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Summary

Nan Laird has an enormous and growing impact on computational statistics. Her paper with
Dempster and Rubin on the expectation-maximisation (EM) algorithm is the second most cited pa-
per in statistics. Her papers and book on longitudinal modelling are nearly as impressive. In this
brief survey, we revisit the derivation of some of her most useful algorithms from the perspective
of the minorisation-maximisation (MM) principle. The MM principle generalises the EM principle
and frees it from the shackles of missing data and conditional expectations. Instead, the focus shifts
to the construction of surrogate functions via standard mathematical inequalities. The MM princi-
ple can deliver a classical EM algorithm with less fuss or an entirely new algorithm with a faster
rate of convergence. In any case, the MM principle enriches our understanding of the EM principle
and suggests new algorithms of considerable potential in high-dimensional settings where standard
algorithms such as Newton’s method and Fisher scoring falter.

Key words: EM algorithm; MM algorithm; variance component model; longitudinal data analysis.

1 INTRODUCTION

As of November 2021, the landmark paper on expectation-maximisation (EM) algorithms of
Dempster et al. (1977) is the second most cited paper across all of statistics, boasting a cumu-
lative count of 64,769 citations according to Google Scholar. This exposition explores varia-
tions of the algorithms derived by Dempster et al. (1977). These algorithms exemplify some
of the most fundamental ideas Nan Laird has contributed to or inspired in statistical science:
EM algorithms, the closely related minorisation-maximisation (MM) algorithms, and longitudi-
nal data analysis by mixed models (Garrett et al., 2004).

The MM and EM algorithms replace the objective function by a simpler surrogate function.
By design, optimising the surrogate function sends the objective function downhill in
minimisation and uphill in maximisation. In constructing the surrogate function for an EM al-
gorithm, statisticians rely on notions of missing data. The more general MM algorithm calls on
skills in inequalities and convex analysis. More often than not, concrete problems also involve
parameter constraints. Modern penalty methods incorporate the constraints by imposing penal-
ties on the objective function. A tuning parameter scales the strength of the penalties. In the
classical penalty method, the constrained solution is recovered as the tuning parameter tends
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to infinity. In the augmented Lagrangian method, the constrained solution emerges for a finite
value of the tuning parameter.
In the remaining sections, we adopt several notational conventions. Vectors and matrices ap-

pear in boldface type; for the most part parameters appear as Greek letters. The differential
df ðθÞ of a scalar-valued function f ðθÞ equals its row vector of partial derivatives; the transpose
∇f ðθÞ of the differential is the gradient. The second differential d2f ðθÞ is the Hessian matrix of
second partial derivatives. The Euclidean norm of a vector b and the spectral norm of a matrixA
are denoted by ‖b‖ and ‖A‖, respectively. All other norms will be appropriately subscripted. The
nth entry bn of a vector b must be distinguished from the nth vector bn in a sequence of vectors.
To maintain consistency,bni denotes the ith entry ofbn. A similar convention holds for sequences
of matrices. For symmetric matrices, the relation A⪯B means that B � A is positive
semidefinite.

2 THE EM AND MM ALGORITHMS

The numerical analysts Ortega & Rheinboldt (1970) first articulated the MM principle; de
Leeuw (1976) saw its potential and created the first MM algorithm of value in statistics. Build-
ing on earlier work of Weiszfeld (1937), Voß & Eckhardt (1980) illuminated some convergence
properties of MM algorithms. The MM principle currently enjoys its greatest vogue in compu-
tational statistics (Hunter & Lange, 2004; Lange et al., 2000; Lange, 2016). The basic idea is to
convert a hard optimisation problem into a sequence of simpler ones. In minimisation, the MM
principle majorises the objective function f ðθÞ by a surrogate function gðθjθnÞ anchored at the
current point θn. Majorisation combines the tangency condition gðθnjθnÞ ¼ f ðθnÞ and the dom-
ination condition gðθjθnÞ ≥ f ðθÞ for all θ. The next iterate of the MM algorithm is defined to
minimise gðθjθnÞ. Because

f ðθn þ 1Þ ≤ gðθn þ 1jθnÞ ≤ gðθnjθnÞ ¼ f ðθnÞ;

