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Summary

Nan Laird has an enormous and growing impact on computational statistics. Her paper with
Dempster and Rubin on the expectation-maximisation (EM) algorithm is the second most cited pa-
per in statistics. Her papers and book on longitudinal modelling are nearly as impressive. In this
brief survey, we revisit the derivation of some of her most useful algorithms from the perspective
of the minorisation-maximisation (MM) principle. The MM principle generalises the EM principle
and frees it from the shackles of missing data and conditional expectations. Instead, the focus shifts
to the construction of surrogate functions via standard mathematical inequalities. The MM princi-
ple can deliver a classical EM algorithm with less fuss or an entirely new algorithm with a faster
rate of convergence. In any case, the MM principle enriches our understanding of the EM principle
and suggests new algorithms of considerable potential in high-dimensional settings where standard
algorithms such as Newton’s method and Fisher scoring falter.
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1 INTRODUCTION

As of November 2021, the landmark paper on expectation-maximisation (EM) algorithms of
Dempster et al. (1977) is the second most cited paper across all of statistics, boasting a cumu-
lative count of 64,769 citations according to Google Scholar. This exposition explores varia-
tions of the algorithms derived by Dempster et al. (1977). These algorithms exemplify some
of the most fundamental ideas Nan Laird has contributed to or inspired in statistical science:
EM algorithms, the closely related minorisation-maximisation (MM) algorithms, and longitudi-
nal data analysis by mixed models (Garrett et al., 2004).

The MM and EM algorithms replace the objective function by a simpler surrogate function.
By design, optimising the surrogate function sends the objective function downhill in
minimisation and uphill in maximisation. In constructing the surrogate function for an EM al-
gorithm, statisticians rely on notions of missing data. The more general MM algorithm calls on
skills in inequalities and convex analysis. More often than not, concrete problems also involve
parameter constraints. Modern penalty methods incorporate the constraints by imposing penal-
ties on the objective function. A tuning parameter scales the strength of the penalties. In the
classical penalty method, the constrained solution is recovered as the tuning parameter tends
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to infinity. In the augmented Lagrangian method, the constrained solution emerges for a finite
value of the tuning parameter.

In the remaining sections, we adopt several notational conventions. Vectors and matrices ap-
pear in boldface type; for the most part parameters appear as Greek letters. The differential
df (0) of a scalar-valued function /(@) equals its row vector of partial derivatives; the transpose
V£ () of the differential is the gradient. The second differential @/ () is the Hessian matrix of
second partial derivatives. The Euclidean norm of a vector b and the spectral norm of a matrix 4
are denoted by ||b|| and ||4]|, respectively. All other norms will be appropriately subscripted. The
nth entry b, of a vector b must be distinguished from the nth vector b,, in a sequence of vectors.
To maintain consistency, b,; denotes the ith entry of b,,. A similar convention holds for sequences
of matrices. For symmetric matrices, the relation A<B means that B — A is positive
semidefinite.

2 THE EM AND MM ALGORITHMS

The numerical analysts Ortega & Rheinboldt (1970) first articulated the MM principle; de
Leeuw (1976) saw its potential and created the first MM algorithm of value in statistics. Build-
ing on earlier work of Weiszfeld (1937), Vo3 & Eckhardt (1980) illuminated some convergence
properties of MM algorithms. The MM principle currently enjoys its greatest vogue in compu-
tational statistics (Hunter & Lange, 2004; Lange et al., 2000; Lange, 2016). The basic idea is to
convert a hard optimisation problem into a sequence of simpler ones. In minimisation, the MM
principle majorises the objective function (@) by a surrogate function g(€|6,) anchored at the
current point #,. Majorisation combines the tangency condition g(6,|0,) = f(6,) and the dom-
ination condition g(0|6,) > (@) for all #. The next iterate of the MM algorithm is defined to
minimise g(6|@,). Because

J0r 1) =8(0,+110,) = 2(0,0,) = [(6n),

the MM iterates generate a descent algorithm driving the objective function downhill. Strictly
speaking, the descent property depends only on decreasing g(6|6,), not on minimising it.
Constraint satisfaction is automatically enforced in finding 8, . ;. Under appropriate regularity
conditions, an MM algorithm is guaranteed to converge to a local minimum of the objective
function (Lange, 2010; Lange et al., 2021). In maximisation, we first minorise and then
maximise. Thus, the acronym MM does double duty in the forms majorise-minimise and
minorise-maximise.

