
Statistical Science
2022, Vol. 37, No. 4, 494–518
https://doi.org/10.1214/21-STS835
© Institute of Mathematical Statistics, 2022

High-Performance Statistical Computing in
the Computing Environments of the 2020s
Seyoon Ko, Hua Zhou, Jin J. Zhou and Joong-Ho Won

Abstract. Technological advances in the past decade, hardware and soft-
ware alike, have made access to high-performance computing (HPC) easier
than ever. We review these advances from a statistical computing perspective.
Cloud computing makes access to supercomputers affordable. Deep learning
software libraries make programming statistical algorithms easy and enable
users to write code once and run it anywhere—from a laptop to a worksta-
tion with multiple graphics processing units (GPUs) or a supercomputer in a
cloud. Highlighting how these developments benefit statisticians, we review
recent optimization algorithms that are useful for high-dimensional models
and can harness the power of HPC. Code snippets are provided to demon-
strate the ease of programming. We also provide an easy-to-use distributed
matrix data structure suitable for HPC. Employing this data structure, we il-
lustrate various statistical applications including large-scale positron emis-
sion tomography and �1-regularized Cox regression. Our examples easily
scale up to an 8-GPU workstation and a 720-CPU-core cluster in a cloud. As
a case in point, we analyze the onset of type-2 diabetes from the UK Biobank
with 200,000 subjects and about 500,000 single nucleotide polymorphisms
using the HPC �1-regularized Cox regression. Fitting this half-million-variate
model takes less than 45 minutes and reconfirms known associations. To our
knowledge, this is the first demonstration of the feasibility of penalized re-
gression of survival outcomes at this scale.

Key words and phrases: High-performance statistical computing, graphics
processing units (GPUs), cloud computing, deep learning, MM algorithms,
ADMM, PDHG, Cox regression.

1. INTRODUCTION

Clock speeds of the central processing units (CPUs) on
the desktop and laptop computers hit the physical limit
more than a decade ago, and there will likely be no major
breakthrough until quantum computing becomes practi-
cal. Instead, the increase in computing power is now ac-
complished by using multiple cores within a processor

Seyoon Ko is Postdoctoral Scholar, Department of
Biostatistics, UCLA Fielding School of Public Health, Los
Angeles, California 90095, USA. Hua Zhou is Professor,
Department of Biostatistics, UCLA Fielding School of Public
Health, Los Angeles, California 90095, USA. Jin J. Zhou is
Associate Professor, Department of Medicine, UCLA David
Geffen School of Medicine, Los Angeles, California 90095,
USA, and Department of Epidemiology and Biostatistics, Mel
and Enid Zuckerman College of Public Health, University of
Arizona, Tucson, Arizona 85724, USA. Joong-Ho Won is
Associate Professor, Department of Statistics, Seoul National
University, Seoul, Korea (e-mail: wonj@stats.snu.ac.kr).

chip. High-performance computing (HPC) means compu-
tations that are so large that their requirement on stor-
age, main memory, and raw computational speed can-
not be met by a single (desktop) computer (Hager and
Wellein, 2010). Modern HPC machines are equipped with
more than one CPU that can work on the same problem
(Eijkhout, 2016). Often, special-purpose co-processors
such as graphics processing units (GPUs) are attached to
the CPU to improve the speed by orders of magnitude
for certain tasks. First developed for rendering graphics
on a computer screen, a GPU can be thought of a mas-
sively parallel matrix-vector multiplier and vector trans-
former on a data stream. With increasing needs to analyze
petabyte-scale data, the success of large-scale statistical
computing relies on efficiently engaging HPC in the sta-
tistical practice.

About a decade ago, the second author discussed the
potential of GPUs in statistical computing: Zhou, Lange
and Suchard (2010) predicted that “GPUs will fundamen-
tally alter the landscape of computational statistics.” Yet,

494

https://imstat.org/journals-and-publications/statistical-science/
https://doi.org/10.1214/21-STS835
https://www.imstat.org
mailto:wonj@stats.snu.ac.kr

HIGH-PERFORMANCE STATISTICAL COMPUTING 495

it does not appear that GPU computing, or HPC in gen-
eral, has completely permeated the statistical community.
Part of the reason for this may be attributed to the fear
that parallel and distributed code is difficult to program,
especially in R (R Core Team, 2021), the lingua franca
of statisticians.1 On the other hand, the landscape of sci-
entific computing in general, including so-called data sci-
ence (Donoho, 2017), has indeed substantially changed.
Many high-level programming languages, such as Python
(van Rossum, 1995) and Julia (Bezanson et al., 2017),
support parallel computing by design or through standard
libraries. Accordingly, many software tools have been de-
veloped in order to ease programming in and managing
HPC environments. Last but not least, cloud computing
(Fox, 2011) is getting rid of the necessity for purchas-
ing expensive supercomputers and scales computation as
needed.

Concurrently, easily parallelizable algorithms for fitting
statistical models with hundreds of thousand parameters
have also seen significant advances. Traditional Newton–
Raphson or quasi-Newton type of algorithms face two
major challenges in contemporary problems: 1) explo-
sion of dimensionality renders storage and inversion of
Hessian matrices prohibitive; 2) regularization of model
complexity is almost essential in high-dimensional set-
tings, which is often realized by nondifferentiable penal-
ties; this leads to high-dimensional, nonsmooth optimiza-
tion problems. For these reasons, nonsmooth first-order
methods have been extensively studied during the past
decade (Beck, 2017), since Hessian matrix inversion can
be completely avoided. For relatively simple, decompos-
able penalties (Negahban et al., 2012), the proximal gra-
dient method (Beck and Teboulle, 2009, Combettes and
Pesquet, 2011, Parikh and Boyd, 2014, Polson, Scott
and Willard, 2015) produces a family of easily paral-
lelizable algorithms. For the prominent example of the
Lasso (Tibshirani, 1996), this method contrasts to the
highly efficient sequential coordinate descent method of
Hastie and Tibshirani (1990) and smooth approximation
approaches, for example, Hunter and Li (2005). Decom-
posability or separability of variables is often the key to
parallel and distributed algorithms. The alternating direc-
tion method of multipliers (ADMM, Gabay and Mercier,
1976, Boyd et al., 2011) achieves this goal through vari-
able splitting, while often resulting in nontrivial sub-
problems to solve. As an alternative, the primal-dual hy-
brid gradient (PDHG) algorithm (Zhu and Chan, 2008,
Esser, Zhang and Chan, 2010, Chambolle and Pock, 2011,

1Although there exist several R packages for high-performance com-
puting (Eddelbuettel, 2021), their functionalities and usability appear
not to match what is available in other languages. In particular, the au-
thors were not able to come up with a simple implementation of the
computational tasks presented in this paper without writing low-level
C/C++ code or using an interface to Python.

Condat, 2013, Vũ, 2013) has a very low per-iteration com-
plexity, useful for complex penalties such as the general-
ized lasso (Tibshirani and Taylor, 2011, Ko, Yu and Won,
2019, Ko and Won, 2019). Another route toward sepa-
rability is the majorization-minimization (MM) principle
(Lange, Hunter and Yang, 2000, Hunter and Lange, 2004,
Lange, 2016), which has been explored in Zhou, Lange
and Suchard (2010). In fact, the proximal gradient method
can be viewed as a realization of the MM principle. Re-
cent developments in the application of this principle in-
clude distance majorization (Chi, Zhou and Lange, 2014)
and proximal distance algorithms (Keys, Zhou and Lange,
2019). When the matrix to be inverted to solve the opti-
mality condition has many independent components, non-
smooth Newton methods (Kummer, 1988, Qi and Sun,
1993) can be a viable option; see Huang et al. (2021) for
recent applications to sparse regression. Nonsmooth New-
ton methods can also be combined with first-order meth-
ods for more complex nonsmooth penalties (Chu et al.,
2020, Won, 2020).

The goal of this paper is to review the advances in
parallel and distributed computing environments during
the past decade and demonstrate how easy it has become
to write code for large-scale, high-dimensional statistical
models and run it on various distributed environments. In
order to make the contrast clear, we deliberately take ex-
amples from Zhou, Lange and Suchard (2010), namely
positron emission tomography (PET), nonnegative ma-
trix factorization (NMF), and multidimensional scaling
(MDS). The difference lies in the scale of the examples:
our experiments deal with data of size at least 10,000 ×
10,000 and as large as 200,000×200,000 for dense data,
and 810,000 × 179,700 for sparse data. This contrasts
with the size of at best 4096 × 2016 of Zhou, Lange and
Suchard (2010). This level of scaling is possible because
the use of multiple GPUs in a distributed fashion has be-
come handy, as opposed to the single GPU, C-oriented
programming environment of 2010. Furthermore, using
the power of cloud computing and modern deep learn-
ing software, we show that exactly the same, easy-to-
write code can run on multiple CPU cores and/or clus-
ters of workstations. Thus, we bust the common miscon-
ception that deep learning software is dedicated to neural
networks and heuristic model fitting. Wherever possible,
we apply more recent algorithms in order to cope with
the scale of the problems. In addition, a new example of
large-scale proportional hazards regression model is in-
vestigated. We demonstrate the potential of our approach
through a single multivariate Cox regression model reg-
ularized by the �1 penalty on the UK Biobank genomics
data (with 200,000 subjects), featuring time-to-onset of
Type 2 Diabetes (T2D) as outcome and 500,000 genomic
loci harboring single nucleotide polymorphisms as covari-
ates. To our knowledge, such a large-scale joint genome-
wide association analysis has not been attempted. The re-
ported Cox regression model retains a large proportion of

496 KO, ZHOU, ZHOU AND WON

bona fide genomic loci associated with T2D and recovers
many loci near genes involved in insulin resistance and in-
flammation, which may have been missed in conventional
univariate analysis with moderate statistical significance
values.

The rest of this article is organized as follows. We re-
view HPC systems and see how they have become easy
to use in Section 2. In Section 3, we review software li-
braries employing the “write once, run everywhere” prin-
ciple (especially deep learning software) and discuss how
they can be employed for fitting high-dimensional statisti-
cal models on the HPC systems of Section 2. In Section 4,
we review modern scalable optimization techniques well
suited to HPC environments. We present how to distribute
a large matrix over multiple devices in Section 5, and nu-
merical examples in Section 6. The article is concluded in
Section 7.

2. ACCESSIBLE HIGH-PERFORMANCE COMPUTING
SYSTEMS

2.1 Preliminaries

Since modern HPC relies on parallel computing, in this
section we review several concepts from parallel comput-
ing literature at a level minimally necessary for the subse-
quent discussions. Further details can be found in Nakano
(2012) and Eijkhout (2016).

Data parallelism. While parallelism can appear at vari-
ous levels such as instruction-level and task-level, what is
most relevant to statistical computing is data-level paral-
lelism or data parallelism. If data can be subdivided into
several pieces that can be processed independently of each
other, then we say there is data parallelism in the problem.
Many operations such as scalar multiplication of a vec-
tor, matrix-vector multiplication, and summation of all el-
ements in a vector can exploit data parallelism using par-
allel architectures, which will be discussed shortly.

Memory models. In any computing system, processors
(CPUs or GPUs) need to access data residing in the mem-
ory. While physical computer memory uses complex hi-
erarchies (L1, L2, and L3 caches; bus- and network-
connected, etc.), systems employ abstraction to provide
programmers an appearance of transparent memory ac-
cess. Such logical memory models can be categorized
into the shared memory model and the distributed mem-
ory model. In the shared memory model, all processors
share the address space of the system’s memory even if
it is physically distributed. For example, when two pro-
cessors refer to a variable x, the variable is stored in the
same memory address. Hence, if one processor alters the
variable, then the other processor is affected by the modi-
fied value. Modern CPUs that have several cores within a
processor chip fall into this category. On the other hand,
in the distributed memory model, the system has mem-
ory both physically and logically distributed. Processors

have their own memory address spaces and cannot see
each other’s memory directly. If two processors refer to a
variable x, then there are two separate memory locations,
each of which belongs to each processor under the same
name. Hence, the memory does appear distributed to pro-
grammers, and some explicit communication mechanism
is required in order for processors to exchange data with
each other. The advantage at the cost of this complication
is scalability—the number of processors that can work in
a tightly coupled fashion is much greater in distributed
memory systems (say 100,000) than shared memory sys-
tems (say four, as many recent laptops are equipped with
a CPU chip with four cores). Hybrids of the two memory
models are also possible. A typical computer cluster con-
sists of multiple nodes interconnected in a variety of net-
work topology. A node is a workstation that can run stan-
dalone, with its main memory shared by several proces-
sors installed on the motherboard. Hence within a node, it
is a shared memory system, whereas across the nodes the
cluster is a distributed memory system.

Parallel programming models. For shared-memory sys-
tems, programming models based on threads are most
popular. A thread is a stream of machine language in-
structions that can be created and run in parallel during
the execution of a single program. OpenMP is a widely
used extension to the C and Fortran programming lan-
guages based on threads. It achieves data parallelism by
letting the compiler know what part of the sequential pro-
gram is parallelizable by creating multiple threads. Sim-
ply put, each processor core can run a thread operating
on a different partition of the data. In distributed-memory
systems, parallelism is difficult to achieve via a simple
modification of sequential code. The programmer needs
to coordinate communications between processors not
sharing memory. A de facto standard for such processor-
to-processor communication is the message passing inter-
face (MPI). MPI routines mainly consist of point-to-point
communication calls that send and receive data between
two processors, and collective communication calls that
all processors in a group participate in. Typical collective
communication calls include:

• Scatter: one processor has a data array, and each other
processor receives a partition of the array;

• Gather: one processor collects data from all the proces-
sors to construct an array;

• Broadcast: one processor sends its data to all other de-
vices;

• Reduce: gather data and produce a combined output on
a root process based on an associative binary operator,
such as sum or maximum of all the elements.

There are also all-gather and all-reduce, where the output
is shared by all processors. At a higher abstraction level,
MapReduce (Dean and Ghemawat, 2008), a functional

HIGH-PERFORMANCE STATISTICAL COMPUTING 497

programming model in which a “map” function trans-
forms each datum into a key-value pair, and a “reduce”
function aggregates the results, is a popular distributed
data processing model. While basic implementations are
provided in base R, both the map and reduce operations
are easy to parallelize. Distributed implementations such
as Hadoop (Apache Software Foundation, 2021) handle
communications between nodes implicitly. This program-
ming model is inherently one-pass and stateless, and it-
erations on Hadoop require frequent accesses to external
storage (hard disks), hence slow. Apache Spark (Zaharia
et al., 2010) is an implementation that substitutes external
storage with memory caching, yet iterative algorithms are
an order of magnitude slower than their MPI counterparts
(Jha et al., 2014, Reyes-Ortiz, Oneto and Anguita, 2015,
Gittens et al., 2016).

Parallel architectures. To realize the above models, a
computer architecture that allows simultaneous execu-
tion of multiple machine language instructions is needed.
Single instruction, multiple data (SIMD) architecture has
multiple processors that execute the same instruction on
different parts of the data. The GPU falls into this category
of architectures, as its massive number of cores can run
a large number of threads sharing memory. Multiple in-
struction, multiple data (MIMD), or single program, mul-
tiple data (SPMD) architecture has multiple CPUs that ex-
ecute independent parts of program instructions on their
own data partition. Most computer clusters fall into this
category.

2.2 Multiple CPU Nodes: Clusters, Supercomputers,
and Clouds

Computing on multiple nodes can be utilized in many
different scales. For mid-sized data, one may build his/her
own cluster with a few nodes. This requires determining
the topology and purchasing all the required hardware,
along with resources to maintain it. This is certainly not an
expertise of virtually all statisticians. Another option may
be using a well-maintained supercomputer in a nearby
HPC center. A user can take advantage of the facility with
up to hundreds of thousand cores. The computing jobs
on these facilities are often controlled by a job scheduler,
such as Sun Grid Engine (Gentzsch, 2001), Slurm (Yoo,
Jette and Grondona, 2003), and Torque (Staples, 2006).
However, access to supercomputers is almost always lim-
ited. Even when the user has access to them, he/she often
has to wait in a very long queue until the requested com-
putation job is started by the scheduler.

In recent years, cloud computing, which refers to both
the applications delivered as services over the Internet,
and the hardware and systems software in the data centers
that provide these services (Armbrust et al., 2010), has
emerged as a third option. Information technology giants
such as Amazon, Microsoft, and Google lend their prac-
tically infinite computing resources to users on demand

by wrapping the resources as “virtual machines,” which
are charged per CPU hours and storage. Users basically
pay utility bills for their use of computing resources. An
important implication of this infrastructure to end-users is
that the cost of using 1000 virtual machines for one hour
is almost the same as using a single virtual machine for
1000 hours. Therefore a user can build his/her own virtual
cluster “on the fly,” increasing the size of the cluster as the
size of the problem to solve grows. A catch here is that a
cluster does not necessarily possess the power of HPC as
suggested in Section 2.1: a requirement for high perfor-
mance is that all the machines should run in tight lockstep
when working on a problem (Fox, 2011). However, early
cloud services were more focused on web applications
that do not involve frequent data transmissions between
computing instances, and less optimized for HPC, yield-
ing discouraging results (Evangelinos and Hill, 2008,
Walker, 2008). For instance, “serverless computing” ser-
vices such as AWS Lambda, Google Cloud Functions, and
Azure Functions allow users to run a function on a large
amount of data, in much the same fashion as supplying
it to lapply() in base R. These services offer reason-
able scalability on a simple map-reduce-type jobs such as
image featurization, word count, and sorting. Neverthe-
less, their restrictions on resources (e.g., single core and
300 seconds of runtime in AWS Lambda) and the state-
lessness of the functional programming approach result
in high latency for iterative algorithms, such as consensus
ADMM (Aytekin and Johansson, 2019).