the MM iterates generate a descent algorithm driving the objective function downhill. Strictly
speaking, the descent property depends only on decreasing gðθjθnÞ , not on minimising it.
Constraint satisfaction is automatically enforced in finding θn þ 1. Under appropriate regularity
conditions, an MM algorithm is guaranteed to converge to a local minimum of the objective
function (Lange, 2010; Lange et al., 2021). In maximisation, we first minorise and then
maximise. Thus, the acronym MM does double duty in the forms majorise-minimise and
minorise-maximise.
When it is successful, the MM algorithm simplifies optimisation by (a) separating the vari-

ables of a problem, (b) avoiding large matrix inversions, (c) linearising a problem, (d) restoring
symmetry, (e) dealing with equality and inequality constraints gracefully, and (f) turning a
nondifferentiable problem into a smooth problem. The art in devising an MM algorithm lies
in choosing a tractable surrogate function gðθjθnÞ that hugs the objective function f ðθÞ as tightly
possible.
The majorisation relation between functions is closed under the formation of sums, nonneg-

ative products, limits, and composition with an increasing function. These rules allow one to
work piecemeal in simplifying complicated objective functions. Skill in dealing with inequal-
ities is crucial in constructing majorisations. Classical inequalities such as Jensen’s inequality,
the information inequality, the arithmetic-geometric mean inequality, and the
Cauchy–Schwartz inequality prove useful in many problems. The supporting hyperplane prop-
erty of a convex function and the quadratic upper bound principle (Böhning & Lindsay, 1988;
de Leeuw & Lange, 2009) also find wide application.
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The derivation of the EM principle hinges upon a missing data structure. Let f ðθÞ be the
log-likelihood of the observed data with parameter vector θ. In the E step, a surrogate function
QðθjθnÞ is calculated as the conditional expectation of the complete data log-likelihood given
the observed data and the current parameter iterate θn . Well-known calculations (Dempster
et al., 1977) based on the information inequality demonstrate that the Q function satisfies the
domination inequality

f ðθÞ ≥ QðθjθnÞ � QðθnjθnÞþf ðθnÞ

for all θ. The tangency condition obviously holds at θ ¼ θn. This effectively validatesQðθjθnÞ as
a minorisation of f ðθÞ up to an additive constant. Figure 1 displays the Q function of the EM
algorithm and the minorisation function of an MM algorithm for the variance component model
studied in Section 4. In this example, MM differs from EM, and the MM minorisation function
hugs the log-likelihood function tighter than the Q function of the EM algorithm, resulting in
faster convergence of MM than EM as depicted later in Figure 2.

3 MM ALGORITHMS FOR TRADITIONAL PROBLEMS

Convexity and concavity figure prominently in the construction of many MM algorithms.
The supporting hyperplane minorisation

f ðxÞ ≥ f ðxnÞþdf ðxnÞðx � xnÞ

of a convex function f ðxÞ is natural in many applications. For the choice f ðxÞ ¼ �lnðxÞ, this
reads

�ln x ≥ � lnxn � x � xn
xn

:

Figure 1. The Q function of EM and the corresponding MM surrogate minorise the log-likelihood surface of a univariate
response, two variance component model at the point ð18:5; 0:7Þ . In this example, the MM surrogate hugs the
log-likelihood surface tighter than the EM surrogate
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Jensen’s inequality is instrumental in majorising composite functions of the form f ½uðxÞþvðxÞ�,
where f ðyÞ is convex and u and v are positive functions of some underlying parameter vector x. In
practice, it is often convenient to split the contributions of u and v . The majorisation (De
Pierro, 1993)

f ðuþ vÞ ≤ un
un þ vn

f
un þ vn

un
u

� �
þ vn
un þ vn

f
un þ vn

vn
v

� �
(1)

achieves this goal. Equality clearly holds whenever ðu; vÞ ¼ ðun; vnÞ . For the special case
f ðxÞ ¼ �ln x, the minorisation

lnðuþ vÞ ≥ un
un þ vn

ln uþ vn
un þ vn

ln vþ cn

relies on a constant cn depending only on ðun; vnÞ . This minorisation is handy in splitting
log-likelihoods in maximum likelihood estimation with mixture models. It extends to from
two to multiple summands. Armed with these ideas, we now explore four examples.