When it is successful, the MM algorithm simplifies optimisation by (a) separating the vari-
ables of a problem, (b) avoiding large matrix inversions, (c) linearising a problem, (d) restoring
symmetry, (e) dealing with equality and inequality constraints gracefully, and (f) turning a
nondifferentiable problem into a smooth problem. The art in devising an MM algorithm lies
in choosing a tractable surrogate function g(@|6,) that hugs the objective function /(@) as tightly
possible.

The majorisation relation between functions is closed under the formation of sums, nonneg-
ative products, limits, and composition with an increasing function. These rules allow one to
work piecemeal in simplifying complicated objective functions. Skill in dealing with inequal-
ities is crucial in constructing majorisations. Classical inequalities such as Jensen’s inequality,
the information inequality, the arithmetic-geometric mean inequality, and the
Cauchy—Schwartz inequality prove useful in many problems. The supporting hyperplane prop-
erty of a convex function and the quadratic upper bound principle (Béhning & Lindsay, 1988;
de Leeuw & Lange, 2009) also find wide application.
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S54 LANGE AND ZHOU

The derivation of the EM principle hinges upon a missing data structure. Let /(@) be the
log-likelihood of the observed data with parameter vector 6. In the E step, a surrogate function
0(0)0,) is calculated as the conditional expectation of the complete data log-likelihood given
the observed data and the current parameter iterate 6,. Well-known calculations (Dempster
et al., 1977) based on the information inequality demonstrate that the O function satisfies the
domination inequality

f(ﬂ) 2 Q(0|0n) - Q(0n|0n>+f<0n)

for all @. The tangency condition obviously holds at @ = 6,. This effectively validates O(0|0,) as
a minorisation of /(@) up to an additive constant. Figure 1 displays the Q function of the EM
algorithm and the minorisation function of an MM algorithm for the variance component model
studied in Section 4. In this example, MM differs from EM, and the MM minorisation function
hugs the log-likelihood function tighter than the Q function of the EM algorithm, resulting in
faster convergence of MM than EM as depicted later in Figure 2.

3 MM ALGORITHMS FOR TRADITIONAL PROBLEMS

Convexity and concavity figure prominently in the construction of many MM algorithms.
The supporting hyperplane minorisation

() = f(x0)+df (x)(x — x)

of a convex function f'(x) is natural in many applications. For the choice f(x) = —In(x), this
reads

X — X
—lnx> — Inx, — z
Xn

1 19.0

Figure 1. The Q function of EM and the corresponding MM surrogate minorise the log-likelihood surface of a univariate
response, two variance component model at the point (18.5,0.7). In this example, the MM surrogate hugs the
log-likelihood surface tighter than the EM surrogate
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Figure 2. MM algorithm converges faster than EM for a multi-response variance component model with d = 4 responses for
m = 500 subjects, k =3 variance components, and p =3 fixed effect covariates. L* — L, indicates the difference in
log-likelihood between the found MLE and the nth iterate. EM and MM algorithms start from the same point in each of
the 100 simulation replicates

Jensen’s inequality is instrumental in majorising composite functions of the form f[u(x)+v(x)],
where f () is convex and u and v are positive functions of some underlying parameter vectorx. In
practice, it is often convenient to split the contributions of u and v. The majorisation (De
Pierro, 1993)

U, U, + v, Vi Up + Vy
u+v) < f u)+ f v I
f( ) Uy + an < Uy > u, + VnJ ( Vn > M
achieves this goal. Equality clearly holds whenever (u, v) = (u,, v,). For the special case
f(x) = —Inx, the minorisation

In(u + v) ELlnuij—"lnv%—cn
U, + v, u, + v,

relies on a constant ¢, depending only on (u,, v,). This minorisation is handy in splitting
log-likelihoods in maximum likelihood estimation with mixture models. It extends to from
two to multiple summands. Armed with these ideas, we now explore four examples.

