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Estimation of ancestral admixture is essential for creating personal genealogies, studying human history, and 
conducting genome-wide association studies (GWAS). The following three primary methods exist for estimating 
admixture coefficients. The frequentist approach directly maximizes the binomial loglikelihood. The Bayesian 
approach adds a reasonable prior and samples the posterior distribution. Finally, the nonparametric approach 
decomposes the genotype matrix algebraically. Each approach scales successfully to datasets with a million 
individuals and a million single nucleotide polymorphisms (SNPs). Despite their variety, all current approaches 
assume independence between SNPs. To achieve independence requires performing LD (linkage disequilibrium) 
filtering before analysis. Unfortunately, this tactic loses valuable information and usually retains many SNPs still 
in LD. The present paper explores the option of explicitly incorporating haplotypes in ancestry estimation. Our 
program, HaploADMIXTURE, operates on adjacent SNP pairs and jointly estimates their haplotype frequencies 
along with admixture coefficients. This more complex strategy takes advantage of the rich information available 
in haplotypes and ultimately yields better admixture estimates and better clustering of real populations in curated 
datasets.

1. Introduction

Estimation of genetic admixture is key to reconstructing personal 
genealogies and understanding population histories [1]. Adjusting for 
genetic ancestry is also a necessary prelude to genome-wide associa

tion studies (GWAS) for medical and anthropological traits [2]. Failure 
to account for ancestry can lead to false positives due to population 
stratfication [3--5]. In these analyses, admixture coefficients serve as co

variates adjusting for ancestry. Because admixture coefficients represent 
the proportions of a person’s ancestry derived from different popula

tions, they are more interpretable than principal components (PCs).

Admixture coefficients can be estimated simultaneously with allele 
frequencies in known or latent populations. ADMIXTURE [6] is the 
most widely-used likelihood-based software. It directly maximizes the 
binomial likelihood of the admixture coefficients and allele frequencies 
via alternating sequential quadratic programming [7]. Our recent Julia 
version, OpenADMIXTURE [8], incorporates time-saving software en

hancements and AIM (ancestry informative markers) preselection via 
sparse 𝐾 -means clustering [9]. STRUCTURE [10] and its extensions 
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fastStructure [11] and TeraStructure [12] rely on Bayesian inference. 
SCOPE [13] replaces the genotype matrix by a low-rank matrix, which 
is delivered by alternating least squares and randomized linear alge

bra [14]. Each of the recent versions of these programs -- OpenADMIX

TURE, TeraStructure, and SCOPE -- scales to biobank-size datasets of a 
million people and a million single nucleotide polymorphisms (SNPs).

A regrettable limitation of most of these programs is their assump

tion of independence for the alleles present at neighboring SNPs. To 
avoid this patently false assumption, SNPs are filtered to remove SNPs 
in linkage disequilibrium (LD). Filtering must reach a balance between 
LD elimination and the loss of valuable AIMs. The LD-aware program 
fineSTRUCTURE [15] scales poorly on large datasets [13], despite the 
clear advantage of using ancestry informative haplotypes over individ

ual SNPs [16--18].

The current paper demonstrates the value of haplotypes in admix

ture estimation and population clustering. Given the combinatorial and 
computational complexities encountered, we consider only haplotypes 
formed from adjacent SNP pairs. Even with this limitation, haplotype 
models offer substantial improvements in estimation and clustering in 
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simulated and real datasets on well-separated ancestral populations. 
Our new program, HaploADMIXTURE, builds on the high-performance 
computing (HPC) techniques pioneered in OpenADMIXTURE [8]. By 
leveraging the parallel processing capabilities of graphics processing 
units (GPUs), HaploADMIXTURE is able to run in reasonable time. 
In practice, only a minority of haplotypes are informative. To select 
ancestry informative haplotypes, we exploit unsupervised sparse 𝐾

means clustering via feature ranking [8,9]. This generic method, de

noted by the acronym SKFR, selects the informative features (haplo

types) driving cluster formation. Our experience suggests that the SKFR

HaploADMIXTURE pipeline delivers the best admixture results currently 
available with reasonable computing times.

2. Methods

2.1. Admixture likelihoods

Consider a sample of 𝐼 unrelated individuals, 𝐵 haplotype blocks, 
and 𝑆 SNPs per block. For our purposes 𝑆 equals 1 or 2. Let 𝒙𝑖𝑏 de

note the length-𝑆 genotype vector for haplotype block 𝑏 of individual 
𝑖. Each genotype of 𝑖 counts the number of 𝑖’s reference alleles present 
and is coded as a number from the set {0,1,2}. Haplotypes are coded 
as sequences of 0’s and 1’s, and every 𝒙𝑖𝑏 = 𝒉𝑖𝑏1 + 𝒉𝑖𝑏2 equals a sum 
of a maternal and paternal haplotypes. The blocks are taken to be con

tiguous, non-overlapping, and exhaustive. Haplotypes may be chosen 
through feature selection as discussed in Section 2.4. Let 𝑝𝑘𝑏𝒉 > 0 be 
the frequency of haplotype 𝒉 of haplotype block 𝑏 in population 𝑘, and 
let 𝑞𝑘𝑖 > 0 denote the fraction of 𝑖’s genome coming from population 
𝑘, where 1 ≤ 𝑘 ≤ 𝐾 . The loglikelihood of the sample under a binomial 
distribution and independence of haplotype blocks is

(𝑸,𝑷 )

=
𝐼∑
𝑖=1 

𝐵∑
𝑏=1 

log
[ ∑
𝒉∶𝒉≤𝒙𝑖𝑏 and 𝒙𝑖𝑏−𝒉≤𝟏

( 𝐾∑
𝑘=1
𝑞𝑘𝑖𝑝𝑘𝑏𝒉

)( 𝐾∑
𝑘=1
𝑞𝑘𝑖𝑝𝑘𝑏,𝒙𝑖𝑏−𝒉

)]
, (1)

where 𝒙𝑖𝑏 is the sum of the maternal haplotype 𝟎 ≤ 𝒉 ≤ 𝟏 and the 
paternal haplotype 𝒙𝑖𝑏 − 𝒉. The matrix 𝑸 has dimension 𝐾 × 𝐼 . Be

cause there are 2𝑆 possible haplotypes per block, 𝑷 has dimension 
𝐾 × 𝐵 × 2𝑆 . The constraints 

∑𝐾
𝑘=1 𝑞𝑘𝑖 = 1 and 

∑
𝒉 𝑝𝑘𝑏𝒉 = 1 hold for 

each 𝑖 and combination (𝑘, 𝑏). The loglikelihood (1) simplfies by sym

metry if any entry of 𝒙𝑖𝑏 equals 1 (a heterozygous SNP). Because 
maternal and paternal haplotypes are interchangeable, the number of 
summands can be halved if the remaining sum of products is dou

bled. When 𝑆 = 1 and 𝑖 and 𝑏 are fixed, the heterozygous genotype 
1 has probability 2(

