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Summary
Admixture estimation plays a crucial role in ancestry inference and genome-wide association studies (GWASs). Computer programs such

as ADMIXTURE and STRUCTURE are commonly employed to estimate the admixture proportions of sample individuals. However, these

programs can be overwhelmed by the computational burdens imposed by the 105 to 106 samples and millions of markers commonly

found in modern biobanks. An attractive strategy is to run these programs on a set of ancestry-informative SNP markers (AIMs) that

exhibit substantially different frequencies across populations. Unfortunately, existing methods for identifying AIMs require knowing

ancestry labels for a subset of the sample. This supervised learning approach creates a chicken and the egg scenario. In this paper,

we present an unsupervised, scalable framework that seamlessly carries out AIM selection and likelihood-based estimation of admixture

proportions. Our simulated and real data examples show that this approach is scalable to modern biobank datasets. OpenADMIXTURE,

our Julia implementation of the method, is open source and available for free.
Introduction

Discovery of ancestral groups or population structure by

genetic means is of inherent interest for both private

genealogies and public population histories.1 In addition,

genetic ancestry adjustment is a necessary prelude for

genome-wide association studies (GWASs)2 seeking DNA

sites that influence medical or anthropomorphic traits.

Without this safeguard, population stratification can lead

to a false association between a trait and a SNP predictor.3–5

Ancestry adjustment can be handled by adding a few prin-

cipal components (PCs) of the SNP genotypematrix as trait

predictors. Alternatively, one can substitute admixture pro-

portions (coefficients) in place of PCs. Because admixture

coefficients are the proportions of an individual’s ancestry

from each of several founding populations, they are usu-

ally more interpretable than PCs. In some cases, PCs

have been shown to be inefficient for correcting biases.6

Estimation of ancestry coefficients is carried out simulta-

neously with maximum likelihood estimation of allele fre-

quencies when the underlying populations are latent

rather than explicit. ADMIXTURE7 is a widely used likeli-

hood-based software. ADMIXTURE directly maximizes

the likelihood of the genotype matrix via alternating

sequential quadratic programming with quasi-Newton

acceleration.8 Another popular package, STRUCTURE,9 im-

plements Bayesian inference; recent extensions of the

Bayesian approach include fastStructure10 and TeraStruc-

ture.11 The EIGENSTRAT software2 is the primary vehicle
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for PC extraction from the genotype matrix. One can

also achieve dimensionality reduction by approximating

a low-rank linear subspace of the row space of the admix-

ture proportion matrix and then performing matrix

decomposition via alternating least squares, as is imple-

mented in the ALStructure software.12 Matrix decomposi-

tion is further accelerated in the SCOPE software13 by

invoking randomized linear algebra and routines specif-

ically designed for accessing compressed versions of the

genotype matrix.

As the size of genomic data grows, these methods suffer.

In particular, most of the methods fail on the UK Biobank

data,14 which contain f0;1; 2g genotypes on about half a

million British individuals across millions of SNPs. The ge-

notype matrix in PLINK format alone requires around 70

GB of storage. One of the few software programs that is

capable of handling these data is SCOPE,13 which avoids

holding large intermediate matrices in memory. However,

SCOPE’s preprocessing of the genotype matrix to speed up

matrix multiplication still requires at least 250 GB of RAM

(random access memory).

One can make ancestry estimation more efficient

by limiting analysis to ancestry-informative markers

(AIMs).15,16 Early AIM sets included tens to hundreds of

AIMs.17–20 Even at this crude scale, it is possible to recover

admixture coefficients that correlate well (74%–92%) with

those delivered by the full set of SNPs.21 AIM-basedmethods

exploit F statistics, absolute allele frequency differences,

principal component loadings, and informativeness in
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ancestry assignment.22,23 To their disadvantage, most AIM

selectionmethods are supervised and based on self-reported

labels. In biobank-scale data, such labels should be viewed

with suspicion.

In thecurrentpaper,weadvocatefirst selectingAIMs inan

unsupervisedway througha sparseK-means clustering algo-

rithm.24Wewill refer to this algorithmby theacronymSKFR

(sparse K-means with feature ranking). SKFR performs hard

clustering and feature selection jointly and is scalable to bio-

bank data. Given the selected AIMs, we run a version of

ADMIXTURE7 that leverages the computational advances

of the Julia programming language.25 We call this package

OpenADMIXTURE, in part because of its open-source

status. OpenADMIXTURE incorporates both SKFR and

admixture estimation, supports multithreading, and acts

directly on the input genotype matrix. The maximum

memory demand is less than 120% the size of the input

genotype file. For example, our analysis of the UK

Biobankdatawith500,000 individuals and600,000SNPs re-

quires only 73 GB of RAM versus the 250 GB required

by SCOPE. OpenADMIXTURE also supports graphics pro-

cessing unit (GPU) acceleration. Runtimes and results of

OpenADMIXTURE are comparable to those of SCOPE

but within the RAM limitations of more typical computers.

