.64) 4.20 (0.65) 4.80 (0.69) 4.30 (0.66) 4.80 (0.69) 4.40 (0.66)

6,000 10 to 30 0.01 0.40 (0.20) 6.00 (0.77) 42.70 (2.07) 4.00 (0.63) 23.20 (1.52) 4.20 (0.65)

6,000 10 to 30 0.05 4.00 (0.63) 4.90 (0.70) 20.50 (1.43) 5.10 (0.71) 12.80 (1.13) 5.50 (0.74)

6,000 10 to 30 0.3 4.50 (0.67) 5.20 (0.72) 6.60 (0.81) 6.00 (0.77) 5.20 (0.72) 6.00 (0.77)

100,000 6 to 10 0.001 1.20 (0.35) 4.80 (0.69) 136.80 (3.70) 4.40 (0.66) 80.90 (2.84) 3.90 (0.62)

100,000 6 to 10 0.05 5.00 (0.71) 5.00 (0.71) 6.20 (0.79) 5.10 (0.71) 5.80 (0.76) 5.60 (0.75)

100,000 6 to 10 0.3 4.10 (0.64) 4.00 (0.63) 5.30 (0.73) 5.50 (0.74) 5.40 (0.73) 5.30 (0.73)

100,000 10 to 30 0.001 2.40 (0.49) 5.80 (0.76) 50.80 (2.25) 4.80 (0.69) 28.50 (1.69) 5.40 (0.73)

100,000 10 to 30 0.05 5.40 (0.73) 5.10 (0.71) 7.60 (0.87) 6.50 (0.81) 7.20 (0.85) 6.20 (0.79)

100,000 10 to 30 0.3 6.30 (0.79) 6.10 (0.78) 4.00 (0.63) 3.90 (0.62) 5.40 (0.73) 5.70 (0.75)

Empirical type I error rates (standard error) for the score test and SPA (3 10�8) at a significance level 5310�8 based on 109 simulation replicates. The score test
shows inflated type I error at lowminor allele frequencies (MAFs) for testing tg where SPA (saddlepoint approximation) has proper type I error rates. Joint score and
joint SPA are based on the harmonic means of the respective bg and tg p values.
a previously reported and validated semi-supervised approach46

and in-house extraction criteria to create clinical biomarker phe-

notypes. We matched and compared empirical cumulative distri-

butions of extracted lab values from the primary care database

and those provided through the UK Biobank assessment center

to infer the measurement units and for further quality control

(Figure S16). Detailed data extraction, unit conversion, and quality

control procedures are documented in the supplemental methods,

section D.

For each GWAS, we use the standardized biomarker phenotypes

for TrajGWAS analysis by subtracting the overall mean from each

measurement and dividing by the standard deviation and we

adjust for ten principal components (PCs) on the mean compo-

nent. Using the PCs to adjust both the mean and WS variance

makes no differences for the final results. Each biomarker uses a

different covariate adjustment scheme, which is detailed in

supplemental methods, section E. In general, we adjust for sex,

age, age2, and age 3 sex for both mean and WS variability; age

and age2 are treated as time-varying covariates. The selection of

covariates is guided by previous GWAS analyses4,47,48 and the

mean profile plots are shown in the Figure S15. Non-significant co-

variates in the null model are then removed from the GWAS anal-

ysis. In addition, we include self-reported diabetes status as a time-

fixed covariate for glycemic measures (HbA1c and random and

fasting glucose). Diabetes status included as a time-varying indica-

tor is also explored (supplemental methods, section F). Summary

of the covariates included and adjustments made for medication

is summarized in supplemental methods, section E.

Controlling the effect of medication on the biomarkers is

important in the analysis. Most widely used methods for such

adjustments are (1) treatment modeled as an additional covariate

(‘‘indicator’’);49–51 (2) adding a sensible constant (‘‘shifting’’) to the

treated subjects;48,52–55 and (3) censored normal regression.56

Shifting and censored normal regression are often recommended

for their superior performances over the indicator method.56 In

this paper, we use the shiftingmethod if a sensible value for adjust-
The Ameri
ment is available through previous studies and use the indicator

method for others. We compare adjustment by shifting and

adjustment by an additional covariate in Figures S21–S24. For

blood pressures, we add 15 mmHg for SBP and 10 mmHg for

DBP55 for subjects taking blood-pressure-lowering medication

before standardization. For lipids, following previous GWAS

analysis,47 we add 0.208 mmol/L for triglycerides, 1.347 mmol/L

for total cholesterol, 1.290 mmol/L for LDL cholesterol, and

subtract 0.060 mmol/L for HDL cholesterol for participants

on lipid-controlling treatments. For glycemic measures (HbA1c

and random and fasting glucose), a sensible value for adjustment

was not available, so they are adjusted with the indicator method.

