
Nonconvex Optimization via MM Algorithms: Convergence Theory

Nonconvex Optimization via MM Algorithms:
Convergence Theory
By Kenneth Lange1, Joong-Ho Won2, Alfonso Landeros1, and Hua Zhou1

Keywords: MM algorithm, global convergence, convergence rate, Lojasiewicz’s inequality, non-smooth
analysis

Abstract: The majorization–minimization (MM) principle is an extremely general frame-
work for deriving optimization algorithms. It includes the expectation–maximization (EM)
algorithm, proximal gradient algorithm, concave–convex procedure, quadratic lower
bound algorithm, and proximal distance algorithm as special cases. Besides numerous
applications in statistics, optimization, and imaging, the MM principle finds wide applica-
tions in large-scale machine learning problems such as matrix completion, discriminant
analysis, and nonnegative matrix factorizations. When applied to nonconvex optimization
problems, MM algorithms enjoy the advantages of convexifying the objective function,
separating variables, numerical stability, and ease of implementation. However, compared
to the large body of literature on other optimization algorithms, the convergence analysis
of MM algorithms is scattered and problem specific. This survey presents a unified
treatment of the convergence of MM algorithms. With modern applications in mind, the
results encompass nonsmooth objective functions and nonasymptotic analysis.

1 Background

The majorization–minimization (MM) principle for constructing optimization algorithms[1–3] finds broad
range of applications in

• statistics: multidimensional scaling[4], quantile regression[5], ranking sports teams[6], variable
selection[7–10], multivariate distributions[11, 12], variance component models[13], robust covariance
estimation[14], and survival models[15, 16];

• optimization: geometric and sigmoid programming[17] and proximal distance algorithm[18–20];
• imaging: transmission and positron tomography[21], wavelets[22], magnetic resonance imaging, and

sparse deconvolution; and
• machine learning: nonnegative matrix factorization[23], matrix completion[24, 25], clustering[26, 27], dis-

criminant analysis[28], and support vector machines[29].
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The recent book[30] and survey papers[31, 32] give a comprehensive overview of MM algorithms.
The MM principle involves majorizing the objective function f (x) by a surrogate function g(x ∣ xn)

around the current iterate xn of a search. Majorization is defined by the two conditions

f (xn) = g(xn ∣ xn) (1)
f (x) ≤ g(x ∣ xn), x ≠ xn (2)

In other words, the surface x → g(x ∣ xn) lies above the surface x → f (x) and is tangent to it at the point
x = xn. Construction of the majorizing function g(x ∣ xn) constitutes the first M of the MM algorithm.
The second M of the algorithm minimizes the surrogate g(x ∣ xn) rather than f (x). If xn+1 denotes the
minimizer of g(x ∣ xn), then this action forces the descent property f (xn+1) ≤ f (xn). This fact follows from
the inequalities

f (xn+1) ≤ g(xn+1 ∣ xn) ≤ g(xn ∣ xn) = f (xn)

reflecting the definition of xn+1 and the tangency condition.
The same principle applied to the maximization problems leads to the minorization–maximization algo-

rithms that monotonically increase the objective values. The celebrated expectation–maximization (EM)
algorithm in statistics is a special case of the minorization–maximization algorithm as the E-step con-
structs a Q-function that satisfies the minorization properties. Derivation of EM algorithm hinges upon
the notion of missing data and conditional expectation while that of MM algorithm upon clever use of
inequalities. For most problems where an EM algorithm exists, the MM derivation often leads to the
same algorithm. Notable exceptions include the maximum-likelihood estimation (MLE) of the Dirichlet-
multinomial model[11, 33] and the variance components model[13]. However, the MM principle has much
wider applications as it applies to both minimization and maximization problems and does not rely on the
notion of missing data.

2 Convergence Theorems

Throughout, we denote by  ⊂ ℝd the subset underlying our problems. All of the functions we consider
have domain  and are extended real valued with range ℝ ∪ {∞}. The interior of set S is denoted by 𝐢𝐧𝐭S,
and its closure by 𝐜𝐥S.

The following concepts are useful.

Definition 1. (Effective domain). The effective domain of a function f is defined and denoted by

dom f = {x ∈  ∶ f (x) < ∞}

Definition 2. (Properness). Function f (x) is called proper if dom f ≠ ∅.

Definition 3. (Directional derivatives). The directional derivative of function f at x ∈  is defined and
denoted as

dvf (x) = lim
t↓0

f (x + tv) − f (x)
t

if the limit exists.

If f is differentiable at x, then dvf (x) = ⟨∇f (x), v⟩.
Wiley StatsRef: Statistics Reference Online, © 2014–2021 John Wiley & Sons, Ltd.
This article is © 2021 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat08295

2



Nonconvex Optimization via MM Algorithms: Convergence Theory

Definition 4. (L-smoothness). Function f is said to be L-smooth with respect to a norm ∥ ⋅ ∥ if it is dif-
ferentiable on 𝐢𝐧𝐭 dom f and the gradient ∇f is Lipschitz continuous with a Lipschitz constant L:

∥ ∇f (x) − ∇f (y) ∥≤ L ∥ x − y ∥, ∀x, y ∈ 𝐢𝐧𝐭 dom f

It can be shown that f (x) is L-smooth if and only if

f (x) ≤ f (y) + ⟨∇f (y), x − y⟩ + L
2
∥ x − y∥2, ∀x, y ∈ 𝐢𝐧𝐭 dom f

Definition 5. (Strong convexity). Function f is called 𝜇-strongly convex with respect to a norm ∥ ⋅ ∥,
𝜇 ≥ 0, if f (x) − 𝜇

2
∥x∥2 is convex.

It can be shown that if f (x) is 𝜇-strongly convex and has its minimum at y, then

f (x) − f (y) ≥ 𝜇

2
∥ x − y∥2

Definition 6. (Tangent vector, tangent cone). For a closed nonempty set C ⊂  , the tangent cone of C
at x is

TC(x) =
{

v ∈  ∶ ∃{xn} ⊂ C, {tn} ⊂ ℝ such that tn ↓ 0, xn → x and
xn − x

tn
→ v

}
where the notation tn ↓ 0 means that tn approaches 0 from above. A vector v ∈ TC(x) is said to be a tangent
vector of C at x.

2.1 Classical Convergence Theorem

Consider the problem of minimizing the objective function f over a closed nonempty set C ⊂  . The fol-
lowing is immediate from the decent property of the MM algorithms:

Proposition 1. Let {xn} ⊂  be the iterates generated by an MM algorithm. Assume (a) xn ∈ C for each n.
Then, the sequence of objective values {f (xn)} monotonically decreases. Furthermore, if (b) p∗ = inf

x∈C
f (x) >

−∞, then {f (xn)} converges.

Whether the limit is the desired minimum and whether the iterate {xn} will converge to a minimizer is
more subtle. For the latter, a classical theory of convergence in nonlinear optimization algorithms is due
to Zangwill and Mond[34]. We first recap Zangwill’s theory following the modern treatment of Luenberger
and Ye[35]. Note that most of the iterative optimization algorithms, including the MM algorithms, generate
a sequence {xn} by mapping xn ∈  to another point xn+1 ∈  . For example, in MM algorithms, xn+1 is a
point that minimizes the surrogate function g(x|xn) in  . However, such a minimizer may not be unique
unless the g(x|xn) satisfies certain assumptions. Rather, xn+1 is one of the minimizers of g(x|xn) and can be
written as xn+1 ∈ argminx∈Cg(x|xn). Thus, we may in general define an algorithm map as a set-valued map:

Definition 7. (Algorithm map). An algorithm map M is a mapping defined on  that assigns to every
point x ∈  a subset of  .