Furthermore, OpenADMIXTURE retains the advantages

of a likelihood-based analysis. SKFR is generally useful

in feature selection across a wide variety of clustering

applications beyond genetics. An independent Julia-based

package to efficiently perform SKFR on general datasets is

available.
Material and methods

Sparse K-means with feature ranking (SKFR)
SKFR selects and ranks a predetermined number of features that

drive K-means clustering.24 Feature selection and clustering are in-

tertwined. In our case, features are standardized SNP genotypes dis-

played in an I3J matrixX ¼ ðxijÞ. Rows correspond to samples and

columns to features. Standardization of columns to have mean

0 and variance 1 puts all features on the same footing. Given a fixed

number of clusters K, the goal is to assign each individual i and its

corresponding row xT
i of X to the cluster Ck minimizing the loss

f ðB;QÞ ¼
XK
k¼1

X
i˛Ck

kxi � qkk22 ¼
Xn
i¼1

min
1% k%K

kxi � qkk22

¼kX � BQk2F :
(Equation 1)

Here, the matrix B˛ fM ˛ f0;1gI3K : M1K ¼ 1Ig conveys cluster

membership, the matrix Q˛RK3J conveys cluster centers, and

k$kF denotes the Frobenius norm. The k-th row qTk ˛RJ of Q is

the center of cluster Ck. In SKFR with sparsity level S, at most S col-

umns of Q are allowed to be nonzero. The SKFR procedure (see Al-

gorithm 1A in appendix A) cycles through the following three

steps until convergence: (1) update the cluster centers, (2) rank

and select features according to their contribution to the loss,

and (3) re-assign samples to clusters according to the selected fea-

tures. In Algorithm 1A, the information criterion hj measures the
2 The American Journal of Human Genetics 110, 1–12, February 2, 20
drop in the loss when feature j is designated informative. The clus-

ters are initialized by the K-meansþþ scheme.26 Initial cluster cen-

ters emerge after steps 2 and 3 are performed on the standardized

matrix X. The section ‘‘missing genotypes’’ sketches a modifica-

tion of the algorithm to handle missing data.

On convergence, the SKFR algorithm yields (1) a ranked list L of

selected AIMs, (2) hard clustering assignments B of each sample to

one and only one cluster, and (3) cluster centers Q. A new set of

PLINK files containing only the selected AIMs is generated via

the SnpArrays Julia package.

Missing genotypes

Genotype data often include missing values. In practice, genotype

imputation precedes GWAS. However, imputing genotypes at bio-

bank scale is extremely resource and computation intensive, tradi-

tionally taking days to months on a cluster. Modern software27,28

has reduced this bottleneck. Following Chi et al.,29 we extend

SKFR to incorporate missing data in a mathematically principled

way. Let U3f1;.; Ig3f1;.; Jg denote the subset of indices

corresponding to the observed entries of X. In this notation, the

modified loss is

fUðB;QÞ ¼ kPUðX � BQÞk2F ; (Equation 2)

where PUðMÞ zeros all entries of a matrix M not in U.

The quickest route to minimization of the loss passes

through the majorization-minimization (MM) principle.30–32

At iteration n of a search, we construct the surrogate func-

tion gðB;QjBn;QnÞ ¼ kYn �BQk2F majorizing the loss, where

Yn ¼ PUðXÞ þ PUt ðBnQnÞ and Ut denotes the set of missing

values. In other words, we leave observed values untouched

and impute missing values by their predicted values on the basis

of the centers of their current cluster assignments. The MM

principle guarantees that minimizing the surrogate reduces the

loss. This monotonic algorithm is summarized in Algorithm

1B in appendix A. The current code differs from the code pre-

sented in Zhang et al.24 by standardizing the genotype matrix

beforehand with the observed values rather than repeatedly

standardizing on the fly with both the observed and imputed

values. The current implementation is more efficient and still

mathematically sound.
Estimation of admixture proportions
In contrast to hard clustering, soft clustering estimates the

probability of a sample belonging to each of the K clusters. Soft

clustering algorithms like ADMIXTURE7 better account for ambi-

guities than hard clustering and in GWASsmore realistically adjust

for population structure. In this section, we describe a Julia imple-

mentation of ADMIXTURE that capitalizes on parallel processing

and GPU support. Recall that ADMIXTURE simultaneously esti-

mates a population-specific allele frequency matrix P˛RK3J and

an individual-specific admixture matrix Q˛RK3I by maximizing

the log likelihood

[ ðP;QÞ ¼
X
i;j

"
xij log

 X
k

pkjqki

!
þ �2 � xij

�
log

 
1 �

X
k

pkjqki

!#
:

(Equation 3)

Here, each raw genotype xij follows a Binomial
�
2;
P
k

pkjqki
�

distribution, where the parameters satisfy the con-

straints
PK

k¼1qki ¼ 1 and qki; pkj ˛ ½0;1�. Maximization is carried

out by block ascent, alternating updates of P and Q by sequential

quadratic programming with quasi-Newton acceleration.8
23
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Given an objective function f ðxÞ, sequential quadratic program-

ming finds the next iterate xnþ1 ¼ xn þ D by minimizing the sec-

ond-order approximation

f ðxn þDÞz f ðxnÞþ df ðxnÞDþ 1

2
DTd2f ðxnÞD

with respect to D subject to relevant constraints. Here, df ðxÞ is the
first differential (transposed gradient) and d2f ðxÞ is the second dif-

ferential (Hessian) of f ðxÞ. With linear constraints and upper and

lower bounds, one can exploit a standard pivoting strategy to

solve this quadratic program.33 ADMIXTURE accomplishes pre-

cisely this with the objective equal to the negative log likelihood.