To evaluate and compare the genetic association of trajectory

means, i.e., bg , we create lists of previously reported genetic

associations for each analyzed trait by using the GWAS Catalog57

queried by the R package gwasrapidd58 (curated on 7/8/2021).

We search the catalog for phenotypes matching our analyzed

biomarkers by using syntax, ‘‘efo_trait¼,’’ and keep SNPs with p

value less than genome-wide significance level < 53 10�8.
Results

Simulation

Table 1 reports the empirical type I error rates of the score

test and SPA at an a ¼ 5310�8 threshold, based on 109

simulation replicates. At lower MAFs, the score test for tg
has substantially inflated type I errors, whereas SPA leads

to well-calibrated type I error rates. Inflation in the score

test for tg at less common alleles (MAF ¼ 0.05) is large

for smaller sample sizes and fewer repeated measures.

The amount of type I error inflation decreases as the MAF

and the number of repeated measures increase. For bg,

the score test is conservative at lower MAFs and SPA cor-

rects the type I error in the right direction. For common
can Journal of Human Genetics 109, 433–445, March 3, 2022 437



Figure 3. Empirical powers of testing bg with score test and SPA
Each row contains the same sample sizem and number of observations per individual ni. Power is evaluated at the significance level a ¼
53 10�8. Each scenario is based on 1,000 replicates.
alleles such as MAF ¼ 0.3, score test and SPA do not differ

much in the type I error rates for either tg or bg. Overall SPA

has appropriate type I error at the a ¼ 5310�8 significance

level across all scenarios. Figure 2 illustrates how SPA cor-

rects type I error in both directions by displaying QQ plots

from a random sample of 100 million replicates of them ¼
6000;ni ¼ 6 to 10, MAF ¼ 0.01 scenario. Additional QQ

plots are presented in Figures S2–S5.
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Power curves for testing tg and bg across 12 scenarios are

displayed in Figure 3 and Figure S6, respectively. Although

the score test is unable to adequately control type I error for

rare variants, we still report power based on the nominal

power at the a ¼ 5310�8 significance level. Using the

empirical significance levels estimated from the type I error

simulations would result in even lower power for the score

test than what is shown in the figure. SPA achieves higher
3, 2022



Table 2. Sample size m, the number of repeated-measurements ni , and summary statistics for eleven biomarkers extracted from the UK
Biobank primary care data

m ni yij Female Age BMI

Biomarker Sample size Median (IQR) Mean (SD) % Mean (SD) Mean (SD)

SBP (mmHg) 148,870 12 (6, 24) 135.0 (15.3) 54.1 56.0 (8.7) 27.5 (4.8)

DBP (mmHg) 148,870 12 (6, 24) 81.0 (8.7) 54.1 56.0 (8.7) 27.5 (4.8)

PP (mmHg) 148,870 12 (6, 24) 53.9 (9.6) 54.1 56.0 (8.7) 27.5 (4.8)

HDL (mmol/L) 129,069 4 (2, 8) 1.5 (0.4) 53.1 59.5 (7.8) 27.7 (4.8)

LDL (mmol/L) 98,556 3 (1, 6) 3.2 (0.9) 52.3 59.3 (7.8) 27.8 (4.8)

Total cholesterol (mmol/L) 133,590 5 (2, 10) 5.4 (0.9) 53.3 58.7 (7.9) 27.6 (4.8)

Triglycerides (mmol/L) 124,092 4 (2, 8) 1.6 (1.0) 48.1 60.6 (7.8) 28.6 (5.0)

Fasting glucose (mmol/L) 55,949 2 (1, 3) 5.5 (1.4) 47.7 60.4 (7.6) 28.7 (5.1)