Among which point M(xn) to choose as xn+1 depends on the specific details of the actual optimization
algorithm. If M is a single-valued map, that is, M(x) is singleton for all x ∈  , we write xn+1 = M(xn).
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A desirable property of an algorithm map is closure, which extends continuity of single-valued maps to
set-valued ones:

Definition 8. (Closure). A set-valued map M from  to  is said to be closed at x ∈  if y ∈ M(x) when-
ever {xn} ⊂  converges to x and {yn ∶ yn ∈ M(xn)} converges to y. The map M is said to be closed on  if
it is closed at each point of  .

The celebrated Zangwill’s global convergence theorem is phrased in terms of an algorithm map M, a
solution set Γ, and a descent function u:

Lemma 1. (Convergence Theorem A, Zangwill and Mond[34]). Let the point-to-set map M ∶  → 

determine an algorithm that given a point x0 ∈  generates the sequence {xn}. Also, let a solution set Γ ⊂ 

be given. Suppose that:

1. all points xn are in a compact set C ⊂  ;
2. there is a continuous function u ∶  → ℝ such that (a) if x ∉ Γ, u(y) < u(x) for all y ∈ M(x), and (b) if

x ∈ Γ, then either the algorithm terminates or u(y) ≤ u(x) for all y ∈ M(x);
3. the map M is closed at x if x ∉ Γ.

Then, either the algorithm stops at a solution, or the limit of any convergent subsequence is a solution.

In applying Lemma 1 to specific algorithms, one usually needs to show the closure of the algorithm map
M and carefully choose the solution set Γ and the descent function u. For example, in an MM algorithm,
we can choose u as the objective function f and the solution set

Γ = {x ∈  ∶ f (y) ≥ f (x), ∀y ∈ M(x)}

for M(x) = argminz∈g(z|x). Since f (y) ≤ f (x) for all y ∈ M(x) by the descent property of MM, in fact

Γ = {x ∈  ∶ f (y) = f (x), ∀y ∈ M(x)} =∶ 

which we call a set of no-progress points. The final requirement that {xn} is contained within a compact set
is satisfied whenever f is lower semicontinuous and coercive.

We summarize the above discussion as the following proposition: see also Proposition 8 of Keys et al.[20].

Proposition 2. (Global convergence to no-progress points). Suppose that the objective f is lower semi-
continuous and coercive, and the algorithm map M defined by the MM algorithm is closed. Then, all the
limit points of the iterates xn+1 ∈ M(xn) generated by the MM algorithm are no-progress points.

This general result is slightly disappointing. Even though the objective values do not change within  ,
the iterate {xn} may not even converge – it may cycle through distinct no-progress points.

Example 1. (EM algorithm). As a classical example of cycling, Vaida[36] showed that in minimizing

f (𝜌, 𝜎2) = 8 log 𝜎2 + 18
𝜎2 + 2 log(1 − log 𝜌2) + 4

𝜎2(1 − 𝜌2)

over 𝜎2 ≤ 0 and−1 ≤ 𝜌 ≤ 1 (this objective function originates from the maximum-likelihood estimation of
the variance and correlation coefficient of bivariate normal data with missing observations), the following
particular surrogate function

g(𝜌, 𝜎2 ∣ 𝜌n, 𝜎
2
n) = f (𝜌, 𝜎2) + 2

(
log 𝜎

2(1 − 𝜌2)
𝜎2

n(1 − 𝜌2
n)

+
𝜎2

n(1 − 𝜌2
n)

𝜎2(1 − 𝜌2)
− 1

)
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obtained by applying the EM algorithm, a special case of the MM algorithms, has two symmetric minima,
(𝜎2

n+1, 𝜌n+1) = (3,±
√

2∕3 − 𝜎2
n(1 − 𝜌2

n)∕6). If we take 𝜎2
0 = 3 and

𝜌n+1 = −sgn(𝜌n)
√

2∕3 − 3(1 − 𝜌2
n)∕6)

then the sequence {(𝜎2
n, 𝜌n)} oscillates between two minima (3,±1∕

√
3) of f in the limit.

Although the above cycling can be considered desirable as it reveals multiple optima, the next example
shows that this is not always the case:

Example 2. (Generalized CCA). The popular MAXDIFF criterion[37–39] for generalizing the CCA into
m > 2 sets of (partially) orthogonal matrices solves

maximize
∑
i<j

tr(OT
i AT

i AjOj) subject to OT
i Oi = Ir, i = 1, … ,m (3)

where Ir is an r × r identity matrix, and Oi ∈ ℝdi×r ; Ai ∈ ℝn×di are n observations of variables of possibly
different dimensions. A standard algorithm for solving the MAXDIFF problem is Ten Berge’s block relax-
ation algorithm[38, 40], shown as Algorithm 1. This is an MM algorithm (here minorization–maximization),
since at the update of the ith block in the kth sweep, the surrogate function

g(O1, … ,Om| Ok+1
1 , … ,Ok+1

i−1 ,O
k
i , … ,Ok

m)

= 1
2

m∑
i=1

tr

[
OT

i

( i−1∑
j=1

AT
i AjOk+1

j +
m∑

j=i+1
AT

i AjOk
j

)]
minorizes the objective function of problem (3) at (Ok+1

1 , … ,Ok+1
i−1 ,O

k
i , … ,Ok

m) and is maximized based
on the von Neuman–Fan inequality

tr(AT B) ≤
∑

l
𝜎l(A)𝜎l(B)

which holds for any two matrices A and B of the same dimensions with the lth largest singular values 𝜎l(A)
and 𝜎l(B), respectively; equality is attained when A and B share a simultaneous ordered Singular Value
Decomposition (SVD) [41].

While each iteration monotonically improves the objective function. Won et al.[42] show that Algo-
rithm 1 may oscillate between suboptimal no-progress points. Set m = 3, d1 = d2 = d3 = d = r and A1 =
[Id, Id, 𝟎]T , A2 = [−Id, 𝟎, Id]T , and A3 = [𝟎, Id, Id]T [43]. If Algorithm 1 is initialized with (J ,K , J) where

J =
⎡⎢⎢⎣
1 0
0 1
0 0

⎤⎥⎥⎦ and K =
⎡⎢⎢⎣
0 1
1 0
0 0

⎤⎥⎥⎦ ,
then both J − K and J + K have rank 1, and we see that −K is one of the maximizers of tr[OT (J − K )], and
likewise, J maximizes tr[OT (J + K )]. Taking these values as the outputs of Line 5 of Algorithm 1, we have
the following cycling sequence at the end of each sweep:

(J ,K , J) → (−K , J ,−K ) → (−J ,−K ,−J) → (K ,−J ,K ) → (J ,K , J) → · · ·

All four limit points yield the same objective values of 1. However, the global maximum of f can be shown
to be 3.
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The main reason for this oscillatory behavior is that the map B =
∑

j≠iA
T
i AjOj → PiQT

i in Lines 5 and 6
is set valued. If B is rank deficient, any orthonormal basis of the null space of BT (resp. B) can be chosen as
left (resp. right) singular vectors corresponding to the zero singular value. Furthermore, the product PiQT

i
may not be unique [44, Proposition 7].