In the block ascent updates, the SNP-specific allele frequencies and

individual-specific admixture proportions are parameters that can

be separated. This results in an overall computational complexity

of O½ðI þJÞK3� for the quadratic programs, which is negligible

compared to the bottleneck of OðIJK2Þ in computing Hessians, as

K � I; J. Admixture proportions are initialized by five iterations

of FRAPPE’s EM (expectation maximization) algorithm.34

OpenADMIXTURE leverages Julia to achieve higher perfor-

mance. The core computations of sequential quadratic program-

ming now exploit tiling to maximize locality and avoid cache

misses. Users can choose to offload most computations to graphics

processing units (GPUs) for further speedup. OpenADMIXTURE’s

default setting declares convergencewhen the relative change in lo-

glikelihoods is less than 10�7. Supervised inference is possible by

fixing P and updating only Q or fixing Q and updating only P.

The former is pertinent when admixture proportions are sought

and predefined allele frequencies from reference populations are

used. The latter is pertinent when allele frequencies are sought for

the reference populations whose admixture coefficients are fixed.
Software input and output
Our OpenADMIXTURE package internally runs a pipeline of SKFR

and then admixture estimation. As mentioned above, SKFR is

also available as a stand-alone package for use on general datasets

(see ‘‘data and code availability’’). It is also possible to run

OpenADMIXTURE with all available SNPs and bypass AIM discov-

ery through SKFR. Given these considerations the input and

output conventions adopted by OpenADMIXTURE are the

following.

For SKFR

Input: a single set (bed, fam, bim) or collection of PLINK binary

files, the number of clusters, and the number of AIMs.

Output: a single set of PLINK binary files containing only the

selected AIMs and a file containing hard clustering results, where

each row indicates the cluster to which a sample is assigned. A

filtered PLINK file containing only the AIMs is optional.

For admixture estimation

Input: a single set (bed, fam, bim) or collection of PLINK binary

files, possibly filtered to contain only the selected AIMs under

SKFR, and the number of clusters.

Output: a P file where each row indicates the cluster-specific

allele frequencies of an AIM and a Q file where each row indicates

the estimated admixture proportions of an individual.
Selection of the number of clusters K
To choose the number of clusters K, the gap statistic of Tibshirani

et al.35 is handy. As a permutation test, the gap statistic requires

running SKFR with different values of K, and samples revised by

randomly shuffling genotypes across each SNP.
The A
Warm start for a path with different sparsity level S
It is often desirable to explore a variety of AIM sparsity levels S on

the same dataset. This can be done efficiently by starting with the

highest level Smax desired and gradually decreasing S. The results

from a given S are then invoked to warm start computations at

the next lower level of S. OpenADMIXTURE’s ranking of AIMs

facilitates this tactic.

Further computational tactics
We directly exploit the structure of the PLINK bed format36

to reduce memory usage through OpenMendel’s37 package

SnpArrays. Further tactics that improve computational efficiency,

such as initialization, recursive tiling for cache efficiency,38 multi-

threading, and GPU acceleration39 are discussed in the supple-

mental methods, A.

Performance evaluation
Permutation matching of clusters

Clustering results derived from two separate algorithms can be

compared by various statistics. Any pertinent statistic should be

invariant under permutation of cluster labels and match similar

clusters. We carry out matching following the approach of Behr

et al.40 The similarity between cluster m of Q1 and cluster n of

Q2 is quantified by

J �q1m; q2n� ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI

i¼1

�
q1mi � q2ni

�2
2jN�j

s
;

where N� ¼ fi : q1mi þq2ni > 0g. Cluster matching can be formu-

lated as an assignment problem maximizing the criterionP
m;n

xmnJ ðq1m; q2nÞ subject to the constraints xmn ˛ f0;1g and

PK
k xkm ¼ PK

k xnk ¼ 1. In practice, the domain of xmn is relaxed

to the unit interval, and the problem is solved by linear program-

ming via JuMP,41 Julia’s mathematical optimization package.

Visualization

Wevisualizeestimates foradmixtureproportionsasstackedbarplots.

The clusters in each run are matched for easy comparison. To deter-

mine the order of samples, we rely on hierarchical clustering with

complete linkage based on the OpenADMIXTURE Q estimates.

The samples are ordered within each population, and the popula-

tions are orderedon thebasis of hierarchical clusteringof cluster cen-

ters. The same is done for superpopulations whenever applicable.

Real datasets
Our evaluation of OpenADMIXTURE relies on four independent

datasets: 1000Genomes Project (TGP),42,43 HumanGenomeDiver-

sity Project (HGDP),44,45 Human Origins (HO),46 and UK Biobank

(UKB, retrieved under Project ID: 48152) in compliance with the

data use agreements. The TGP dataset consists of the 2012-01-31

Omni Platform genotypes confined to unrelated individuals with

at least a 95% genotyping success rate and SNPs with at least a 1%

minor allele frequency (MAF). The filtered dataset contains 1,718

individuals and 1,854,622 SNPs. The original VCF-formatted data

are converted to PLINK bed format. Samples are labeled as

belonging to one of 26 populations, which are grouped into five

superpopulations designated African, admixed American, East

Asian, European, and South Asian. The HGDP dataset contains

the individuals in the Stanford H952 dataset with greater than a

95% genotyping success rate and SNPs with at least a 1% MAF.