Example Power Series Distributions

A random variableX concentrated on an interval ½r; ∞Þ of nonnegative integers is said to have
a power series distribution if PrðX ¼ kÞ ¼ ckθk

qðθÞ for all k ∈ ½r; ∞Þ. In this definition, θ is a pos-

itive parameter, the coefficients ck are nonnegative, and qðθÞ ¼ ∑∞k¼rckθ
k is the appropriate nor-

malising constant (Rao, 1973). Examples include the binomial, negative binomial, Poisson, and
logarithmic families and versions of these families truncated at any nonnegative number r, es-

pecially r ¼ 1. For example, the negative binomial distribution has ck ¼ j þ k � 1

k

� �
and

Figure 2. MM algorithm converges faster than EM for a multi-response variance component model with d ¼ 4 responses for
m ¼ 500 subjects, k ¼ 3 variance components, and p ¼ 3 fixed effect covariates. L⋆ � Ln indicates the difference in
log-likelihood between the found MLE and the nth iterate. EM and MM algorithms start from the same point in each of
the 100 simulation replicates
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qðθÞ ¼ ð1 � θÞ�j for r ¼ 0 under no truncation. If x1; …; xm is a random sample from the
power series density and qðθÞ is log-concave, then the log-likelihood of the data is minorised,
via the supporting hyperplane inequality, by

LðθÞ ≥ ∑
m

i¼1
xiln θ � m ln qðθnÞ � m½ln qðθnÞ�0ðθ � θnÞþcn

¼ ∑
m

i¼1
xiln θ � m ln qðθnÞ � m

q0ðθnÞ
qðθnÞ ðθ � θnÞþcn;

where cn is a constant independent of θ. Setting the derivative of this surrogate function equal to
0 leads to the MM update

θn þ 1 ¼ xqðθnÞ
q0ðθnÞ ;

where x is the sample average of the observations xi. Anderson et al. (2007) derive a straight-
forward test for log-concavity of qðθÞ. Namely, if the coefficients ck are positive and the ratio
ðk þ 1Þck þ 1=ck is decreasing in k , then qðθÞ is log-concave. The negative binomial fails this
test, but the Poisson and binomial distributions qualify. These ideas are pursued in more depth
by Wu & Lange (2010). □

Example Cauchy Location and Scale

The Cauchy density with location μ and scale σ can be written as

f ðxÞ ¼ 1

πσ 1þ x � μ
σ

� �2h i:

The usual approach to maximum likelihood estimation of μ and σ involves finding the roots of
polynomials of degree 2m � 1 and 2m, respectively, for m sample points x1; …; xm. However,
this process tends to be complicated by the existence of multiple local maxima. From the MM
perspective, one can exploit the convexity of the function hðyÞ ¼ �logð1þ yÞvia the supporting
hyperplane minorisation. If we substitute x � μ

σ

� �2
for y, then the log-likelihood is minorised by

Lðμ; σÞ ≥ �m log σ � ∑
m

i¼1
wni

xi � μ
σ

� �2
þ cn

wni ¼ 1

1þ xi � μn

σn

� �2

at iteration n, where cn is an irrelevant constant. The MM algorithm for estimating μ and σ now
reduces to weighted least squares with updates

μn þ 1 ¼
∑
m

i¼1
wnixi

∑
m

i¼1
wni

and σn þ 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ∑

m

i¼1
wni xi � μn þ 1

� �2
m

vuut
:
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These updates stably increase the likelihood at each iteration. The median of the xi serves as a
starting value for μ. As recommended by Wikipedia, half the sample inter-quartile range is a
reasonable starting value for σ. This example is a special case of the broader algorithm discussed
in the next example. □

Example Elliptically Symmetric Distributions

An elliptically symmetric probability density takes the form

f ðyÞ ¼ e�
1
2κðδ2Þ

ð2πÞp2ðdetΩÞ12
;

where y ∈ ℝp and δ2 ¼ ðy � μÞ∗Ω�1ðy � μÞ denotes the Mahalanobis distance between y
and μ. Here, we assume that the function κðsÞ is strictly increasing and strictly concave and
that the matrix Ω is positive definite. Such densities serve as substitutes for the multivariate
normal distribution in robust estimation (Huber, 2004; Lange et al., 1989; Lange &
Sinsheimer, 1993).
Dutter and Huber (Huber, 2004) introduced an MM algorithm driven by the affine

majorisation

κðtÞ ≤ κðtnÞþκ0ðtnÞðt � tnÞ:

If y1; …; ym is a random sample from the density (3), then the multivariate normal
log-likelihood

gðθjθnÞ ¼ �1

2
∑
m

i¼1
½wniδ2i ðθÞþln detΩ�þcn

with weights wni ¼ κ0½δ2i ðθnÞ� and irrelevant constant cn minorises the log-likelihood of the data
under the elliptically symmetric density. The array of techniques from linear algebra for estimat-
ing the parameters of a multivariate normal distribution can be brought to bear on maximising
gðθjθnÞ . For normal/independent distributional families such as the multivariate t , the
Dutter–Huber algorithm reduces to an EM algorithm (Dempster, 1980; Lange &
Sinsheimer, 1993). Given an unstructured mean vector and covariance matrix, the MM updates
(Lange et al., 1989; Lange & Sinsheimer, 1993; Little & Rubin, 2019) are

μn þ 1 ¼
1

sn
∑
m

i¼1
wniyi

Ωn þ 1 ¼ 1

m
∑
m

i¼1
wniðyi � μn þ 1Þðyi � μn þ 1Þ ⊤ ;

where sn ¼ ∑mi¼1wni is the sum of the case weights. For the multivariate t, Kent et al. (1994) sug-
gest a faster algorithm that replaces the update of Ω by

Ωn þ 1 ¼ 1

sn
∑
m

i¼1
wniðyi � μn þ 1Þðyi � μn þ 1Þ ⊤ :

Meng & Van Dyk (1997) justify this amendment within the EM framework.
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Example EM for Mixture Models

Many naive data scientists conflate the EM principle with the EM algorithm for normal mix-
tures. This level of ignorance is testimony to the importance of this special case. Dempster
et al. (1977) review the history of the EM clustering algorithm and demonstrate that it possesses
the critical ascent property. The EM algorithm makes soft cluster assignments in contrast to the
hard assignments of k-means clustering. The alternative of soft choices is possible with admix-
ture models (McLachlan & Krishnan, 2007; Mengersen et al., 2011). An admixture probability
density hðyÞ can be written as a convex combination

hðyÞ ¼ ∑
k

j¼1
πjhjðyÞ;

where the πj are nonnegative probabilities that sum to 1 and hjðyÞ is the probability density of
group j.

Suppose the observations y1; …; ym represent a random sample from the admixture den-
sity (3). In practice, we want to estimate the admixture proportions πj and whatever further pa-
rameters θ characterise the densities hjðyjθÞ. An EM algorithm is natural in this context with
group membership as the missing data (Dempster et al., 1977). The EM updates can be derived
by invoking the Jensen minorisation (3) for each observation yi in the form

ln ∑
k

j¼1
πjhjðyijθÞ

	 

≥ ∑

k

j¼1
wnij½lnπj þ lnhjðyijθÞ�þcn;

where cn is an irrelevant constant and wnij is the posterior probability that yi belongs to cluster j
given the current admixture vector πn and density vector θn. Fortunately, this minorisation sep-
arates the π parameters from the θ parameters. The problem of maximising the objective
∑kj¼1djln πj for dj ¼ ∑mi¼1wnij is standard with intuitive solution πn þ 1; j ¼ dj=m. Updating the re-
maining parameters is possible for elliptically symmetric distributions as discussed in the previ-
ous example. This involves a second minorisation, which is often ill advised because it
generates slowing converging algorithms. It is viable here if we employ a common scale matrix
across the groups and the Kent et al. (1994) acceleration for the multivariate t. □

4 MULTI-RESPONSE VARIANCE COMPONENT MODELS

In this example, we contrast the derivations of an EM algorithm and an MM algorithm for the
multi-response variance component model. This model involves an m� d response matrix Y
with mean EðYÞ ¼ XB and covariance

Ω ¼ CovðvecYÞ ¼ ∑
k

j¼1
Γ j⊗V j:

The p� d coefficient matrixB collects the fixed effects, the d � d covariance matrices Γ j collect
the unknown variance components, and the m� m covariance matrices V j collect the known
variance components. When the vector vecY is normally distributed, Y equals a sum of inde-
pendent matrix normal distributions (Gupta & Nagar, 1999). We now make this assumption
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and pursue estimation of B and the Γ j, which we collectively denote as Γ. Under the normality
assumption, Roth’s Kronecker product identity vecðCDEÞ ¼ ðE ⊤ ⊗CÞvecðDÞ yields the
log-likelihood

LðB; ΓÞ ¼ �1

2
ln detΩ � 1

2
ðvecY � ZvecBÞ ⊤ Ω�1ðvecY � ZvecBÞ; (2)

where Z ¼ Id⊗X .