Example Power Series Distributions

A random variable X concentrated on an interval [r, «) of nonnegative integers is said to have
3

e crt . . .
a power series distribution if Pr(X = k) = % for all k € [r, ). In this definition, 8 is a pos-
q
itive parameter, the coefficients ¢, are nonnegative, and g(6) = Z,fzrckﬁk is the appropriate nor-
malising constant (Rao, 1973). Examples include the binomial, negative binomial, Poisson, and
logarithmic families and versions of these families truncated at any nonnegative number r, es-

+k — 1
pecially » = 1. For example, the negative binomial distribution has ¢; = (J * i > and
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S56 LANGE AND ZHOU

q(0) = (1 — 6)™ for r = 0 under no truncation. If x;, ..., x,, is a random sample from the
power series density and ¢(#) is log-concave, then the log-likelihood of the data is minorised,
via the supporting hyperplane inequality, by

LO)> Txing — ming(6,) — ming(0,)](0 — 0,)+c
i=1

q'(0n)
q(0n)

= Ex,ln@ — mlng(0,) — m (@ — 0,)+cn,
i=1

where ¢, is a constant independent of 0. Setting the derivative of this surrogate function equal to
0 leads to the MM update

where X is the sample average of the observations x;. Anderson et al. (2007) derive a straight-
forward test for log-concavity of ¢(6). Namely, if the coefficients ¢ are positive and the ratio
(k+ 1)ck + 1/ck is decreasing in &, then ¢(60) is log-concave. The negative binomial fails this
test, but the Poisson and binomial distributions qualify. These ideas are pursued in more depth
by Wu & Lange (2010). O

Example Cauchy Location and Scale

The Cauchy density with location x and scale o can be written as

B 1
e o [l + (%)2]

The usual approach to maximum likelihood estimation of x and ¢ involves finding the roots of
polynomials of degree 2m — 1 and 2m, respectively, for m sample points xi, ..., x,,. However,
this process tends to be complicated by the existence of multiple local maxima. From the MM
perspective, one can exploit the convexity of the function z(y) = —log(1 + y) via the supporting

hyperplane minorisation. If we substitute (u)z for y, then the log-likelihood is minorised by

o

m . 2
L(y,0)> —mlogo — Zw,,,-(x' M) + ¢,
i=1 o

=

1

2
1 + <xi - lun>
O-n
at iteration n, where ¢, is an irrelevant constant. The MM algorithm for estimating 4 and o now
reduces to weighted least squares with updates

Wni =

i
Hpy1 =

I3

m
2
WhiXi 2 .21 Whi (Xi - MUy 1)
=
. ando, | =
Z Whi
i=1

m
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A Legacy of EM Algorithms S57

These updates stably increase the likelihood at each iteration. The median of the x; serves as a
starting value for u. As recommended by Wikipedia, half the sample inter-quartile range is a
reasonable starting value for o. This example is a special case of the broader algorithm discussed
in the next example. [

Example Elliptically Symmetric Distributions

An elliptically symmetric probability density takes the form

e_%ic(éz)

T el

b

where y € R” and 6> = (y — u)*Q '(y — u) denotes the Mahalanobis distance between y
and u. Here, we assume that the function x(s) is strictly increasing and strictly concave and
that the matrix € is positive definite. Such densities serve as substitutes for the multivariate
normal distribution in robust estimation (Huber, 2004; Lange et al., 1989; Lange &
Sinsheimer, 1993).

Dutter and Huber (Huber, 2004) introduced an MM algorithm driven by the affine
majorisation

k(1) < x(ty)+6 (1)t — ty).