Eventually, many improvements have been made at
hardware and software levels to make HPC on clouds fea-
sible. At hardware level, cloud service providers now sup-
port CPU instances such as c4, c5, and c5n instances
of Amazon Web Services (AWS), with up to 48 physi-
cal cores of higher clock speed of up to 3.4 GHz along
with support for accelerated SIMD computation. If net-
work bandwidth is critical, the user may choose instances
with faster networking (such as c5n instances in AWS),
allowing up to 100 Gbps of network bandwidth. At the
software level, these providers support tools that manage
resources efficiently for scientific computing applications,
such as ParallelCluster (Services, 2021) and ElastiCluster
(University of Zurich, 2021). These tools are designed to
run programs in clouds in a similar manner to proprietary
clusters through a job scheduler. In contrast to a physical
cluster in an HPC center, a virtual cluster on a cloud is
exclusively created for the user; there is no need for wait-
ing in a long queue. Consequently, over 10 percent of all
HPC jobs are running in clouds, and over 70 percent of
HPC centers run some jobs in a cloud as of June 2019;
the latter is up from just 13 percent in 2011 (Hyperion
Research, 2019).

In short, cloud computing is now a cost-effective option
for statisticians who demand high performance, without a
steep learning curve.

498 KO, ZHOU, ZHOU AND WON

2.3 Multi-GPU Node

In some cases, HPC is achieved by installing multiple
GPUs on a single node. A key feature of GPUs is their
ability to apply a mapping to a large array of floating-
point numbers simultaneously. The mapping (called a ker-
nel) can be programmed by the user. This feature is en-
abled by integrating a massive number of simple com-
pute cores in a single processor chip, forming a SIMD
architecture. While this architecture of GPUs was created
for high-quality video games to generate a large num-
ber of pixels in a hard time limit, the programmability
and high throughput soon gained attention from the scien-
tific computing community. Matrix-vector multiplication
and elementwise nonlinear transformation of a vector can
be computed several orders of magnitude faster on GPU
than on CPU. Early applications of general-purpose GPU
programming include physics simulations, signal process-
ing, and geometric computing (Owens et al., 2007). Tech-
nologically savvy statisticians demonstrated its poten-
tial in Bayesian simulation (O’Hara and Sillanpää, 2009,
Suchard et al., 2010) and high-dimensional optimization
(Zhou, Lange and Suchard, 2010, Yu et al., 2015). Over
time, the number of cores has increased from 240 (Nvidia
GTX 285, early 2009) to 4608 (Nvidia Titan RTX, late
2018) and more local memory—separated from CPU’s
main memory—has been added (from 1GB of GTX 285
to 24GB for Titan RTX). GPUs could only use single-
precision for their floating-point operations, but they now
support double- and half-precisions. More sophisticated
operations such as tensor multiplication are also sup-
ported. High-end GPUs are now being designed specifi-
cally for scientific computing purposes, sometimes with
fault-tolerance features such as error correction.

Major drawbacks of GPUs are smaller memory size,
compared to CPU, and data transfer overhead between
CPU and GPU. These limitations can be addressed by
using multiple GPUs: recent GPUs can be installed on
a single node and communicate with each other without
the meddling of CPU; this effectively increases the local
memory of a collection of GPUs.2 It is relatively inex-
pensive to construct a node with 4–8 desktop GPUs com-
pared to a cluster of CPU nodes with a similar computing
power (if the main computing tasks are well suited for the
SIMD model), and the gain is much larger than the cost.
A good example would be linear algebra operations that
frequently occur in high-dimensional optimization.

Programming environments for GPU computing have
been notoriously hostile to programmers for a long time.
The major hurdle is that a programmer needs to write two
suits of code, the host code that runs on a CPU and kernel
functions that run on GPU cores. Data transfer between

2Lee et al. (2017b) explored this possibility in image-based regres-
sion.

CPU and GPU(s) also has to be taken care of. More-
over, kernel functions need to be written in special ex-
tensions of C, C++, or Fortran, for example, the Com-
pute Unified Device Architecture (CUDA, Kirk, 2007)
or Open Computing Language (OpenCL, Munshi, 2009).
Combinations of these technical barriers prevented ca-
sual programmers, especially statisticians, from writing
GPU code despite its computational gains. There were ef-
forts to sugar-coat these hostile environments with a high-
level language such as R (Buckner et al., 2009) or Python
(Tieleman, 2010, Klöckner et al., 2012, Lam, Pitrou and
Seibert, 2015), but these attempts struggled to garner large
enough user base since the functionalities were often lim-
ited and inherently hard to extend.

Fortunately, GPU programming environments have
been revolutionized since deep learning (LeCun, Bengio
and Hinton, 2015) brought sensation to many machine
learning applications. Deep learning is almost synony-
mous to deep neural networks, which refer to a repeated
(“layered”) application of an affine transformation of the
input followed by identical elementwise transformations
through a nonlinear link function, or “activation func-
tion.” Fitting a deep learning model is almost always con-
ducted via (approximate) minimization of the specified
loss function through a clever application of the chain rule
to the gradient descent method, called “backpropagation”
(Rumelhart, Hinton and Williams, 1986). These computa-
tional features fit well to the SIMD architecture of GPUs,
use of which dramatically reduces the training time of this
highly overparameterized family of models with a huge
amount of training data (Raina, Madhavan and Ng, 2009).
Consequently, many efforts have been made to ease GPU
programming for deep learning, resulting in easy-to-use
software libraries. Since the sizes of neural networks get
ever larger, more HPC capabilities, for example, support
for multiple GPUs and CPU clusters, have been devel-
oped. As we review in the next section, programming with
those libraries gets rid of many hassles with GPUs, close
to the level of conventional programming.

3. EASY-TO-USE SOFTWARE LIBRARIES FOR HPC

3.1 Deep Learning Libraries and HPC

As of revising this article (summer 2020), the two most
popular deep learning software libraries are TensorFlow
(Abadi et al., 2016) and PyTorch (Paszke et al., 2019).
There are two common features of these libraries. One is
the computation graph that automates the evaluation of
the loss function and its differentiation required for back-
propagation. The other feature, more relevant to statisti-
cal computing, is an efficient and user-friendly interface
to linear algebra and convolution routines that work on
both CPU and GPU in a unified fashion. A typical pat-
tern of using these libraries is to specify the model and

HIGH-PERFORMANCE STATISTICAL COMPUTING 499

describe how to fit the model to the training data in a
high-level scripting language (mostly Python). The sys-
tem on which the model is fitted can be programmed. If
the target system is a CPU node, then the software can
be configured to utilize the OpenBLAS (Zhang, Wang
and Chothia, 2021) or Intel Math Kernel Library (Wang
et al., 2014), which are optimized implementations of the
Basic Linear Algebra Library (BLAS, Blackford et al.,
2002) for shared-memory systems. If the target system is
a workstation with a GPU, then the same script can em-
ploy a pair of host and kernel code that may make use
of cuBLAS (NVIDIA, 2021a), a GPU version of BLAS,
and cuSPARSE (NVIDIA, 2021b), GPU-oriented sparse
linear algebra routines. A slight change in the option for
device selection—usually a line or two in the script—can
control whether to run the model on a CPU or GPU. From
the last paragraph of the previous section, we see that this
“write once, run everywhere” feature of deep learning li-
braries can make GPU programming easier for statistical
computing as well.

TensorFlow is a successor of Theano (Theano Devel-
opment Team, 2016), one of the first libraries to support
automatic differentiation based on computational graphs.
Unlike Theano, which generates GPU code on the fly,
TensorFlow is equipped with precompiled GPU code for
a large class of predefined operations. PyTorch inher-
its Torch (Collobert, Kavukcuoglu and Farabet, 2011),
an early machine learning library written in a functional
programming language called Lua, and Caffe (Jia et al.,
2014), a Python-based deep learning library. PyTorch
(and Torch) can also manage GPU memory efficiently. As
a result, it is known to be faster than other deep learning
libraries (Bahrampour et al., 2016).

Both libraries support multi-GPU and multi-node com-
puting.3 In TensorFlow, multi-GPU computation is sup-
ported natively on a single node. If data are distributed
in multiple GPUs and one needs data from the other,
the GPUs communicate with each other implicitly and
the user does not need to interfere. For multi-node com-
munication, it is recommended to use MPI through the
library called Horovod (Sergeev and Del Balso, 2018)
for tightly-coupled HPC environments. In PyTorch, both
multi-GPU and multi-node computing are enabled by
using the interface torch.distributed. This inter-
face defines MPI-style (but simplified) communication
primitives (see Section 2.1). Implementations include the
bona fide MPI, Nvidia Collective Communications Li-
brary (NCCL), and Gloo (Incubator, 2021). Recent MPI

3There are other deep learning software libraries with similar HPC
supports: Apache MxNet (Chen et al., 2015) supports multi-node com-
putation via Horovod; multi-GPU computing is also supported at the
interface level. Microsoft Cognitive Toolkit (CNTK, Seide and Agar-
wal, 2016) supports parallel stochastic gradient algorithms through
MPI.

implementations can map multi-GPU communication to
the MPI standard as well as traditional multi-node com-
munication. While NCCL is useful for a multi-GPU node,
Gloo is useful with multiple CPU with Ethernet intercon-
nect.

3.2 Automatic Differentiation

The automatic differentiation (AD) feature of deep
learning software deserves separate attention. AD refers
to a collection of techniques that evaluate the deriva-
tives of a function specified by a computer program accu-
rately (Griewank and Walther, 2008, Baydin et al., 2017).
Based on AD, complex deep models can be trained with
stochastic approximation (see the next section) on huge
data within a hundreds of lines of code and approxi-
mate a rich class of functions efficiently; see Schmidt-
Hieber (2020), Bauer and Kohler (2019), Imaizumi and
Fukumizu (2019), Suzuki (2019), Ohn and Kim (2019)
for recent theoretical developments. Most AD techniques
rely on decomposition of the target function into elemen-
tary functions (primitives) whose derivatives are known,
and the computational graph, either explicitly or implic-
itly, that describes the dependency among the primitives.
Figure 1 illustrates the computational graph for the bi-
variate function f (x1, x2) = log(x1 + x2) − x2

2 . The in-
ternal nodes represent intermediate variables correspond-
ing to the primitives: z−1 = x1, z0 = x2, z1 = z−1 + z0,
z2 = log z1, z3 = z2

0, and z4 = z2 − z3; y = z4.
There are two modes of AD, depending on the order

of applying the chain rule. Forward-mode AD applies the
rule from right to left (or from input to output), hence it is
straightforward to implement. In Figure 1, if we want to
evaluate the partial derivative ∂f

∂x2
at (3,2), then by denot-

ing żi ≡ ∂zi

∂x2
we see that ż−1 = ẋ1 = 0, ż0 = ẋ2 = 1, ż1 =

ż0 + ż1 = 1, ż2 = ż1/z1 = 1/5, ż3 = 2z0ż0 = (2)(2)(1) =
4, ż4 = ż2 − ż3 = 1/5 − 4, and finally ẏ = ż4 = −3.8.
While this computation can be conducted in a single pass
with evaluation of the original function f , computing an-
other derivative ∂f

∂x1
requires a separate pass. Thus, for-

ward mode is inefficient if the whole gradient of a func-
tion with many input variables is needed, for example, the
loss function of a high-dimensional model. Reverse-mode
AD applies the chain rule in the opposite direction. In the
first pass, the original function and the associated interme-
diate variables zi are evaluated from input to output. In the
second pass, the “adjoint” variables z̄i ≡ ∂y

∂zi
are initial-

ized to zero and updated from output to input. In Figure 1,
z̄4 += ∂y

∂z4
= 1, z̄3 += z̄4

∂z4
∂z3

= −1, z̄2 += z̄4
∂z4
∂z2

= 1,

z̄0 += z̄3
∂z3
∂z0

= z̄3(2z0) = −4, z̄1 += z̄2
∂z2
∂z1

= z̄2
z2

= 1/5,

z̄0 += z̄1
∂z1
∂z0

= 1/5, and z̄−1 += z̄1
∂z1
∂z−1

= 1/5. Here,
the ‘+=’ is the C-style increment operator, employed
in order to observe the rule of total derivatives. (Note
z̄0 is updated twice.) Finally, ∂f

∂x1
= x̄1 = z̄−1 = 0.2 and

500 KO, ZHOU, ZHOU AND WON

z−1

z0

z1

z3

z2

z4

x1

x2

y = f (x1, x2)

z̄1

z̄1

z̄3

z̄2

z̄4

z̄4

x̄1 = z̄−1

x̄2 = z̄0

ȳ

FIG. 1. Computational graph for evaluating function f (x1, x2) = log(x1 + x2) − x2
2 . Dashed arrows indicate the direction of backpropagation

evaluating ∇f (x1, x2).

∂f
∂x2

= x̄2 = z̄0 = −3.8. Hence, reverse-mode AD gener-
alizes the backpropagation algorithm and computes the
whole gradient ∇f in a single backward pass, at the ex-
pense of keeping intermediate variables.

Deep learning software can be categorized by the way
they build computational graphs. In Theano and Tensor-
Flow, the user needs to construct a static computational
graph using a specialized mini-language before execut-
ing the model fitting process, and the graph cannot be
modified throughout the execution. This static approach
has performance advantage since there is room for opti-
mizing the graph structure. Its disadvantage is the lim-
ited expressiveness of computational graphs and AD. On
the other hand, PyTorch employs dynamic computational
graphs, for which the user describes the model as a regu-
lar program for (forward) evaluation of the loss function.
Intermediate values and computation trace are recorded
in the forward pass, and the gradient is computed by pars-
ing the recorded computation backwards. The advantage
of this dynamic graph construction is the expressiveness
of the model: in particular, recursion is allowed in the loss
function definition. For example, recursive models such
as f (x) = f (x/2) if x > 1 and x otherwise are difficult
to describe using a static graph but easy with a dynamic
one. The downside is slower evaluation due to function
call overheads.

3.3 Case Study: PyTorch Versus TensorFlow

In this section, we illustrate how simple it is to write
a statistical computing code on multi-device HPC envi-
ronments using modern deep learning libraries. We com-
pare PyTorch and TensorFlow code written in Python,
which computes a Monte Carlo estimate of the constant
π . The emphasis is on readability and flexibility, that is,
how small a modification is needed to run the code writ-
ten for a single-CPU node on a multi-GPU node and a
multi-node system.

Listing 1 shows the code for Monte Carlo estimation
of π using PyTorch. Even for those who are not familiar

with Python, the code should be quite readable. The main
workhorse is function mc_pi() (Lines 14–21), which
generates a sample of size n from the uniform distribu-
tion on the unit square [0,1]2 and compute the proportion
of the points that fall inside the quarter circle of unit ra-
dius centered at the origin. Listing 1 is a fully executable
program. It uses torch.distributed interface with
an MPI backend (Line 3). An instance of the program of
Listing 1 is attached to a device and is executed as a “pro-
cess.” Each process is given its identifier (rank), which
is retrieved in Line 6. The total number of processes is
known to each process via Line 7. After the proportion
of the points in the quarter-circle is computed in Line 22,
each process gathers the sum of the means computed from
all the processes in Line 25 (this is called the all-reduce
operation; see Section 2.1). Line 27 divides the sum by the
number of processes, yielding a Monte Carlo estimate of
π based on the sample size of n × (number of processes).

We have been deliberately ambiguous about the “de-
vices.” Here, a CPU core or a GPU is referred to as a
device. Listing 1 assumes the environment is a worksta-
tion with one or more GPUs, and the backend MPI is
CUDA-aware. A CUDA-aware MPI, for example, Open-
MPI (Gabriel et al., 2004), allows data to be sent directly
from a GPU to another GPU through the MPI protocols.
Data transfer between modern GPUs does not go through
CPU (Lee et al., 2017b). Lines 9–10 specify that the de-
vices to use in the program are GPUs. For example, sup-
pose the workstation has four GPUs, say device 0 through
3. A likely scenario for carrying out the all-reduce oper-
ation in Line 25 is to transfer the estimated π in device
1 (computed in Line 22, which is parallelized) to device
0, where the two estimates are added. At the same time,
the estimate in device 3 is passed to device 2 and then
added with another estimate there. After this step, the sum
in device 2 is sent to device 0 to compute the final sum.
This sum is broadcast to all the other devices to replace
the local estimates. (The actual behavior may be slightly

HIGH-PERFORMANCE STATISTICAL COMPUTING 501

1 # import packages
2 import torch.distributed as dist
3 import torch
4 dist.init_process_group(’mpi’) # initialize MPI
5

6 rank = dist.get_rank() # device id
7 size = dist.get_world_size() # total number of devices
8

9 # select device
10 device = ’cuda:{}’.format(rank) # or simply ’cpu’ for CPU computing
11 # select GPU based on rank.
12 if device.startswith(’cuda’): torch.cuda.set_device(rank)
13

14 def mc_pi(n):
15 # this code is executed on each device.
16 # generate n samples from Unif(0, 1) for x and y
17 x = torch.rand((n), dtype=torch.float64, device=device)
18 y = torch.rand((n), dtype=torch.float64, device=device)
19 # compute local estimate of pi in float64.
20 # type conversion is necessary, because (x ** 2 + y ** 2 < 1)
21 # results in unsigned 8-bit integer.
22 pi_hat = torch.mean((x**2 + y**2 <1).to(dtype=torch.float64))*4
23 # sum of the estimates across processes
24 # is stored in-place in ’pi_hat’, overwriting its original value.
25 dist.all_reduce(pi_hat)
26 # the final estimate of pi, computed on each process
27 return pi_hat / size
28

29 if __name__ == ’__main__’:
30 n = 10000
31 pi_hat = mc_pi(n)
32 print("Pi estimate based on {} Monte Carlo samples across {} processes.".format(n * size,

size))
33 if rank == 0:
34 print(pi_hat.item())

Listing 1: Distributed Monte Carlo estimation of π using PyTorch

different from this scenario depending on the specific im-
plementation of MPI.) If the environment is a cluster with
multiple CPU nodes (or even a single node), then commu-
nication between nodes or CPU cores through high-speed
interconnect replaces the inter-GPU communication. At
the code level, all we need to do is change Line 10 to de-
vice = ‘cpu’. The resulting code runs on a cluster
seamlessly as long as the MPI for the cluster is properly
installed.