More satisfying “solution sets” are in order.

• Fixed points:
 = {x ∈  ∶ x = M(x)}

if M is single valued.
• Stationary points:

 = {x ∈  ∶ dvf (x) ≥ 0, for all tangent vectors v of C at x}

Algorithm 1 Ten Berge’s algorithm for generalized CCA
1: Initialize O1,… ,Om
2: For k = 1, 2,…
3: For i = 1,… ,m
4: Set B =

∑
j≠i AT

i AjOj
5: Compute SVD of B as PiDiQT

i
6: Set Oi = PiQT

i
7: End For
8: If there is no progress, then break
9: End For
10: Return (O1,… ,Om)

All fixed points are no-progress points, that is,  ⊂  , but not vice versa. Note that y ∈  is a necessary
condition that y is a local minimizer of f in C. No-progress points and fixed points depend on the algorithm
map M, whereas the stationary points depend on the problem itself. To make M single valued, note that
any convex (and weakly convex) surrogate g(x|xn) can be made strongly convex, thus attains a unique
minimum, by adding the viscosity penalty 𝜇

2
∥ x − xn∥2 majorizing 0; see Section 2.4. If M is closed and

single valued, then it is continuous.
The classical global convergence results for MM algorithms[30, 45], which we summarize below, hinge on

continuity of the map M:

Proposition 3. If the MM algorithm map M is continuous, then  =  and  is closed.

Proposition 4. If (i) f is continuous, (ii) f is coercive, or the set {x ∶ f (x) ≤ f (x0)} is compact, and (iii)
the algorithm map M is continuous, then every limit point of an MM sequence {xn} is a fixed point of M.
Furthermore, lim

n→∞
dist(xn, ) = 0.

Proposition 5. Under the same assumptions of Proposition 4, the MM sequence {xn} satisfies

lim
n→∞

∥xn+1 − xn∥ = 0

Furthermore, the set  of the limit points of {xn} is compact and connected.
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Note Proposition 4 states that  ⊂  . Proposition 5 ensures there is no cycling.
Connecting the fixed points  , which coincides with the no-progress points  for continuous M, with

the stationary points  needs more assumptions. To equate stationary points of f to those of g(⋅|x), we
require a stronger tangency condition than the usual tangency condition (1):

Definition 9. (Strong tangency). An MM surrogate function g(⋅|⋅) is said to be strongly tangent to f at
x ∈ C if dvg(x|x) = dvf (x) for all x ∈ C and tangent vector v in C at x.

Proposition 6. Suppose that (i) the surrogate function g(y|x) is strongly tangent to the objective function
f , (ii) the algorithm map M is closed and single valued, and (iii) stationary points and minimizers of g(y|x)
are equivalent. Then,  =  =  , that is, the sets of fixed points, no-progress points, and stationary points
of f coincide.

Proposition 7. In addition to the assumptions of Proposition 6, if  , the set of all stationary points of the
objective function f , consists of isolated points, then the set  of the limit points of the MM sequence {xn} is
singleton, that is, an MM sequence {xn} possesses a limit, and that limit is a stationary point of f as well as
a fixed point of M.

Strong tangency holds when g(y|x) = f (x) + h(y|x) and h(y|x) is differentiable with ∇h(x|x) = 𝟎. See
Vaida[36] and Yu et al.[46] for examples of these results in action.

We next present results that extend to nonasymptotic analysis and more general settings such as nons-
mooth objectives.

2.2 Smooth Objective Functions

The following proposition gives a weak form of convergence for MM algorithms. The proposition features
minimization and majorization by Lipschitz smooth functions.

Proposition 8. Let f (x) be a coercive differentiable function majorized by a uniformly L-Lipschitz surro-
gate g(x ∣ xn) anchored at xn. If y denotes a minimum point of f (x), then the iterates xn delivered by the
corresponding MM algorithm satisfy the sublinear bound

min
0≤k≤n

∥ ∇f (xk)∥2 ≤
2L

n + 1
[f (x0) − f (y)] (4)

When f (x) is continuously differentiable, any limit point of the sequence xn is a stationary point of f (x).

Proof. Given that the surrogate g(x ∣ xn) satisfies the tangency condition ∇g(xn ∣ xn) = ∇f (xn), the
L-smoothness assumption entails the quadratic upper bound

f (xn+1) − f (xn) ≤ g(xn+1 ∣ xn) − g(xn ∣ xn)
≤ g(x ∣ xn) − g(xn ∣ xn)

≤ ⟨∇g(xn ∣ xn), x − xn⟩ + L
2
∥ x − xn∥2

= ⟨∇f (xn), x − xn⟩ + L
2
∥ x − xn∥2

for any x. The choice x = xn − L−1∇f (xn) yields the sufficient decrease condition

f (xn) − f (xn+1) ≥
1

2L
∥ ∇f (xn)∥2 (5)
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A simple telescoping argument now gives

n + 1
2L

min
0≤k≤n

∥ ∇f (xk)∥2 ≤
1

2L

n∑
k=0

∥ ∇f (xk)∥2

≤ f (x0) − f (xn+1)
≤ f (x0) − f (y)

which is equivalent to the bound (4). The second assertion follows directly from condition (5), the conver-
gence of the sequence f (xn), and the continuity of ∇f (x).

As a prelude to our next result, we state and prove a simple result of independent interest.

Proposition 9. Suppose that f (x) is convex with surrogate g(z ∣ x) at the point x. Then, f (x) is differentiable
at x, and ∇f (x) equals ∇g(x ∣ x) wherever ∇g(x ∣ x) exists.

Proof. Suppose that x is such a point. Let v ∈ 𝜕f (x) be a subgradient of f (x). It suffices to show that v is
uniquely determined as v = ∇g(x ∣ x). For any direction u, consider the forward difference quotient

g(x + tu ∣ x) − g(x ∣ x)
t

≥
f (x + tu) − f (x)

t
≥ ⟨v,u⟩

Taking limits produces ⟨∇g(x ∣ x),u⟩ ≥ ⟨v,u⟩. This cannot be true for all u unless the condition v = ∇g(x ∣
x) holds.

Imposing strong convexity on f (x) recovers linear convergence. The ratio 𝜇

L
makes an appearance, but,

unlike convergence theorems for gradient descent, this ratio is not the condition number of either the
objective or the surrogate.

Proposition 10. Let f (x) be a 𝜇-strongly convex function majorized by a uniformly L-Lipschitz surrogate
g(x ∣ xn). If the global minimum occurs at y, then the MM iterates xn satisfy

f (xn) − f (y) ≤
[

1 −
(
𝜇

L

)2
]n

[f (x0) − f (y)]

thus establishing linear convergence of xn to y.