The HGDP data contain 642,951 SNPs and 940 individuals across

32 populations, which are grouped into seven continental
merican Journal of Human Genetics 110, 1–12, February 2, 2023 3



Table 1. Accuracy of estimated admixture proportion on the simulated datasets

Number
of samples

Number
of SNPs

Number of
populations

Percentage of SNPs selected as AIMs by SKFR (baseline)

SCOPE2.5% 5% 7.5% 10% 12.5% 15% 17.5% 20% 100%

1,000 10,000 5 0.0457 0.0365 0.0320 0.0292 0.0276 0.0263 0.0252 0.0244 0.0196* 0.0309

1,000 100,000 5 0.0154 0.0122 0.0110 0.0101 0.0098 0.0093 0.0092 0.0091 0.0089* 0.0104

1,000 1,000,000 5 0.0065 0.0063 0.0064 0.0064 0.0066 0.0065 0.0067 0.0067 0.0076 0.0056*

10,000 10,000 5 0.0482 0.0371 0.0332 0.0310 0.0296 0.0285 0.0277 0.0270 0.0231* 0.0333

10,000 100,000 5 0.0166 0.0135 0.0120 0.0111 0.0106 0.0103 0.0100 0.0098 0.0088* 0.0126

1,000 10,000 10 0.0539 0.0428 0.0369 0.0337 0.0315 0.0298 0.0287 0.0277 0.0226* 0.0307

1,000 100,000 10 0.0183 0.0148 0.0136 0.0131 0.0128* 0.0129 0.0130 0.0131 0.0176 0.0128*

1.000 1,000,000 10 0.0114 0.0113 0.0114 0.0117 0.0118 0.0120 0.0122 0.0124 0.0169 0.0098*

10,000 10,000 10 0.0529 0.0421 0.0373 0.0344 0.0324 0.0309 0.0298 0.0291 0.0234* 0.0320

10,000 100,000 10 0.0186 0.0148 0.0131 0.0121 0.0113 0.0108 0.0104 0.0101 0.0082* 0.0122

Accuracy is measured in terms of root-mean-square error. The best value in each row is denoted with an asterisk.
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superpopulations: Europe, Middle East, Central South Asia, East

Asia, Africa, America, and Oceania. The HO dataset is filtered to

include only samples with at least a 99% genotype success rate

and SNPs with at least a 5% MAF. The HO data contain 385,089

SNPs for 1,931 people across 163 populations. Continental popula-

tion labels are not provided. For the UKB dataset,14 we filtered bulk

genotypes to include individuals with at least a 95% genotyping

success rate and SNPs with at least a 1% MAF. The resulting data

include 488,154 individuals and 610,741 SNPs.
Simulations
We simulated data following the Pritchard-Stephens-Donnelly

(PSD) model9 based on the software provided in the SCOPE pack-

age.13 In the PSD model,

pkj � Beta

�
1 � FST

FST
pA;

1 � FST
FST

ð1 � pAÞ
�

q$i � Dirichletða1KÞ:
The allele frequencies pkj are sampled following the Balding-

Nichols47 model, a beta distribution characterized by the fixation

index FST and the initial allele frequency pA. We sample FST and pA
from their distributions in the TGP dataset, as illustrated in

Figure S1. For admixture proportions qki, we sample a Dirichlet dis-

tributionwith a ¼ 0:2, and for each genotype we sample from the

binomial distribution

xij � Binomial

 
2;
XK
k¼1

pkjqki

!
:

Initial allele frequencies pA outside the interval [0.005,0.995] are

clipped to the closest endpoint. To simulate weak genetic struc-

ture, we also sampled FST uniformly from the range ð0;0:01Þ rather
than from the FST distribution found in the TGP data.
Results

Simulation studies

To determine a reasonable number of AIMs to choose using

SKFR, we simulated independent datasets with various

numbers of samples, numbers of SNPs, and numbers of
4 The American Journal of Human Genetics 110, 1–12, February 2, 20
populations. Table 1 records root-mean-square errors.

Without filtering SNPs, OpenADMIXTURE shows better

accuracy compared to SCOPEwhen the number of samples

dominates the number of SNPs. SCOPE performs better in

the reverse situation. In either case, selecting 15%–20% of

the SNPs as AIMs via SKFR gives a good intermediate root-

mean-square error between that of OpenADMIXTURE and

SCOPE, where both use all the SNPs. When there are a

million SNPs and 1,000 samples, similar to the TGP and

HGDP datasets, using SKFR to select just 25,000 SNPs

(2.5% of the SNPs) is enough for reasonable results. There

is no evidence that selection by SKFR is biased in terms of

either allele frequency or fixation index FST . Indeed,

Figures S1 and S2 display no visible difference in either

measure’s distribution before and after SKFR selection.

We also examined a version of SKFR selecting a prede-

fined number of AIMs per cluster, proposed as ‘‘SKFR2’’ in

Zhang et al.24 The results are displayed in Table S1, which

is largely similar to Table 1. As the AIMs selected by each

cluster may overlap, it is difficult to control the total num-

ber of AIMs selected under this strategy. To directly control

the total number of AIMs, we use the version discussed in

section ‘‘sparse K-means with feature ranking (SKFR)’’, se-

lecting predefined number of AIMs across all the clusters

(‘‘SKFR1’’) for our analysis of real data. Our software sup-

ports both versions of SKFR.

Selection of K

Table 2 shows thevalueofK chosenunderdifferent settings.