Random glucose (mmol/L) 97,162 2 (1, 4) 5.7 (2.1) 51.9 59.8 (8.2) 28.5 (5.1)

HbA1c (%) 70,589 2 (1, 4) 6.7 (1.4) 43.4 62.4 (7.8) 30.4 (5.7)

BMI 144,414 5 (3, 9) 28.3 (5.7) 54.9 57.3 (9.9) –

The eleven biomarkers are as follows: SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure ¼ SBP – DBP; HDL, high-density lipoprotein;
LDL, low-density lipoprotein; total cholesterol; triglycerides; random glucose; fasting glucose; HbA1c, hemoglobin A1C; and BMI, body mass index.
power at the a ¼ 5310�8 significance level than the score

test when the MAF is low, but the power of the two

methods are nearly identical for common variants and

large sample sizes. In conjunction with the type I error re-

sults, this indicates that SPA is able to better model the tail

of the test statistic distributions for rare variants. When the

variants are common, both approaches converge to the

same results.

Computational efficiency

With careful implementation, each iteration of the optimi-

zation algorithm for fitting the WiSER null model scales

linearly in the total number of observations n. For testing

a single SNP, our score test with SPA scales linearly with

the sample size m. Therefore, our TrajGWAS analysis based

on WiSER can be applied to longitudinal genetic associa-

tion analysis at biobank scale. For example, analyzing

SBP for 10,805,717 imputed variants on all autosomal

chromosomes takes about 150 central processing unit

(CPU) h with SPA and 139 CPU hwithout SPA. The compu-

tation is split into 16 chunks per chromosome, resulting in

352 separate computational jobs that can run simulta-

neously on computing clusters. Under these conditions,

each job runs within an hour with and without SPA.

Real data analysis

About 44% of the 500,000 UK Biobank participants are

linked to their primary care EHRdata. These EHRdata are re-

corded with four controlled clinical terminologies: (1) Read

version 2 (Read v2); (2) Clinical Terms Version 3 (CTV3); (3)

British National Formulary (BNF); and (4) the Dictionary of

Medicines and Devices (DMþD). Only Read v2 and CTV3

are relevant for biomarker extraction. Using previously vali-

dated algorithms,46,59 we generate unified lists of Read v2

and CTV3 clinical terms, and extract measurements for all
The Ameri
biomarkers from the clinical event records (gp_clinical ta-

ble). Terms used for extraction are shown in Table S2. Ten

longitudinal clinical measurements are extracted: blood

pressures (SBP and DBP), HDL, LDL, total cholesterol,

triglycerides, blood glucose (fasting and random), HbA1c,

and BMI (supplemental methods, section D). Extracted

records cover 55,000 to 150,000 participants. The flow-

charts for creating the cohort for each biomarker are dis-

played in Figures S7–S14. There aremore repeated-measures

of SBP andDBP (median (IQR)¼ 12 (6, 24)) than of the lipid

values (e.g.,median (IQR)¼ 4 (2, 8) for HDL). See Table 2 for

details. Takingbloodpressure as an example,we exclude ob-

servations with no date or invalid date information, or

missing BMI measures at recruitment, resulting in

2,598,484 observations. The sample size for GWAS analysis

ranges from55,949 (fasting glucose) to 148,870 (bloodpres-

sure). Patterns of the mean profile over age groups vary

across different biomarker groups (Figure S15). DBP, LDL,

and total cholesterol show strong non-linear, age-depen-

dent trends.

We then apply TrajGWAS to UK Biobank imputed ge-

netic data among European ancestry for these ten longitu-

dinal clinical measures and one derived phenotype pulse

pressure (PP ¼ SBP � DBP). SNPs with MAF greater than

0.002 and imputation quality score (infoscore or r2)

greater than 0.3 are included in the analyses. The Manhat-

tan plots (Figure 4 for tg and Figure S17 for bg ) and quan-

tile-quantile (QQ) plots (Figures S18 and S19) show that

TrajGWAS successfully identifies a large number of loci.