Proof. Existence and uniqueness of y follow from strong convexity. Because ∇g(y ∣ y) = 0, the smoothness
of g(x ∣ y) gives the quadratic upper bound

f (x) − f (y) ≤ g(x ∣ y) − g(y ∣ y)

≤ ⟨∇g(y ∣ y), x − y⟩ + L
2
∥ x − y∥2 (6)

= L
2
∥ x − y∥2

which incidentally implies 𝜇 ≤ L. By the previous proposition, f (x) is everywhere differentiable with
∇f (x) = ∇g(x ∣ x). In view of the strong convexity assumption, we have the lower bound

∥ ∇f (x) ∥ ⋅ ∥ y − x ∥ ≥ −⟨∇f (x), y − x⟩
≥ f (y) − f (x) − ⟨∇f (x), y − x⟩ (7)

≥
𝜇

2
∥ y − x∥2
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It follows that ∥ ∇f (x) ∥ ≥
𝜇

2
∥ y − x ∥. Combining inequalities (6) and (7) furnishes the Polyak–

Łojasiewicz (PL) bound

∥∇f (x)∥2 ≥
𝜇2

2L
[f (x) − f (y)]

We now turn to the MM iterates and take x = xn −
1
L
∇f (xn). The PL inequality implies

f (xn+1) − f (xn) ≤ g(xn+1 ∣ xn) − g(xn ∣ xn)
≤ g(x ∣ xn) − g(xn ∣ xn)

≤ ⟨∇g(xn ∣ xn),−
1
L
∇g(xn ∣ xn)⟩ + L

2
‖1

L
∇g(xn ∣ xn) ‖2

= − 1
2L

∥ ∇f (xn)∥2

≤ −2𝜇2

L2 [f (xn) − f (y)]

Subtracting f (y) from both sides of the previous inequality and rearranging gives

f (xn+1) − f (y) ≤
[

1 − 𝜇2

2L2

]
[f (xn) − f (y)]

Iteration of this inequality yields the claimed linear convergence.

2.3 Nonsmooth Objective Functions

Consider an MM minimization algorithm with objective f (x) and surrogates g(x ∣ xn). If f (x) is coer-
cive and continuous, and the g(x ∣ xn) are 𝜇-strongly convex, then we know that the MM iterates
xn+1 = argminx g(x ∣ xn) remain within the compact sublevel set S = {x ∶ f (x) ≤ f (x0)}[30]. Furthermore,
the strong convexity inequality

f (xn) − f (xn+1) ≥ g(xn ∣ xn) − g(xn+1 ∣ xn) ≥
𝜇

2
∥ xn − xn+1∥2 (8)

implies that
∞∑

n=0
∥ xn − xn+1∥2 ≤

1
𝜇
[f (x0) − f ]

where f = lim
n→∞

f (xn). It follows from a well-known theorem of Ostrowski[30] that the set W of limit points

of the xn is compact and connected. It is also easy to show that f (x) takes the constant value f on W and
that lim

n→∞
dist(xn,W ) = 0.

We will need the concept of a Fréchet subdifferential. If f (x) is a function mapping ℝp into ℝ ∪ {+∞},
then its Fréchet subdifferential at x ∈ dom f is the set

𝜕F f (x) =
{

v ∶ lim inf
y→x

f (y) − f (x) − vt(y − x)
∥ y − x ∥

≥ 0
}

The set 𝜕F f (x) is closed, convex, and possibly empty. If f (x) is convex, then 𝜕F f (x) reduces to its convex
subdifferential. If f (x) is differentiable, then 𝜕F f (x) reduces to its ordinary differential. At a local minimum
x, Fermat’s rule 0 ∈ 𝜕F f (x) holds.
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Proposition 11. In an MM algorithm, suppose that f (x) is coercive, g(x ∣ xn) is differentiable, and the
algorithm map M(x) is closed. Then, all points z of the convergence set W are critical in the sense that
0 ∈ 𝜕F (−f )(z).

Proof. Let the subsequence xnm
of the MM sequence xn+1 ∈ M(xn) converge to z ∈ W . By passing a sub-

subsequence if necessary, we may suppose that xnm+1 converges to y. Owing to our closedness assumption,
y ∈ M(z). Given that f (y) = f (z), it is obvious that z also minimizes g(x ∣ z) and that 0 = ∇g(z ∣ z). Since
the difference h(x ∣ z) = g(x ∣ z) − f (x) achieves it minimum at x = z, the Fréchet subdifferential 𝜕F h(x ∣ z)
satisfies

0 ∈ 𝜕F h(z ∣ z) = ∇g(z ∣ z) + 𝜕F (−f )(z)

It follows that 0 ∈ 𝜕F (−f )(z).

We will also need to invoke Łojasiewicz’s inequality. This deep result depends on some rather arcane
algebraic geometry[47, 48]. It applies to semialgebraic functions and their more inclusive cousins semiana-
lytic functions and subanalytic functions. For simplicity, we focus on semialgebraic functions. The class of
semialgebraic subsets of ℝp is the smallest class such that:

a) It contains all sets of the form {x ∶ q(x) > 0} for a polynomial q(x) in p variables.
b) It is closed under the formation of finite unions, finite intersections, and set complementation.

A function a ∶ ℝp → ℝr is said to be semialgebraic if its graph is a semialgebraic set of ℝp+r . The class
of real-valued semialgebraic contains all polynomials p(x). It is closed under the formation of sums, prod-
ucts, absolute values, reciprocals when a(x) ≠ 0, roots when a(x) ≥ 0, and maxima max{a(x), b(x)} and
minima min{a(x), b(x)}. For our purposes, it is important to note that dist(x, S) is a semialgebraic function
whenever S is a semialgebraic set.

Łojasiewicz’s inequality in its modern form[49] requires that f (x) be continuous and subanalytic with a
closed domain. If z is a critical point of f (x), then

|f (x) − f (z)|𝜃(z) ≤ c(z) ∥ v ∥

for some constant c(z), all x in some open ball Br(z)(z) around z of radius r(z), and all v in 𝜕F f (x).
This inequality applies to semialgebraic functions since they are automatically subanalytic. We apply
Łojasiewicz’s inequality to the points in the limit set W .

2.3.1 MM convergence for semialgebraic functions

Proposition 12. Suppose that f (x) is coercive, continuous, and subanalytic and all g(x ∣ xn) are continuous,
𝜇-strongly convex, and satisfy the Lipschitz condition

∥ ∇g(u ∣ xn) − ∇g(v ∣ xn) ∥ ≤ L ∥ u − v ∥

on the compact sublevel set {x ∶ f (x) ≤ f (x0)}. Then, the MM iterates xn+1 = argminxg(x ∣ xn) converge to
a critical point in W .