The gap method consistently chooses K close to the true

value during data generation, even with a relatively small

number of selected AIMs. However, when the number of

AIMs is less than 0.5% of the total number of SNPs, the

limited information available causes the gap statistic to un-

derestimate K. Choosing at least 10,000 to 100,000 AIMs

works well in general. Table 2 suggests that SKFR’s deletion

ofuninformative SNPs tends to improve clustering. Table S2

presents the values of K selected under our weak structure

simulations with reduced FST . Cluster number estimation
23



Table 2. Number of clusters inferred by the gap statistics in SKFR

Number of
samples

Number
of SNPs

Number of
populations

Percentage of SNPs selected as AIMs by SKFR (baseline)

0.1% 0.2% 0.5% 1% 2% 5% 10% 20% 50% 100%

1,000 10,000 5 2 3 3 4 4 4 4 4 4 4

1,000 100,000 5 3 4 4 4 4 4 4 4 4 4

1,000 1,000,000 5 4 4 4 4 4 4 4 4 4 4

10,000 10,000 5 4 3 3 4 4 4 4 5 5 4

10,000 100,000 5 3 4 4 4 5 5 5 5 5 5

1,000 10,000 10 3 4 6 8 8 10 10 9 8 8

1,000 100,000 10 10 10 9 9 9 9 9 9 8 8

1,000 1,000,000 10 8 8 10 10 10 9 9 9 9 7

10,000 10,000 10 2 4 6 8 8 9 10 10 10 10

10,000 100,000 10 8 8 10 10 10 10 10 10 10 13

Allele frequencies and fixation indexes, FST , are sampled from the values of SNPs in the TGP data. Admixture proportions are sampled from a Dirichlet distribution
with a ¼ 0:02. See the text for simulation details.
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is unstable, with estimated values of K usually too low but

occasionally too high. Again, the gap statistic is stymied

by the limited information available.

Large-scale real datasets

Hard clustering via SKFR

To evaluate the clustering performance of SKFR, we ran it

on the TGP data with K ¼ 8 clusters, the HGDP data

with K ¼ 10 clusters, and the HO data with K ¼ 14 clus-

ters, choices consistent with previous analyses of these

data.11–13 Recall that in the TGP data, each individual is

labeled as coming from one of 26 populations and one of

five superpopulations. We tried ten different initializations

for sparsity level S ¼ 100;000 and chose the best clus-

tering according to the loss function of Equation 2. Then

we successively decremented S to 80,000, 60,000, 40,000,

20,000, 10,000, and 5,000 by using the warm start tactic

described in section ‘‘warm start for a path with different

sparsity level S’’. We computed the adjusted Rand index

(ARI)48,49 and the normalized mutual information

(NMI)49 between our hard clusterings and the five superpo-

pulation labels originally attributed to the sample individ-

uals. Although these two metrics are rather opaque, they

do allow the number of clusters to differ in each clustering.

These measures were also computed for the baseline

K-means clustering with all SNPs included. The baseline

results also reflect ten different initializations.

Table 3 for the TGP data shows that SKFR’s hard cluster-

ings clearly outperform the baseline K-means results and

that the SKFR results are stable across a wide range of

selected SNPs. When we exclude the admixed American

(AMR) superpopulation in our assessment, our clusters

perfectly capture the four remaining superpopulations. It

appears that including uninformative SNPs or admixed

samples creates unwanted noise that obscures true clusters.

For the HGDP andHO data (Tables S3 and S4, respectively),

the ARI and NMI measures delivered by SKFR are compara-
The A
ble to but slightly worse than those of the baseline

K-means. For the HGDP data this anomalous result may

stem from the admixed nature of the HGDP superpopula-

tions. It is also noteworthy that the HO data include 163

different population labels. For the HGDP and HO data,

ARI and NMI decrease as we choose more AIMs, up to a

total of 100,000 selected AIMs. This anomaly may have

two sources. First, we are relying on possibly inaccurate

self-reported population labels. Second, we are hard label-

ing individuals who may be admixed. Unlike the TGP

data, where it is straightforward to distinguish admixed

populations (one continental label is literally ‘‘admixed

Americans’’), it is much more difficult to isolate less ad-

mixed populations from continental labels in the HGDP

data, as it intentionally collected samples with more

diverse background. In the case of HO, no continental la-

bels are provided to compare to the 163 population labels.

Admixture estimation

We recorded concordance with ancestry labels included

in the datasets as a performancemeasure for soft clustering

under OpenADMIXTURE. We also trained a softmax

(multinomial logistic) classifier to predict superpopulation

labels using TGP data with the inferred admixture propor-

tions as predictors. Since the results are continuous

proportions rather than hard clusters, cross-entropy is a

reasonable measure of error. We additionally matched

clusters as discussed in section ‘‘permutation matching

of clusters’’ and computed root-mean-square error

(RMSE) compared to the OpenADMIXTURE estimates

with all SNPs included.