Concordant with the simulation study, the QQ plots sug-

gest that SPA controls type I error rates well. Highly poly-

genic traits with a larger number of associated variants

have, on average, larger genomic control factor ðlGCÞ
values (Figures S18 and S19). Additionally, since SPA is

not applied when the score statistics are close to the
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Figure 4. Manhattan plots for testing tg for longitudinal markers in the UK Biobank study
Manhattan plots for testing tg , the effects of the WS variability, for 11 longitudinal biomarkers in the UK Biobank study. The blue line
represents the genome-wide significance level, 53 10�8.
mean, the median p values used for calculation of the

genomic control factor may be miscalibrated.40 Thus,

even though many QQ plots appear normal for tg, the re-

ported lGC is inflated for some traits. To give a complete

picture, we report lGC calculated at different p value quan-

tiles for each trait in Table S3.

Next, we compare associations identified by TrajGWAS

with those reported in the GWAS Catalog. We extract asso-

ciation results from the GWAS Catalog by using the Exper-

imental Factor Ontology (EFO) trait labels and keep the

unique associations, i.e., SNPs, with p value < 53 10�8.

The number of associations from TrajGWAS analysis is

shown in the second and third columns of Table 3. Data

in the GWAS Catalog are mapped to genome assembly

GRCh38, while UK Biobank SNPs are mapped to

GRCh37. We remove the queried SNPs with no genomic

coordinates and convert GWAS Catalog associations to

genome assembly GRCh37. The numbers of associated

SNPs are shown in the fourth column of Table 3. Using

the associations reported in the GWAS Catalog as positive

controls, we evaluate whether SNPs associated with the
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mean from our TrajGWAS analysis can replicate previous

findings (fifth column of Table 3). For eight out of eleven

markers, we have replication rates higher than 80%, vali-

dating high quality of EHR-based biomarker phenotyping

and TrajGWAS analysis. The analysis of HbA1c has the

lowest replication rate 59.65%. This may be due to the

relatively small sample size among all biomarkers and

the differences in distribution of HbA1c measures from

EHR (see Figure S16). The last column of Table 3 lists the

numbers of SNPs TrajGWAS identifies as ‘‘novel,’’ i.e., not

in linkage disequilibrium (LD) with the existing SNPs

in the GWAS Catalog (defined as being greater than one

megabase from any SNP in the GWAS Catalog). Tables

S4–S11 provide additional annotations for these ‘‘novel’’