Proof. Because h(x ∣ y) = g(x ∣ y) − f (x) achieves it minimum at x = y, the Fréchet subdifferential 𝜕F h(x ∣ y)
satisfies

0 ∈ 𝜕F h(y ∣ y) = ∇g(y ∣ y) + 𝜕F (−f )(y).
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It follows that −∇g(y ∣ y) ∈ 𝜕F (−f )(y). By assumption

∥ ∇g(u ∣ xn) − ∇g(v ∣ xn) ∥ ≤ L ∥ u − v ∥

for all u and v and xn. In particular, because ∇g(xn+1 ∣ xn) = 0, we have

∥ ∇g(xn ∣ xn) ∥ ≤ L∥ xn+1 − xn ∥ (9)

According to the Łojasiewicz inequality applied for the subanalytic function f − f (x), for each z ∈ W
there exists a radius r(z) and an exponent 𝜃(z) ∈ [0, 1) with

|f (u) − f (z)|𝜃(z) = |f − f (u) − f + f |𝜃(z) ≤ c(z) ∥ v ∥

for all u in the open ball Br(z)(z) around z of radius r(z) and all v ∈ 𝜕F (f − f )(u) = 𝜕F (−f )(u). We apply this
inequality to u = xn and v = −∇g(xn ∣ xn). In doing so, we would like to assume that the exponent 𝜃(z)
and constant c(z) do not depend on z. With this end in mind, cover W by a finite number of balls Br(zi)(zi)
and take 𝜃 = max

i
𝜃(zi) < 1 and c = max

i
c(zi). For a sufficiently large N , every xn with n ≥ N falls within

one of these balls and satisfies |f − f (xn)| < 1. Without loss of generality assume N = 0. The Łojasiewicz
inequality now entails |f − f (xn)|𝜃 ≤ c ∥ ∇g(xn ∣ xn) ∥ (10)

In combination with the concavity of the function t1−𝜃 on [0,∞), inequalities (8), (9), and (10) imply

[f (xn) − f ]1−𝜃 − [f (xn+1) − f ]1−𝜃 ≥
1 − 𝜃

[f (xn) − f ]𝜃
[f (xn) − f (xn+1)]

≥
1 − 𝜃

c ∥ ∇g(xn ∣ xn) ∥
𝜇

2
∥ xn+1 − xn∥2

≥
(1 − 𝜃)𝜇

2cL
∥ xn+1 − xn ∥

Rearranging this inequality and summing over n yield
∞∑

n=0
∥xn+1 − xn∥ ≤

2cL
(1 − 𝜃)𝜇

[f (x0) − f ]1−𝜃

Thus, the sequence xn is a fast Cauchy sequence and converges to a unique limit in W .

2.4 A Proximal Trick to Prevent Cycling

Consider minimizing a function f (x) bounded below and possibly subject to constraints. The MM principle
involves constructing a surrogate function g(x ∣ xn) that majorizes f (x) around xn. For any 𝜌 > 0, adding
the penalty (𝜌∕2) ∥ x − xn∥2 to the surrogate produces a new surrogate

g(x ∣ xn) +
𝜌

2
∥ x − xn∥2

Rearranging the inequality
g(xn+1 ∣ xn) +

𝜌

2
∥xn+1 − xn∥2 ≤ g(xn ∣ xn)

yields
𝜌

2
∥xn+1 − xn∥2 ≤ g(xn ∣ xn) − g(xn+1 ∣ xn) ≤ f (xn) − f (xn+1)
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Thus, the MM iterates induced by the new surrogate satisfy

lim
n→∞

∥xn+1 − xn∥= 0

This property is inconsistent with algorithm cycling between distant limit points.

3 Paracontraction

Another useful tool for proving iterate convergence of MM algorithms is paracontraction. Recall that a
map T ∶  → ℝd is contractive with respect to a norm ∥x∥ if ∥ T(y) − T(z) ∥< ∥ y − z ∥ for all y ≠ z in
 . It is strictly contractive if there exists a constant c ∈ [0, 1) with ∥ T(y) − T(z) ∥ ≤ c ∥ y − z ∥ for all such
pairs. If c = 1, then the map is nonexpansive.

Definition 10. (Paracontractive map). A map T ∶  → ℝd is said to be paracontractive if for every fixed
point y of T (i.e., y = T(y)), the inequality ∥ T(x) − y ∥ < ∥ x − y ∥ holds unless x is itself a fixed point.

A strictly contractive map is contractive, and a contractive map is paracontractive.
An important result regarding paracontractive maps is the theorem of Elsner, Koltract, and Neumann[50],

which states that whenever a continuous paracontractive map T possesses one or more fixed points, then
the sequence of iterates xn+1 = T(xn) converges to a fixed point regardless of the initial point x0. More
formal statement is as follows:

Proposition 13. Suppose that the continuous maps T0, · · · ,Tr−1 of a set into itself are paracontractive
under the norm ∥ x ∥. Let Fi denote the set of fixed points of Ti. If the intersection F = ∩r−1

i=0 Fi is nonempty,
then the sequence

xn+1 = Tn mod r(xn)

converges to a limit in F. In particular, if r = 1 and T = T0 has a nonempty set of fixed points F, then
xn+1 = T(xn) converges to a point in F.

A simple proof is given in Lange[51].
Proposition 13 converts the task of proving convergence of MM iterates to that of showing (i) continuity,

(ii) paracontractivity, and (iii) existence of a fixed point, of the MM algorithm map, and that (iv) any fixed
point is a stationary point of the objective. A nice example is the recent work by Won et al.[52] on Euclidean
projection onto the Minkowski sum of sets. The Minkowski sum of two sets A and B in ℝd is

A + B = {a + b ∶ a ∈ A, b ∈ B}

It is easy to show that A + B is convex whenever A and B are both convex and is closed if at least one of the
two sets is compact and the other is closed. When A + B is closed with A and B convex, we may employ a
block descent algorithm, an instance of MM algorithms, for finding the closest point to x ∉ A + B, which
consists of alternating

bn+1 = PB(x − an)
an+1 = PA(x − bn+1)

(11)

assuming that the projection operators PA and PB onto A and B are both known or easy to compute.
In order to show that the sequence {an + bn} converges to the closest point using Proposition 13, we

first need to show the continuity of the map

T(a) = PA[x − PB(x − a)]
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The obtuse angle property of Euclidean projection [51, Example 6.5.3] yields

⟨a − PA(a),PA(ã) − PA(a)⟩ ≤ 0⟨ã − PA(ã),PA(a) − PA(ã)⟩ ≤ 0

for any a, ã ∈ ℝd. Adding these inequalities, rearranging, and applying the Cauchy–Schwarz inequality
give

∥ PA(a) − PA(ã)∥2 ≤ ⟨a − ã,PA(a) − PA(ã)⟩
≤ ∥ a − ã ∥∥ PA(a) − PA(ã) ∥

(12)

Thus, ∥ PA(a) − PA(ã) ∥ ≤ ∥ a − ã ∥. That is, PA is nonexpansive, and the inequality holds if and only if

PA(a) − PA(ã) = c(a − ã) (13)

for some constant c. Likewise, PB is nonexpansive. Therefore,

∥ PA[x − PB(x − a)] − PA[x − PB(x − ã)] ∥
≤ ∥ PB(x − a) − PB(x − ã) ∥≤∥ a − ã ∥

(14)

This proves that T is nonexpansive, hence continuous.
Next, we show that T is paracontractive. Suppose that ã is a fixed point, a ≠ ã, and equality holds

throughout inequalities (14). Inequalities (12) and Equation (13) indicate that equality is achieved in the
previous two inequalities only if

PA[x − PB(x − a)] − [x − PB(x − a)]
= PA[x − PB(x − ã)] − [x − PB(x − ã)]

and
PB(x − a) − (x − a) = PB(x − ã) − (x − ã)