Tables 4, S5, and S6 display our complex findings for the

TGP, HGDP, and HO datasets, respectively. The accuracy of

OpenADMIXTURE classification with a limited number

of AIMs is roughly comparable to that of SCOPE, which

employs all SNPs. In general, cross-entropy decreases (im-

proves) as we select more AIMs in OpenADMIXTURE’s

inference. In particular for the HO and TGP datasets, the
merican Journal of Human Genetics 110, 1–12, February 2, 2023 5



Table 3. Hard clustering performance on the TGP data with all samples

Number of AIMs

All samples Without AMR

ARI NMI ARI NMI

5,000 0.824 0.839 1.000 1.000

10,000 0.825* 0.840 1.000 1.000

20,000 0.825* 0.840 1.000 1.000

40,000 0.825* 0.841* 1.000 1.000

60,000 0.824 0.840 1.000 1.000

80,000 0.825* 0.840 1.000 1.000

100,000 0.822 0.837 1.000 1.000

All SNPs 0.575 0.726 0.726 0.802

Performance for ‘‘all samples’’ measured relative to the five superpopulation labels and also for the samples not including the admixed Americans (‘‘without AMR’’)
relative to the remaining four superpopulation labels. Performance is evaluated with the adjusted Rand index (ARI) and the normalized mutual information (NMI).
The best value in each column is denoted with an asterisk, except when the maximum value of 1.0 is reached. The category ‘‘all SNPs’’ refers to baseline results
under K-means.
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OpenADMIXTURE estimates with 60,000 or more AIMs

outperform SCOPE. The RMSEs of SCOPE and AIM-driven

OpenADMIXTURE are also roughly comparable within

each of the three datasets. SCOPE does somewhat better

on the HO data, while OpenADMIXTURE does better on

the HGDP and TGP data. Again, we stress that the admixed

nature of the data may obscure the value of limiting anal-

ysis to AIMs and cloud the choice of the optimal number

of AIMs.

The TGP data demonstrate the value of excluding samples

knowntobeadmixed.Table4 shows thatOpenADMIXTURE

classification is perfect for the non-AMR individuals with at

least 20,000 AIMs selected. The table also shows better

cross-entropy for classifying non-admixed samples versus

all samples. Table S7 reinforces these findings by omitting

AMR samples during SKFR AIM selection prior to admixture

analysis. Table S7 shows slightly better classification perfor-

mance than that recorded in Table 4 with the same number

of AIMs.

For the UKB data with K ¼ 4 and K ¼ 15 clusters, we

computed the accuracy of the softmax classifier with three

sets of labels. The first set (L1) uses all 22 raw labels. The sec-

ond (L2)uses the eight labels, British, Irish, Indian, Pakistani,

Bangladeshi, Caribbean, African, and Chinese, for roughly

homogeneous populations and removesmixed or uncertain

labels such as ‘‘mixed’’ or ‘‘other.’’ The third set (L3) merges

L2’s populations into four continental groupings, British-

Irish, Indian-Pakistani-Bangladeshi, Caribbean-African, and

Chinese. Table S8 reports this classification accuracy for

OpenADMIXTURE with S ¼ 100;000 AIMs for K ¼ 4 clus-

ters and with S ¼ 80; 000 AIMs for K ¼ 15 clusters and for

SCOPE with all SNPs included. SCOPE failed to run with

K ¼ 15 clusters, giving not-a-number (NaN) internal errors.

Note that our preprocessing is simpler than that of Chiu

et al.13

We checked whether OpenADMIXTURE can capture

regional structure in the historically British subset of the

UKB data used to compute PCs.14 The subset consists of
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147,604 typed SNPs on 430,815 subjects who self-identify

their ethnicity as British. As dictated by the gap statistic, we

set the number of populations to K ¼ 9 and trained a

softmax classifier to predict the assessment region of

each subject. The 22 assessment centers across UK can

be grouped into five regions: North England, South En-

gland, North Wales, South Wales, and Scotland. There is

no center in North Ireland. The training accuracy with

OpenADMIXTURE is 67.7%. SCOPE with K ¼ 9 exhibits

a training accuracy of 64.9%. We also trained the softmax

classifier with eight PCs to match the number of free pa-

rameters under clustering.50 The training accuracy with

principal-component analysis (PCA) is 67.5%, very similar

to OpenADMIXTURE’s 67.7%. Our results are displayed in

Table S9. This type of analysis is limited by the imperfect

relationship between assessment centers visited and

ancestry.

Visualization

Figures 1, 2, and 3 depict the inferred admixture proportions

for the TGP, HGDP, and HO datasets. Each figure includes

three graphs: first, the results from OpenADMIXTURE with

all SNPs; second, the results from OpenADMIXTURE with

100,000 AIMs; and third, the results from SCOPE.

Computation times and maximum memory

requirements

Most of our numerical experiments were run on Amazon

Web Services (AWS). Table S10 lists the hardware instances

invoked for computation. For our GPU experiments, we

used two types of GPUs. The first, Nvidia A10G in a

g5.4xlarge instance, is a moderate-grade GPU designed

for low-cost performance. The second, Nvidia V100 in a

p3.2xlarge instance, is specialized for scientific computing.

The main difference between the two is double precision

performance. By design, double precision performance

on Nvidia A10G is 32 times slower than single precision,

while double precision on Nvidia V100 is only twice as

slow as single precision.
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Table 4. Performance comparison of OpenADMIXTURE and SCOPE on the TGP dataset

Number of AIMs

All samples Without AMR

Accuracy Cross-entropy Accuracy Cross-entropy RMSE from Baseline

5,000 0.941 313 1.000 37.4 0.234

10,000 0.947 295 0.998 34.9 0.185

20,000 0.947 284 1.000 33.4 0.152

40,000 0.953 274 1.000 31.7 0.164

60,000 0.971 242 1.000 29.0 0.043

80,000 0.968 241 1.000 30.5 0.033

100,000 0.969 241 1.000 30.1 0.027*

All SNPs 0.980* 232* 1.000 27.3* –

SCOPE 0.979 248 1.000 32.1 0.044

Performance is measured by training accuracy and cross-entropy with the five (four without admixed Americans [‘‘without AMR’’]) continental labels delivered
by the trained softmax classifier. Root-mean-square error (RMSE) from baseline compares estimated admixture coefficients to those with all SNPs included and
regular ADMIXTURE run without prior SKFR AIM selection (‘‘all SNPs’’). The best value in each column is denoted with an asterisk; accuracy has a maximum
value of 1.0.
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Comparison to SCOPE