SNPs. As an example, for total cholesterol, there are 177

and 209 SNPs associated with mean and WS variability

that are at least 1 Mb away from the existing reported

GWAS Catalog SNPs, respectively. Additional annotations

shown in Table S8 demonstrate that the majority of

SNPs reported to be ‘‘novel’’ for total cholesterol are rele-

vant to lipids traits as well as psychiatric disorders. These
3, 2022



Table 3. Summary of TrajGWAS results

Biomarkera
Num. of sig.
loci for bg=tg

b,c
Num. of sig.
SNPs for bg=tg

d

Num. of sig.
SNPs in GWAS
Cataloge

Replication
rate bg

f

Num. of sig. SNPs for
bg=tg > 1 Mb from
GWAS Catalog SNPsg

SBP 269/8 4,720/32 1,738 82.48% 0/1

DBP 368/3 7,374/5 917 79.65% 615/0

PP 371/8 6,895/32 876 89.34% 93/0

HDL 1,443/0 14,068/0 1,953 88.62% 24/0

LDL 826/23 8,160/434 1,654 83.57% 0/0

Total cholesterol 1,356/92 16,002/1,525 1,270 95.06% 177/209

Triglycerides 1,172/55 11,796/820 1,693 87.57% 2/0

Fasting glucose 166/2 1,540/2 110 86.67% 144/2

Random glucose 81/0 824/0 256 73.63% 10/0

HbA1c 73/1 1,820/4 651 59.65% 11/0

BMI 220/0 3,651/0 3,507 86.95% 1/0

aExperimental Factor Ontology (EFO) trait labels (see web resources) used for query are as follows: SBP, ‘‘systolic blood pressure (EFO_0006335)’’; DBP, ‘‘diastolic
blood pressure (EFO_0006336)’’; PP, ‘‘pulse pressure measurement (EFO_0005763)’’; HDL, ‘‘high-density lipoprotein cholesterol measurement (EFO_0004612)’’;
LDL, ‘‘low-density lipoprotein cholesterol measurement (EFO_0004611)’’; total cholesterol, ‘‘total cholesterol measurement (EFO_0004574)’’; triglycerides, ‘‘tri-
glyceride measurement (EFO_0004530)’’; HbA1c, ‘‘HbA1c measurement (EFO_0004541)’’; fasting glucose, ‘‘fasting blood glucose measurement
(EFO_0004465)’’; random glucose, ‘‘glucose measurement (EFO_0004468)’’; BMI, ‘‘body mass index (EFO_0004340)’’ and ‘‘longitudinal BMI measurement
(EFO_0005937).’’
bSignificant SNPs for each biomarker are clumped via PLINK 1.9.61 Index variants are chosen greedily starting with the SNPs with lowest p value among those SNPs
having p value %53 10�8. Sites that are < 250 kb away from an index variant and r2 > 0:5 with the index variant are assigned to that index variant’s clump.
cThe number of significant loci (after clumping).
dThe number of significant SNPs ð< 5310�8Þ on bg and tg .
eNumber of GWAS Catalog SNPs with p value < 5310�8 (all SNPs are converted to genome build 37; the SNPs with no genomic coordinates are removed; and
GWAS Catalog stores the most significant SNP from each independent locus).
fPercent of significant SNPs from GWAS Catalog that are nominally significant in bg (p value < 0:05) in the TrajGWAS analysis.
gThe number of SNPs at least 1 megabase (Mb) away from any previously reported SNP for the given biomarker in the GWAS Catalog.
findings are consistent with the possibility of a disease-

specific lipid pathway underlying the pathophysiology of

psychiatric disorders.60

The majority of genes that affect WS variability of a tra-

jectory also affect mean, but not always. Figure 5 high-

lights the 235 SNPs that are significantly associated with

WS variability but not with mean levels with p values

and gene annotations. Consistent with our simulation,

with too few longitudinal measures, it is hard to detect tg
at genome-wide significance level, e.g., random glucose

(median ni ¼ 2), fasting glucose (median ni ¼ 2), and

HbA1c (median ni ¼ 2). For traits withmedian ni > 4, there

are signals in tg . In particular, TrajGWAS identifies a

genome-wide significant association between WS vari-

ability of total cholesterol and variants in the LPL gene

(MIM: 609708), whereas they are not associated with the

mean values. LPL is a protein-coding gene for lipoprotein

lipase, which is expressed in heart, muscle, and adipose tis-

sue. Severe mutations that cause LPL deficiency result in

type I hyperlipoproteinemia, while less extreme mutations

in LPL are linked to many disorders of lipoprotein meta-

bolism.62 Several GWASs have identified the association

of LPL with different lipid-related phenotypes.63,64

Figure S20 displays a boxplot of within-sample variance

of residuals for subjects with 0, 1, and 2 copies of reference

allele of rs6993414, the most significant SNP in terms of tg
on LPL. It shows there are big differences in the tail distri-
The Ameri
butions between them. Other examples include the associ-

ation between HbA1c WS variability and the EIF5A2 gene

(MIM: 605782). EIF5A2 is a protein-coding gene associated

with type 2 diabetes and cancer.65 Interestingly, a variant,

rs8192675, and its proxies show the strongest association

with HbA1c response to metformin; its LD block covered

three genes and EIF5A2 is one of them.66

TrajGWAS differs from the vQTL, which is predomi-

nantly used among cross-sectional studies and for G 3 E

interaction screening. For a BMI analysis adjusted for age,

sex, and ten PCs with the OSCA software (see web re-

sources), 13 of the 22 vQTLs previously reported in Wang

et al.25 have a significant vQTL on the same gene (p value

< 23 10�9) in our cohort. One well-known vQTL for BMI

is the FTO gene, and variants in this gene are previously

found to be associated with BS variance of BMI with very

low p values.25 Our cohort yields the lowest p value of

1:16310�102 for vQTL analysis. However, tg for WS vari-

ability of TrajGWAS minimum p value in the same region

is 1:183 10�4, showing no significant SNP association

with WS variability.
Discussion

We provide a genome-wide trajectory analysis tool, TrajG-

WAS, for simultaneous testing of genetic effects on the
can Journal of Human Genetics 109, 433–445, March 3, 2022 441