∑
𝑘 𝑞𝑘𝑖𝑝𝑘𝑏0)(

∑
𝑘 𝑞𝑘𝑖𝑝𝑘𝑏1), which the log function 

splits into a sum of logarithms. In fact, this simplfication replicates 
the binomial likelihood employed in ADMIXTURE and STRUCTURE. 
When 𝑆 = 2, the doubly heterozygous genotype has the probability 
2
[∑

𝑘 𝑞𝑘𝑖𝑝𝑘𝑏(00)
] [∑

𝑘 𝑞𝑘𝑖𝑝𝑘𝑏(11)
]
+ 2

[∑
𝑘 𝑞𝑘𝑖𝑝𝑘𝑏(01)

] [∑
𝑘 𝑞𝑘𝑖𝑝𝑘𝑏(10)

]
, which 

no longer splits under the log function. In addition, there are cases where 
one of the genotypes is observed, but the other is missing. For example, if 
the first genotype is heterozygous and the other is missing, the probabil

ity equals 
[∑

𝑘 𝑞𝑘𝑖𝑝𝑘𝑏(00) +
∑
𝑘 𝑞𝑘𝑖𝑝𝑘𝑏(01)

] [∑
𝑘 𝑞𝑘𝑖𝑝𝑘𝑏(10) +

∑
𝑘 𝑞𝑘𝑖𝑝𝑘𝑏(11)

]
, 

and the loglikelihood (1) should be adjusted accordingly. Nonetheless, 
as described in the next subsection, the whole loglikelihood is still 
amenable to maximization.

2.2. Maximum likelihood estimation

Estimation in HaploADMIXTURE and OpenADMIXTURE are similar. 
The optimization machinery in both programs alternates estimation of 
the per-population haplotype frequencies 𝑝𝑘𝑏𝒉 and the per-individual 
admixture coefficients 𝑞𝑘𝑖. To allow easy parallelization with graph

ics processing units (GPUs), we invoke the minorization-maximization 
(MM) principle [19,20] to split sums appearing in the arguments to the 
logarithms of the haplotype loglikelihood (1). The operative inequality

log(𝑢+ 𝑣) ≥ 𝑢(𝑛)

𝑢(𝑛) + 𝑣(𝑛)
log𝑢+ 𝑣(𝑛)

𝑢(𝑛) + 𝑣(𝑛)
log𝑣

+ 𝑢(𝑛)

𝑢(𝑛) + 𝑣(𝑛)
log 𝑢

(𝑛) + 𝑣(𝑛)

𝑢(𝑛)
+ 𝑣(𝑛)

𝑢(𝑛) + 𝑣(𝑛)
log 𝑢

(𝑛) + 𝑣(𝑛)

𝑣(𝑛)

= 𝑢(𝑛)

𝑢(𝑛) + 𝑣(𝑛)
log𝑢+ 𝑣(𝑛)

𝑢(𝑛) + 𝑣(𝑛)
log𝑣+ 𝑐𝑛

reduces to an equality when 𝑢 = 𝑢(𝑛) and 𝑣 = 𝑣(𝑛). Here the irrel

evant constant 𝑐𝑛 depends only on the current values 𝑢(𝑛) and 𝑣(𝑛)

of 𝑢 and 𝑣. The function 𝑢(𝑛)

𝑢(𝑛)+𝑣(𝑛) log𝑢 +
𝑣(𝑛)

𝑢(𝑛)+𝑣(𝑛) log𝑣 becomes a sur

rogate for the function log(𝑢 + 𝑣) it replaces. For example, when 
𝑆 = 2 and 𝑖 presents a doubly heterozygous genotype, we take 𝑢 =
2
[∑

𝑘 𝑞𝑘𝑖𝑝𝑘𝑏(00)
] [∑

𝑘 𝑞𝑘𝑖𝑝𝑘𝑏(11)
]

and 𝑣 = 2
[∑

𝑘 𝑞𝑘𝑖𝑝𝑘𝑏(01)
] [∑

𝑘 𝑞𝑘𝑖𝑝𝑘𝑏(10)
]
. 

Most genotype probabilities (all homozygous and singly heterozygous 
genotypes) reduce to a single product where log splitting is unnecessary. 
For haplotypes involving more than two SNPs, phase combinations be

come more complex, code is harder to write, and computation slows. 
For these reasons we venture no further than two-SNP haplotypes. Max

imization of the surrogate function created by minorization enjoys the 
ascent property of steadily increasing the loglikelihood. The ascent prop

erty is the essence of the MM (minorization-maximization) principle 
[19,20].

Minorization creates a surrogate function

(𝑸,𝑷 ∣𝑸(𝑛),𝑷 (𝑛)) =
𝐼∑
𝑖=1 

𝐵∑
𝑏=1 

∑
𝒉

𝑤(𝑛)
𝑖𝑘𝑏𝒉

log
( 𝐾∑
𝑘=1
𝑞𝑘𝑖𝑝𝑘𝑏𝒉

)
(2)

involving nonnegative weights 𝑤(𝑛)
𝑖𝑘𝑏𝒉

, many of which are 0 because they 
correspond to haplotypes incompatible with observed genotypes. Ex

cept for revising the weights 𝑤(𝑛)
𝑖𝑘𝑏𝒉

at each iteration 𝑛, the surrogate 
loglikelihood (2) is simpler to deal with than the actual loglikelihood. 
Updating the admixture matrix 𝑸 = (𝑞𝑘𝑖) can be done simultaneously 
over columns (individuals 𝑖). Updating the haplotype frequency tensor 
𝑷 = (𝑝𝑘𝑏𝒉) can be done simultaneously over its middle columns (blocks 
𝑏). Each such maximization must respect the nonnegativity constraints 
on the proportions and their sum to 1 constraints. Very simple multi

nomial updates of the 𝑝𝑘𝑏𝒉 can be achieved by splitting the argument ∑𝐾
𝑘=1 𝑞𝑘𝑖𝑝𝑘𝑏𝒉 of the log function, but this second minorization slows con

vergence dramatically.