It is instructive to compare the runtimes of OpenADMIX-

TURE (pipelining SKFR followed by admixture estimation)

to those of SCOPE. For our pipeline on the TGP data, when

all 16 available threads are used in a g5.4xlarge instance, a

single SKFR run takes 1 min 36 s. Filtering takes less than a

minute. The subsequent run of admixture estimation takes

less than 5 min with 100,000 or fewer SNPs. Cumulatively,

the pipeline takes fewer than 7 min. On the other hand, a

SCOPE run on the TGP data takes slightly over 16 min on

the same hardware.

For the UKB data with K ¼ 4, a single run of SKFR takes

44 min on a compute-optimized c6i.16xlarge instance

with 128 GB memory. The maximum memory footprint

is 73.2 GB. Creating the PLINK files containing only the

selected AIMs takes less than 10 min. The subsequent

admixture estimation run with 100,000 selected SNPs

takes 29 min on a V100 GPU. Thus, the total pipeline

runtime, invoked by a single OpenADMIXTURE call, was

under 83 min. SCOPE took a similar 91 min to run on

the UKB dataset. Since SCOPE’s memory requirement for

this dataset is 250 GB, it had to be run on amore expensive

memory-optimized r6i.16xlarge instance with 512 GB

memory. In summary, total computation times are compa-

rable, but OpenADMIXTURE is clearly less memory inten-

sive than SCOPE.

Runtime improvement versus the original ADMIXTURE soft-

ware

Although it invokes the same statisticalmodel andoptimiza-

tion strategy,OpenADMIXTUREdeliversbetterperformance

than the original ADMIXTURE software. Table S11 records

the per-iteration times of various admixture estimation rou-

tines on the TGP data with 100,000 AIMs. 16-thread CPU

and A10G GPU experiments were performed on an AWS

g5.4xlarge hardware instance; V100 GPU experiments were

performed on an AWS p3.2xlarge hardware instance.
The A
OpenADMIXTURE software, when restricted to CPUs, is

2.8 times faster on a single thread, and 8 times faster in a

16-thread run, compared to the original ADMIXTURE.

When a GPU is available, OpenADMIXTURE accelerates

computation by another factor of 2–4, depending of course

on the GPU hardware and the floating-point precision

invoked.
Discussion

This paper presents a biobank-scalable, unsupervised pipe-

line forAIMselectionandadmixtureestimation.Ourproced-

ures provide both interpretable admixture coefficients and

population-specific allele frequencies. Our Julia package

OpenADMIXTURE implements the entire pipeline. The

SKFR (sparse K-means with feature ranking) component of

the pipeline is highly parallelized and effective in AIM

selection. SKFR’s unsupervised clustering is insensitive to a

small fraction of labeling errors and admixed samples. SKFR

also delivers an explicit ranking of AIMs. Our experiments

suggest that 10,000–100,000 AIMs deliver better clusters

than full biobank-scale SNP sets. Uninformative SNPs

simply constitute noise that slows clustering and obscures

subpopulations.

The second component of the pipeline, estimation of

admixture proportions, is an open-source re-implementa-

tion in the Juliaprogramming languageofourpreviouspack-

age ADMIXTURE. The original ADMIXTURE7 iswidely used,

with over 5,400Google citations.OpenADMIXTURE is up to

8 times faster than ADMIXTURE onCPUswithmultithread-

ing andeven fasteroncomputerswithGPUs. Total computa-

tion time is comparable to SCOPE, another method

currently scalable to biobank data. We have shown that

both OpenADMIXTURE and SCOPE can analyze a dataset

with 500,000 individuals and 600,000 SNPs in well under
merican Journal of Human Genetics 110, 1–12, February 2, 2023 7



Figure 1. Estimated ancestry of TGP data samples
(A–C) Using OpenADMIXTURE with all SNPs, using OpenADMIXTURE with 100,000 AIMs (B), and using SCOPE (C). These are stacked
bar plots with the y axis indicating the proportion of total ancestry. The x axis runs over all samples; the population labels originally
assigned to these samples within the dataset are provided in the lower sections of the figure.
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2 h. The paper13 introducing SCOPE took about 24 h to

analyze the same data. However, the current version of

SCOPE is more efficient than the original version, and com-

puters are more powerful.

The memory demands of OpenADMIXTURE are excep-

tionally light as a result of its systematic exploitation of

PLINK’s binary format for both computation and genotype

storage. OpenADMIXTURE’s peak memory footprint is

less than 120% of the size of the genotype input file.

Overall, OpenADMIXTURE’s memory footprint is less than

30% of that of SCOPE. Specifically, to analyze the above

biobank dataset, SCOPE requires 250 GB of RAM, while
8 The American Journal of Human Genetics 110, 1–12, February 2, 20
OpenADMIXTURE needs under 75 GB. OpenADMIXTURE

is also based on a likelihood model that incorporates basic

population genetics concepts.