Subtracting the second of these equalities from the first gives

PA[x − PB(x − a)] − a = PA[x − PB(x − ã)] − ã = 0

It follows that equality in inequalities (14) is achieved only if a is also a fixed point.
To show that T possesses a fixed point, note that given the closedness of A + B, there exists a clos-

est point ã + b̃ to x, where ã ∈ A and b̃ ∈ B. Since block descent cannot improve the objective f (a, b) =
1
2
∥ x − a − b∥2 on the set A × B starting from (ã, b̃), it is clear that ã = T(ã).
Finally, suppose that ã is any fixed point, and define b̃ = PB(x − ã). To prove that ã + b̃ minimizes the

distance to x, it suffices to show that for every tangent vector v = a + b − ã − b̃ at ã + b̃, the directional
derivative

dv
1
2
∥ x − ã − b̃∥2 = −⟨x − ã − b̃, v⟩

= −⟨x − ã − b̃,a − ã⟩ − ⟨x − ã − b̃, b − b̃⟩
is nonnegative. However, the inequalities −⟨x − ã − b̃,a − ã⟩ ≥ 0 and −⟨x − ã − b̃, b − b̃⟩ ≥ 0 hold
because ã minimizes a → 1

2
∥ x − a − b̃∥2, and b̃ minimizes b → 1

2
∥ x − ã − b∥2. Thus, any fixed point

of T furnishes a minimum of the convex function f (a, b) on the set A × B.
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4 Bregman Majorization

Bregman majorization is a technique for constructing a sequence of surrogate functions pertinent to an
MM algorithm. Let us first define the notion of Bregman divergence.

Definition 11. (Bregman divergence). For a proper convex function 𝜙(x) that is continuously differen-
tiable on 𝐢𝐧𝐭 dom 𝜙, the Bregman divergence B𝜙 ∶  ×  → ℝ is defined as

B𝜙(x ∥ y) = 𝜙(x) − 𝜙(y) − ⟨∇𝜙(y), x − y⟩, x, y ∈ 𝐢𝐧𝐭 dom 𝜙

We are concerned with the following optimization problem:

min
x∈C

f (x), C ⊂  is closed and convex (15)

where f (x) is convex, proper, and lower semicontinuous. In order to solve this problem, the Bregman
majorization method constructs the sequence of surrogate functions

g(x ∣ xn) = f (x) + B𝜙(x ∥ xn)

and successively minimizes these. This is a valid MM algorithm since the following properties of the Breg-
man divergence are immediate from definition:

1. B𝜙(x ∥ y) ≥ 0;
2. B𝜙(x ∥ x) = 0;
3. If 𝜙 is strictly convex, then B𝜙(x ∥ y) = 0 if and only if x = y.

Thus, g(x ∣ xn) ≥ f (x) for all x and g(xn ∣ xn) = f (xn). We can choose 𝜙(x) so that for 𝐜𝐥 dom 𝜙 = C.
The subsequent section studies the convergence property of the Bregman majorization.

4.1 Convergence Analysis via SUMMA

The sequential unconstrained minimization method algorithm (SUMMA)[53] is a class of algorithms for
solving optimization problems of the form

min
x∈C

f (x), C ⊂  is closed (16)

by minimizing a sequence of auxiliary functions

Gn(x) = f (x) + gn+1(x), n = 1, 2, …

over  . The minimizer of Gn(x) is denoted by xn. The conditions imposed on the sequence of functions
gn(x) are:

1. gn(x) ≥ 0 for all x ∈  ;
2. gn(xn−1) = 0;
3. Gn(x) − Gn(xn) ≥ gn+1(x) for all x ∈ C.

If gn(x) depends on n only through the iterate xn, then this method coincides with the MM algorithm by
identifying Gn(x) = g(x ∣ xn) and gn(x) = g(x ∣ xn−1) − f (x), with the additional requirement
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g(x ∣ xn) − g(xn+1 ∣ xn) ≥ g(x ∣ xn+1) − f (x) (17)

for all x ∈ C.
Let us show that condition (17) is satisfied by the Bregman majorization g(x ∣ xn) = f (x) + 𝜙(x) − 𝜙(xn) −⟨∇𝜙(xn), x − xn⟩. The optimality condition for minimizing g(x ∣ xn) is

0 ∈ 𝜕f (xn+1) + ∇𝜙(xn+1) − ∇𝜙(xn)

For the appropriate choice of sn+1 ∈ 𝜕f (xn+1), it follows that

g(x ∣ xn) − g(xn+1 ∣ xn) = f (x) − f (xn+1) + 𝜙(x) − 𝜙(xn+1)
− ⟨∇𝜙(xn), x − xn+1⟩
= f (x) − f (xn+1) − ⟨sn+1, x − xn+1⟩
+ 𝜙(x) − 𝜙(xn+1) − ⟨∇𝜙(xn+1), x − xn+1⟩

≥ B𝜙(x ∥ xn+1) = g(x ∣ xn+1) − f (x)

where the last inequality is a consequence of the convexity of f (x).
The following propositions concern convergence of MM algorithms satisfying condition (17).

Proposition 14. Assume (a) p∗ = inf
x∈C

f (x) > −∞ and (b) xn ∈ C for each n. If condition (17) holds, then
any MM sequence generated by the map xn+1 ∈ argminx∈ g(x ∣ xn) satisfies lim

n→∞
f (xn) = p∗.

Proof. By the descent property of MM and the bound f (xn) ≥ p∗ > −∞ given xn ∈ C, the sequence f (xn)
converges to a limit d ≥ p∗. Suppose for some x ∈ C that f (x) < d. Then, by condition (17),

[g(x ∣ xn) − f (x)] − [g(x ∣ xn+1) − f (x)] ≥ g(xn+1 ∣ xn) − f (x)
≥ f (xn+1) − f (x)
≥ d − f (x)
> 0

Thus, the sequence g(x ∣ xn) − f (x) decreases, and its successive differences are bounded away from zero.
The latter property contradicts the requirement for the surrogate function that g(x ∣ xn) ≥ f (x), and there-
fore d = p∗.

Proposition 15. In addition to the assumptions of Proposition 14, further assume that (c) the minimum p∗

is attained and the set F of the minimizers of f (x) in C is nonempty, (d) f (x) is continuous on D ⊂  such that
𝐜𝐥D = C, (e) for each n, g(x ∣ xn) is𝜇-strongly convex with respect to the norm ∥ ⋅ ∥ and domg(⋅ ∣ xn) = D, and
(f ) g(x ∣ xn) − f (x) ≤ L

2
∥ x − xn∥2 for all x ∈ D and each n. If condition (17) holds, then the MM sequence

xn+1 = argminx∈g(x ∣ xn) converges to a point in F.

Proof. Because of strong convexity, the minimum of g(x ∣ xn) is uniquely attained for each n. Furthermore,
for any x ∈ D,

g(x ∣ xn) − g(xn+1 ∣ xn) ≥
𝜇

2
∥ x − xn+1∥2 (18)

Let y ∈ F be a minimizer of f (x) in C. Since f (xn+1) ≤ g(xn+1 ∣ xn),

g(y ∣ xn) − f (xn+1) ≥ g(y ∣ xn) − g(xn+1 ∣ xn) ≥
𝜇

2
∥ y − xn+1∥2 (19)
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where the last inequality follows from the strong convexity of g(x ∣ xn). Condition (17) also implies

[g(y ∣ xn) − f (y)] − [g(y ∣ xn+1) − f (y)] ≥ g(xn+1 ∣ xn) − f (y)
≥ f (xn+1) − p∗ ≥ 0

Hence, the decreasing nonnegative sequence g(y ∣ xn) − f (y) has a limit. In addition, f (y) − f (xn+1) tends to
zero by Proposition 14. It follows that the leftmost side of inequality (19) tends to a limit, and the sequence
xn is bounded.