The parallel updates of 𝑷 and 𝑸 are structured around functions of 
the form

(𝒓) =
∑
𝑗

𝑤𝑗 log
(∑
𝑘 
𝑐𝑗𝑘𝑟𝑘

)
subject to nonnegativity and sum to 1 constraints. The method of re

cursive quadratic programming involves replacing (𝒓) by its local 
quadratic approximation

(𝒓) ≈ (𝒓(𝑛)) + ∇(𝒓(𝑛))⊤(𝒓− 𝒓(𝑛)) + 1
2
(𝒓− 𝒓(𝑛))⊤𝑑2(𝒓(𝑛))(𝒓− 𝒓(𝑛))

and maximizing this approximation subject to the constraints. The re

quired gradient and Hessian are

∇(𝒓) =
∑
𝑗

𝑤𝑗𝒄𝑗∑
𝑘 𝑐𝑘𝑗𝑟𝑘

and 𝑑2(𝒓) = −
∑
𝑗

𝑤𝑗𝒄𝑗𝒄
⊤
𝑗

(
∑
𝑘 𝑐𝑗𝑘𝑟𝑘)2

,

where 𝒄⊤𝑗 is the 𝑗th row of the matrix 𝑪 of nonnegative constants 𝑐𝑗𝑘.
Given the structure of the problem, the Hessian is block diagonal. 

As a consequence, the computation of the gradients and Hessians of 
(𝑸,𝑷 ∣𝑸(𝑛),𝑷 (𝑛)) with respect to 𝑸 has time complexity 𝑂(2𝑆𝐼𝐵𝐾2)
and space complexity 𝑂(𝐼𝐾2). Computation of the gradients and Hes

sians with respect to 𝑷 again has time complexity 𝑂(2𝑆𝐼𝐵𝐾2) but now 
space complexity 𝑂(2𝑆𝐵𝐾2). The quadratic programming cost of up

dating 𝑸 breaks down into 𝐼 quadratic programs of size 𝐾 with a single 
equality constraint. By design, solving these small quadratic programs in 
parallel circumvents the computation and storage of the massive Hes

sian of the full objective. The cost of solving one of these quadratic 
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programs is polynomial in 𝐾 . The quadratic programming cost of up

dating 𝑷 breaks down into 𝐵 quadratic programs of size 2𝑆𝐾 with an 
equality constraint for each population 𝑘. The cost of solving one of 
these quadratic programs has complexity polynomial in 2𝑆𝐾 . In prac

tice, when 𝑆 = 2, the time needed for solving the quadratic programs 
for 𝑸 is negligible compared to the time proportional to 𝐼𝐵 for comput

ing gradients and Hessians. In contrast, the time needed for solving the 
quadratic programs for 𝑷 is comparable to the time needed for comput

ing gradients and Hessians.

Our Julia implementation of HaploADMIXTURE allows users to in

voke Nvidia graphics processing units (GPUs) to accelerate the evalua

tion of gradients and Hessians and to solve the various quadratic pro

grams. Convergence criteria can be set by the user. The default setting 
for overall convergence mandates that the relative change in loglikeli

hoods falls below 10−7.

2.3. Selection of 𝐾

We employ two devices to select the number of ancestral populations 
𝐾 . First, the cross-validation method introduced in ADMIXTURE [21] 
partitions the sample individuals into 𝑣 folds. Each of the folds is held 
out as a validation set, and the model is fit on the remaining training 
individuals. Fitting on a training set is fast because it warm starts pa

rameter values from the estimates garnered under the full dataset. Given 
the haplotype frequencies 𝑷 𝑡𝑟𝑎𝑖𝑛 estimated on the training set fixed, we 
estimate the admixture fractions 𝑸𝑡𝑒𝑠𝑡 on the validation set. This fitting 
step is also fast because it qualfies as a straightforward convex problem. 
Given 𝑷 𝑡𝑟𝑎𝑖𝑛 and 𝑸𝑡𝑒𝑠𝑡, we predict the genotype matrix of the validation 
individuals. The deviance residual under a binomial model yields the 
prediction error

𝑑(𝒙,𝒚) =
∑
𝑖 

∑
𝑗

[
𝑥𝑖𝑗 log

𝑥𝑖𝑗

𝑦𝑖𝑗
+ (2 − 𝑥𝑖𝑗 ) log

(2 − 𝑥𝑖𝑗 )
(2 − 𝑦𝑖𝑗 ) 

]
,

where 𝒙 is 𝐼 ×𝑆𝐵 true genotype matrix, and 𝒚 is the predicted genotype 
matrix. This error is then averaged across the different folds. We choose 
the most parsimonious model whose prediction error is no more than 
one standard error above the error of the best model (one standard error 
rule).

The second device for selecting 𝐾 is the Akaike information criterion 
(AIC) [22]. In the current setting

AIC = 2
[
𝐵𝐾(2𝑆 − 1) + 𝐼(𝐾 − 1) −(𝑸̂, 𝑷̂ )

]
The term 𝐵𝐾(2𝑆 −1)+𝐼(𝐾−1) counts the number of free parameters in 
the model with 𝐾 ancestral populations. The loglikelihood is evaluated 
at the maximum likelihood estimates given 𝐾 . We fit the model for 
several different values of 𝐾 and choose the 𝐾 with the lowest value 
of AIC. The virtue of AIC is that it requires less computation than full 
cross-validation.

2.4. Sparse 𝐾 -means with feature ranking for haplotypes

To select AIMs, sparse 𝐾 -means with feature ranking (SKFR) [8,9] 
has proved ideal. SKFR ranks and selects a predetermined number of fea

tures (sparsity level) 𝑠 based on their importance in 𝐾 -means clustering. 
HaploADMIXTURE requires input blocks of SNPs rather than individual 
SNPs. The center for cluster 𝑗 is a vector 𝒄𝑗 = (𝑐𝑗𝑔). The loss in 𝐾 -means 
clustering is 

∑
𝑗∈𝐽

∑
𝑖∈𝐶𝑗 ‖𝒄𝑗 − 𝒙𝑖‖2, where 𝐶𝑗 denotes the set of indi

viduals belonging to cluster 𝑗, and each raw feature vector 𝒙𝑖 = 𝒉𝑚 +𝒉𝑝
is a sum of unknown haplotypes. (If everyone is haplotyped, then SKFR 
should operate on haplotypes.) In practice, the 𝒙𝑖 are standardized to 
have a mean of 0 for each feature across the entire sample. A miss

ing genotype 𝑥𝑖𝑔 in 𝒙𝑖 is imputed by the center coordinate 𝑐𝑗𝑔 when 𝑖
is assigned to cluster 𝑗 [23]. To model haplotypes, the feature vector 
𝒙𝑖 is broken into vector blocks 𝒙𝑖𝑏. In identifying AIMs, Lloyd’s algo

rithm [24] alternates updating cluster centers and reassigning feature 

vectors to clusters. At each iteration of the SKFR algorithm, the 𝑠 blocks 
giving the largest reduction in the loss are selected based on the decom

position ‖𝒄𝑗 − 𝒙𝑖‖2 = ∑
𝑏 ‖𝒄𝑗𝑏 − 𝒙𝑖𝑏‖2. The mean for a selected block 

is cluster-specific. The mean for a non-selected block is taken to be 𝟎. 
Our sparsity inducing version of Lloyd’s algorithm converges when the 
cluster centers and ancestry informative blocks stabilize.