4.1 MM Derivation

UpdatingB givenΓn is accomplished by solving the general least squares problem met earlier
in the univariate case. Updating Γ j given Bn is difficult due to the positive semidefiniteness con-
straint. Typical solutions involve reparameterization of the covariance matrix (Pinheiro &
Bates, 1996). TheMMalgorithm derived in this section gracefully accommodates this constraint.
Updating Γ given B requires two minorisations. The convexity of the function �ln detΩ im-

plies the supporting hyperplane minorisation

�1

2
ln detΩ ≥ � 1

2
ln detΩn � 1

2
tr½Ω�1

n ðΩ � ΩnÞ�: (3)

We must also generalise Jensen’s majorisation (1). This is accomplished by noting that the
function

f ðX ; MÞ ¼
1

2
v∗X∗M�Xv Xv ∈ RangeðMÞ
∞ Xv ∉ RangeðMÞ

8<
:

is convex for v fixed, where M is positive semidefinite, X is conformable to M, and M� is the
pseudo-inverse of M (Lange, 2016). Given this fact and the identities ðA⊗BÞðC⊗DÞ ¼
ðACÞ⊗ðBDÞ, ðA⊗BÞ�1 ¼ A�1⊗B�1, and AA�1A ¼ A, we have

ΩnΩ�1Ωn ¼ k
1

k
∑
k

j¼1
Γnj⊗V j

	 

1

k
∑
k

i¼1
Γ j⊗V j

	 
�1 1

k
∑
k

i¼1
Γnj⊗V j

	 


≼ k ∑
k

j¼1

1

k
ðΓnj⊗V jÞðΓ j⊗V jÞ�1ðΓnj⊗V jÞ

¼ ∑
k

j¼1
ðΓnjΓ�1

j ΓnjÞ⊗V j;

or equivalently

Ω�1≼Ω�1
n ∑

k

j¼1
ðΓnjΓ�1

j ΓnjÞ⊗V j

	 

Ω�1

n : (4)

This derivation relies on the invertibility of the matricesV j. One can relax this assumption by
substituting V ϵ; j ¼ V j þ ϵIm for V j and sending ϵ to 0.
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Up to an irrelevant constant, the majorisations (3) and (4) jointly yield the surrogate

gðΓ jΓn1; …; ΓnkÞ

¼ �1

2
∑
k

j¼1
tr½Ω�1

n ðΓ j⊗V jÞ�þvecðRnÞ ⊤ ½ðΓnjΓ�1
j ΓnjÞ⊗V j�vecðRnÞ

n o
;

where Rn is the m� d matrix satisfying

vecðRnÞ ¼ ΩnvecðY � XBnÞ: (5)

The first trace here is linear in Γ j and can be expressed as

tr½Ω�1
n ðΓ j⊗V jÞ� ¼ trðMnjΓ jÞ

Mnj ¼ ðId⊗1mÞ ⊤ ½ð1d1 ⊤
d ⊗V jÞ⊙Ω�1

n �ðId⊗1mÞ;
(6)

where⊙ takes the Hadamard (pointwise) product of two matrices. To prove this fact, note that if
ðΩ�1

n Þrs is the ðr; sÞth m� m block of Ω�1
n , then the coefficient of the entry ðΓ jÞrs is equal to

tr½ðΩ�1
n ÞrsV j� ¼ 1 ⊤

m ½V j⊙ðΩ�1
n Þrs�1m:

Furthermore, ðId⊗1mÞ is a diagonal block matrix with each diagonal block equal to 1m , and
ð1d1 ⊤

d ⊗V jÞ is a block matrix with all blocks equal to V j.
The second trace of gðΓ jΓnÞ simplifies owing to the Kronecker identities vecðCDEÞ ¼