If y,,...,», is a random sample from the density (3), then the multivariate normal
log-likelihood

1 m
2(010,) = =P (W02 (0)+1n detQ]+c,
i=1

with weights w,; = x[67(8,)] and irrelevant constant ¢, minorises the log-likelihood of the data
under the elliptically symmetric density. The array of techniques from linear algebra for estimat-
ing the parameters of a multivariate normal distribution can be brought to bear on maximising
g(016,) . For normal/independent distributional families such as the multivariate ¢, the
Dutter—Huber algorithm reduces to an EM algorithm (Dempster, 1980; Lange &
Sinsheimer, 1993). Given an unstructured mean vector and covariance matrix, the MM updates
(Lange et al., 1989; Lange & Sinsheimer, 1993; Little & Rubin, 2019) are

1 m

My =— L Wuy;
Spi=1

1 m T
Qn+l :ziglwni(yi - My 1)(yi - My 1) )

where s, = X", w,; is the sum of the case weights. For the multivariate #, Kent et al. (1994) sug-
gest a faster algorithm that replaces the update of 2 by

1 m T
‘Qn-ﬁ-l:S_'zlwni(yi _ﬂn+1)(.yi _:un-'rl) :
n i=

Meng & Van Dyk (1997) justify this amendment within the EM framework.
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S58 LANGE AND ZHOU

Example EM for Mixture Models

Many naive data scientists conflate the EM principle with the EM algorithm for normal mix-
tures. This level of ignorance is testimony to the importance of this special case. Dempster
et al. (1977) review the history of the EM clustering algorithm and demonstrate that it possesses
the critical ascent property. The EM algorithm makes soft cluster assignments in contrast to the
hard assignments of k-means clustering. The alternative of soft choices is possible with admix-
ture models (McLachlan & Krishnan, 2007; Mengersen et al., 2011). An admixture probability
density /(y) can be written as a convex combination

h(y) = él ik (y),

where the 7; are nonnegative probabilities that sum to 1 and 4;(y) is the probability density of
group j.

Suppose the observations y, ..., y,, represent a random sample from the admixture den-
sity (3). In practice, we want to estimate the admixture proportions z; and whatever further pa-
rameters @ characterise the densities 4;(y|@). An EM algorithm is natural in this context with
group membership as the missing data (Dempster ef al., 1977). The EM updates can be derived
by invoking the Jensen minorisation (3) for each observation y; in the form

k k
ln['zlz,‘h‘;(yiﬂ)] = '21 Waij[In7t; + Ink; (y;]0)]4-cy,
J= j=

where ¢, is an irrelevant constant and w,; is the posterior probability that y; belongs to cluster j
given the current admixture vector z,, and density vector #,. Fortunately, this minorisation sep-
arates the z parameters from the 6 parameters. The problem of maximising the objective
Z_]]ledjln m; for d; = Y, wy; is standard with intuitive solution 7, , 1 ; = d;/m. Updating the re-
maining parameters is possible for elliptically symmetric distributions as discussed in the previ-
ous example. This involves a second minorisation, which is often ill advised because it
generates slowing converging algorithms. It is viable here if we employ a common scale matrix
across the groups and the Kent ef al. (1994) acceleration for the multivariate z. O

4 MULTI-RESPONSE VARIANCE COMPONENT MODELS

In this example, we contrast the derivations of an EM algorithm and an MM algorithm for the
multi-response variance component model. This model involves an m x d response matrix ¥
with mean E(¥) = XB and covariance

k
Q = Cov(vecY) = Y I''QV;.

The p x d coefficient matrix B collects the fixed effects, the d x d covariance matrices I'; collect
the unknown variance components, and the m x m covariance matrices V; collect the known
variance components. When the vector vecY is normally distributed, ¥ equals a sum of inde-
pendent matrix normal distributions (Gupta & Nagar, 1999). We now make this assumption
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A Legacy of EM Algorithms S59

and pursue estimation of B and the I';, which we collectively denote as I". Under the normality

assumption, Roth’s Kronecker product identity vec(CDE) = (E T @C)vec(D) yields the
log-likelihood

1 1
LB, T) = —ilndet.Q — E(VGCY — ZvecB) T @ '(vecY — ZvecB), )
where Z = I1,QX.