2.5. Supervised inference of population

Given the population haplotype frequencies 𝑷̂ , we can estimate pop

ulation structure 𝑸̂ by fixing 𝑷 and only updating 𝑸. The problem 
becomes convex and can be efficiently solved. This technique is used 
for cross-validation and for our large-scale analysis of the UK Biobank 
dataset.

2.6. Computational tactics

Most of the computational tactics introduced in OpenADMIXTURE 
carry over to HaploADMIXTURE. For instance, HaploADMIXTURE sig

nificantly reduces memory demands by directly converting the bit geno

types stored in PLINK BED format [25] into numbers through the Open

Mendel [26] package SnpArrays. Multithreading is employed through

out HaploADMIXTURE. Multithreading not only promotes parallelism, 
but also reduces memory usage by tiling the computation of gradients 
and Hessians. CUDA GPU kernels are implemented for EM updates and 
computing gradients and Hessians. When running SKFR for multiple 
sparsity levels 𝑠, we start with the highest level of 𝑠 and warm start Lloy

d’s algorithm at the current level by its converged value at the previous 
higher level. We refer the readers to Ko et al. [8] for further details.

2.7. Performance evaluation

2.7.1. Permutation matching of clusters

A promising similarity metric proposed by Behr et al. [27] is effective 
in matching clusters dfined by two admixture matrices 𝑸1 and 𝑸2. This 
metric faithfully matches similar clusters and is invariant when cluster 
labels are permuted. The metric quantfies the similarity between cluster 
𝑚 in 𝑸1 and cluster 𝑛 in 𝑸2 as

 (𝒒1𝑚,𝒒
2
𝑛) = 1 −

√∑𝐼
𝑖=1(𝑞

1
𝑚𝑖 − 𝑞

2
𝑛𝑖)2

2|𝑁| ,

where 𝑁 is the set of indices 𝑖 for which 𝑞1𝑚𝑖 + 𝑞
2
𝑛𝑖 > 0, and |𝑁| is 

the cardinality of 𝑁 . To match the clusters delivered by two algo

rithms, we solve the assignment problem that maximizes the crite

rion 
∑
𝑚

∑
𝑛 𝑦𝑚𝑛 (𝒒1𝑚,𝒒

2
𝑛), subject to the constraints 𝑦𝑚𝑛 ∈ {0,1} and ∑𝐾

𝑘 𝑦𝑘𝑚 =
∑𝐾
𝑘 𝑦𝑛𝑘 = 1, where 𝐾 is the number of clusters. In practice, 

we relax the domain of 𝑦𝑚𝑛 to the unit interval and solve the simpli

fied problem using linear programming via JuMP [28], a mathematical 
optimization package in Julia.

2.7.2. Silhouette coefficient

The silhouette index 𝑠𝑖 is a measure of how similar object 𝑖 is to its 
own cluster (cohesion) compared to other clusters (separation) [29]. If 
𝑖 belongs to cluster 𝐶𝑘, then the index 𝑠𝑖 rflects the two averages

𝑎𝑖 =
∑
𝑗∈𝐶𝑘⧵{𝑖} dist(𝒙𝑖,𝒙𝑗 )|𝐶𝑘|− 1 

𝑏𝑖 =min
𝑙≠𝑘 

∑
𝑗∈𝐶𝑙 dist(𝒙𝑖,𝒙𝑗 )|𝐶𝑙| ,

where 𝑎𝑖 is the average distance of sample 𝑖 from the other points in 
𝐶𝑘, and 𝑏𝑖 is the minimum average distance of sample 𝑖 from the other 
clusters. Given these values we dfine

𝑠𝑖 =
𝑏𝑖 − 𝑎𝑖

max{𝑎𝑖, 𝑏𝑖}
.
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Note that 𝑠𝑖 ranges from −1 to 1; the higher 𝑠𝑖 is, the better separated 
the clusters are. Thus, the average silhouette value serves as a sensitive 
measure of clustering quality.

2.7.3. Visualization

Stacked bar plots allow easy visualization of estimated admixture 
proportions when clusters are matched consistently across computer 
runs. Matching is accomplished by hierarchical clustering with complete 
linkage based on the HaploADMIXTURE 𝑸 estimates. Hierarchical clus

tering determines the order of samples within a population. One can 
also apply hierarchical clustering to the set of populations and to the set 
of continents. In the former case, clustering operates on cluster centers, 
and in the latter case, on averages of cluster centers.

2.8. Real datasets

To evaluate its performance, we applied HaploADMIXTURE to four 
different real-world datasets: the 1000 Genomes Project (TGP) [30,31], 
the Human Genome Diversity Project (HGDP) [32,33], the Human Ori

gins (HO) [34] project, and the UK Biobank data (UKB) [35]. (We ad

hered to compliance agreements in each case.) The TGP dataset includes 
genotypes from the 2012-01-31 Omni Platform after filtering to exclude 
related individuals, individuals with less than a 95% genotyping suc

cess rate, and variants with minor allele frequency (MAF) less than 1%. 
The filtered dataset contains 1718 unrelated individuals and 1,854,622 
SNPs. The self-reported ancestry labels range over 26 different popula

tions grouped into continental populations of African (AFR), Admixed 
American (AMR), East Asian (EAS), European (EUR), and South Asian 
(SAS) descent. The HGDP dataset contains 940 individuals across 32 
self-reported populations and 642,950 SNPs after filtering by the same 
criteria applied to the TGP data. The self-reported population labels 
are further grouped into seven continental labels: Europe, Middle East, 
Central South Asia, East Asia, Africa, America, and Oceania. The HO 
dataset includes 1931 individuals across 163 populations and 385,088 
SNPs. Here, filtering excludes individuals with less than 99% genotyping 
success rate and SNPs with MAF less than 5%. No continental popula

tion labels are provided for HO. Our discussion of results focuses on 
the TGP dataset. Corresponding results for HGDP and HO appear in the 
Supplementary Materials. For the UK Biobank data, we select 488,154 
individuals with a 95% or better genotyping rate and 178,734 SNPs 
shared with the TGP dataset and having at least 1% MAF.

2.9. Simulations

The model for simulating genetic admixture is a variant of the 
Pritchard-Stephens-Donnelly (PSD) model [10], with allele frequencies 
sampled from the Balding-Nicolas model [36] that follows a beta distri

bution:

𝒑𝑘𝑏1
iid∼ Beta

(
1 − 𝐹𝑆𝑇
𝐹𝑆𝑇

𝑝𝐴,
1 − 𝐹𝑆𝑇
𝐹𝑆𝑇

(1 − 𝑝𝐴)
)

𝒔𝑡
iid∼ Dirichlet(𝛼𝟏𝐾 ), regional centers

𝒒⋅𝑖
iid∼ Dirichlet(𝛾𝒔𝑡),

where 𝑝𝐴 is the allele frequency and 𝐹𝑆𝑇 is the fixation index. Chiu 
et al. [13] introduced the second line’s extra level of Dirichlet sampling 
to simulate populations gathered around regional centers. This is accom

plished by first sampling 𝑇 regional centers 𝒔𝑡 from the Dirichlet(𝛼𝟏𝐾 )
distribution. Then for each regional center, 𝐼∕𝑇 of the admixture vectors 
𝒒⋅𝑖 are sampled around the center 𝒔𝑡, with a high value of the parameter 
𝛾 = 50.