ðE ⊤ ⊗CÞvecðDÞ and vecðAÞ ⊤ vecðBÞ ¼ trðA ⊤ BÞ . It follows that the surrogate can be
rewritten as

gðΓ jΓn1; …; ΓnkÞ

¼ �1

2
∑
k

j¼1
tr½Ω�1

n ðΓ j⊗V jÞ�þtrðR ⊤
n V jRnΓnjΓ�1

j Γ ⊤
nj Þ

n o

¼ �1

2
∑
k

j¼1
trðMnjΓ jÞþtrðΓ ⊤

nj R ⊤
n V jRnΓnjΓ�1

j Þ
n o

:

(7)

The directional derivative of gðΓ jΓn1; …; ΓnkÞ with respect to Γ j in the direction Δj is

�1

2
trðMnjΔjÞþ1

2
trðΓ ⊤

nj R ⊤
n V jRnΓnjΓ�1

j ΔjΓ�1
j Þ

¼ �1

2
trðMnjΔjÞþ1

2
trðΓ�1

j ΓnjR
⊤
n V jRnΓnjΓ�1

j ΔjÞ:

Because all directional derivatives of the surrogate vanish at a stationary point, the matrix
equation

Mnj ¼ Γ�1
j ΓnjR

⊤
n V jRnΓnjΓ�1

j (8)

holds. Fortunately, this equation admits an explicit solution. For positive scalers a and b, the
solution to the equation b ¼ x�1ax�1 is x ¼ ±

ffiffiffiffiffiffiffiffi
a=b

p
. The matrix analogue of this equation is

the Riccati equation B ¼ X�1AX�1, whose solution is summarised in the next lemma.
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Lemma 1. Assume A and B are positive definite and L is the Cholesky factor of B. Then Y ¼
ðL�1Þ ⊤ ðL ⊤ ALÞ1=2L�1 is the unique positive definite solution to the matrix equation B ¼
X�1AX�1.

The Cholesky factor L in Lemma 4.1 can be replaced by the symmetric square root of B. The
solution, which is unique, remains the same. The Cholesky decomposition is preferred for its
cheaper computational cost and better numerical stability.
Algorithm 1 summarises the MM algorithm for fitting the multi-response model (1). Each it-

eration invokes k Cholesky decompositions and symmetric square roots of d � d positive def-
inite matrices. Fortunately in most applications, d is a small number.

4.2 EM Derivation

The landmark paper (Dempster et al., 1977) by Nan Laird and co-authors features the EM
derivation for variance component models with univariate response. Later extensions to multi-
variate responses include Reinsel (1984) and Glanz & Carvalho (2018). We give a
self-contained derivation here for ease of comparison with the MM algorithm. Derivation of
the EM algorithm hinges upon the missing data and conditional expectation. If the response ma-
trixY can be written as the sumY ¼ XBþ Z1 þ…þ Zk of independent random matrices with

vecZ j ∼ Nð0; ΩjÞ, then vecY ∼ NðvecðXβÞ; ΩÞ, where Ω ¼ ∑
k

j¼1
Ωj . Under the matrix normal

assumption, Ωj ¼ Γ j⊗V j. The complete data log-likelihood for the unobserved Z j is

�1

2
∑
k

j¼1
lndetþΩj � 1

2
∑
k

j¼1
ðvecZ jÞTΩþ

j ðvecZ jÞ;

where detþΩj denotes the pseudo-determinant of Ωj and Ωþ
j the pseudo-inverse of Ωj. To com-

pute the surrogate function for the EM algorithm, one needs the conditional expectations
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Enj ¼ EðvecZ jjY ; θnÞ ¼ ΩnjΩ�1
n vecðY � XBnÞ

and the conditional covariances

Fnj ¼ CovðvecZ jjY ; θnÞ ¼ Ωnj � ΩnjΩ�1
n Ωnj;

where θ is the parameter vector. These are employed to compute the conditional second
moments

Gnj ¼ E½ðvecZ jÞðvecZ jÞ ⊤ jY ; θn� ¼ Fnj þ EnjðEnjÞ ⊤ :