In TensorFlow, however, a separate treatment of multi-
GPU and cluster settings is almost necessary. The code
for multi-GPU setting is similar to Listing 1 and is given
in Appendix C (Ko et al., 2022). In a cluster setting, un-
fortunately, it is extremely difficult to reuse the multi-
GPU code. If direct access to individual compute nodes
is available, that information can be used to run the code
distributedly, albeit not intuitively. However, in HPC en-
vironments where computing jobs are managed by job
schedulers, we often do not have direct access to the

compute nodes. The National Energy Research Scientific
Computing Center (NERSC), the home of the 16th most
powerful supercomputers in the world (as of June 2020),
advises that gRPC, the default inter-node communication
method of TensorFlow, is very slow on tightly-coupled
nodes, thus recommends a direct use of MPI (NERSC,
2021). Using MPI with TensorFlow requires an external
library called Horovod and a substantial modification of
the code, as shown in Listing 2. This is a sharp contrast
to Listing 1, where essentially the same PyTorch code can
be used in both multi-GPU and multi-node settings.

Due to the reasons stated in Section 3.2, we employ Py-
Torch in the sequel to implement the highly parallelizable
algorithms of Section 4 in a multi-GPU node and a cluster
on a cloud, as it allows simpler code that runs on various
HPC environments with a minimal modification. (In fact,
this modification can be made automatic through a com-
mand line argument.)

502 KO, ZHOU, ZHOU AND WON

1 import tensorflow as tf
2 import horovod.tensorflow as hvd
3

4 # initialize horovod
5 hvd.init()
6 rank = hvd.rank()
7

8 # without this block, all the processes try to allocate
9 # all the memory from each device, causing out of memory error.

10 devices = tf.config.experimental.list_physical_devices("GPU")
11 if len(devices) > 0:
12 for d in devices:
13 tf.config.experimental.set_memory_growth(d, True)
14

15 # select device
16 tf.device("device:gpu:{}".format(rank)) # tf.device("device:cpu:0") for CPU
17

18 # function runs in parallel with (graph computation/lazy-evaluation)
19 # or without (eager execution) the line below
20 @tf.function
21 def mc_pi(n):
22 # this code is executed on each device
23 x = tf.random.uniform((n,), dtype=tf.float64)
24 y = tf.random.uniform((n,), dtype=tf.float64)
25 # compute local estimate for pi and save it as ’estim’.
26 estim = tf.reduce_mean(tf.cast(x**2 + y ** 2 <1, tf.float64))*4
27 # compute the mean of ’estim’ over all the devices
28 estim = hvd.allreduce(estim)
29 return estim
30

31 if __name__ == ’__main__’:
32 n = 10000
33 estim = mc_pi(n)
34 # print the result on rank zero
35 if rank == 0:
36 print(estim.numpy())

Listing 2: Monte Carlo estimation of π for TensorFlow on multiple nodes using Horovod

4. HIGHLY PARALLELIZABLE ALGORITHMS

In this section, we discuss some easily paralleliz-
able optimization algorithms useful for fitting high-
dimensional statistical models, assuming that data are so
large that they have to be stored distributedly. These algo-
rithms can benefit from the distributed-memory environ-
ment by using relatively straightforward operations, via
distributed matrix-vector multiplication and independent
update of variables.

4.1 MM Algorithms

The MM principle (Lange, Hunter and Yang, 2000,
Lange, 2016), where “MM” stands for either majoriza-
tion-minimization or minorization-maximization, is a
useful tool for constructing parallelizable optimization al-
gorithms. In minimizing an objective function f (x) iter-
atively, for each iterate we consider a surrogate function
g(x|xn) satisfying two conditions: the tangency condition

f (xn) = g(xn|xn) and the domination condition f (x) ≤
g(x|xn) for all x. Updating xn+1 = arg minx g(x|xn)

guarantees that {f (xn)} is a nonincreasing sequence:

f
(
xn+1) ≤ g

(
xn+1|xn) ≤ g

(
xn|xn) = f

(
xn)

.

In fact, full minimization of g(x|xn) is not necessary for
the descent property to hold; merely decreasing it is suffi-
cient. For instance, it can be shown that the EM algorithm
(Dempster, Laird and Rubin, 1977) is obtained by apply-
ing the MM principle to to the observed-data log likeli-
hood and Jensen’s inequality. (See Wu and Lange (2010)
for more details about the relation between MM and EM.)

MM updates are usually designed to make a nondiffer-
entiable objective function smooth, linearize the problem,
or avoid matrix inversions by a proper choice of a sur-
rogate function. MM is naturally well-suited for parallel
computing environments, as we can choose a separable
surrogate function and update variables independently.

HIGH-PERFORMANCE STATISTICAL COMPUTING 503

For example, when maximizing loglikelihoods, a term
involving summation inside the logarithm log(

∑p
i=1 ui),

ui > 0, often arises. By using Jensen’s inequality, this
term can be minorized and separated as

log

(p∑
i=1

ui

)
≥

p∑
i=1

un
i∑p

j=1 un
j

log
(∑p

j=1 un
j

un
i

ui

)

=
p∑

i=1

(
un

i∑p
j=1 un

j

)
logui + cn,

where un
i ’s are constants and cn is a constant only depend-

ing on un
i ’s. Parallelization of MM algorithms on a single

GPU using separable surrogate functions is extensively
discussed in Zhou, Lange and Suchard (2010). Separable
surrogate functions are especially important in distributed
HPC environments, for example, multi-GPU systems.

4.2 Proximal Gradient Method

The proximal gradient method extends the gradient de-
scent method, and deals with minimization of sum of two
extended real-valued convex functions, that is,

(1) min
x

f (x) + g(x).

Function f is possibly nondifferentiable, while g is con-
tinuously differentiable.

We first define the proximity operator of f :

proxλf (y) = arg min
x

{
f (x) + 1

2λ
‖x − y‖2

2

}
, λ > 0.

For many functions their proximity operators take closed
forms. We call such functions “proximable.” For exam-
ple, consider the 0/∞ indicator function δC(x) of a closed
convex set C, that is, δC(x) = 0 if x ∈ C, and +∞ oth-
erwise. The corresponding proximity operator is the Eu-
clidean projection onto C: PC(y) = arg minx∈C ‖y − x‖2.
For many sets, for example, nonnegative orthant, PC is
simple to compute. Also note that the proximity operator
of the �1-norm λ‖ · ‖1 is the soft-thresholding operator:
[Sλ(y)]i := sign(yi)(|yi | − λ)+.

Now we proceed with the proximal gradient method for
minimization of h(x) = f (x) + g(x). Assume g is con-
vex and has an L-Lipschitz gradient, that is, ‖∇g(x) −
∇g(y)‖2 ≤ L‖x −y‖2 for all x, y in the interior of its do-
main, and f is lower-semicontinuous, convex, and prox-
imable. The L-Lipschitz gradients naturally result in the
following surrogate function that majorizes h:

h(x) ≤ f (x) + g
(
xn) + 〈∇g

(
xn)

, x − xn〉 + L

2
‖x − xn‖2

2

= f (x) + g
(
xn) + L

2

∥∥∥∥x − xn + 1

L
∇g

(
xn)∥∥∥∥2

2

− 1

2L

∥∥∇g
(
xn)∥∥2

2 =: p(
x|xn)

.

Minimizing p(x|xn) with respect to x results in the itera-
tion

xn+1 = proxγnf

(
xn − γn∇g

(
xn))

,

γn ∈ (0,1/L].
(2)

If f ≡ 0, then iteration (2) reduces to the conven-
tional gradient descent. This iteration guarantees a non-
increasing sequence of h(xn) by the MM principle.
Proximal gradient method also has an interpretation of
forward-backward operator splitting, and the step size
γn ∈ (0,2/L) guarantees convergence (Combettes and
Pesquet, 2011, Combettes, 2018). If f (x) = δC(x), then
the corresponding algorithm is called the projected gra-
dient method. If f (x) = λ‖x‖1, then it is the itera-
tive shrinkage-thresholding algorithm (ISTA, Beck and
Teboulle, 2009).

For many functions f , the update (2) is simple and eas-
ily parallelized, thus the algorithm is suitable for HPC.
For example, in the soft-thresholding operator above all
the elements are independent. If f (x) = −a logx, then

proxγf (y) = (
y +

√
y2 + 4γ a

)
/2,(3)

which is useful for the PET example in Section 6. The
gradient ∇g in update (2) can also be computed in paral-
lel. In many models the fitting problem takes the form of
(1) with g(x) = 1

m

∑m
i=1 �(aT

i x), where � is a loss func-
tion and ai ∈ R

p is the ith observation. Collect the lat-
ter into a data matrix A ∈ R

m×p . If m 	 p, then split it
by the row as A = [AT[1],AT[2], . . . ,AT[d]]T , where blocks
A[k] are distributed over d devices. If the current iterate
of the parameter xn is known to each device, then the lo-
cal gradient ∇gi(x

n) = �′(aT
i x)ai can be computed from

A[k] independently. The full gradient ∇g(xn) can be com-
puted then by averaging ∇gi(x

n). In the MPI terminol-
ogy of Section 2.1, a distributed-memory proximal gra-
dient update consists of the following steps: 1) broadcast
xn; 2) compute the local gradient ∇gi(x

n) in each device;
3) reduce the local gradients to compute the full gradi-
ent ∇g(xn) in the master device; 4) update xn+1. If g is
not separable in observations, splitting the data matrix by
column may be useful (Section 6.3).

See Parikh and Boyd (2014) for a thorough review and
distributed-memory implementations, and Polson, Scott
and Willard (2015) for a statistically oriented review.

4.3 Primal-Dual Methods

Primal-dual methods introduce an additional dual vari-
able y (where x is the primal variable) in order to deal
with a larger class of problems. Consider the problems
of the form h(x) = f (Kx) + g(x), where K ∈ R

l×p. We
further assume that f and g are lower semicontinuous,
convex, and proper (i.e., not always ∞) functions. Even
if f is proximable, the proximity operator for f (K·) is

504 KO, ZHOU, ZHOU AND WON

not easy to compute. The conjugate of f is defined as
f ∗(y) = supx〈x, y〉 − f (x). It is known that f ∗∗ = f ,
so f (Kx) = f ∗∗(Kx) = supy〈Kx,y〉 − f ∗(y). Then the
minimization problem infx f (Kx)+g(x) is equivalent to
the saddle-point problem

inf
x

sup
y

〈Kx,y〉 + g(x) − f ∗(y),

for which a solution (x̂, ŷ) exists under mild conditions.
A widely known method for solving this saddle-point

problem in the statistical literature is the ADMM (Xue,
Ma and Zou, 2012, Ramdas and Tibshirani, 2016, Zhu,
2017, Lee et al., 2017b, Gu et al., 2018), whose update is
given by

xn+1 = arg min
x

g(x)

+ (t/2)‖Kx − x̃n + (1/t)yn‖2
2,

(4a)

x̃n+1 = prox(1/t)f

(
Kxn+1 + (1/t)yn)

,(4b)

yn+1 = yn + t
(
Kxn+1 − x̃n+1)

.(4c)

If g is separable, that is, g(x) = ∑d
k=1 gk(x), then con-

sensus optimization (Boyd et al., 2011, Chapter 7) applies
ADMM to distributed copies of variables xk = x to min-
imize h(x) = f (z) + ∑d

k=1 gk(xk) subject to xk = x and
Kxk = z for each k:

xn+1
k = arg min

xk
gk(xk) + t

2
‖Kxk − x̃n + 1

t
yn
k ‖2

2

+ t

2
‖xk − xn + 1

t
wn

k‖2
2,

(5a)

x̃n+1 = prox(dt)−1f

(
1

d

d∑
k=1

(
Kxn+1

k + 1

t
yn
k

))
,(5b)

yn+1
k = yn

k + t
(
Kxn+1

k − x̃n+1)
,

wn+1
k = wn

k + t
(
xn+1
k − xn+1)

.
(5c)

A distributed-memory implementation will iterate the fol-
lowing steps: 1) for each device k, solve (5a) in parallel;
2) gather local solutions xn

k in the master device; 3) com-
pute (5b); 4) broadcast x̃n+1; 5) compute (5c).

Nonetheless, neither update (4a) nor (5a) results in a
proximity operator, since the quadratic term is not spher-
ical. This inner optimization problem is often nontrivial
to solve. In the simplest case of linear regression, g is
quadratic and (4a) involves solving a (large) linear sys-
tem whose time complexity is cubic in the dimension p

of the primal variable x.
PDHG avoids inner optimization via the following iter-

ation:

yn+1 = proxσf ∗
(
yn + σKx̄n)

,(6a)

xn+1 = proxτg

(
xn − τKT yn+1)

,(6b)

x̄n+1 = 2xn+1 − xn,(6c)

where σ and τ are step sizes. If f is proximable, so
is f ∗, since proxγf ∗(x) = x − γ proxγ −1f (γ −1x) by
Moreau’s decomposition. This method has been analyzed
using monotone operator theory (Condat, 2013, Vũ, 2013,
Ko, Yu and Won, 2019). Convergence of iteration (6) is
guaranteed if στ‖K‖2

2 < 1, where ‖M‖2 is the spectral
norm of matrix M . If g has an L-Lipschitz gradient, then
the proximal step (6b) can be replaced by a gradient step

xn+1 = xn − τ
(∇g

(
xn) + KT yn+1)

.

PDHG algorithms are also highly parallelizable as long
as the involved proximity operators are easy to compute
and separable. No inner optimization is involved in iter-
ation (6) and only matrix-vector multiplications appear.
The distributed computation of gradient in Section 4.2
can be used for the gradient step. A hybrid of PDHG and
ADMM has recently been proposed (Ryu, Ko and Won,
2020).

4.4 Parallel Coordinate Descent and Stochastic
Approximation

Coordinate descent methods apply vector-to-scalar
maps Ti : R

p → R : x = (x1, . . . , xi, . . . , xp) �→
arg minx′

i
h(x1, . . . , x

′
i , . . . , xp) defined for each coordi-

nate i successively to minimize h(x). The most well-
known variant is the cyclic or Gauss–Seidel version.
If we denote the j th elementary unit vector in R

p by
ej , then the update rule is xn+1 = ∑

j �=i x
n
j ej + Ti(x)ei

where i = (n − 1 mod p) + 1, which possesses the
descent property. The parallel or Jacobi update reads
xn+1 = ∑p

j=1 Tj (x)ej . Obviously, if h is separable in

variables, that is, h(x) = ∑p
j=1 hj (xj), this minimization

strategy will succeed. Other variants are also possible,
such as randomizing the cyclic order, or updating a subset
of coordinates in parallel at a time. The “argmin” map Ti

can also be relaxed, for example, by a prox-linear map
x �→ arg minx′

i
〈 ∂g
∂xi

|xi
, x′

i − xi〉 + 1
2γi

‖x′
i − xi‖2

2 + f (x) if
h has a structure of h = f + g and only g is differentiable
(Tseng and Yun, 2009). See Wright (2015) for a recent
review.

If p is much larger than τ , the number of devices,
then choosing a subset of coordinates with size compa-
rable to τ would reduce the complexity of an iteration.
Richtárik and Takáč (2016a), Richtárik and Takáč (2016b)
consider sampling a random subset and study the effect
of the sampling distribution on the performance of par-
allel prox-linear updates, deriving optimal distributions
for certain cases. In particular, the gain of paralleliza-
tion is roughly proportional to the degree of separabil-
ity p/ω, where ω = maxJ∈J |J | if h(x) = ∑

J∈J hJ (x)

for a finite collection of nonempty subsets of {1, . . . , p}
and hJ depends only on coordinates i ∈ J . For exam-
ple, if A = [aT

1 , . . . , aT
m]T ∈ R

m×p is the data matrix for
ordinary least squares, then ω equals to the maximum

HIGH-PERFORMANCE STATISTICAL COMPUTING 505

number of nonzero elements in the rows, or equivalently
ω = maxi=1,...,n ‖ai‖0.