To model SNPs in linkage disequilibrium, we sample two haplo

types separately by sequential Bernoulli sampling, instead of sampling 
them independently. Haplotypes ℎ𝑖𝑗1 and ℎ𝑖𝑗2 are sampled from the 
conditional Bernoulli distribution given ℎ𝑖(𝑗−1)1 and ℎ𝑖(𝑗−1)2, respec

tively, so that the Pearson correlation coefficient between ℎ𝑖𝑗𝑚 and 

Table 1
Root-mean-square errors of the estimated admixture proportions on the 
simulated datasets, 10,000 SNPs, 𝛼 = 0.02. Root-mean-square error checks 
the accuracy of the estimated admixture coefficients; the lower, the better. Five 
populations were used for the simulation, with 1000 individuals and 10,000 
SNPs for various values of 𝜌, the correlation between two nearby SNPs. Each 
value is averaged over five simulation runs. The best value for each 𝜌 is in 
italics.

AIMs HaploADMIXTURE OpenADMIXTURE SCOPE TeraStructure 
𝜌 = 0.75

10,000 0.0108 0.0415 0.0575 0.0737 
2000 0.0127 0.0419 
1500 0.0134 0.0429 
1000 0.0150 0.0447 
500 0.0203 0.0486 
𝜌 = 0.5

10,000 0.0087 0.0285 0.0476 0.0579 
2000 0.0119 0.0308 
1500 0.0131 0.0320 
1000 0.0152 0.0338 
500 0.0214 0.0381 
𝜌 = 0.25

10,000 0.0098 0.0199 0.0415 0.0434 
2000 0.0150 0.0228 
1500 0.0168 0.0239 
1000 0.0194 0.0256 
500 0.0259 0.0295 
𝜌 = 0

10,000 0.0141 0.0167 0.0393 0.0294 
2000 0.0193 0.0198 
1500 0.0212 0.0209 
1000 0.0237 0.0226 
500 0.0293 0.0266 

ℎ𝑖(𝑗−1)𝑚 is a constant 𝜌 and the marginal distribution of ℎ𝑖𝑗𝑚 follows 
Bernoulli(

∑
𝑘 𝑞𝑘𝑖𝑝𝑘𝑗 ). To specify the underlying parameters 𝑝𝐴 and 𝐹𝑆𝑇 , 

we randomly sampled SNPs from chromosome 1 of the TGP dataset and 
used their minor allele frequencies and the estimated fixation indexes. 
If any minor allele frequency fell below 0.005, we clamped it to 0.005.

3. Results

3.1. Simulation studies

We simulated datasets with different numbers of SNPs, values of 
the concentration parameter 𝛼 ∈ {0.02,0.05,0.1}, and correlation be

tween nearby SNPs 𝜌 ∈ {0,0.25,0.5,0.75} as described in Section 2.9. 
Tables 1, 2, and 3 display root-mean-square errors (RMSE) for 𝛼 = 0.02
and 10,000, 100,000, and 1,000,000 simulated SNPs, respectively. Re

sults with different values of 𝛼 are available in the Supplemental Mate

rials in Tables S2-S7. RMSE is estimated by

R̂MSE(𝑸̂) =
√

1 
𝐼𝐾

∑
𝑖,𝑘 

(𝑞𝑖𝑘 − 𝑞𝑖𝑘),

where 𝑸 are the true values and 𝑸̂ are the estimates. When the popu

lations are easily distinguishable with 𝛼 = 0.02, and 𝜌= 0.75, HaploAD

MIXTURE performs better than OpenADMIXTURE, SCOPE, and TeraS

tructure, as HaploADMIXTURE accounts for LD. OpenADMIXTURE per

forms better for 1,000,000 SNPs with lower LD with the correlation 
coefficients of 0, 0.25, and 0.5. When lower numbers of AIMs selected 
by sparse 𝐾 -means are used, HaploADMIXTURE and OpenADMIXTURE 
both maintain their performance reasonably well, sometimes even im

proving on the results found with all of the SNPs. As populations get 
harder to distinguish with higher value of 𝛼, HaploADMIXTURE begins 
to struggle. For all of the cases evaluated, the AIC correctly selects 𝐾 = 5.
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Table 2
Root-mean-square errors of the estimated admixture proportions on the 
simulated datasets, 100,000 SNPs, 𝛼 = 0.02. Root-mean-square error checks 
the accuracy of the estimated admixture coefficients; the lower, the better. Five 
populations were used for the simulation, with 1000 individuals and 100,000 
SNPs for various values of 𝜌, the correlation between two nearby SNPs. Each 
value is averaged over five simulation runs. The best value for each 𝛼 is in 
italics.

AIMs HaploADMIXTURE OpenADMIXTURE SCOPE TeraStructure 
𝜌 = 0.75

100,000 0.0089 0.0195 0.0258 0.0403 
20,000 0.0092 0.0183 
15,000 0.0092 0.0185 
10,000 0.0090 0.0192 
5000 0.0090 0.0207 
𝜌 = 0.5

100,000 0.0061 0.0285 0.0200 0.0195 
20,000 0.0068 0.0112 
15,000 0.0068 0.0118 
10,000 0.0070 0.0123 
5000 0.0074 0.0137 
𝜌 = 0.25

100,000 0.0035 0.0056 0.0162 0.0158 
20,000 0.0043 0.0070 
15,000 0.0045 0.0076 
10,000 0.0050 0.0082 
5000 0.0061 0.0094 
𝜌 = 0

100,000 0.0034 0.0042 0.149 0.0085 
20,000 0.0050 0.0058 
15,000 0.0055 0.0062 
10,000 0.0062 0.0067 
5000 0.0078 0.0079 

Table 3
Root-mean-square errors of the estimated admixture proportions on 
the simulated datasets, 1,000,000 SNPs, 𝛼 = 0.02. Root-mean-square error 
checks the accuracy of the estimated admixture coefficients; the lower, the bet

ter. Five populations were used for the simulation, with 1000 individuals and 
1,000,000 SNPs for various values of 𝜌, the correlation between two nearby 
SNPs. Each value is averaged over five simulation runs. The best value for each 
𝜌 is in italics.