Here, the random vector Z j should be replaced by Zk � XBn when j ¼ k.
One can readily check that Ωþ

j ¼ Γþ
j ⊗Vþ

j ¼ Γ�1
j ⊗Vþ

j for Γ j invertible. Because the
pseudo-determinant of a positive semidefinite matrix equals the product of its positive eigen-
values, the formulas

detþΩj ¼ ðdetΓ jÞriðdetþ V jÞsi
lndetþΩj ¼ rjln detΓ j þ silndet

þ V j

apply, where rj ¼ rankðVþ
j Þ and sj ¼ rankðΓþ

j Þ. In the M step of the EM algorithm, one max-
imises the surrogate

�1

2
∑
k

j¼1
rjln detΓ j � 1

2
∑
k

j¼1
tr½ðΓ�1

j ⊗Vþ
j ÞGnj�: (9)

ForΓ j unstructured, we substituteΛj ¼ Γ�1
j and maximise with respect toΛj. Fortunately, the

next lemma can be invoked.
Lemma 2. If the matrices A; B, and C are d � d; m� m, and dm� dm respectively, then

tr½ðA⊗BÞC ⊤ � ¼ trfðId⊗1mÞ ⊤ ½ð1d1 ⊤
d ⊗BÞ⊙C�ðId⊗1mÞA ⊤ g:

Proof This trace identity is essentially proved in our derivation of the corresponding MM algo-
rithm in Section 4.1.

□
Lemma 4.2 yields

tr½ðΛj⊗Vþ
j ÞGðtÞ

j � ¼ trfðId⊗1mÞ ⊤ ½ð1d1 ⊤
d ⊗Vþ

j Þ⊙GðtÞ
j �ðId⊗1mÞΛjg:

The stationarity condition

0 ¼ 1

2
rjΛ�1

j � 1

2
ðId⊗1mÞ ⊤ ½ð1d1 ⊤

d ⊗Vþ
j Þ⊙GðtÞ

j �ðId⊗1mÞ

now entails the update
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Γn þ 1; j ¼ r�1
j ðId⊗1mÞ ⊤ ½ð1d1 ⊤

d ⊗Vþ
j Þ⊙Gnj�ðId⊗1mÞ

¼ Γnj � r�1
j ΓnjMnjΓnj þ r�1

j ΓnjR ⊤
n V jRnΓnj;

(10)

where Mnj is the d � d matrix defined by (6) and Rn is the m� d matrix defined by (5). The
second equation invokes the identities V jVþ

j V j ¼ V j; trðV jVþ
j Þ ¼ rankðV jÞ , and the cyclic

permutation property of the trace.
In the case k ¼ 1, the single update reduces to

Γn þ 1 ¼ 1

r
ðY � XBnÞ ⊤ VþðY � XBnÞ;

which matches the earlier result of Glanz & Carvalho (2018). When Γ j is the scalar σ2j , the up-
date (10) reduces to the classical update (Dempster et al., 1977)

σ2n þ 1; j ¼ σ2n; j �
σ4n; j
rj

trðΩ�1
n V jÞ � ðy � XβnÞ ⊤ Ω�1

n V jΩ�1
n ðy � XβnÞ

h i
:

Algorithm 2 summarises the EM algorithm for fitting the multi-response model (2). The addi-
tive update of Γ j in the EM algorithm differs markedly from the multiplicative update in the
MM algorithm. The computational cost of each EM iteration is similar to that of MM. Both
are dominated by the inversion of the md � md covariance matrix Ωn.
For the univariate response case d ¼ 1, Zhou et al. (2019) show that the MM algorithm

enjoys a faster convergence rate than EM. Here, we verify the same behaviour empirically for
a variance component model with d ¼ 4 responses for m ¼ 500 subjects, k ¼ 3 variance com-
ponents, and p ¼ 3 fixed effect covariates. We start both algorithms from the same initial point
in each of 100 simulation replicates. Figure 2 shows that MM algorithm converges faster than
EM in all replicates.
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4.3 A Problem Involving a Moore–Penrose Inverse