For gradient-descent type methods, stochastic approx-
imation (Robbins and Monro, 1951; see Lai and Yuan,
2021, for a recent review) has gained wide popularity un-
der the name of stochastic gradient descent or SGD. The
main idea is to replace the gradient of the expected loss
by its unbiased estimator. For instance, as in the penulti-
mate paragraph of Section 4.2, if g(x) = 1

m

∑m
i=1 �(aT

i x),
and f ≡ 0, then �′(aT

i x)ai is an unbiased estimator of
∇g(x) under the uniform distribution on the sample in-
dices {1, . . . ,m}. The update rule is then xn+1 = xn −
γn�

′(aT
i xn)ai for some randomly chosen i. SGD and

its variants (Defazio, Bach and Lacoste-Julien, 2014,
Johnson and Zhang, 2013) are main training methods
in most deep learning software, since the sample size
m needs to be extremely large to properly train deep
neural networks. The idea of using an unbiased esti-
mator of the gradient has been extended to the prox-
imal gradient (Nitanda, 2014, Xiao and Zhang, 2014,
Atchadé, Fort and Moulines, 2017, Rosasco, Villa and
Vũ, 2020) and PDHG (Chen, Lan and Ouyang, 2014,
Ko, Yu and Won, 2019, Ko and Won, 2019) methods. In
practice, it is standard to use a minibatch or a random sub-
set of the sample for each iteration, and the arbitrary sam-
pling paradigm of Richtárik and Takáč (2016a), Richtárik
and Takáč (2016b) for parallel coordinate descent has
been extended to minibatch SGD (Gower et al., 2019,
Qian, Qu and Richtárik, 2019) and PDHG (Chambolle
et al., 2018).

5. DISTRIBUTED MATRIX DATA STRUCTURE FOR
PYTORCH

For the forthcoming examples and potential future
uses in statistical computing, we propose the package
dist_stat built on PyTorch. It consists of two sub-
modules, distmat and application. The submod-
ule distmat implements a simple distributed matrix
data structure, and the submodule application in-
cludes the code for the examples in Section 6 using
distmat. In the data structure distmat, each pro-
cess, enumerated by its rank, holds a contiguous block
of the full data matrix by rows or columns, which may
be sparse. If multiple GPUs are involved, each process
controls the GPU whose index matches the process rank.
The blocks are assumed to have equal sizes. For nota-
tional simplicity, we indicate the dimension to split by a
pair of square brackets: if a [100] × 100 matrix is split
over four processes, the rank-0 process keeps the first 25
rows of the matrix, the rank-1 process takes the next 25
rows, and so on. For the sake of simplicity, we always as-
sume that the dimension to split is a multiple of the num-
ber of processes. The code for dist_stat is available

at https://github.com/kose-y/dist_stat. A proper backend
setup for a cloud environment is explained in Appendix B.

In distmat, unary elementwise operations such as ex-
ponentiation, square root, absolute value, and logarithm
of matrix entries are implemented in an obvious manner.
Binary elementwise operations such as addition, subtrac-
tion, multiplication, division are implemented in a similar
manner to R’s vector recycling: if two matrices of differ-
ent dimensions are to be added together, say one is 3 × 4
and the other is 4 × 1, the latter matrix is expanded to a
3×4 matrix with the column repeated four times. Another
example is adding a 1 × 4 matrix and a 4 × 1 matrix. The
former is expanded to a 4 × 3 matrix by repeating the row
four times, and the latter to a 4 × 3 matrix by repeating
the column three times. Application of this recycling rule
is in accordance with the broadcast semantics of PyTorch.

Distributed matrix multiplication requires some care.
Suppose we multiply a p × r matrix A and an r × q

matrix B . If matrix B is tall and split by row into
[B[1], . . . ,B[T]]T and distributed among T processes,
where B[t] is the t th row block of B . If matrix A is split
in the same manner, a natural way to compute the prod-
uct AB is for each process t to gather (see Section 2.1)
all B[1], . . . ,B[T] to create a copy of B and compute
the row block A[t]B of AB . On the other hand, if ma-
trix A is wide and split by column into [A[1], . . . ,A[T]],
where A[t] is the t th column block of A, then each pro-
cess will compute the local multiplication A[t]B[t]. The
product AB = ∑T

t=1 A[t]B[t] is computed by a reduce or
all-reduce operation of Section 2.1. These operations are
parallelized as outlined in Section 3.3. The distribution
scenarios considered in distmat are collected in Ta-
ble 1. Each matrix can be either broadcast (p × r for A),
row-distributed ([p]× r), or column-distributed (p×[r]).
Since broadcasting both matrices does not require any
distributed treatment in multiplication, there remain eight
possible combinations of the input. For each combination,
the output may involve more than one configurations. If
an outer dimension (either p or q but not both) is dis-
tributed, the p × q output AB is distributed along that di-
mension (scenarios 4, 8, 11). If both dimensions are split,
then there are two possibilities of [p] × q and p × [q]
(scenarios 2, 3). Splitting of the inner dimension r does
not affect the distribution of the output unless it is dis-
tributed in both A and B (scenarios 1, 9, 10). Otherwise,
we consider all the possible combinations in the output:
broadcast, split by rows, and split by columns (Scenarios
5, 6, 7).

The distmat.mm() function implements the 11 sce-
narios of Table 1 using the PyTorch function torch.
mm() for within-process matrix multiplication and the
collective communication directives (Section 2.1). Sce-
narios 3, 6, 8, 10, and 11 are implemented using the trans-
positions of input and output matrices for Scenarios 2, 7,

https://github.com/kose-y/dist_stat

506 KO, ZHOU, ZHOU AND WON

TABLE 1
Eleven distributed matrix multiplication scenarios of distmat

A B AB Description Communication involved
(size of output)

1 [p] × r [r] × q [p] × q A wide matrix times a tall matrix. 1 all-gather (r × q)
2 [p] × r r × [q] [p] × q Outer product, may require a large amount of memory. 1 all-gather (r × q)
3 [p] × r r × [q] p × [q] Outer product, may require a large amount of memory. 1 all-gather (r × p)
4 [p] × r r × q [p] × q A distributed matrix times a small, broadcast matrix. None
5 p × [r] [r] × q p × q Inner product, result broadcast. Suited for inner

product between two tall matrices.
1 all-reduce (p × q)

6 p × [r] [r] × q [p] × q Inner product, result distributed. T reductions (p × q/T each)
7 p × [r] [r] × q p × [q] Inner product, result distributed. T reductions (q × p/T each)
8 p × [r] r × [q] p × [q] Multiply two column-distributed wide matrices 1 all-gather (p × r)
9 p × [r] r × q p × q A distributed matrix times a tall broadcast matrix.

Intended for matrix-vector multiplications.
1 all-reduce (p × q)

10 p × r [r] × q p × q A tall broadcast matrix times a distributed matrix.
Intended for matrix-vector multiplications.

1 all-reduce (p × q)

11 p × r r × [q] p × [q] A small, broadcast matrix times a distributed matrix None

1, 9, and 4, respectively. Transposition costs only a short
constant time, as it only ‘tags’ to the original matrix that it
is transposed. The data layout remains intact. A scenario
is automatically selected depending on the distribution of
the input matrices. The class distmat has an attribute
for determining if the matrix is distributed by row or col-
umn. For Scenarios 2, 3; 5, 6, and 7, which share the same
input structure, additional keyword parameters are sup-
plied to distinguish them and determine the shape of the
output matrix. The type of collective communication op-

eration and the involved matrix block sizes roughly de-
termine the communication cost of the computation. For
example, an all-reduce is more expensive than a reduce.
The actual cost depends on the network latency, number
of MPI messages sent, and sizes of the messages sent be-
tween processes, which are all system dependent.

Listing 3 demonstrates an example usage of dist-
mat. We assume that this program is run with four pro-
cesses (size in Line 6 is 4). Line 8 determines the de-
vice to use. If multiple GPUs are involved, the code se-

1 import torch
2 from dist_stat import distmat
3 import torch.distributed as dist
4 dist.init_process_group(’mpi’)
5 rank = dist.get_rank()
6 size = dist.get_world_size()
7

8 device = ’cuda:{}’.format(rank) # or ’cpu’ for CPU computing
9 if device.startswith(’cuda’): torch.cuda.set_device(rank)

10

11 TType = torch.cuda.FloatTensor if device.startswith(’cuda’) else torch.DoubleTensor # single
precision for GPUs

12 A = distmat.distgen_uniform(4, 4, TType=TType) # create [4] x 4 matrix
13 B = distmat.distgen_uniform(4, 2, TType=TType) # create [4] x 2 matrix
14 AB = distmat.mm(A, B) # A * B, Scenario 1.
15 if rank == 0: # to print this only once
16 print("AB = ")
17 print(rank, AB.chunk) # print the rank’s portion of AB.
18 C = (1 + AB).log() # elementwise logarithm
19 if rank == 0:
20 print("log(1 + AB) = ")
21 print(rank, C.chunk) # print the rank’s portion of C.

Listing 3: An example usage of the module distmat.

HIGH-PERFORMANCE STATISTICAL COMPUTING 507

TABLE 2
HPC environments for experiments

Local node AWS c5.18xlarge

CPU GPU CPU

Model Intel Xeon E5-2680 v2 Nvidia GTX 1080 Intel Xeon Platinum 8124M
of cores 10 2560 18
Clock 2.8 GHz 1.6 GHz 3.0GHz
of entities 2 8 2 (per instance) × 1-20 (instances)
Total memory 256 GB 64 GB 144 GB × 1–20
Total cores 20 20,480 (CUDA) 36 × 1–20

lects one based on the rank of the process. Line 9 se-
lects the GPU to use with PyTorch. This code runs on
a system in which PyTorch is installed with a CUDA-
aware MPI implementation. The number of processes to
be used can be supplied by a command-line argument (see
Appendix B). Line 11 selects the data type and the de-
vice used for matrices. The TType (for “tensor type”)
of torch.cuda.FloatTensor indicates that single-
precision GPU arrays are used, while DoubleTensor
employs double-precision CPU arrays. Then Line 12 cre-
ates a distributed [4] × 4 matrix and initializes it to uni-
form (0,1) random numbers. This matrix is created once
and initialized locally, and then distributed to all pro-
cesses. (For large matrices, distmat supports another
creation mode that assembles matrix blocks from dis-
tributed processes.) Line 14 multiplies the two such ma-
trices A and B to form a distributed matrix of size [4]×2.
Scenario 1 in Table 1 is chosen by distmat to create the
output AB . Line 18 computes an elementwise logarithm
of 1 +AB , in an elementwise fashion according to the re-
cycling rule. The local block of data residing in each pro-
cess can be accessed by appending .chunk to the name
of the distributed matrix, as in Lines 17 and 21.4

Although the present implementation only deals with
matrices, distmat can be easily extended to tensor mul-
tiplication, as long as the distributed multiplication sce-
narios are carefully examined as in Table 1. Creating
communication-efficient parallel strategies that minimize
the amount of communication between computing units is
an active area of research (Geijn and Watts, 1997, Ballard
et al., 2011, Koanantakool et al., 2016). Communication-
avoiding sparse matrix multiplication has been utilized for
sparse inverse covariance estimation (Koanantakool et al.,
2018).

6. EXAMPLES

In this section, we compare the performance of the op-
timization algorithms of Section 4 on various HPC en-
vironments for the following four statistical computing

4Lines 17 and 21 do not guarantee printing in order (of ranks). They
are printed on a first come, first served basis.

examples using distmat: nonnegative matrix factoriza-
tion (NMF), positron emission tomography (PET), multi-
dimensional scaling (MDS), all of which were considered
in Zhou, Lange and Suchard (2010), and �1-regularized
Cox proportional hazards regression for survival analysis.
For the former three examples the focus is on scaling up
the size of feasible problems from those about a decade
ago. For the last example, we focus on analyzing a real-
world geonomic dataset of size approximately equal to
200,000 × 500,000.

6.1 Setup

We employed a local multi-GPU workstation and a vir-
tual cluster consisted of multiple AWS EC2 instances for
computing. Table 2 shows the setting of our HPC sys-
tems used for the experiments. For virtual cluster experi-
ments, we utilized 1 to 20 of AWS c5.18xlarge in-
stances with 36 physical cores with AVX-512 (512-bit
advanced vector extension to the x86 instruction set) en-
abled in each instance through the CfnCluster resource
manager. Network bandwidth of each c5.18xlarge in-
stance was 25GB/s. A separate c5.18xlarge instance
served as the “master” instance, which did not participate
in computation by itself but managed the computing jobs
over the 1 to 20 “worker” instances. Data and software for
the experiments were stored in an Amazon Elastic Block
Store (EBS) volume attached to this instance and shared
among the worker instances via the network file system.
Further details are given in Appendix B. For GPU experi-
ments, we used a local machine with two CPUs (10 cores
per CPU) and eight Nvidia GTX 1080 GPUs. These are
desktop GPUs, not optimized for double-precision. All
the experiments were conducted using PyTorch version
0.4 built on the Intel Math Kernel Library (MKL); the re-
leased code works for the versions up to 1.6.

We evaluated the objective function once per 100 itera-
tions. For the comparison of execution time, the iteration
was run for a fixed number of iterations, regardless of con-
vergence. For comparison of different algorithms for the

same problem, we iterated until |f (θn)−f (θn−100)|
|f (θn)|+1 < 10−5.

508 KO, ZHOU, ZHOU AND WON

For all the experiments, single-precision computation
results on GPU agreed with double-precision ones up to
six significant digits, except for �1-regularized Cox re-
gression, where the PyTorch implementation of the neces-
sary cumulative sum operation caused numerical instabil-
ity in some cases. Therefore all the experiments for Cox
regression were carried out in double-precision. Extra ef-
forts for writing a multi-device code were modest with
distmat. Given around 1000 lines of code to implement
basic operations for multi-device configuration in dist-
mat, additional code for our four examples was less than
30 lines for each.

6.2 Scaling up Examples in Zhou, Lange and
Suchard (2010)

Nonnegative matrix factorization. NMF is a procedure
that approximates a nonnegative data matrix X ∈ R

m×p

by a product of two low-rank nonnegative matrices, V ∈
R

m×r and W ∈ R
r×p . In a simple setting, NMF mini-

mizes f (V,W) = ‖X − V W‖2
F, where ‖ · ‖F denotes the

Frobenius norm. Applying the MM principle to recover
the famous multiplicative algorithm due to Lee and Seung
(1999), Lee and Seung (2001) is discussed in Zhou, Lange
and Suchard (2010, Section 3.1). Alternatively, the alter-
nating projected gradient (APG) method (Lin, 2007) in-
troduces ridge penalties to minimize f (V,W ; ε) = ‖X −
V W‖2

F + ε
2‖V ‖2

F + ε
2‖W‖2

F. Then the APG iteration is
given by

V n+1 = P+
(
(1 − σnε)V

n

− σn

(
V nWn(

Wn)T − X
(
Wn)T))

,

Wn+1 = P+
(
(1 − τnε)W

n

− τn

((
V n+1)T

V n+1Wn − (
V n+1)T

X
))

,

where P+ denotes the projection onto the nonnegative
orthant; σn and τn are step sizes. Convergence is guar-
anteed if ε > 0, σn ≤ 1/(2‖Wn(Wn)T + εI‖2

F), and
τn ≤ 1/(2‖(V n)T V n + εI‖2

F). APG has an additional
advantage of avoiding creation of subnormal numbers
over the multiplicative algorithm (see Appendix D).
Table 3 compares the performance of APG between
single-machine multi-GPU and multi-instance virtual
cluster settings. Synthetic datasets of sizes [10,000] ×
10,000 and [200,000] × 200,000 were created and dis-
tributed. For reference, the dimension used in Zhou,
Lange and Suchard (2010) is 2429 × 361. Multi-GPU
setting achieved up to 4.14x-speedup over a single CPU
instance if the dataset was small, but could not run the
larger dataset. The cluster in a cloud was scalable with
data, running faster with more instances, yielding up to
4.10x-speedup over the two-instance cluster.