AIMs HaploADMIXTURE OpenADMIXTURE SCOPE TeraStructure 
𝜌 = 0.75

1,000,000 0.0087 0.0154 0.0119 0.0119 
200,000 0.0089 0.0123 
150,000 0.0088 0.0110 
100,000 0.0085 0.0097 
50,000 0.0081 0.0094 
𝜌 = 0.5

1,000,000 0.0058 0.0052 0.0079 0.0097 
200,000 0.0063 0.0040

150,000 0.0064 0.0040

100,000 0.0063 0.0042 
50,000 0.0063 0.0049 
𝜌 = 0.25

1,000,000 0.0029 0.0014 0.0058 0.0042 
200,000 0.0093 0.0028 
150,000 0.0094 0.0029 
100,000 0.0096 0.0031 
50,000 0.0099 0.0034 
𝜌 = 0

1,000,000 0.0045 0.0009 0.0051 0.0045 
200,000 0.0020 0.0015 
150,000 0.0021 0.0017 
100,000 0.0022 0.0019 
50,000 0.0025 0.0023 

Table 4
Entropy per SNP per individual of 𝑷 for TGP, 
HGDP, and HO.

Software TGP HGDP HO 
HaploADMIXTURE 0.303 0.344 0.360 
OpenADMIXTURE 0.347 0.414 0.444 
SCOPE 0.347 0.339 0.422 
TeraStructure 0.393 0.432 0.474 

3.2. Real-world datasets

3.2.1. Selection of 𝐾
To assess the performance of HaploADMIXTURE, we computed AIC 

values and performed cross-validation to select the best 𝐾 for the real

world datasets. For TGP, both AIC and cross-validation select 𝐾 = 7, 
while TeraStructure selects 𝐾 = 8. For HGDP, AIC selects 𝐾 = 7, but 
cross-validation and TeraStructure select 𝐾 = 10. For HO, AIC selects 
𝐾 = 12, cross-validation selects 𝐾 = 10, and TeraStructure selects 𝐾 =
14. On balance, we prefer AIC because of its computational efficiency 
and parsimony. This preference is bolstered by the notable differences 
observed in the graphs between TeraStructure and OpenADMIXTURE 
covered in Section 3.2.2. In the following sections, we use the same val

ues of 𝐾 across all the tools we compare. We use 𝐾 = 7 for TGP and 
HGDP, and 𝐾 = 12 for HO, as selected by AIC. For the UK Biobank 
dataset, we choose 𝐾 = 7 as in the TGP dataset, as we perform super

vised inference based on the result from the TGP data. In total, Hap

loADMIXTURE estimates 25,976,734 parameters for TGP, 9,007,880 
parameters for HGDP, 18,507,396 parameters for HO, and 8,421,630 
parameters for UKB.

3.2.2. Visualization

Figs. 1, S2, and S3 illustrate the admixture proportions inferred from 
the TGP, HGDP, and HO datasets by HaploADMIXTURE, OpenADMIX

TURE, SCOPE, and TeraStructure. The general structure seems similar 
across the programs, with some differences. For example, TeraStructure 
tends to rely on a single European (EUR) population in TGP, while the 
other programs tend to rely on two. Section 3.2.4 summarizes the ability 
of the programs to separate self-identified populations. Previous publi

cations of Chiu et al. [13] and Ko et al. [8] incorrectly match individuals 
to populations because of a data reading error. Figure S2 fixes this error 
and clearly separates the different continental populations.

Figs. 2, S4, and S6 show the structures inferred by HaploADMIX

TURE operating on AIMs chosen through sparse 𝐾 -means clustering. 
Figs. 3, S5, and S7 display the structures inferred by OpenADMIXTURE 
in the same circumstances. Evidently, HaploADMIXTURE faithfully re

produces the general structure with fewer AIMs than OpenADMIXTURE. 
In particular, OpenADMIXTURE fails to distinguish European popula

tions from Middle-Eastern populations on the HGDP data. Figs. 4, S8, 
and S9 display the structure inferred by HaploADMIXTURE for differ

ent numbers of populations 𝐾 as discussed in Section 3.2.1.

3.2.3. Loglikelihood and entropy

Table S8 displays the likelihood of the fitted models. Since the bi

nomial model of OpenADMIXTURE is a submodel of the model of Hap

loADMIXTURE, the maximum loglikelihood of the former is always less 
than the maximum loglikelihood of the latter based on the same SNP set. 
Table 4 shows the entropy of 𝑷 , the array of genotype/haplotype fre

quencies for each dataset. The entropy decrease in HaploADMIXTURE 
compared to OpenADMIXTURE quantfies the additional information 
available in haplotypes. The entropy of 𝑷 using HaploADMIXTURE for 
TGP, HGDP, and HO show 12.7%, 16.9%, and 18.9% reductions, re

spectively, compared to OpenADMIXTURE. TeraStructure has higher 
entropy than OpenADMIXTURE, and SCOPE has entropy similar to Ope

nADMIXTURE on TGP and HO datasets. On HGDP, SCOPE has a similar 
entropy to HaploADMIXTURE. Note that the SCOPE model does not di

rectly optimize the binomial loglikelihood model.
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Fig. 1. Ancestry estimation of TGP data samples. (a) Using HaploADMIXTURE with all SNPs, (b) OpenADMIXTURE with all SNPs, (c) SCOPE, and (d) TeraStructure. 
The results are presented in stacked bar plots, where the y-axis indicates the proportion of total ancestry. The x-axis shows all samples arranged by population labels.

3.2.4. Evaluation of estimated admixture

Silhouette coefficients offer another way of quantifying performance. 
These are based on the ancestry labels implicit in the estimated 𝑸 ma

trix. The average silhouette coefficient is preferable to the training errors 
of linear classfiers and their cross-entropies [13,8] because training 
error is discrete, and a single individual can unduly ifluence cross

entropy. We additionally matched clusters as discussed in Section 2.7.1

and computed root-mean-square error (RMSE) from the SKFR clusters 
derived from all SNPs.

Tables 6, S10, and S11 display mean silhouette coefficients for Hap

loADMIXTURE, OpenADMIXTURE, SCOPE, and TeraStructure. Since 
one of the continental populations is known to be admixed Americans, 
we also provide the result without them in Table S9. Tables S12-S14 
show continent-by-continent mean silhouette coefficients, and Tables 
S15-S18 show region-by-region mean silhouette coefficients. HaploAD

MIXTURE generally performs well in grouping populations by both 
continent and region. OpenADMIXTURE performs equally well in group

ing by continent but in grouping regional labels, HaploADMIXTURE 
shows consistently higher value of the mean silhouette. For TGP and 
HGDP, TeraStructure is the best at distinguishing continental labels but 
falters in distinguishing regional labels, particularly in the TGP data 
where Middle-Eastern and European populations are lumped. For HGDP, 
SCOPE is the best at distinguishing the 32 regional labels but struggles 
compared to HaploADMIXTURE and OpenADMIXTURE in distinguish

ing African continental populations from each other. For the HO dataset, 
HaploADMIXTURE and OpenADMIXTURE perform similarly in distin

guishing the 163 regional labels, followed by SCOPE and TeraStructure.