The derivations so far assume that the variance components Γ j are unstructured covariance
matrices with kdðd þ 1Þ=2 parameters. Under a limited sample size, Γ j cannot be estimated re-
liably, especially when the numbers of responses d and variance components k are large. A more
parsimonious model imposes a low rank structure on allΓ j except that associated withV k ¼ Im.
Then maximising the MM surrogate function (7) boils down to the problem of minimising

trðMXÞþtrðNXþÞ;

whereM andN are known d � d positive definite matrices andX is a positive semidefinite d � d
matrix of rank r ≤ d. Denote the thin eigendecompositionX ¼ UΣU ⊤ , whereU ⊤ U ¼ I r and
Σ ¼ diagðσ1; …; σrÞ with σi > 0. We first determine the optimal eigenvalues σi and then ei-
genvectors U . The objective is

trðU ⊤ MUΣÞþtrðU ⊤ NUΣþÞ
¼ trðAΣÞþtrðBΣþÞ
¼ ∑

r

i¼1
σiaii þ ∑

r

i¼1
σ�1
i bii;

where A ¼ U ⊤ MU ; B ¼ U ⊤ NU . Setting the derivatives to zero yields the optimal eigen-
values σi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
bii=aii

p
.

Now the task is to minimise

f ðUÞ ¼ 2 ∑
r

i¼1

ffiffiffiffiffiffiffiffiffi
aiibii

p
¼ 2 ∑

r

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u ⊤
i Muiu ⊤

i Nui

q

under the orthogonality constraint U ⊤ U ¼ I r , which is subject to a suite of algorithms for
manifold optimisation such as Manopt (Boumal et al., 2014) or a simple projected gradient de-
scent algorithm. We record the gradient as

∇ui f ðUÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u ⊤
i Nui

u ⊤
i Mui

s
Mui þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u ⊤
i Mui
u ⊤
i Nui

s
Nui:

Alternatively, split variables by replacingU by A andU ⊤ by B ⊤ . Then impose the constraints
A ¼ B and B ⊤ A ¼ I r. The penalised objective

trðB ⊤ MAΣÞþtrðB ⊤ NAΣþÞþρ
2
‖B ⊤ A � I r‖2F þ ρ

2
‖A � B‖2F

for ρ > 0 large has differential with respect to A of

ΣB ⊤ M þ ΣþB ⊤ N þ ρðB ⊤ A � I rÞ ⊤ B ⊤ þ ρðA � BÞ ⊤ :

Set this equal to 0 and solve for A in the form

S64 LANGE AND ZHOU

International Statistical Review (2022), 90, S1, S52–S66
© 2022 International Statistical Institute.

 17515823, 2022, S1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12526 by U

niversity of C
alifornia - L

os A
nge, W

iley O
nline L

ibrary on [20/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A ⊤ ¼ �ðρ�1ΣB ⊤ M þ ρ�1ΣþB ⊤ N � 2B ⊤ ÞðId þ BB ⊤ Þ�1:

A similar update holds for B.

5 DISCUSSION

The senior (citizen) author of this paper remembers being mesmerised by Nan Laird’s EM
seminar at UCLA in the late 1970s. Nan opened an entirely new toolbox of optimisation. The
beautiful abstraction and generality of the EM principle has served the statistics community
well for decades. The principle is capable of generating maximum likelihood algorithms moti-
vated by intermediate quantities of natural statistical interest. It is worth stressing that EM and
Fisher scoring are unique contributions by statisticians to optimisation practice. However, there
is no panacea in optimisation. Each problem class presents unique challenges and deserves to be
attacked from a variety of perspectives. Often hybrid algorithms work best.
The MM principle distils the essence of EM and frees it from the sometimes elusive notion of

missing data. As we have witnessed, EM and MM algorithms for the same problem do not nec-
essarily coincide. When they differ, their rates of convergence and computational complexity
can also differ. Our exposition of EM and MM algorithms for variance component models illus-
trates these points. In this case, the MM algorithm appears faster.
The current paper offers, at best, a snapshot of the current state of the MM art. New applica-

tions are in the pipeline. Our recent research on constrained optimisation shows how the MM
principle, set projection, and the Courant penalty method can cooperate to solve constrained
problems involving nonconvexity and sparsity (Chi et al., 2014; Keys et al., 2019; Landeros
et al., 2022; Xu et al., 2017). Many challenges remain in theory, numerical practice, and soft-
ware development. Fortunately, current researchers stand on the shoulders of giants such as
Nan Laird and Jan de Leeuw in attacking these issues. We are profoundly grateful to Nan for
her many advances in computational statistics. Only a handful of statisticians can claim a legacy
of such distinction.
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