Positron emission tomography. PET reconstruction is
essentially a deconvolution problem of estimating the
intensities of radioactive biomarkers from their line in-
tegrals, which can be posed as maximizing the Pois-
son loglikelihood L(λ) = ∑d

i=1[yi log(
∑p

j=1 eijλj) −∑p
j=1 eijλj]. Here yi is the observed count of photons

arrived coincidentally at detector pair i. Emission in-
tensities λ = (λ1, . . . , λp) are to be estimated, and eij

is the probability that detector pair i detects an emis-
sion form pixel location j , which depends on the ge-
ometry of the detector configuration. We consider a cir-
cular geometry for two-dimensional imaging. Adding
a ridge-type penalty of −(μ/2)‖Dλ‖2

2 to enhance spa-
tial contrast and solving the resulting optimization prob-
lem by an MM algorithm is considered in Zhou, Lange
and Suchard (2010, Section 3.2). Here D is the fi-
nite difference matrix on the pixel grid. To promote

TABLE 3
Runtime (in seconds) of NMF on simulated data for different inner dimensions r . “×” denotes that the experiment could not run with a single data

load to the device

Configuration 10,000 × 10,000 200,000 × 200,000
10,000 iterations 1000 iterations

r = 20 r = 40 r = 60 r = 20 r = 40 r = 60

GPUs
1 164 168 174 × × ×
2 97 106 113 × × ×
4 66 78 90 × × ×
8 57 77 92 × × ×

AWS EC2 c5.18xlarge instances
4 205 310 430 1493 1908 2232
5 230 340 481 1326 1652 2070
8 328 390 536 937 1044 1587

10 420 559 643 737 937 1179
20 391 1094 1293 693 818 1041

HIGH-PERFORMANCE STATISTICAL COMPUTING 509

sharper contrast, we employ the anisotropy total vari-
ation (TV) penalty (Rudin, Osher and Fatemi, 1992)
and minimize −L(λ) + ρ‖Dλ‖1. Write E = (eij). Then
the PDHG algorithm (Section 4.3) can be applied. Put
K = [ET ,DT]T , f (z,w) = ∑

i (−yi log zi) + ρ‖w‖1,
and g(λ) = 1T Eλ + δ+(λ), where 1 is the all-one vector
and δ+ is the 0/∞ indicator function for the nonnegative
orthant. Since f (z,w) is separable in z and w, applying
iteration (6) using the proximity operator (3), we obtain
the following iteration:

zn+1
i = 1

2

[(
zn
i + σ

(
Eλ̄n)

i

)
− [(

zn
i + σ

(
Eλ̄n)

i

)2 + 4σyi

]1/2]
,

i = 1, . . . , d,

wn+1 = P[−ρ,ρ]
(
wn + σDλ̄n)

,

λn+1 = P+
(
λn − τ

(
ET zn+1 + DT wn+1 + ET 1

))
,

λ̄n+1 = 2λn+1 − λn,

where P[−ρ,ρ] is elementwise projection to the inter-
val [−ρ,ρ]. Convergence is guaranteed if στ < 1/

‖[ET DT]‖2
2. Scalability experiments were carried out

with large Roland–Varadhan–Frangakis phantoms
(Roland, Varadhan and Frangakis, 2007) using grid sizes
p = 300 × 300, 400 × 400, and 900 × 900, with number
of detector pairs d = 179,700. Timing per 1000 iterations
is reported in Table 4. Both matrices E and D were dis-
tributed along the columns. For reference, Zhou, Lange
and Suchard (2010) use a 64×64 grid with d = 2016. The
total elapsed time decreases with more GPUs or nodes.
The multi-GPU node could not run the p = 810,000
dataset, however, since the data size was too big to fit in
the GPU memory. Figure 2 illustrates TV reconstructions
of a p = 128 × 128 extended cardiac-torso (XCAT) phan-
tom with d = 8128 (Lim, Dewaraja and Fessler, 2018,

TABLE 4
Runtime (in seconds) comparison of 1000 iterations of TV-penalized

PET. We exploited sparse structures of E and D. The number of
detector pairs d was fixed at 179,700

Configuration p = 90,000 p = 160,000 p = 810,000

GPUs
1 × × ×
2 21 35 ×
4 19 31 ×
8 18 28 ×

AWS EC2 c5.18xlarge instances
4 36 49 210
5 36 45 188
8 33 39 178

10 38 37 153
20 26 28 131

Ryu, Ko and Won, 2020). Results by a stochastic version
of PDHG (Chambolle et al., 2018) are also provided. Each
reconstruction was run for 20,000 iterations, which were
sufficient for both algorithms to reach similar objective
values. Those iterations took 20 to 35 seconds on a single
GPU.

Multi-dimensional scaling. The version of MDS con-
sidered in Zhou, Lange and Suchard (2010, Section 3.3)
minimizes the stress function f (θ) = ∑q

i=1
∑

j �=i wij ×
(yij − ‖θi − θj‖2)

2 to map dissimilarity measures yij be-
tween data point pairs (i, j) to points θ = (θ1, . . . , θq)

T

in an Euclidean space of low dimension p, where the wij

are the weights. Zhou, Lange and Suchard (2010) derive
a parallel MM iteration

θn+1
ik =

(∑
j �=i

[
yij

‖θn
i − θn

j ‖2

(
θn
ik − θn

jk

) + (
θn
ik + θn

jk

)])

/ (
2

m∑
j �=i

wij

)

for i = 1, . . . , q and k = 1, . . . , p. We generated a
[10,000] × 10,000 and a [100,000] × 100,000 pair-
wise dissimilarity matrices from samples of the 1000-
dimensional standard normal distribution. For reference,
the dimension of the dissimilarity matrix used in Zhou,
Lange and Suchard (2010) is 401 × 401. Elapsed time
is reported in Table 5. For p = 20, the eight-GPU set-
ting achieved a 5.32x-speedup compared to the single 36-
core CPU AWS instance and a 6.13x-speedup compared
to single GPU. The larger experiment involved storing
a distance matrix of size [100,000] × 100,000, which
took 74.5 GB of memory. The multi-GPU node did not
scale to run this experiment due to the memory limit. On
the other hand, we observed a 3.78x-speedup with 20 in-
stances (720 cores) with respect to four instances (144
cores) of CPU nodes.

Appendix D contains further details on the experiments
of this subsection.

6.3 �1-Regularized Cox Proportional Hazards
Regression

We apply the proximal gradient method to �1-regu-
larized Cox proportional hazards regression (Cox, 1972).
In this problem, we are given a covariate matrix X ∈
R

m×p , time-to-event (t1, . . . , tm), and right-censoring
time (c1, . . . , cm) for individual i = 1, . . . ,m as data. The
“response” is defined by yi = min{ti , ci} for each indi-
vuali i, and whether this individual is censored is indi-
cated by δi = I{ti≤ci}. The log partial likelihood of the
Cox model is then

L(β) =
m∑

i=1

δi

[
βT xi − log

(∑
j :yj≥yi

exp
(
βT xj

))]
.

510 KO, ZHOU, ZHOU AND WON

FIG. 2. Reconstruction of the XCAT phantom with a TV penalty with regularization parameter ρ, using deterministic (top row) and stochastic
(bottom) PDHG.

Coordinate–descent-type approaches to this model are
proposed by Suchard et al. (2013) and Mittal et al. (2014).

To obtain a proximal gradient iteration, we need the
gradient ∇L(β) and its Lipschitz constant. The gradient
of the log partial likelihood is

∇L(β) = XT (I − P)δ, δ = (δ1, . . . , δm)T ,

where we define the matrix P = (πij) with πij = I (yi ≥
yj)wi/Wj ; wi = exp(xT

i β), Wj = ∑
i:yi≥yj

wi . A Lips-
chitz constant of ∇L(β) can be found by finding an upper
bound of the Hessian of L(β):

∇2L(β) = XT (
P diag(δ)P T − diag(P δ)

)
X.

Note ‖P‖2 ≤ 1, since the sum of each row of P is 1. It fol-
lows that ‖∇2L(β)‖2 ≤ 2‖X‖2

2, and ‖X‖2 can be quickly
computed by using the power iteration (Golub and Van
Loan, 2013).

We introduce an �1-penalty to the log partial likelihood
in order to enforce sparsity in the regression coefficients
and use the proximal gradient descent to estimate β by
putting g(β) = −L(β), f (β) = λ‖β‖1. Then the iteration
is:

wn+1
i = exp

(
xT
i β

); Wn+1
j = ∑

i:yi≥yj

wn+1
i ,

πn+1
ij = I{ti≥tj }wn+1

i /Wn+1
j ,

�n+1 = XT (
I − P n+1)

δ, where P n+1 = (
πn+1

ij

)
,

βn+1 = Sλ

(
βn + σ�n+1)

.

If the data are sorted in descending order of yi , the Wn
j

can be computed by cumulative summing (w1, . . . ,wm)

in the proper order. A CUDA kernel for this operation is

TABLE 5
Runtimes (in seconds) of 1000 iterations for MDS for different mapped dimensions q

Configuration 10,000 datapoints 100,000 datapoints
10,000 iterations 1000 iterations

q = 20 q = 40 q = 60 q = 20 q = 40 q = 60

GPUs
1 368 376 384 × × ×
2 185 190 195 × × ×
4 100 103 108 × × ×
8 60 67 73 × × ×

AWS EC2 c5.18xlarge instances
4 424 568 596 3103 3470 3296
5 364 406 547 2634 2700 2730
8 350 425 520 1580 1794 1834

10 275 414 457 1490 1454 1558
20 319 440 511 820 958 1043

HIGH-PERFORMANCE STATISTICAL COMPUTING 511

TABLE 6
Runtime comparison of �1-regularized Cox regression over

multi-node virtual cluster on AWS EC2. Elapsed time
(in seconds) after 1000 iterations

Configuration 10,000 × [10,000] 100,000 × [200,000]
10,000 iterations 1000 iterations

GPUs
1 386 ×
2 204 ×
4 123 ×
8 92 ×

AWS EC2 c5.18xlarge instances
1 580 ×
2 309 ×
4 217 1507
5 170 1535
8 145 775

10 132 617
20 148 384

readily available in PyTorch. The soft-thresholding oper-
ator Sλ(x) is also implemented in PyTorch. We can write
a simple proximal gradient descent routine for the Cox
regression as in Listing 4, assuming no ties in yi ’s.

A synthetic data matrix X ∈ R
m×[p], distributed along

the columns, was sampled from the standard normal dis-
tribution. The algorithm was designed to keep a copy of
the estimand β in every device. All the numerical exper-
iments were carried out with double precision even for
GPUs, for the following reason. For a very small value
of λ (we used λ = 10−5), when single precision was used
in GPUs, the estimate quickly tended to “not a number
(NaN)”s due to numerical instability of the CUDA ker-
nel. Double-precision did not generate such a problem.
Although desktop GPU models such as Nvidia GTX and
Titan X are not optimized for double precision floating-
point operations and is known to be 32 times slower for
double precision operations than single precision opera-
tions, this does not necessarily mean that the total compu-
tation time is 32 times slower, since latency takes a signif-
icant portion of the total computation time in GPU com-
puting.

In order to demonstrate the scalability of our approach,
elapsed times for 10,000 × [10,000] and 100,000 ×
[200,000] simulated data are reported in Table 6. We can
see 3.92x speedup from 4 nodes to 20 nodes in the vir-
tual cluster. Even with double-precision arithmetics, eight
GPUs could achieve a 6.30x-speedup over the single 36-
core CPU instance. As expected, virtual clusters in a cloud
exhibited better scalability.

6.4 Genome-Wide Survival Analysis of the UK
Biobank Dataset

We demonstrate a real-world application of �1-regu-
larized Cox proportional hazards regression to genome-

wide survival analysis for Type 2 Diabetes (T2D). We
used a UK Biobank dataset (Sudlow et al., 2015) that
contains information on approximately 800,000 single
nucleotide polymorphisms (SNPs) of 500,000 individual
subjects recruited from the United Kingdom. After filter-
ing SNPs for quality control and subjects for the exclu-
sion of Type 1 Diabetes patients, 402,297 subjects includ-
ing 17,994 T2D patients and 470,189 SNPs remained. We
randomly sampled 200,000 subjects including 8,995 T2D
patients for our analysis. Any missing genotype was im-
puted with the column mean. Along with the SNPs, sex
and top ten principal components were included as unpe-
nalized covariates to adjust for population-specific vari-
ations. The resulting dataset was 701 GB with double-
precision.

The analysis for this large-scale genome-wide dataset
was conducted as follows. Incidence of T2D was used
as the event (δi = 1) and the age of onset was used
as survival time yi . For non-T2D subjects (δi = 0), age
at the last visit was used as yi . We chose 63 differ-
ent values of the regularization parameter λ in the range
[0.7 × 10−9,1.6 × 10−8], with which 0 to 111 SNPs were
selected. For each value of λ, the �1-regularized Cox re-
gression model of Section 6.3 was fitted. Every run con-
verged after at most 2080 iterations that took less than
2800 seconds using 20 c5.18xlarge instances from
AWS EC2.

The SNPs were ranked based on the largest value of
λ with which a SNP is selected. (No variables were re-
moved once selected within the range of λ used. The reg-
ularization path and the full list of the selected SNPs are
available in Appendix E.) Among the 111 SNPs selected,
three of the top four selections were located on TCF7L2,
whose association with T2D is well known (Scott et al.,
2007, The Wellcome Trust Case Control Consortium,
2007). Also prominently selected were SNPs from genes
SLC45A2 and HERC2, whose variants are known to be
associated with skin, eye, and hair pigmentation (Cook
et al., 2009). This is possibly due to the dominantly Euro-
pean population in the UK Biobank study. Mapped genes
for 24 SNPs out of the selected 111 were also reported in
Mahajan et al. (2018), a meta-analysis of 32 genome-wide
association studies (GWAS) for about 898,130 individuals
of European ancestry; see Tables E.1 and E.2 for details.
We then conducted an unpenalized Cox regression analy-
sis using the 111 selected SNPs. The nine SNPs with p-
values less than 0.01 are listed in Table 7. The locations in
Table 7 are with respect to the reference genome GRCh37
(Church et al., 2011), and mapped genes were predicted
by the Ensembl Variant Effect Predictor (McLaren et al.,
2016). Among these nine SNPs, three of them were di-
rectly shown to be associated with T2D (The Wellcome
Trust Case Control Consortium (2007) and Dupuis et al.
(2010) for rs4506565, Voight et al. (2010) for rs8042680,

512 KO, ZHOU, ZHOU AND WON

1 import torch
2 import torch.distributed as dist
3 from dist_stat import distmat
4 from dist_stat.distmat import distgen_uniform, distgen_normal
5 dist.init_process_group(’mpi’)
6 rank = dist.get_rank()
7 size = dist.get_world_size()
8 device = ’cuda:{}’.format(rank) # ’cpu’ for CPU computing
9 if device.startswith(’cuda’): torch.cuda.set_device(rank)

10 n = 10000
11 p = 10000
12 max_iter = 10000
13 TType = torch.cuda.FloatTensor if device.startswith(’cuda’) else torch.DoubleTensor
14 X = distgen_normal(p, n, TType=TType).t() # [p] x n transposed => n x [p].
15 delta = torch.multinomial(torch.tensor([1., 1.]), n, replacement=True).float().view(-1, 1).type(TType) #

censoring indicator, n x 1, Bernoulli(0.5).
16 delta_dist = distmat.dist_data(delta, TType=TType) # distribute delta to create [n] x 1 data
17 beta = distmat.dist_data(torch.zeros((p, 1)).type(TType), TType=TType) #[p] x 1
18 Xt = X.t() # transpose. [p] x n
19 sigma = 0.00001 # step size
20 lambd = 0.00001 # penalty parameter
21 soft_threshold = torch.nn.Softshrink(lambd) # soft-thresholding
22

23 # Data points are assumed to be sorted in decreasing order of observed time.
24 y_local = torch.arange(n, 0, step=-1).view(-1, 1).type(TType) # local n x 1
25 y_dist = distmat.dist_data(y_local, TType=TType) # distributed [n] x 1
26 pi_ind = (y_dist - y_local.t() >= 0).type(TType)
27

28 Xbeta = distmat.mm(X, beta) # Scenario 5 (default for n x [p] times [p] x 1)
29

30 for i in range(max_iter):
31 w = Xbeta.exp() # n x 1
32 W = w.cumsum(0) # n x 1
33 dist.barrier() # wait until the distributed computation above is finished
34

35 w_dist = distmat.dist_data(w, TType=TType) # distribute w. [n] x 1.
36

37 pi = (w_dist / W.t()) * pi_ind # [n] x n.
38 pd = distmat.mm(pi, delta) # Scenario 4.
39 dmpd = delta_dist - pd # [n] x 1.
40 grad = distmat.mm(Xt, dmpd) # Scenario 1.
41 beta = (beta + grad * sigma).apply(soft_threshold) # [p] x 1
42 Xbeta = distmat.mm(X, beta) # Scenario 5.
43

44 expXbeta = (Xbeta).exp() # n x 1
45 obj = distmat.mm(delta.t(), (Xbeta - (expXbeta.cumsum(0)).log())) \
46 - lambd * beta.abs().sum() # mm: local computation.
47 print(i, obj.item())

Listing 4: PyTorch code for the proximal gradient method for �1-regularized Cox regression.

Ng et al. (2014) for rs343092). Three other SNPs have
mapped genes reported to be associated with T2D in
Mahajan et al. (2018): rs12243326 on TCF7L2, rs343092
on HMGA2, and rs231354 on KCNQ1.

Although the interpretation of the results requires addi-
tional sub-analysis, the result shows the promise of joint
association analysis using multiple regression models. In
GWAS it is customary to analyze the data on SNP-by-
SNP basis. Among the mapped genes harboring the 111
SNPs selected by our half-million-variate regression anal-
ysis are CPLX3 and CACNA1A, associated with regula-
tion of insulin secretion, and SEMA7A and HLA-DRA
involved with inflammatory responses (based on DAVID

(Huang, Sherman and Lempicki, 2009a, 2009b)). These
genes might have been missed in conventional univari-
ate analysis of T2D due to nominally moderate statistical
significance. Joint GWAS may overcome such a limita-
tion and is possible by combining the computing power
of modern HPC and scalable algorithms.