When the analysis is based on AIMs, HaploADMIXTURE usually per

forms better than OpenADMIXTURE. In the single instance of 5000 AIMs 
for TGP, HaploADMIXTURE suffers in distinguishing regional subpop

Computational and Structural Biotechnology Journal 23 (2024) 4384–4395 

4389 



S. Ko, E.M. Sobel, H. Zhou et al. 

Fig. 2. Ancestry estimation of TGP samples using different numbers of AIMs with HaploADMIXTURE. The results are presented in stacked bar plots, where the 
y-axis indicates the proportion of total ancestry. The x-axis shows all samples arranged by population labels.
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Fig. 3. Ancestry estimation of TGP data samples using different numbers of AIMs with OpenADMIXTURE. The results are presented in stacked bar plots, where 
the y-axis indicates the proportion of total ancestry. The x-axis shows all samples arranged by population labels.
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Fig. 4. Structure inferred for TGP data samples using HaploADMIXTURE for different 𝐾 . (a) 𝐾 = 4 as selected by Bayesian information criterion, (b) 𝐾 = 7 as 
selected by cross-validation and Akaike information criterion, (c) 𝐾 = 8 as selected by the validation likelihood method in TeraStructure. The results are presented 
in stacked bar plots where the y-axis indicates the proportion of total ancestry. The x-axis shows all samples arranged by population labels.

Table 5
Root-mean-square error of sparse 𝐾-means 
(SKFR) from the baseline for HaploADMIXTURE 
and OpenADMIXTURE on the TGP dataset. Root

mean-square error (RMSE) from baseline compares 
estimated admixture coefficients of SKFR to those es

timated using all SNPs; the lower, the better.

SNPs HaploADMIXTURE OpenADMIXTURE 
100,000 0.093 0.089 
80,000 0.087 0.091 
60,000 0.085 0.093 
40,000 0.082 0.113 
20,000 0.077 0.162 
10,000 0.065 0.166 
5000 0.132 0.181 

ulations. In the case of HGDP under AIM selection, OpenADMIXTURE 
has trouble distinguishing between Middle-Eastern and European popu

lations and adds a population to Africa. This anomaly is visible in Figure 
S4. HaploADMIXTURE with AIMs retains the power to distinguish the 
Middle-Eastern and European populations. For the HO dataset, Hap

loADMIXTURE performance with AIMs better mimics its performance 
with all SNPs than OpenADMIXTURE does in the same comparison. Ta

bles 5, S19, and S20 display RMSE from the baseline of all SNPs for 
the TGP, HGDP, and HO datasets, respectively. For the TGP dataset, as 
we choose fewer AIMs, the mean silhouette tends to decrease, except 
for 10,000 and 5000 SNPs in OpenADMIXTURE. However, these excep

tional cases yield poorer separation of populations than HaploADMIX

TURE with all SNPs. This suggests that parsimony alone is an imperfect 
criterion for judging admixture estimation.

3.2.5. Computational efficiency

Given the computational improvements incorporated in HaploAD

MIXTURE, the analyses reported here finish in a reasonable amount of 
time. HaploADMIXTURE’s cost per iteration with 𝑆 = 2 SNPs per hap

lotype block is less than eight times that of OpenADMIXTURE. Given 
that the number of frequency parameters quadruples, it takes four times 

longer to compute gradients and Hessians. While the time for solving 
quadratic programs is still negligible for 𝑸, quadratic programming for 
𝑷 takes longer, comparable to the time needed to compute gradients and 
Hessians on a GPU. Since 16-threaded ADMIXTURE was 16 times slower 
than GPU-accelerated OpenADMIXTURE [8], HaploADMIXTURE’s per

iteration performance is still faster than that of ADMIXTURE. Balanced 
against these gains is the fact that the number of iterations until conver

gence increases. This rflects the greater complexity of the likelihood, 
the increased number of parameters, and the cost of parameter splitting 
by the MM principle.

Table S21 shows the average runtime using five random initial points 
for the TGP, HGDP, and HO datasets ignoring AIMs. Despite requiring 
more iterations to converge, HaploADMIXTURE takes less than 16 times 
longer than OpenADMIXTURE. Because runtime is proportional to the 
number of blocks 𝐵 of SNPs employed, preprocessing with AIM selec

tion to reduce 𝐵 is recommended if speed is critical. For example, on 
the TGP data, it takes 2 minutes for sparse 𝐾 -means to select 100,000 
AIMs, and then another 12 minutes to run HaploADMIXTURE on the fil

tered dataset, for a total of just 14 minutes. Even so, running on AIMs 
yields admixture coefficients comparable to running on the full set of 
1.8 million SNPs. The latter more onerous computations take 2 hours 
and 8 minutes. If one opts to preselect AIMs by sparse 𝐾 -means, the 
time needed for SKFR in HaploADMIXTURE is not much different from 
that for OpenADMIXTURE. Indeed, the speed of the SKFR algorithm is 
minimally affected by the switch to haplotypes. SKFR and HaploAD

MIXTURE directly operate on PLINK BED-formatted data, so the total 
memory footprint of each is less than twice the size of the BED file.

3.2.6. Large-scale analysis of the UK biobank data

For the 488,154 individuals selected from the UKB dataset, we un

dertook supervised inference of population structure using the haplo

type frequencies 𝑷̂ obtained from the TGP dataset. Our analysis is lim

ited to 𝐾 = 7 subpopulations and the SNPs shared by the TGP and UKB 
datasets.

Clustering performance is based on three sets of labels. The first set 
(L1) uses 20 raw self-identified ancestry labels, excluding ``do not know'' 
and ``prefer not to answer.'' The second set (L2) uses 8 of the 20 labels: 
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Table 6
Performance comparison of HaploADMIXTURE, OpenADMIXTURE, SCOPE, 
and TeraStructure on the TGP dataset. Performance is measured by the mean 
silhouette coefficient of the population labels on the space of estimated admix

ture coefficients, 𝑸; the higher, the better. The best value in the mean silhouette 
is in italics; these range over [−1,1].