Suppose that the convergent subsequence xnm
of xn has a limit z. By continuity, f (z) = lim

m→∞
f (xnm

) = p∗,
so z is also optimal. Now,

0 ≤ g(z ∣ xn) − g(xn+1 ∣ xn)
= [g(z ∣ xn) − f (z)] + f (z) − f (xn+1) − [g(xn+1 ∣ xn) − f (xn+1)]
≤ g(z ∣ xn) − f (z)

≤
L
2
∥ xn − z∥2

due to f (z) ≤ f (xn+1), g(xn+1 ∣ xn) − f (xn+1) ≥ 0, and assumption (f ). Again by Condition (17), we further
have

0 ≤ g(z ∣ xn) − g(xn+1 ∣ xn) ≤ g(z ∣ xn) − f (z) ≤ g(z ∣ xn−1) − g(xn ∣ xn−1) (20)

Thus, the nonnegative sequence g(z ∣ xn) − g(xn+1 ∣ xn) is monotonically decreasing and convergent. Its
subsequence g(z ∣ xnm

) − g(xnm+1 ∣ xnm
) is also bounded by L

2
∥ xnm

− z∥2, which converges to zero. Thus,
the whole sequence tends to zero. By inequality (20), it follows that the sequence g(z ∣ xn) − f (z) converges
to zero.

The final inequality

g(z ∣ xn) − f (z) = g(z ∣ xn) − g(xn+1 ∣ xn) + g(xn+1 ∣ xn) − f (z)

≥
𝜇

2
∥ z − xn+1∥2 + f (xn+1) − f (z)

now proves that the entire sequence xn converges to z ∈ F .

Remark 1. Assumption (e) (uniform strong convexity of the surrogate functions) is much less restrictive
than assuming strong convexity on the objective f (x). For example, assumption (e) is satisfied when f (x) is
convex, and the convex function 𝜙(x) defining the Bregman divergence is 𝜇-strongly convex.

Remark 2. Assumption (f ) is satisfied if 𝜙(x) is L-smooth. Assumption (f ) can be replaced by

(f ′) g(x ∣ y) is continuous in y in D.

This is the condition implicitly imposed in the proof of Proposition 7.4.1 in Lange[41]. (This assumption
is not made perfectly clear in the statement of the proposition.) Assumption (f ′) is satisfied, when 𝜙(x) is
a Bregman–Legendre function[53, 54].
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4.2 Examples

4.2.1 Proximal gradient method

The proximal gradient method minimizes f (x) = f0(x) + h(x) over C =  , where both f0(x) and h(x) are
convex, proper, and lower semicontinuous. It is further assumed that f0(x) is L-smooth. The algorithm
iteratively solves

xn+1 = argminx

{
f0(xn) + ⟨∇f0(xn), x − xn⟩ + h(x) + 1

2𝛼
∥ x − xn∥2

}
(21)

for a step size 0 < 𝛼 < L−1. To see that the proximal gradient algorithm is an instance of Bregman majoriza-
tion, set 𝜙(x) = 1

2𝛼
∥ x∥2 − f0(x). Then,

f (x) + B𝜙(x ∥ xn) = f0(x) + h(x) + 1
2𝛼

∥ x∥2 − f0(x) −
1

2𝛼
∥ xn∥2 + f0(xn)

− ⟨ 1
𝛼

xn − ∇f0(xn), x − xn⟩
= f0(xn) + ⟨∇f0(xn), x − xn⟩ + h(x) + 1

2𝛼
∥ x − xn∥2

(22)

as desired. It remains to verify that f (x) and 𝜙(x) satisfy conditions (a) through (f ) of Propositions 14 and
15. Conditions (a) and (c) are assumed; (b) and (d) are true. Condition (e) is satisfied since 𝛼 ∈ (0, 1∕L).
The following fact is well known:

Lemma 2. A differentiable convex function f (x) is L-smooth ∇f (x) if and only if L
2
∥x∥2 − f (x) is convex.

Then, since 𝜙(x) = 1
2

(
1
𝛼
− L

)
∥x∥2 + L

2
∥x∥2 − f (x) and 1

𝛼
> L, 𝜙 is ( 1

𝛼
− L)-strongly convex.

To check condition (f ), we invoke the Baillon–Haddad theorem:

Lemma 3. If function f (x) is convex, differentiable, and L-smooth, then

⟨∇f (x) − ∇f (y), x − y⟩ ≥ 1
L
∥∇f (x) − ∇f (y)∥2

Note ∇𝜙(x) = 1
𝛼

x − ∇f0(x). Then,

∥ ∇𝜙(x) − ∇𝜙(y)∥2 = ∥𝛼−1(x − y) − [∇f0(x) − ∇f0(y)]∥2

= 1
𝛼2 ∥x − y∥2+ ∥∇f0(x) − ∇f0(y)∥2 − 2

𝛼
⟨x − y,∇f0(x) − ∇f0(y)⟩

≤
1
𝛼2 ∥ x − y∥2+ ∥∇f0(x) − ∇f0(y)∥2 − 2

𝛼L
∥∇f0(x) − ∇f0(y)∥2

≤
1
𝛼2 ∥x − y∥2.

The first inequality is due to Lemma 3. The last inequality holds since 𝛼 ∈ (0, 1∕L) implies 1 − 2
𝛼L

≤ 0.
Therefore, ∇𝜙(x) is 1∕𝛼-Lipschitz continuous and condition (f ) is satisfied.

We summarize the discussion above as follows:

Proposition 16. Suppose that f0(x) and h(x) are convex, proper, and lower semicontinuous. If f0(x) is L-
smooth, then for 0 < 𝛼 < 1∕L, the proximal gradient iteration (21) converges to a minimizer of f (x) = f0(x) +
h(x) if it exists.
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Remark 3. Lemma 3 suggests that∇𝜙 is 1∕𝛼-Lipschitz continuous if 0 < 𝛼 < 2∕L; in other words, the step
size may be doubled. Indeed, employing monotone operator theory[55, 56] it can be shown that iteration (21)
converges for 1∕L ≤ 𝛼 < 2∕L as well. Even though the MM interpretation is lost for this range of step size,
the descent property remains intact[57, 58].

Remark 4. The assumption that h(x) is convex can be relaxed: if h(x) is 𝜌-weakly convex, which means
h(x) + 𝜌

2
∥ x∥2 is convex, and f0(x) is 𝜌-strongly convex as well as L-smooth (this implies 𝜌 ≤ L), then the

objective f (x) remains convex. The inner optimization problem in iteration (21) is also strongly convex if
𝜌𝛼 < 1 and xn+1 is uniquely determined. The latter condition is guaranteed if 𝛼 ∈ (0, 1∕L), and the con-
clusion of Proposition 16 holds. In fact, using monotone operator theory, a larger step size 𝛼 ∈ (0, 2

L+𝜌
) is

allowed[58]. Statistical applications include nonconvex sparsity-inducing penalties such as the MCP[59].