The computational complexityOðIJK2Þ ofHessian compu-

tation is a bottleneck for OpenADMIXTURE in dealing with

K > 20 populations. Limiting analysis to a small number of

AIMs reduces runtimes but does not eliminate theK2 depen-

dence. If it is found desirable to tackle problemswith largeK,

then gradient ascent might be helpful. Unfortunately,

gradient ascent subject to constraints tends to be slowunless

one can determine a nearly optimal step size. Line searches

along the gradient direction require repeated log likelihood
23
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Figure 2. Estimated ancestry of HGDP data samples
(A–C) Using OpenADMIXTURE with all SNPs (A), using OpenADMIXTURE with 100,000 AIMs (B), and using SCOPE (C). These are
stacked bar plots, with the y axis indicating the proportion of total ancestry. The x axis runs over all samples; the population labels orig-
inally assigned to these samples within the dataset are provided in the lower section of the figure.

Please cite this article in press as: Ko et al., Unsupervised discovery of ancestry-informative markers and genetic admixture proportions in
biobank-scale datasets, The American Journal of Human Genetics (2023), https://doi.org/10.1016/j.ajhg.2022.12.008
evaluations and are expensive. We defer resolution of this

issue to future research.

Wehave ignored thepossiblebiological insights offeredby

the AIMs selected by SKFR. The genomic locations of AIMs

and their relation to the ancestral populationsof the samples

warrant further research. The version of the SKFR algorithm

that selects different AIM sets for different clusters may
Figure 3. Estimated ancestry of HO data samples
(A–C) Using OpenADMIXTURE with all SNPs (A), using OpenADM
stacked bar plots, with the y axis indicating the proportion of total a

The A
potentially improve biological interpretability. This issue

also warrants further research. Selecting the number of clus-

ters K and the sparsity level S is a third issue. Methods based

on cross-validation require repeated runs of the pipeline and

maybe impractical onbiobank-scale data. BecauseOpenAD-

MIXTURE relies on a likelihoodmodel, determinationofK is

possible on the basis of the Akaike information criterion
IXTURE with 100,000 AIMs (B), and using SCOPE (C). These are
ncestry. The x axis runs over all samples.
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Algorithm 1B. SKFR Algorithm Incorporating Missing
Genotypes

Input: Standardized genotype matrix X ˛RI3J , num-

ber of clusters K, sparsity level S, initial clusters Ck,

and iteration number n.

Initialize Q0 ¼ m1K1
T
J , where m is the mean of non-

missing entries of X

repeat

n ¼ nþ 1

Yn ¼ PUðXÞ þ PUtðBn�1Qn�1Þ
Run the standard SKFR algorithm on Yn to obtain Bn

and Qn, and the ranked list of AIMs L

until convergence

return Bn, Qn, and L.
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(AIC) or the Bayesian information criterion (BIC). The cur-

rent paper relies on the standard gap statistic for choosing

K.35Alternatively,onecan runSKFRwithavarietyofK values

and then check AIC or BIC with the selected clusters and

AIMswithOpenADMIXTURE.For selecting the sparsity level

S, a variantof gap statisticsmaybehelpful aswell.24 If genetic

structure isweak,Kmaybeoverestimated, particularlywhen

too few AIMs are chosen. We recommend a minimum of

10,000 AIMs. Again, the optimal method for choosing K is

a question for future research.

OpenADMIXTURE offers the option of inferring

admixture proportions on the basis of the population allele

frequencies available in reference panels such as TGP. This

approach fixes the allele frequency matrix P and only

updates the admixture coefficient matrix Q. Sequential

quadratic programming easily solves this simplified convex

problem, which is parameter separated across samples.

Thus, OpenADMIXTURE can be readily applied to sample

collections ranging from small to biobank scale.

In summary,OpenADMIXTURE isa substantial upgradeof

ADMIXTURE. Although the full panoply of options already

available in ADMIXTURE has not yet been implemented,

the ADMIXTURE community will surely welcome an open-

source version that can be cooperatively developed further.

The OpenMendel tools that OpenADMIXTURE already ex-

ploits provide a clear path to further improvement. We also

expect Julia’s parallelization ecosystem to expand over

time.We solicit the suggestions and assistance of committed

users in the ADMIXTURE community in our efforts.
Appendix A
Algorithm 1A. SKFR Algorithm

Input: Standardized genotype matrix X ˛RI3J , num-

ber of clusters K, sparsity level S, and initial clusters Ck.

repeat

for all cluster k: do

qk ¼ 1
jCkj

P
i˛Ck

xi

end for

for all feature j: do

Rank j by criterion hj ¼ P
k

jCkjq2kj
end for

Let L be the set of S features with the highest hj

for all sample i: do

Assign sample i to the cluster Ck that minimizesP
j˛L

ðxij � qkjÞ2 þ
P
j;L

x2ij

end for

for all feature j;L: do

Put j-th column of Q to zero

end for

until convergence

return Cluster assignments B ðbik ¼ 1i˛Ck
Þ, Q, and

ranked list L.
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Data and code availability

The stand-alone SKFR package can be found at https://github.com/

kose-y/SKFR.jl. The OpenADMIXTURE package can be found at

https://github.com/OpenMendel/OpenADMIXTURE.jl. The code

for the experiments, and instructions todownloadpublicly available

data, can be found at https://github.com/kose-y/OpenADMIX

TURE-resources. One exception is the UK Biobank data, which are

available via application at https://www.ukbiobank.ac.uk. The UK

Biobank data were retrieved under Project ID: 48152.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.12.008.
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