SNPs HaploADMIXTURE OpenADMIXTURE SCOPE TeraStructure 
Continental labels 

1,854,622 0.606 0.591 0.528 0.671

100,000 0.558 0.524 
80,000 0.540 0.525 
60,000 0.541 0.526 
40,000 0.526 0.533 
20,000 0.528 0.481 
10,000 0.522 0.500 
5000 0.521 0.626 

Regional labels 
1,854,622 0.423 0.413 0.418 0.335 
100,000 0.360 0.347 
80,000 0.353 0.329 
60,000 0.335 0.296 
40,000 0.317 0.225 
20,000 0.277 0.147 
10,000 0.206 0.035 
5000 0.083 0.025 

Table 7
Performance comparison of HaploADMIXTURE, OpenADMIXTURE, 
and SCOPE on the UKB dataset. Performance is measured by the mean 
silhoutte coefficient of the population labels on the space of estimated 
admixture coefficients, 𝑸; the higher, the better. The best value in the 
mean silhouette is in italics; these range over [-1, 1]. TeraStructure does 
not run within 24 hours.

HaploADMIXTURE HaploADMIXTURE OpenADMIXTURE SCOPE 
Unsupervised Supervised 
L3 - Continental labels 
0.540 0.991 0.471 0.257 
L2 - Regional labels 
0.037 -0.284 0.030 0.019 
L1 - Detailed labels 
-0.013 -0.303 -0.064 -0.086 

British, Irish, Indian, Pakistani, Bangladeshi, Caribbean, African, and 
Chinese, removing mixed and uncertain population labels. Finally, for 
the third label set (L3), the 8 groups are merged by continent and re

duce to British-Irish, Indian-Pakistani-Bangladeshi, Caribbean-African, 
and Chinese.

Table 7 shows the clustering performance of the resulting admix

ture coefficients. In unsupervised inference, HaploADMIXTURE consis

tently separates the different sets of ancestry labels the best, followed 
by OpenADMIXTURE, and then SCOPE. Supervised HaploADMIXTURE 
run using the 𝑃 of the TGP performs significantly better on continental 
labels (L3) because TGP contains a substantial amount of relevant con

tinental information. However, because haplotype frequency estimates 
rely on only 1718 individuals, supervised HaploADMIXTURE falters in 
distinguishing fine-grained populations compared to unsupervised Hap

loADMIXTURE.

Supervised inference is advantageous in that it takes much less time, 
namely 4 hours on an Nvidia L4 GPU with 24 GB memory. In contrast 
unsupervised inference takes around 11 hours. Unsupervised OpenAD

MIXTURE takes 6 hours. To its credit, SCOPE’s randomized linear alge

bra takes just 1 hour and 10 minutes on a 72-core CPU instance.

4. Discussion

This paper introduces a technique for global ancestry estimation 
that converts linkage disequilibrium from a liability to an asset. Our 
program HaploADMIXTURE exploits multithreading, GPU acceleration, 
and sparse 𝐾 -means clustering to identify ancestry informative haplo

types. Although these advances also appear in OpenADMIXTURE, our 
earlier upgrade of the ADMIXTURE [6] software, they require substan

tial modfication to handle haplotypes. For instance, in the construction 
of AIMs, sparse 𝐾 -means must now operate on haplotypes rather than 
SNPs. Likelihood calculation becomes more complicated because of in

creased phase ambiguity. Nevertheless, these technical hurdles can be 
overcome with computational speed and memory demands on a par with 
or better than that of the original ADMIXTURE. Computation times scale 
linearly in the number of haplotype blocks. To keep computational costs 
in check, our haplotypes span just two SNPs. Even with this limitation, 
we see substantial gains in ancestry estimation precision. Extending hap

lotype blocks to include more than two SNPs is theoretically possible 
and would further increase information content, particularly for those 
regions of the human genomes showing little recombination. However, 
this extension would quickly hit a combinatorial wall in computing the 
2𝑆 haplotype frequencies given 𝑆 SNPs per block. The greater phase 
ambiguity encountered would complicate computer code and slow the 
convergence of recursive quadratic programming, the optimization en

gine in HaploADMIXTURE.

The admixture coefficients delivered by HaploADMIXTURE demon

strate a good separation of populations at the continental and regional 
levels in both real and simulated datasets. The other admixture pro

grams tested often perform well on one level and poorly on the other. 
The admixture estimates from HaploADMIXTURE are more accurate 
than the competition as measured by mean square prediction error. In 
our experience, cross-validation and AIC produce reasonable estimates 
of the number of ancestral populations 𝐾 . AIC is much faster than cross

validation. It will be interesting to see whether Bayesian or algebraic 
methods can be adapted to exploit haplotypes. The algebraic program 
SCOPE relies on alternating least squares, so its adaptation would re

quire passing from matrix to tensor decompositions.

Estimation of admixture proportions given known populations and 
known haplotype frequencies is possible with HaploADMIXTURE, as 
shown in Section 3.2.6. One simply fixes 𝑷 and updates only 𝑸. This 
simplfication is also invoked in the time-consuming process of cross
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validation. For best results, partial maximization requires curating the 
most informative pairs of SNPs in large population panels. Partial max

imization is a parameter-separated convex problem that is easily solved 
on biobank-scale data.

Of course, estimation of human ancestry is fraught with interpreta

tion pitfalls, errors in assumptions, and, for ancient populations, lack 
of relevant data. The issues are carefully covered in Pritchard’s online 
book [37]. See especially Chapters 3.1 and 3.2. For modern popula

tions, readers should keep in mind the utility of long conserved haplo

type blocks in assigning ancestry. Chromosome painting identfies these 
blocks and can be accomplished rapidly as part of haplotying [38].

Advances in technology and the rapid expansion of human biobanks 
have pushed software development to the top of the agenda in ge

nomics. The ``All of Us'' [39] databank contains more than 400,000 of 
individuals, of whom 250,000 are whole genome sequenced. The UK 
Biobank contains more than 488,000 genotyped individuals. Accurate 
and scalable adjustment for ancestry is a supremely important task in 
understanding these data.

Modeling haplotypes adds vital information in ancestry analysis, 
yields more precise estimates of admixture coefficients, and distin

guishes subpopulations better. Our GPU-accelerated implementation, 
HaploADMIXTURE, maintains computational efficiency while improv

ing accuracy of admixture coefficients and distinguishing subtle popu

lation variation better. HaploADMIXTURE is a thoughtful extension of 
OpenADMIXTURE, the open-source upgrade of the widely-used ADMIX

TURE software. HaploADMIXTURE builds on Julia’s high-performance 
computing environment and leverages potent OpenMendel tools. As 
HaploADMIXTURE is expanded and improved over time, we hope that 
it will ultimately receive the wide acceptance already enjoyed by AD

MIXTURE.

Web resources

• OpenADMIXTURE, https://github.com/OpenMendel/OpenADMIX

TURE.jl.

• Sparse K-means with Feature Ranking, https://github.com/kose-y/

SparseKmeansFeatureRanking.jl.

• SnpArrays, https://github.com/OpenMendel/SnpArrays.jl.

• SCOPE, https://github.com/sriramlab/SCOPE.
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