7. DISCUSSION

Abstractions of highly complex computing operations
have rapidly evolved over the last decade. In this arti-
cle, we have explained how statisticians can benefit from
this evolution. We have seen how deep learning tech-
nology is relevant to high-performance statistical com-

HIGH-PERFORMANCE STATISTICAL COMPUTING 513

TABLE 7
SNPs with p-values of less than 0.01 on unpenalized Cox regression with variables selected by �1-penalized Cox regression

SNP ID Chr. Location A1A A2B MAFC Mapped Gene Coefficient p-value

rs4506565 10 114756041 A T 0.238 TCF7L2 2.810e−1 <2e−16
rs12243326 10 114788815 C T 0.249 TCF7L2 1.963e−1 0.003467
rs8042680 15 91521337 A C 0.277 PRC1 2.667e−1 0.005052
rs343092 12 66250940 T G 0.463 HMGA2 −7.204e−2 0.000400
rs7899137 10 76668462 A C 0.289 KAT6B −4.776e−2 0.002166
rs8180897 8 121699907 A G 0.445 SNTB1 6.361e−2 0.000149
rs10416717 19 13521528 A G 0.470 CACNA1A 5.965e−2 0.009474
rs231354 11 2706351 C T 0.329 KCNQ1 4.861e−2 0.001604
rs9268644 6 32408044 C A 0.282 HLA-DRA 6.589e−2 2.11e−5

AMinor allele,
BMajor allele,
CMinor allele frequency.
The boldface indicates the risk allele determined by the reference allele and the sign of the regression coefficient.

puting. We have also demonstrated that many useful
tools for incorporating accelerators and computing clus-
ters have been created. Unfortunately, such developments
have been mainly made in languages other than R, par-
ticularly in Python, with which statisticians may not be
familiar with. Although there are libraries that deal with
simple parallel computation in R, there are common is-
sues with these libraries. First, the libraries do not easily
incorporate GPUs that might significantly speed up com-
putation. Second, it is hard to write more full-fledged par-
allel programs without directly writing code in C or C++.
This two-language problem calls for statisticians to take a
second look at Python. Fortunately, this language is not
hard to learn, and younger generations are quite famil-
iar with it. A remedy from the R side may be either de-
veloping more user-friendly interfaces for the distributed-
memory environment, with help from those who are en-
gaged in computer engineering, or writing a good wrap-
per for the important Python libraries. A Python interface
to R may be a good starting point. For example, R pack-
age reticulate (Ushey, Allaire and Tang, 2021) is a
basis of other interfaces packages to PyTorch (rTorch,
Reyes, 2021) and TensorFlow (also called tensorflow,
RStudio, 2021).

By making use of multiple CPU nodes or a multi-GPU
workstation, the methods discussed in the current arti-
cle can be applied efficiently even when the dataset ex-
ceeds several tens of gigabytes. The advantages of engag-
ing multiple compute devices are two-fold. First, we can
take advantage of data parallelism with more computing
cores, accelerating the computation. Second, we can push
the limit of the size of the dataset to analyze. As cloud
providers now support virtual clusters better suited for
HPC, statisticians can deal with bigger problems utiliz-
ing such services, using up to several thousand cores eas-
ily. When the data do not fit into the GPU memory (e.g.,

the UK Biobank example), it is still possible to carry out
computation by moving partitions of the data in and out of
GPUs. However, this is impractical because of slow com-
munication between the main and GPU memories. On the
other hand, virtual clusters are scalable with this size of
data.

Loss of accuracy due to the default single precision
of GPU arithmetic, prominent in our proportional haz-
ards regression example, can be solved by purchasing
scientifically-oriented GPUs with better double precision
supports. Another option is migrating to the cloud: for
example, the P2 and P3 instances in AWS support sci-
entific GPUs. Nevertheless, desktop GPUs with double
precision arithmetic turned on could achieve more than
10-fold speedup over CPU, even though double precision
floating-point operations are 32 times slower than single
precision.

Most of the highly parallelizable algorithms considered
in Section 4 require no more than the first-order derivative
information, and this feature contributes to their low per-
iteration complexity and parallelizability. As mentioned
in Section 1, some second-order methods for sparse re-
gression (Li, Sun and Toh, 2018, Huang et al., 2018,
Huang et al., 2021) maintain the set of active variables
(of nonzero coefficients), and only these are involved in
the Newton–Raphson step. Thus if the solution is sparse,
the cost of solving the relevant linear system is mod-
erate. With distributed matrix computation exemplified
with distmat, residual and gradients can be computed
in a distributed fashion and the linear system can be
solved after gathering active variables into the master de-
vice.

A major weakness of the present approach is that its ef-
fectiveness can be degraded by the communication cost
between the nodes and devices. One way to avoid this is-
sue is by using high-speed interconnection between the

514 KO, ZHOU, ZHOU AND WON

nodes and devices. In multi-CPU clusters, this can be re-
alized by a high-speed interconnection technology such
as InfiniBand. Even when such an environment is not af-
fordable, we may still use relatively high-speed connec-
tion equipped with instances from a cloud. The network
bandwidth of 25Gbps supported for c5.18xlarge in-
stances of AWS was quite effective in our experiments.
Reducing the number of communication rounds and iter-
ations with theoretical guarantees, for example, by one-
shot averaging (Zhang, Duchi and Wainwright, 2013,
Duchi et al., 2014, Lee et al., 2017a), by using global
first-order information and local higher-order information
(Wang et al., 2017, Jordan, Lee and Yang, 2019, Fan, Guo
and Wang, 2019), or by quantization (Tang et al., 2019,
Liu et al., 2020), is an active area of current research.

Although PyTorch has been advocated throughout this
article, it is not the only path towards easy-to-use pro-
gramming models in shared- and distributed-memory pro-
gramming environments. A possible alternative is Julia
(Bezanson et al., 2017), in which data can reside in a wide
variety of environments, such as GPUs (Besard, Foket and
De Sutter, 2019) and multiple CPU nodes implementing
the distributed memory model (JuliaParallel Team, 2021,
Janssens, 2021). While its long-term support release of
version 1.0.5 in September 2019 is still fresh, Julia has the
potential to be a powerful tool for statistical HPC once the
platforms and user community mature.

ACKNOWLEDGMENTS

This article is partly based on the first author’s doctoral
dissertation (Ko, 2020).

FUNDING

This research was partially funded by the National Re-
search Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (2019R1A2C1007126, JHW;
2020R1A6A3A03037675, SK), the Collaboratory Fel-
lowship program of the UCLA Institute for Quantitative
& Computational Bioscience (SK), AWS Cloud Credit for
Research (SK and JHW), and grants from National Insti-
tutes of Health (R35GM141798, HZ; R01HG006139, HZ
and JJZ; K01DK106116, JJZ; R21HL150374, JJZ) and
National Science Foundation (DMS-2054253, HZ and
JJZ).

SUPPLEMENTARY MATERIAL

Supplement to “High-Performance Statistical Com-
puting in the Computing Environments of the 2020s”
(DOI: 10.1214/21-STS835SUPP; .pdf). Supplementary
information.

REFERENCES

ABADI, M., AGARWAL, A., BARHAM, P., BREVDO, E., CHEN, Z.,
CITRO, C., CORRADO, G. S., DAVIS, A., DEAN, J. et al. (2016).
TensorFlow: Large-scale machine learning on heterogeneous sys-
tems. Preprint. Available at arXiv:1603.04467. Software available
from: https://tensorflow.org.

ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R.,
KONWINSKI, A., LEE, G., PATTERSON, D., RABKIN, A. et al.
(2010). A view of cloud computing. Commun. ACM 53 50–58.

ATCHADÉ, Y. F., FORT, G. and MOULINES, E. (2017). On perturbed
proximal gradient algorithms. J. Mach. Learn. Res. 18 Paper No.
10, 33. MR3634877

BAHRAMPOUR, S., RAMAKRISHNAN, N., SCHOTT, L. and
SHAH, M. (2016). Comparative study of deep learning software
frameworks. Preprint. Available at arXiv:1511.06435.

BALLARD, G., DEMMEL, J., HOLTZ, O. and SCHWARTZ, O. (2011).
Minimizing communication in numerical linear algebra. SIAM J.
Matrix Anal. Appl. 32 866–901. MR2837583 https://doi.org/10.
1137/090769156

BAUER, B. and KOHLER, M. (2019). On deep learning as a rem-
edy for the curse of dimensionality in nonparametric regression.
Ann. Statist. 47 2261–2285. MR3953451 https://doi.org/10.1214/
18-AOS1747

BAYDIN, A. G., PEARLMUTTER, B. A., RADUL, A. A. and
SISKIND, J. M. (2017). Automatic differentiation in machine
learning: A survey. J. Mach. Learn. Res. 18 Paper No. 153, 43.
MR3800512

BECK, A. (2017). First-Order Methods in Optimization. MOS-SIAM
Series on Optimization 25. SIAM, Philadelphia, PA. MR3719240
https://doi.org/10.1137/1.9781611974997.ch1

BECK, A. and TEBOULLE, M. (2009). A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM J.
Imaging Sci. 2 183–202. MR2486527 https://doi.org/10.1137/
080716542

BESARD, T., FOKET, C. and DE SUTTER, B. (2019). Effective exten-
sible programming: Unleashing Julia on GPUs. IEEE Trans. Paral-
lel Distrib. Syst. 30 827–841.

BEZANSON, J., EDELMAN, A., KARPINSKI, S. and SHAH, V. B.
(2017). Julia: A fresh approach to numerical computing. SIAM Rev.
59 65–98. MR3605826 https://doi.org/10.1137/141000671

BLACKFORD, L. S. et al. (2002). An updated set of basic linear alge-
bra subprograms (BLAS). ACM Trans. Math. Software 28 135–151.
MR1928065 https://doi.org/10.1145/567806.567807

BOYD, S., PARIKH, N., CHU, E., PELEATO, B. and ECKSTEIN, J.
(2011). Distributed optimization and statistical learning via the al-
ternating direction method of multipliers. Found. Trends Mach.
Learn. 3 1–122.

BUCKNER, J., WILSON, J., SELIGMAN, M., ATHEY, B., WATSON, S.
and MENG, F. (2009). The gputools package enables GPU comput-
ing in R. Bioinformatics 26 134–135.

CHAMBOLLE, A. and POCK, T. (2011). A first-order primal-dual al-
gorithm for convex problems with applications to imaging. J. Math.
Imaging Vision 40 120–145. MR2782122 https://doi.org/10.1007/
s10851-010-0251-1

CHAMBOLLE, A., EHRHARDT, M. J., RICHTÁRIK, P. and SCHÖN-
LIEB, C.-B. (2018). Stochastic primal-dual hybrid gradient al-
gorithm with arbitrary sampling and imaging applications. SIAM
J. Optim. 28 2783–2808. MR3860126 https://doi.org/10.1137/
17M1134834

CHEN, Y., LAN, G. and OUYANG, Y. (2014). Optimal primal-dual
methods for a class of saddle point problems. SIAM J. Optim. 24
1779–1814. MR3272627 https://doi.org/10.1137/130919362

https://doi.org/10.1214/21-STS835SUPP
http://arxiv.org/abs/arXiv:1603.04467
https://tensorflow.org
http://www.ams.org/mathscinet-getitem?mr=3634877
http://arxiv.org/abs/arXiv:1511.06435
http://www.ams.org/mathscinet-getitem?mr=2837583
https://doi.org/10.1137/090769156
http://www.ams.org/mathscinet-getitem?mr=3953451
https://doi.org/10.1214/18-AOS1747
http://www.ams.org/mathscinet-getitem?mr=3800512
http://www.ams.org/mathscinet-getitem?mr=3719240
https://doi.org/10.1137/1.9781611974997.ch1
http://www.ams.org/mathscinet-getitem?mr=2486527
https://doi.org/10.1137/080716542
http://www.ams.org/mathscinet-getitem?mr=3605826
https://doi.org/10.1137/141000671
http://www.ams.org/mathscinet-getitem?mr=1928065
https://doi.org/10.1145/567806.567807
http://www.ams.org/mathscinet-getitem?mr=2782122
https://doi.org/10.1007/s10851-010-0251-1
http://www.ams.org/mathscinet-getitem?mr=3860126
https://doi.org/10.1137/17M1134834
http://www.ams.org/mathscinet-getitem?mr=3272627
https://doi.org/10.1137/130919362
https://doi.org/10.1137/090769156
https://doi.org/10.1214/18-AOS1747
https://doi.org/10.1137/080716542
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1137/17M1134834

HIGH-PERFORMANCE STATISTICAL COMPUTING 515

CHEN, T., LI, M., LI, Y., LIN, M., WANG, N., WANG, M., XIAO, T.,
XU, B., ZHANG et al. (2015). MXNet: A flexible and efficient
machine learning library for heterogeneous distributed systems.
Preprint. Available at arXiv:1512.01274.

CHI, E. C., ZHOU, H. and LANGE, K. (2014). Distance majorization
and its applications. Math. Program. 146 409–436. MR3232621
https://doi.org/10.1007/s10107-013-0697-1

CHU, D., ZHANG, C., SUN, S. and TAO, Q. (2020). Semismooth
Newton algorithm for efficient projections onto �1,∞-norm ball.
In ICML 2020. Proc. Mach. Learn. Res. 119 1974–1983.

CHURCH, D. M., SCHNEIDER, V. A., GRAVES, T., AUGER, K.,
CUNNINGHAM, F., BOUK, N., CHEN, H.-C., AGARWALA, R.,
MCLAREN, W. M. et al. (2011). Modernizing reference genome
assemblies. PLoS Biol. 9 e1001091.

COLLOBERT, R., KAVUKCUOGLU, K. and FARABET, C. (2011).
Torch7: A Matlab-like environment for machine learning. In
BigLearn, NeurIPS Workshop.

COMBETTES, P. L. (2018). Monotone operator theory in con-
vex optimization. Math. Program. 170 177–206. MR3816562
https://doi.org/10.1007/s10107-018-1303-3

COMBETTES, P. L. and PESQUET, J.-C. (2011). Proximal splitting
methods in signal processing. In Fixed-Point Algorithms for In-
verse Problems in Science and Engineering. Springer Optim. Appl.
49 185–212. Springer, New York. MR2858838 https://doi.org/10.
1007/978-1-4419-9569-8_10

CONDAT, L. (2013). A primal-dual splitting method for convex op-
timization involving Lipschitzian, proximable and linear com-
posite terms. J. Optim. Theory Appl. 158 460–479. MR3084386
https://doi.org/10.1007/s10957-012-0245-9

THE WELLCOME TRUST CASE CONTROL CONSORTIUM (2007).
Genome-wide association study of 14,000 cases of seven common
diseases and 3,000 shared controls. Nature 447 661–678.

COOK, A. L., CHEN, W., THURBER, A. E., SMIT, D. J.,
SMITH, A. G., BLADEN, T. G., BROWN, D. L., DUFFY, D. L.,
PASTORINO, L. et al. (2009). Analysis of cultured human
melanocytes based on polymorphisms within the SLC45A2/MATP,
SLC24A5/NCKX5, and OCA2/P loci. J. Invest. Dermatol. 129
392–405.

COX, D. R. (1972). Regression models and life-tables. J. Roy. Statist.
Soc. Ser. B 34 187–220. MR0341758

DEAN, J. and GHEMAWAT, S. (2008). MapReduce: Simplified data
processing on large clusters. Commun. ACM 51 107–113.

DEFAZIO, A., BACH, F. and LACOSTE-JULIEN, S. (2014). SAGA:
A fast incremental gradient method with support for non-strongly
convex composite objectives. In NeurIPS 2014. Adv. Neural In-
form. Process. Syst. 27 1646–1654.

DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maxi-
mum likelihood from incomplete data via the EM algorithm. J. Roy.
Statist. Soc. Ser. B 39 1–38. MR0501537

DONOHO, D. (2017). 50 years of data science. J. Comput.
Graph. Statist. 26 745–766. MR3765335 https://doi.org/10.1080/
10618600.2017.1384734

DUCHI, J. C., JORDAN, M. I., WAINWRIGHT, M. J. and ZHANG, Y.
(2014). Optimality guarantees for distributed statistical estimation.
Preprint. Available at arXiv:1405.0782.

DUPUIS, J., LANGENBERG, C., PROKOPENKO, I., SAXENA, R., SO-
RANZO, N., JACKSON, A. U., WHEELER, E., GLAZER, N. L.,
BOUATIA-NAJI, N. et al. (2010). New genetic loci implicated in
fasting glucose homeostasis and their impact on type 2 diabetes
risk. Nat. Genet. 42 105–116.

EDDELBUETTEL, D. (2021). Parallel computing with R: A brief re-
view. Wiley Interdiscip. Rev.: Comput. Stat. 13 Paper No. e1515,
13. MR4218942 https://doi.org/10.1002/wics.1515

EIJKHOUT, V. (2016). Introduction to High Performance Scientific
Computing, 2nd ed., Lulu.com.

ESSER, E., ZHANG, X. and CHAN, T. F. (2010). A general framework
for a class of first order primal-dual algorithms for convex opti-
mization in imaging science. SIAM J. Imaging Sci. 3 1015–1046.
MR2763706 https://doi.org/10.1137/09076934X

EVANGELINOS, C. and HILL, C. N. (2008). Cloud computing for
parallel scientific HPC applications: Feasibility of running coupled
atmosphere-ocean climate models on Amazon’s EC2. In CCA 2008
ACM, New York.

FAN, J., GUO, Y. and WANG, K. (2019). Communication-efficient
accurate statistical estimation. J. Am. Stat. Assoc. https://doi.org/10.
1080/01621459.2021.1969238

APACHE SOFTWARE FOUNDATION (2021). ‘Apache Hadoop’, https:
//hadoop.apache.org. Version 3.3.1. Accessed: 2021-07-03.

FOX, A. (2011). Cloud computing—What’s in it for me as a scientist?.
Science 331 406–407.

GABAY, D. and MERCIER, B. (1976). A dual algorithm for the solu-
tion of nonlinear variational problems via finite element approxi-
mation. Comput. Math. Appl. 2 17–40.