4.1 MM Derivation

Updating B given I, is accomplished by solving the general least squares problem met earlier
in the univariate case. Updating I'; given B, is difficult due to the positive semidefiniteness con-
straint. Typical solutions involve reparameterization of the covariance matrix (Pinheiro &
Bates, 1996). The MM algorithm derived in this section gracefully accommodates this constraint.

Updating I" given B requires two minorisations. The convexity of the function —In det€2 im-
plies the supporting hyperplane minorisation

1 1 1
—5In det@= — Jln det@, — Etr[g;wg - Q)] 3)

We must also generalise Jensen’s majorisation (1). This is accomplished by noting that the
function

1
FX. M) EV*X*M*Xv Xv € Range(M)
o Xv ¢ Range(M)

is convex for v fixed, where M is positive semidefinite, X is conformable to M, and M~ is the
pseudo-inverse of M (Lange, 2016). Given this fact and the identities (AQB)(CQD) =

(AC)®(BD), (AQB) ' = A4~ '®B~', and A4~'4 = A, we have
0,00 klkr vV lkr V_llkr vV
n = {;jzl W ® ./} {%lzl i® j] [%151 W& ]':|

k1 B
<k L (Iy®V)I;®V)) Nr,®V;)
]:

k
—1
:le(rnjrj r,)®V;,

or equivalently
eo-1] & rlr lo-1
Q <‘Qn AZI(F'UF]‘ F"])®V] ‘Qn . (4)
j= '

This derivation relies on the invertibility of the matrices V;. One can relax this assumption by
substituting V¢ ; = V; + el ,, for V; and sending € to 0.
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S60 LANGE AND ZHOU
Up to an irrelevant constant, the majorisations (3) and (4) jointly yield the surrogate
g(rlrn17 "'>rnk)

= —%gl{tr[!?; HI®V))+vec(R,) T (Ml 'T,)®V)] vec(R,,)},

where R, is the m x d matrix satisfying
vec(R,) = ,vec(¥Y — XB,). 3)
The first trace here is linear in I'; and can be expressed as
w[2, ([eV)] = «(Myl))

6
My = (I,®L,) " [(11,] ®V)0L, ' |1:1,), ©

where © takes the Hadamard (pointwise) product of two matrices. To prove this fact, note that if
(2,1, is the (r, s)th m x m block of £, !, then the coefficient of the entry (I';),, is equal to

n

tr[(g;l)rsV/] - lmT [VJG(‘Q;I)VS]IWI
Furthermore, (I,®1,,) is a diagonal block matrix with each diagonal block equal to 1,,, and
(1,41,7 ®V;) is a block matrix with all blocks equal to V.
The second trace of g(I'|I",) simplifies owing to the Kronecker identities vec(CDE) =

(ET ®@C)vec(D) and vec(4) ' vec(B) =tr(4 T B). It follows that the surrogate can be
rewritten as

g1, oo Tuk)
1 k&
=51 {tr[!l;l(rj®Vj)]+tf(RnT ViR yI; T, )}
4 )
1 -
= =3 L{e D) (] RT VR

The directional derivative of g(I'|I 1, ..., I'y) with respect to I'; in the direction 4; is

1 1 _ -
_Etr(MnjAj)—l—Etr(Fan R VR, AT )
1 1

= —5tr(Myyd))+5te(I; 'TyR," ViRl 4)).