Figure 5. SNPs that significantly change the WS variability while not significantly shifting the mean
SNPs that significantly change the WS variability of longitudinal biomarkers (top) and total cholesterol (TC) trajectory (bottom) while
not significantly shifting themean of their trajectories. Each dot is a SNP that passes the genome-wide significance level (dashed line) for
tg but not for bg.
mean and WS variability of a longitudinal biomarker for

biobank-scale studies. The method relies on a mixed-ef-

fects location scale model but has several advantages over

existing methods. For example, the likelihood-based

approach for fitting the mixed effect location scale model

requires computationally intensive numerical integration,

making it infeasible to implement for genome-wide scans

of biobank data.30,32,33 TrajGWAS relies on M-estimation

asymptotics and is both computationally efficient

and robust to distributional assumptions. It also does not

assume the WS variability is constant and can capture

and control for the effects of time-varying covariates

such as medication usage and age. We use empirical SPA

to calibrate p values so that type I error rates can be well

controlled for rarer variants and when the number of

repeated measures is small. Through extensive simulation

studies and application to UK Biobank data, we demon-

strate that TrajGWAS scales well for millions of markers,

hundreds of thousands of individuals, and multiple

random effects while retaining well-controlled type I error

rates and power. One limitation of the SPA approach is that

its construction only works for a single univariate hypoth-

esis. Thus, for the joint test bg ¼ tg ¼ 0, we resort to the

less satisfactory harmonic mean approach,45 which might

compromise power.
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Although originally motivated by the study of longitudi-

nal biomarkers, TrajGWAS is also applicable to genome-

wide scans of multiple, correlated phenotypes. The flexible

LMM framework is apt to capture the correlations between

traits and yields correct and powerful inference. TrajGWAS

can also be used as a scanning tool by only testing SNPs

that pass a threshold with the much slower but more

powerful likelihood-based approaches. Although this

paper focuses on genetic effects for the mean and WS

variability, many studies are also interested in BS variance.

It is possible to adapt this framework for modeling BS

variability, but it comes at the cost of excluding random

slopes in the model that are important in many situations.

Our findings raise a potential red flag for some existing

Mendelian randomization (MR) analyses. A core assump-

tion in MR is that the genetic determinant used as an in-

strument, G, only affects the outcome, Y, through the

exposure, X (no horizontal pleiotropy). Many studies use

mean levels of measurements as the exposure (e.g., blood

pressure and cholesterol levels). This assumption may be

violated in cases where (1) the outcome is associated

with WS variability of the exposure independent of mean

levels, such as blood pressure and glucose variability,14,16

and (2) variants that affect both mean and WS variability

are used as instruments. In our TrajGWAS analysis, we
3, 2022



find many SNPs that affect the mean also affect the WS

variability. This suggests that the causal effects of the expo-

sures on the outcomes estimated through these MRs may

be biased because of a failure to account for the effect of

the genetic determinant on the outcome acting through

a second exposure (WS variability). This application gap

may also provide an opportunity for new MR method

development by considering both exposures.

Our method can incorporate time-varying covariates

adjustment for both mean and WS variability. It makes

controlling for disease status and medication usage over

time possible, which sometimes increases the power (sup-

plemental methods, section F). However, caution must be

taken when considering disease and medication covariate

adjustment. As medications types or disease status may

be reversely correlated with biomarkers, the true genetic

susceptibility can be obscured. How to best account for

these effects remains an important question in future

EHR-based longitudinal biomarker studies. One possible

direction is a jointmodel that canmodel the biomarker tra-

jectory, while simultaneously learning the association be-

tween disease trajectory (e.g., comorbidity events).

In conclusion, we present an ultra-efficient biobank-

scale trajectories analysis tool that makes EHR-derived lon-

gitudinal traits analysis possible at very large scales. By

modeling both mean effects and within subject variability,

ourmethod can provide insights that are not evident when

the effects of genetic variants are only considered for the

mean.
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Experimental Factor Ontology, https://www.ebi.ac.uk/ols/onto

logies/efo

GWAS Catalog, https://www.ebi.ac.uk/gwas/home

gwasrapidd R package, https://github.com/ramiromagno/gwasra

pidd

OSCA software, https://cnsgenomics.com/software/osca

UK Biobank, https://www.ukbiobank.ac.uk/
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