GABRIEL, E., FAGG, G. E., BOSILCA, G., ANGSKUN, T., DON-
GARRA, J. J., SQUYRES, J. M., SAHAY, V., KAMBADUR, P.,
BARRETT, B. et al. (2004). Open MPI: Goals, concept, and de-
sign of a next generation MPI implementation. In ‘Proceedings of
the 11th European PVM/MPI Users’ Group Meeting’ 97–104, Bu-
dapest, Hungary.

GENTZSCH, W. (2001). Sun Grid Engine: Towards creating a com-
pute power grid. In CCGRID 2001 35–36. IEEE Comput. Soc., Los
Alamitos, CA.

GITTENS, A., DEVARAKONDA, A., RACAH, E., RINGENBURG, M.,
GERHARDT, L., KOTTALAM, J., LIU, J., MASCHHOFF, K.,
CANON, S. et al. (2016). Matrix factorizations at scale: A compar-
ison of scientific data analytics in Spark and C + MPI using three
case studies. In 2016 IEEE BigData 204–213. IEEE, New York.

GOLUB, G. H. and VAN LOAN, C. F. (2013). Matrix Computations,
4th ed. Johns Hopkins Studies in the Mathematical Sciences. Johns
Hopkins Univ. Press, Baltimore, MD. MR3024913

GOWER, R. M., LOIZOU, N., QIAN, X., SAILANBAYEV, A.,
SHULGIN, E. and RICHTÁRIK, P. (2019). SGD: General analy-
sis and improved rates. In ICML 2019. Proc. Mach. Learn. Res. 97
5200–5209.

GRIEWANK, A. and WALTHER, A. (2008). Evaluating Derivatives:
Principles and Techniques of Algorithmic Differentiation, 2nd ed.
SIAM, Philadelphia, PA. MR2454953 https://doi.org/10.1137/1.
9780898717761

GU, Y., FAN, J., KONG, L., MA, S. and ZOU, H. (2018). ADMM for
high-dimensional sparse penalized quantile regression. Technomet-
rics 60 319–331. MR3847169 https://doi.org/10.1080/00401706.
2017.1345703

HAGER, G. and WELLEIN, G. (2010). Introduction to High Perfor-
mance Computing for Scientists and Engineers. CRC Press, Boca
Raton, FL.

HASTIE, T. J. and TIBSHIRANI, R. J. (1990). Generalized Addi-
tive Models. Monographs on Statistics and Applied Probability 43.
CRC Press, London. MR1082147

HUANG, D. W., SHERMAN, B. T. and LEMPICKI, R. A. (2009a).
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res. 37 1–13.

HUANG, D. W., SHERMAN, B. T. and LEMPICKI, R. A. (2009b).
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat. Protoc. 4 44–57.

HUANG, J., JIAO, Y., LIU, Y. and LU, X. (2018). A constructive ap-
proach to L0 penalized regression. J. Mach. Learn. Res. 19 Paper
No. 10, 37. MR3862417

http://arxiv.org/abs/arXiv:1512.01274
http://www.ams.org/mathscinet-getitem?mr=3232621
https://doi.org/10.1007/s10107-013-0697-1
http://www.ams.org/mathscinet-getitem?mr=3816562
https://doi.org/10.1007/s10107-018-1303-3
http://www.ams.org/mathscinet-getitem?mr=2858838
https://doi.org/10.1007/978-1-4419-9569-8_10
http://www.ams.org/mathscinet-getitem?mr=3084386
https://doi.org/10.1007/s10957-012-0245-9
http://www.ams.org/mathscinet-getitem?mr=0341758
http://www.ams.org/mathscinet-getitem?mr=0501537
http://www.ams.org/mathscinet-getitem?mr=3765335
https://doi.org/10.1080/10618600.2017.1384734
http://arxiv.org/abs/arXiv:1405.0782
http://www.ams.org/mathscinet-getitem?mr=4218942
https://doi.org/10.1002/wics.1515
http://Lulu.com
http://www.ams.org/mathscinet-getitem?mr=2763706
https://doi.org/10.1137/09076934X
https://doi.org/10.1080/01621459.2021.1969238
https://hadoop.apache.org
http://www.ams.org/mathscinet-getitem?mr=3024913
http://www.ams.org/mathscinet-getitem?mr=2454953
https://doi.org/10.1137/1.9780898717761
http://www.ams.org/mathscinet-getitem?mr=3847169
https://doi.org/10.1080/00401706.2017.1345703
http://www.ams.org/mathscinet-getitem?mr=1082147
http://www.ams.org/mathscinet-getitem?mr=3862417
https://doi.org/10.1007/978-1-4419-9569-8_10
https://doi.org/10.1080/10618600.2017.1384734
https://doi.org/10.1080/01621459.2021.1969238
https://hadoop.apache.org
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1080/00401706.2017.1345703

516 KO, ZHOU, ZHOU AND WON

HUANG, J., JIAO, Y., JIN, B., LIU, J., LU, X. and YANG, C. (2021).
A unified primal dual active set algorithm for nonconvex sparse
recovery. Statist. Sci. 36 215–238. MR4255190 https://doi.org/10.
1214/19-sts758

HUNTER, D. R. and LANGE, K. (2004). A tutorial on MM algo-
rithms. Amer. Statist. 58 30–37. MR2055509 https://doi.org/10.
1198/0003130042836

HUNTER, D. R. and LI, R. (2005). Variable selection using MM algo-
rithms. Ann. Statist. 33 1617–1642. MR2166557 https://doi.org/10.
1214/009053605000000200

IMAIZUMI, M. and FUKUMIZU, K. (2019). Deep neural networks
learn non-smooth functions effectively. In AISTATS 2019. Proc.
Mach. Learn. Res. 89 869–878.

INCUBATOR, F. (2021). Gloo: Collective communications library with
various primitives for multi-machine training. https://github.com/
facebookincubator/gloo. Accessed: 2021-07-03.

JANSSENS, B. (2021). MPIArrays.jl: Distributed arrays based on MPI
one-sided communication. https://github.com/barche/MPIArrays.
jl. Accessed: 2021-07-03.

JHA, S., QIU, J., LUCKOW, A., MANTHA, P. and FOX, G. C. (2014).
A tale of two data-intensive paradigms: Applications, abstractions,
and architectures. In 2014 IEEE BigData 645–652. IEEE, New
York.

JIA, Y., SHELHAMER, E., DONAHUE, J., KARAYEV, S., LONG, J.,
GIRSHICK, R., GUADARRAMA, S. and DARRELL, T. (2014).
Caffe: Convolutional architecture for fast feature embedding. In
MM 2014 675–678. ACM, New York.

JOHNSON, R. and ZHANG, T. (2013). Accelerating stochastic gradient
descent using predictive variance reduction. In NeurIPS 2013. Adv.
Neural Inform. Process. Syst. 26 315–323.

JORDAN, M. I., LEE, J. D. and YANG, Y. (2019). Communication-
efficient distributed statistical inference. J. Amer. Statist. As-
soc. 114 668–681. MR3963171 https://doi.org/10.1080/01621459.
2018.1429274

KEYS, K. L., ZHOU, H. and LANGE, K. (2019). Proximal distance
algorithms: Theory and practice. J. Mach. Learn. Res. 20 Paper No.
66, 38. MR3960920

KIRK, D. (2007). NVIDIA CUDA software and GPU parallel comput-
ing architecture. In ISMM 7 103–104.

KLÖCKNER, A., PINTO, N., LEE, Y., CATANZARO, B., IVANOV, P.
and FASIH, A. (2012). PyCUDA and PyOpenCL: A scripting-
based approach to GPU run-time code generation. Parallel Comput.
38 157–174.

KO, S. (2020). Easily parallelizable statistical computing methods and
their applications in modern high-performance computing environ-
ments. Ph.D. thesis, Seoul National Univ.

KO, S. and WON, J.-H. (2019). Optimal minimization of the sum of
three convex functions with a linear operator. In AISTATS 2019.
Proc. Mach. Learn. Res. 89 1185–1194.

KO, S., YU, D. and WON, J.-H. (2019). Easily parallelizable and dis-
tributable class of algorithms for structured sparsity, with optimal
acceleration. J. Comput. Graph. Statist. 28 821–833. MR4045851
https://doi.org/10.1080/10618600.2019.1592757

KO S., ZHOU H., ZHOU J. J. and WON J.-H. (2022). Supplement to
“High-Performance Statistical Computing in the Computing Envi-
ronments of the 2020s.” https://doi.org/10.1214/21-STS835SUPP

KOANANTAKOOL, P., AZAD, A., BULUÇ, A., MOROZOV, D.,
OH, S.-Y., OLIKER, L. and YELICK, L. (2016). Communication-
avoiding parallel sparse-dense matrix-matrix multiplication. In
2016 IEEE IPDPS 842–853. IEEE, New York.

KOANANTAKOOL, P., ALI, A., AZAD, A., BULUC, A., MORO-
ZOV, D., OLIKER, L., YELICK, K. and OH, S.-Y. (2018).
Communication-avoiding optimization methods for distributed
massive-scale sparse inverse covariance estimation. In AISTATS
2018. Proc. Mach. Learn. Res. 84 1376–1386.

KUMMER, B. (1988). Newton’s method for non-differentiable func-
tions. In Advances in Mathematical Optimization (Guddat, J.,
Bank, B., Hollatz, H., Kall, P., Klatte, D., Kummer, B., Lom-
matzsch, K., Tammer, K., Vlach, M. et al., eds.). Mathematical Re-
search 45 114–125. Akademie-Verlag, Berlin. MR0953317

LAI, T. L. and YUAN, H. (2021). Stochastic approximation: From
statistical origin to big-data, multidisciplinary applications. Statist.
Sci. 36 291–302. MR4255195 https://doi.org/10.1214/20-sts784

LAM, S. K., PITROU, A. and SEIBERT, S. (2015). Numba: A LLVM-
based Python JIT compiler. In LLVM 2015 7, ACM, New York,
1–6.

LANGE, K. (2016). MM Optimization Algorithms. SIAM, Philadel-
phia, PA. MR3522165 https://doi.org/10.1137/1.9781611974409.
ch1

LANGE, K., HUNTER, D. R. and YANG, I. (2000). Optimization
transfer using surrogate objective functions. J. Comput. Graph.
Statist. 9 1–59. MR1819865 https://doi.org/10.2307/1390605

LECUN, Y., BENGIO, Y. and HINTON, G. (2015). Deep learning. Na-
ture 521 436–444.

LEE, D. D. and SEUNG, H. S. (1999). Learning the parts of objects
by non-negative matrix factorization. Nature 401 788–791.

LEE, D. D. and SEUNG, H. S. (2001). Algorithms for non-negative
matrix factorization. In NeurIPS 2001. Adv. Neural Inform. Pro-
cess. Syst. 14 556–562.

LEE, J. D., LIU, Q., SUN, Y. and TAYLOR, J. E. (2017a).
Communication-efficient sparse regression. J. Mach. Learn. Res.
18 Paper No. 5, 30. MR3625709

LEE, T., WON, J.-H., LIM, J. and YOON, S. (2017b). Large-
scale structured sparsity via parallel fused lasso on multiple
GPUs. J. Comput. Graph. Statist. 26 851–864. MR3765349
https://doi.org/10.1080/10618600.2017.1328363

LI, X., SUN, D. and TOH, K.-C. (2018). A highly efficient
semismooth Newton augmented Lagrangian method for solv-
ing lasso problems. SIAM J. Optim. 28 433–458. MR3763098
https://doi.org/10.1137/16M1097572

LIM, H., DEWARAJA, Y. K. and FESSLER, J. A. (2018). A PET
reconstruction formulation that enforces non-negativity in projec-
tion space for bias reduction in Y-90 imaging. Phys. Med. Biol. 63
035042.

LIN, C.-J. (2007). Projected gradient methods for nonnegative ma-
trix factorization. Neural Comput. 19 2756–2779. MR2348161
https://doi.org/10.1162/neco.2007.19.10.2756

LIU, X., LI, Y., TANG, J. and YAN, M. (2020). A double residual
compression algorithm for efficient distributed learning. In AIS-
TATS 2020. Proc. Mach. Learn. Res. 108 133–143.

MAHAJAN, A., TALIUN, D., THURNER, M., ROBERTSON, N. R.,
TORRES, J. M., RAYNER, N. W., PAYNE, A. J., STEINTHORS-
DOTTIR, V., SCOTT, R. A. et al. (2018). Fine-mapping type 2 dia-
betes loci to single-variant resolution using high-density imputation
and islet-specific epigenome maps. Nat. Genet. 50 1505–1513.

MCLAREN, W., GIL, L., HUNT, S. E., RIAT, H. S., RITCHIE, G. R.,
THORMANN, A., FLICEK, P. and CUNNINGHAM, F. (2016). The
Ensembl variant effect predictor. Genome Biol. 17 122.

MITTAL, S., MADIGAN, D., BURD, R. S. and SUCHARD, M. A.
(2014). High-dimensional, massive sample-size Cox proportional
hazards regression for survival analysis. Biostatistics 15 207–221.

MUNSHI, A. (2009). The OpenCL specification. In 2009 IEEE HCS
1–314. IEEE, New York.

NAKANO, J. (2012). Parallel computing techniques. In Handbook of
Computational Statistics—Concepts and Methods. 1, 2. Springer
Handb. Comput. Stat. 243–271. Springer, Heidelberg. MR2985401
https://doi.org/10.1007/978-3-642-21551-3_9

NEGAHBAN, S. N., RAVIKUMAR, P., WAINWRIGHT, M. J. and
YU, B. (2012). A unified framework for high-dimensional anal-
ysis of M-estimators with decomposable regularizers. Statist. Sci.
27 538–557. MR3025133 https://doi.org/10.1214/12-STS400

http://www.ams.org/mathscinet-getitem?mr=4255190
https://doi.org/10.1214/19-sts758
http://www.ams.org/mathscinet-getitem?mr=2055509
https://doi.org/10.1198/0003130042836
http://www.ams.org/mathscinet-getitem?mr=2166557
https://doi.org/10.1214/009053605000000200
https://github.com/facebookincubator/gloo
https://github.com/barche/MPIArrays.jl
https://github.com/barche/MPIArrays.jl
http://www.ams.org/mathscinet-getitem?mr=3963171
https://doi.org/10.1080/01621459.2018.1429274
http://www.ams.org/mathscinet-getitem?mr=3960920
http://www.ams.org/mathscinet-getitem?mr=4045851
https://doi.org/10.1080/10618600.2019.1592757
https://doi.org/10.1214/21-STS835SUPP
http://www.ams.org/mathscinet-getitem?mr=0953317
http://www.ams.org/mathscinet-getitem?mr=4255195
https://doi.org/10.1214/20-sts784
http://www.ams.org/mathscinet-getitem?mr=3522165
https://doi.org/10.1137/1.9781611974409.ch1
http://www.ams.org/mathscinet-getitem?mr=1819865
https://doi.org/10.2307/1390605
http://www.ams.org/mathscinet-getitem?mr=3625709
http://www.ams.org/mathscinet-getitem?mr=3765349
https://doi.org/10.1080/10618600.2017.1328363
http://www.ams.org/mathscinet-getitem?mr=3763098
https://doi.org/10.1137/16M1097572
http://www.ams.org/mathscinet-getitem?mr=2348161
https://doi.org/10.1162/neco.2007.19.10.2756
http://www.ams.org/mathscinet-getitem?mr=2985401
https://doi.org/10.1007/978-3-642-21551-3_9
http://www.ams.org/mathscinet-getitem?mr=3025133
https://doi.org/10.1214/12-STS400
https://doi.org/10.1214/19-sts758
https://doi.org/10.1198/0003130042836
https://doi.org/10.1214/009053605000000200
https://github.com/facebookincubator/gloo
https://doi.org/10.1080/01621459.2018.1429274
https://doi.org/10.1137/1.9781611974409.ch1

HIGH-PERFORMANCE STATISTICAL COMPUTING 517

NERSC (2021). Distributed TensorFlow. https://docs.nersc.gov/
machinelearning/tensorflow/#distributed-tensorflow. Accessed:
2021-07-03.

NG, M. C., SHRINER, D., CHEN, B. H., LI, J., CHEN, W.-M.,
GUO, X., LIU, J., BIELINSKI, S. J., YANEK, L. R. et al. (2014).
Meta-analysis of genome-wide association studies in African
Americans provides insights into the genetic architecture of type
2 diabetes. PLoS Genet. 10 e1004517.

NITANDA, A. (2014). Stochastic proximal gradient descent with accel-
eration techniques. In NeurIPS 2014. Adv. Neural Inform. Process.
Syst. 27 1574–1582.

NVIDIA (2021a). Basic linear algebra subroutines (cuBLAS) library.
http://docs.nvidia.com/cuda/cublas. Accessed: 2021-07-03.

NVIDIA (2021b). Sparse matrix library (cuSPARSE). http://docs.
nvidia.com/cuda/cusparse. Accessed: 2021-07-03.

O’HARA, R. B. and SILLANPÄÄ, M. J. (2009). A review of Bayesian
variable selection methods: What, how and which. Bayesian Anal.
4 85–117. MR2486240 https://doi.org/10.1214/09-BA403

OHN, I. and KIM, Y. (2019). Smooth function approximation by deep
neural networks with general activation functions. Entropy 21 Paper
No. 627, 21. MR3988437 https://doi.org/10.3390/e21070627

OWENS, J. D., LUEBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRÜGER, J., LEFOHN, A. E. and PURCELL, T. J. (2007). A sur-
vey of general-purpose computation on graphics hardware. In Com-
puter Graphics Forum 26 80–113. Wiley, New York.