4.2.2 Mirror descent method

For the constrained problem (16) and the Euclidean norm ∥⋅∥2, the proximal gradient method takes the
form of projected gradient

xn+1 = argminx∈C

{
f (xn) + ⟨∇f (xn), x − xn⟩ + 1

2𝛼
∥x − xn∥2

2

}
= PC(xn − 𝛼∇f (xn))

(23)

This method relies heavily on the Euclidean geometry of ℝd, not C: ∥⋅∥2 = ⟨⋅, ⋅⟩. If the distance measure
1
2
∥ 𝐱 − 𝐲 ∥2

2 is replaced by something else (say d(𝐱, 𝐲)) that better reflects the geometry of C, then update
such as

xn+1 = Pd
C

(
arg min

x∈ℝd

{
f (xn) + ⟨∇f (xn), x − xn⟩ + 1

𝛼
d(x, xn)

})
(24)

may converge faster. Here,
Pd

C(𝐲) = argminx∈Cd(𝐱, 𝐲)

is a new (non-Euclidean) projection operator that reflects the geometry of C.
To see that iteration (24) is a Bregman majorization for an appropriately chosen d(⋅, ⋅), let

d(x, y) = B𝜓 (x ∥ y) = 𝜓(x) − 𝜓(y) − ⟨∇𝜓(y), x − y⟩ ≥ 1
2
∥ x − y∥2

for a 1-strongly convex (with respect to some norm ∥ ⋅ ∥) and continuously differentiable function 𝜓 in C,
and set 𝜙(x) = 1

𝛼
𝜓(x) − f (x). Similar to Equation (22), we have

f (x) + B𝜙(x ∥ xn) = f (xn) + ⟨∇f (xn), x − xn⟩
+ 1
𝛼
[𝜓(x) − 𝜓(xn) − ⟨∇𝜓(xn), x − xn⟩]

= f (xn) + ⟨∇f (xn), x − xn⟩ + 1
𝛼

d(x, xn)

Let x̃n+1 be the unconstrained minimizer of f (x) + B𝜙(x ∥ xn) (which is unique since d(x, xn) is strongly
convex in x). The associated optimality condition entails

∇𝜓(x̃n+1) = ∇𝜓(xn) − 𝛼∇f (xn) (25)
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Then,

xn+1 = argminx∈Cd(x, x̃n+1)
= argminx∈C{𝜓(x) − 𝜓(x̃n+1) − ⟨∇𝜓(x̃n+1), x − x̃n+1⟩}
= argminx∈C{𝜓(x) − ⟨∇𝜓(x̃n+1), x⟩}
= argminx∈C{𝜓(x) − ⟨∇𝜓(xn) − 𝛼∇f (xn), x − xn⟩}
= argminx∈C{f (x) + 𝜙(x) − ⟨∇𝜙(xn), x − xn⟩ − 𝜙(xn)}
= argminx∈C{f (x) + B𝜙(x ∥ xn)}

as sought. To establish iterate convergence via SUMMA, we see that just as the proximal gradient method,
f (x) and 𝜙(x) satisfy conditions (a) through (e) of Propositions 14 and 15 if f is L-smooth and 𝛼 ∈ (0, 1∕L).
In particular,

𝜙(x) = 1
𝛼
𝜓(x) − f (x) ≥ 1

2𝛼
∥ x∥2 − f (x)

to check condition (e). Condition (f ′) is fulfilled since B𝜙(x ∥ y) = 𝜙(x) − 𝜙(y) − ⟨∇𝜙(y), x − y⟩ is contin-
uous in y by construction.

Computation of xn+1 can be further analyzed. It is well known that if 𝜓 is 𝜇-strongly convex, then 𝜓∗ is
1∕𝜇-smooth, where 𝜓∗ is the Fenchel conjugate function of 𝜓 [55]:

𝜓∗(y) = sup
x∈dom𝜓

⟨x, y⟩ − 𝜙(x)
Hence, ∇𝜓∗ is well defined. Furthermore, ∇𝜓∗(∇𝜓(x)) = x. Therefore, the unconstrained optimality con-
dition (25) is equivalent to

x̃n+1 = ∇𝜓∗(∇𝜓(xn) − 𝛼∇f (xn))

and we decompose the update (24) into three steps:

yn+1 = ∇𝜓(xn) − 𝛼∇f (xn) (gradient step)
x̃n+1 = ∇𝜓∗(yn+1) (mirroring step)
xn+1 = Pd

C(x̃n+1) (projection step)

Hence, Bregman majorization with 𝜙(x) = 1
𝛼
𝜓(x) − f (x) coincides with the mirror descent method under

B𝜓 [60]. The first step performs the gradient descent step in the dual space∗ of , and the second step maps
the dual vector back to the primal space by the inverse mapping ∇𝜓∗ = (∇𝜓)−1. The final step projects (in
a non-Euclidean fashion) the mapped primal vector onto the constraint set C.

Example 3. (Exponentiated gradient). As a concrete instance of mirror descent, consider opti-
mization over probability simplex C = Δd−1 = {𝐱 ∈  = ℝd ∶

∑d
i=1 xi = 1, xi ≥ 0, i = 1, … , d}. An

appropriate Bregman divergence is the Kullback–Leibler divergence, that is, we use negative entropy
𝜓(x) =

∑d
i=1 xi log xi −

∑d
i=1 xi. It is easy to check, using the Taylor expansion and the Cauchy–Schwarz

inequality, that𝜓 is 1-strongly convex with respect to the𝓁1 norm ∥ x∥1 =
∑d

i=1 |xi|within C. Furthermore,
we have ∇𝜓(x) = (log x1, … , log xd)T =∶ log x and ∇𝜓∗(y) = (∇𝜙)−1(y) = (ey1 , … , eyd )T =∶ exp(y). The
mirror descent or Bregman MM update is then

yn+1 = log xn − 𝛼∇f (xn)
x̃n+1 = exp(yn) = xn ⊙ exp(−𝛼∇f (xn))
xn+1 = x̃n+1∕Zt
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where ⊙ denotes an elementwise product, and

Zt =
d∑

i=1
xn,i exp(−𝛼∇f (xn)i)

is the normalization constant. The last step is because

Pd
C(y) = argminx∈Δd−1 B𝜓 (x ∥ y)

= argmin
xi≥0,

d∑
i=1

xi=1

d∑
i=1

(
xi log

xi
yi

− xi + yi

)

= argmin
xi≥0,

d∑
i=1

xi=1

d∑
i=1

(
xi log

xi
yi

)
and the associated Lagrangian

(x, 𝜇) =
d∑

i=1

(
xi log

xi
yi

)
+ 𝜇

( d∑
i=1

xi − 1

)
yields

xi = yi exp(−𝜇 − 1) = cyi, i = 1, … , d

for some c > 0. Summing these over all i yields c = 1∕(
∑d

i=1 yi) to have

xi =
yi

d∑
j=1

yj

, i = 1, … , d

This special case is called the exponentiated gradient method[61, 62].
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