PARIKH, N. and BOYD, S. (2014). Proximal algorithms. Found.
Trends Optim. 1 127–239.

PASZKE, A., GROSS, S., MASSA, F., LERER, A., BRADBURY, J.,
CHANAN, G., KILLEEN, T., LIN, Z., GIMELSHEIN, N. et al.
(2019). PyTorch: An imperative style, high-performance deep
learning library. In NeurIPS 2019. Adv. Neural Inform. Process.
Syst. 32 8026–8037.

POLSON, N. G., SCOTT, J. G. and WILLARD, B. T. (2015). Proximal
algorithms in statistics and machine learning. Statist. Sci. 30 559–
581. MR3432841 https://doi.org/10.1214/15-STS530

QI, L. Q. and SUN, J. (1993). A nonsmooth version of
Newton’s method. Math. Program. 58 353–367. MR1216791
https://doi.org/10.1007/BF01581275

QIAN, X., QU, Z. and RICHTÁRIK, P. (2019). SAGA with arbitrary
sampling. In ICML 2019. Proc. Mach. Learn. Res. 97 5190–5199.

RAINA, R., MADHAVAN, A. and NG, A. Y. (2009). Large-scale deep
unsupervised learning using graphics processors. In ICML 2009
873–880. ACM, New York.

RAMDAS, A. and TIBSHIRANI, R. J. (2016). Fast and flexible ADMM
algorithms for trend filtering. J. Comput. Graph. Statist. 25 839–
858. MR3533641 https://doi.org/10.1080/10618600.2015.1054033

HYPERION RESEARCH (2019). HPC market update from ISC 2019,
Technical report, Hyperion Research.

REYES, A. R. (2021). rTorch. https://f0nzie.github.io/rTorch/. Ac-
cessed: 2021-07-03.

REYES-ORTIZ, J. L., ONETO, L. and ANGUITA, D. (2015). Big data
analytics in the cloud: Spark on Hadoop vs MPI/OpenMP on Be-
owulf. In INNS Conference on Big Data 8 121.

RICHTÁRIK, P. and TAKÁČ, M. (2016a). On optimal probabilities in
stochastic coordinate descent methods. Optim. Lett. 10 1233–1243.
MR3529843 https://doi.org/10.1007/s11590-015-0916-1

RICHTÁRIK, P. and TAKÁČ, M. (2016b). Parallel coordinate descent
methods for big data optimization. Math. Program. 156 433–484.
MR3459207 https://doi.org/10.1007/s10107-015-0901-6

ROBBINS, H. and MONRO, S. (1951). A stochastic approxi-
mation method. Ann. Math. Stat. 22 400–407. MR0042668
https://doi.org/10.1214/aoms/1177729586

ROLAND, CH., VARADHAN, R. and FRANGAKIS, C. E. (2007).
Squared polynomial extrapolation methods with cycling: An ap-
plication to the positron emission tomography problem. Nu-
mer. Algorithms 44 159–172. MR2334694 https://doi.org/10.1007/
s11075-007-9094-2

ROSASCO, L., VILLA, S. and VŨ, B. C. (2020). Conver-
gence of stochastic proximal gradient algorithm. Appl. Math.
Optim. 82 891–917. MR4167686 https://doi.org/10.1007/
s00245-019-09617-7

RSTUDIO (2021). ‘R interface to TensorFlow’, https://tensorflow.
rstudio.com/. Version 2.5.0. Accessed: 2021-07-03.

RUDIN, L. I., OSHER, S. and FATEMI, E. (1992). Nonlinear total
variation based noise removal algorithms. Phys. D 60 259–268.
MR3363401 https://doi.org/10.1016/0167-2789(92)90242-F

RUMELHART, D. E., HINTON, G. E. and WILLIAMS, R. J. (1986).
Learning representations by back-propagating errors. Nature 323
533–536.

RYU, E. K., KO, S. and WON, J.-H. (2020). Splitting with
near-circulant linear systems: Applications to total variation CT
and PET. SIAM J. Sci. Comput. 42 B185–B206. MR4059383
https://doi.org/10.1137/18M1224003

SCHMIDT-HIEBER, J. (2020). Nonparametric regression using deep
neural networks with ReLU activation function. Ann. Statist. 48
1875–1897. MR4134774 https://doi.org/10.1214/19-AOS1875

SCOTT, L. J., MOHLKE, K. L., BONNYCASTLE, L. L.,
WILLER, C. J., LI, Y., DUREN, W. L., ERDOS, M. R.,
STRINGHAM, H. M., CHINES, P. S. et al. (2007). A genome-wide
association study of type 2 diabetes in finns detects multiple
susceptibility variants. Science 316 1341–1345.

SEIDE, F. and AGARWAL, A. (2016). CNTK: Microsoft’s open-source
deep-learning toolkit. In SIGKDD 2016 2135–2135. ACM, New
York.

SERGEEV, A. and DEL BALSO, M. (2018). Horovod: Fast and
easy distributed deep learning in tensorflow. Preprint. Available at
arXiv:1802.05799.

SERVICES, A. W. (2021). AWS ParallelCluster. https://aws.amazon.
com/ko/hpc/parallelcluster/. Version 2.11.0. Accessed: 2021-07-
03.

STAPLES, G. (2006). Torque resource manager. In SC 2006 8. ACM,
New York.

SUCHARD, M. A., WANG, Q., CHAN, C., FRELINGER, J., CRON, A.
and WEST, M. (2010). Understanding GPU programming for
statistical computation: Studies in massively parallel massive
mixtures. J. Comput. Graph. Statist. 19 419–438. MR2758309
https://doi.org/10.1198/jcgs.2010.10016

SUCHARD, M. A., SIMPSON, S. E., ZORYCH, I., RYAN, P. and
MADIGAN, D. (2013). Massive parallelization of serial infer-
ence algorithms for a complex generalized linear model. ACM
Trans. Model. Comput. Simul. 23 Art. 10, 17. MR3034220
https://doi.org/10.1145/2414416.2414791

SUDLOW, C., GALLACHER, J., ALLEN, N., BERAL, V., BURTON, P.,
DANESH, J., DOWNEY, P., ELLIOTT, P., GREEN, J. et al. (2015).
UK Biobank: An open access resource for identifying the causes
of a wide range of complex diseases of middle and old age. PLoS
Med. 12 e1001779.

SUZUKI, T. (2019). Adaptivity of deep ReLU network for learning in
Besov and mixed smooth Besov spaces: Optimal rate and curse of
dimensionality. In ICLR 2019.

TANG, H., YU, C., LIAN, X., ZHANG, T. and LIU, J. (2019).
DoubleSqueeze: Parallel stochastic gradient descent with
double-pass error-compensated compression. In ICML 2019. Proc.
Mach. Learn. Res. 97 6155–6165.

THEANO DEVELOPMENT TEAM (2016). Theano: A Python frame-
work for fast computation of mathematical expressions. Preprint.
Available at arXiv:1605.02688.

https://docs.nersc.gov/machinelearning/tensorflow/#distributed-tensorflow
http://docs.nvidia.com/cuda/cublas
http://docs.nvidia.com/cuda/cusparse
http://www.ams.org/mathscinet-getitem?mr=2486240
https://doi.org/10.1214/09-BA403
http://www.ams.org/mathscinet-getitem?mr=3988437
https://doi.org/10.3390/e21070627
http://www.ams.org/mathscinet-getitem?mr=3432841
https://doi.org/10.1214/15-STS530
http://www.ams.org/mathscinet-getitem?mr=1216791
https://doi.org/10.1007/BF01581275
http://www.ams.org/mathscinet-getitem?mr=3533641
https://doi.org/10.1080/10618600.2015.1054033
https://f0nzie.github.io/rTorch/
http://www.ams.org/mathscinet-getitem?mr=3529843
https://doi.org/10.1007/s11590-015-0916-1
http://www.ams.org/mathscinet-getitem?mr=3459207
https://doi.org/10.1007/s10107-015-0901-6
http://www.ams.org/mathscinet-getitem?mr=0042668
https://doi.org/10.1214/aoms/1177729586
http://www.ams.org/mathscinet-getitem?mr=2334694
https://doi.org/10.1007/s11075-007-9094-2
http://www.ams.org/mathscinet-getitem?mr=4167686
https://doi.org/10.1007/s00245-019-09617-7
https://tensorflow.rstudio.com/
http://www.ams.org/mathscinet-getitem?mr=3363401
https://doi.org/10.1016/0167-2789(92)90242-F
http://www.ams.org/mathscinet-getitem?mr=4059383
https://doi.org/10.1137/18M1224003
http://www.ams.org/mathscinet-getitem?mr=4134774
https://doi.org/10.1214/19-AOS1875
http://arxiv.org/abs/arXiv:1802.05799
https://aws.amazon.com/ko/hpc/parallelcluster/
http://www.ams.org/mathscinet-getitem?mr=2758309
https://doi.org/10.1198/jcgs.2010.10016
http://www.ams.org/mathscinet-getitem?mr=3034220
https://doi.org/10.1145/2414416.2414791
http://arxiv.org/abs/arXiv:1605.02688
https://docs.nersc.gov/machinelearning/tensorflow/#distributed-tensorflow
http://docs.nvidia.com/cuda/cusparse
https://doi.org/10.1007/s11075-007-9094-2
https://doi.org/10.1007/s00245-019-09617-7
https://tensorflow.rstudio.com/
https://aws.amazon.com/ko/hpc/parallelcluster/

518 KO, ZHOU, ZHOU AND WON

JULIAPARALLEL TEAM (2021). DistributedArrays.jl: Distributed ar-
rays in Julia. https://github.com/JuliaParallel/DistributedArrays.jl.
Accessed: 2021-07-03.

R CORE TEAM (2021). R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing, Vienna,
Austria.

TIBSHIRANI, R. (1996). Regression shrinkage and selection via the
lasso. J. Roy. Statist. Soc. Ser. B 58 267–288. MR1379242

TIBSHIRANI, R. J. and TAYLOR, J. (2011). The solution path of
the generalized lasso. Ann. Statist. 39 1335–1371. MR2850205
https://doi.org/10.1214/11-AOS878

TIELEMAN, T. (2010). Gnumpy: An easy way to use GPU boards
in Python Technical Report UTML TR 2010–002, Department of
Computer Science, Univ. Toronto.

TSENG, P. and YUN, S. (2009). A coordinate gradient descent method
for nonsmooth separable minimization. Math. Program. 117 387–
423. MR2421312 https://doi.org/10.1007/s10107-007-0170-0

. UNIVERSITY OF ZURICH (2021). ElastiCluster. https://elasticluster.
readthedocs.io/en/latest/. Accessed: 2021-07-03.

USHEY, K., ALLAIRE, J. and TANG, Y. (2021). reticulate: Interface
to ‘Python’. https://cran.r-project.org/package=reticulate. Version
1.20. Accessed: 2021-07-03.

VAN ROSSUM, G. (1995). Python tutorial Technical Report CS-
R9526, Centrum voor Wiskunde en Informatica (CWI), Amster-
dam.

VAN DE GEIJN, R. A. and WATTS, J. (1997). SUMMA: Scalable
universal matrix multiplication algorithm. Concurrency: Practice
and Experience 9 255–274.

VOIGHT, B. F., SCOTT, L. J., STEINTHORSDOTTIR, V., MOR-
RIS, A. P., DINA, C., WELCH, R. P., ZEGGINI, E., HUTH, C.,
AULCHENKO, Y. S. et al. (2010). Twelve type 2 diabetes suscep-
tibility loci identified through large-scale association analysis. Nat.
Genet. 42 579.

VŨ, B. C. (2013). A splitting algorithm for dual monotone inclusions
involving cocoercive operators. Adv. Comput. Math. 38 667–681.
MR3037034 https://doi.org/10.1007/s10444-011-9254-8

WALKER, E. (2008). Benchmarking Amazon EC2 for hig-
performance scientific computing. Login:: The Magazine of
USENIX & SAGE 33 18–23.

WANG, E., ZHANG, Q., SHEN, B., ZHANG, G., LU, X., WU, Q. and
WANG, Y. (2014). Intel Math Kernel library. In High-Performance
Computing on the Intel® Xeon Phi™ 167–188. Springer, Berlin.

WANG, J., KOLAR, M., SREBRO, N. and ZHANG, T. (2017). Effi-
cient distributed learning with sparsity. In ICML 2017. Proc. Mach.
Learn. Res. 70 3636–3645.

WON, J.-H. (2020). Proximity operator of the matrix perspective func-
tion and its applications. In NeurIPS 2020. Adv. Neural Inform.
Process. Syst. 33.

WRIGHT, S. J. (2015). Coordinate descent algorithms. Math.
Program. 151 3–34. MR3347548 https://doi.org/10.1007/
s10107-015-0892-3

WU, T. T. and LANGE, K. (2010). The MM alternative to EM. Statist.
Sci. 25 492–505. MR2807766 https://doi.org/10.1214/08-STS264

XIAO, L. and ZHANG, T. (2014). A proximal stochastic gradient
method with progressive variance reduction. SIAM J. Optim. 24
2057–2075. MR3285905 https://doi.org/10.1137/140961791

XUE, L., MA, S. and ZOU, H. (2012). Positive-definite �1-penalized
estimation of large covariance matrices. J. Amer. Statist. Assoc. 107
1480–1491. MR3036409 https://doi.org/10.1080/01621459.2012.
725386

YOO, A. B., JETTE, M. A. and GRONDONA, M. (2003). Slurm: Sim-
ple Linux utility for resource management. In JSSPP 2003 44–60.
Springer, Berlin.

YU, D., WON, J.-H., LEE, T., LIM, J. and YOON, S. (2015).
High-dimensional fused lasso regression using majorization-
minimization and parallel processing. J. Comput. Graph. Statist.
24 121–153. MR3328251 https://doi.org/10.1080/10618600.2013.
878662

ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J., SHENKER, S.,
STOICA, I. et al. (2010). Spark: Cluster computing with working
sets. HotCloud 10 95.

ZHANG, Y., DUCHI, J. C. and WAINWRIGHT, M. J. (2013).
Communication-efficient algorithms for statistical optimization.
J. Mach. Learn. Res. 14 3321–3363. MR3144464

ZHANG, X., WANG, Q. and CHOTHIA, Z. (2021). OpenBLAS:
An optimized BLAS library. https://www.openblas.net/. Accessed:
2021-07-03.

ZHOU, H., LANGE, K. and SUCHARD, M. A. (2010). Graphics pro-
cessing units and high-dimensional optimization. Statist. Sci. 25
311–324. MR2791670 https://doi.org/10.1214/10-STS336

ZHU, Y. (2017). An augmented ADMM algorithm with application to
the generalized lasso problem. J. Comput. Graph. Statist. 26 195–
204. MR3610420 https://doi.org/10.1080/10618600.2015.1114491

ZHU, M. and CHAN, T. (2008). An efficient primal-dual hybrid gradi-
ent algorithm for total variation image restoration Technical Report
08-34, UCLA CAM.

https://github.com/JuliaParallel/DistributedArrays.jl
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=2850205
https://doi.org/10.1214/11-AOS878
http://www.ams.org/mathscinet-getitem?mr=2421312
https://doi.org/10.1007/s10107-007-0170-0
https://elasticluster.readthedocs.io/en/latest/
https://cran.r-project.org/package=reticulate
http://www.ams.org/mathscinet-getitem?mr=3037034
https://doi.org/10.1007/s10444-011-9254-8
http://www.ams.org/mathscinet-getitem?mr=3347548
https://doi.org/10.1007/s10107-015-0892-3
http://www.ams.org/mathscinet-getitem?mr=2807766
https://doi.org/10.1214/08-STS264
http://www.ams.org/mathscinet-getitem?mr=3285905
https://doi.org/10.1137/140961791
http://www.ams.org/mathscinet-getitem?mr=3036409
https://doi.org/10.1080/01621459.2012.725386
http://www.ams.org/mathscinet-getitem?mr=3328251
https://doi.org/10.1080/10618600.2013.878662
http://www.ams.org/mathscinet-getitem?mr=3144464
https://www.openblas.net/
http://www.ams.org/mathscinet-getitem?mr=2791670
https://doi.org/10.1214/10-STS336
http://www.ams.org/mathscinet-getitem?mr=3610420
https://doi.org/10.1080/10618600.2015.1114491
https://elasticluster.readthedocs.io/en/latest/
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1080/01621459.2012.725386
https://doi.org/10.1080/10618600.2013.878662

	Introduction
	Accessible High-Performance Computing Systems
	Preliminaries
	Data parallelism
	Memory models
	Parallel programming models
	Parallel architectures

	Multiple CPU Nodes: Clusters, Supercomputers, and Clouds
	Multi-GPU Node

	Easy-to-Use Software Libraries for HPC
	Deep Learning Libraries and HPC
	Automatic Differentiation
	Case Study: PyTorch Versus TensorFlow

	Highly Parallelizable Algorithms
	MM Algorithms
	Proximal Gradient Method
	Primal-Dual Methods
	Parallel Coordinate Descent and Stochastic Approximation

	Distributed Matrix Data Structure for PyTorch
	Examples
	Setup
	Scaling up Examples in Zhou, Lange and Suchard (2010)
	Nonnegative matrix factorization
	Positron emission tomography
	Multi-dimensional scaling

	l1-Regularized Cox Proportional Hazards Regression
	Genome-Wide Survival Analysis of the UK Biobank Dataset

	Discussion
	Acknowledgments
	Funding
	Supplementary Material
	References