Because all directional derivatives of the surrogate vanish at a stationary point, the matrix
equation

M, =T7'TyR," VRl (8)

holds. Fortunately, this equation admits an explicit solution. For positive scalers a and b, the
solution to the equation » = x~'ax~! is x = ++/a/b. The matrix analogue of this equation is
the Riccati equation B = X~ '4X !, whose solution is summarised in the next lemma.
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input : Y, X, Vy,....V§

output: MLE B, f‘l, e ,f‘k

1 Initialize I'g; positive definite, j = 1,...,k ;

2 repeat

3 | Qe T,eV;;

4 | B, < argming [vec(Y — XB)|'Q, vec(Y — XB)] ;
5 R,, + reshape(Q, ! vec(Y — XB,,),m,d) ;

6 for j=1,...,k do

T M {tr (2,)rsVj) i<rs<d ;

8 Cholesky LnjLZj — M, ;

9 Tyop1 (L)) [L,;(TwiR, ViR, Tj) L] V2L
10 end

1

=

until objective value converges;

Algorithm 1: The MM algorithm for MLE of the multi-response
variance component model.

Lemma 1. Assume A and B are positive definite and L is the Cholesky factor of B. Then Y =
(LY T (LT AL)'*L™" is the unique positive definite solution to the matrix equation B =
X lax—!.

The Cholesky factor L in Lemma 4.1 can be replaced by the symmetric square root of B. The
solution, which is unique, remains the same. The Cholesky decomposition is preferred for its
cheaper computational cost and better numerical stability.

Algorithm 1 summarises the MM algorithm for fitting the multi-response model (1). Each it-
eration invokes & Cholesky decompositions and symmetric square roots of d x d positive def-
inite matrices. Fortunately in most applications, d is a small number.

4.2 EM Derivation

The landmark paper (Dempster et al., 1977) by Nan Laird and co-authors features the EM
derivation for variance component models with univariate response. Later extensions to multi-
variate responses include Reinsel (1984) and Glanz & Carvalho (2018). We give a
self-contained derivation here for ease of comparison with the MM algorithm. Derivation of
the EM algorithm hinges upon the missing data and conditional expectation. If the response ma-
trix ¥ can be written as the sum ¥ = XB + Z| + ... + Z; of independent random matrices with

k
vecZ; ~ N (0, £;), then vecY ~ N(vec(Xf), 2), where 2 = } £,. Under the matrix normal
J=1

assumption, 2; = I';QV;. The complete data log-likelihood for the unobserved Z; is
1k N 1k T
_Ejzl Indet™ ; — Ejzl (vecZ;)" 2/ (vecZ;),
where det” £; denotes the pseudo-determinant of £; and .Q;r the pseudo-inverse of £2;. To com-
pute the surrogate function for the EM algorithm, one needs the conditional expectations
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S62 LANGE AND ZHOU

E, =E(vecZj|Y, 0,) = 9,2, 'vec(Y — XB,)
and the conditional covariances

F,; = Cov(vecZ|Y, 0,) = 2, — 2,2,'Q,,

where @ is the parameter vector. These are employed to compute the conditional second
moments

G, = E[(vecZ)) (vecZ)) " |V, 0,] = Fo; + E4(E,) " .
Here, the random vector Z; should be replaced by Z; — XB, when j = k.

One can readily check that Q;r =r ;F®V]7L =r; 1(X)V;L for I'; invertible. Because the

pseudo-determinant of a positive semidefinite matrix equals the product of its positive eigen-
values, the formulas

det+ .Qj = (detl“j)r"(detJ’ Vj)Si
Indet” ; = rjlndetl’; + s;Indet™ V;

apply, where 7; = rank (V") and s; = rank(I';"). In the M step of the EM algorithm, one max-
imises the surrogate

1 1 & ~lon/+
3 Lnindetr = 5 X of(I7'®@V)G). ©)

For I'; unstructured, we substitute 4; = I" ;1 and maximise with respect to A;. Fortunately, the

next lemma can be invoked.
Lemma 2. If the matrices A, B, and C are d X d, m X m, and dm x dm respectively, then

tr[(A®B)C T | = tr{([,®1,,) " [(141,” ®@B)OC|(1,@1,,)4 " }.

Proof This trace identity is essentially proved in our derivation of the corresponding MM algo-
rithm in Section 4.1.

. L
Lemma 4.2 yields

w[(4,®V;)G] = tr{(1,®1,) | (141, ®V;)OG|(1,®1,)4;}.

The stationarity condition

1

0=3

_ 1
nd; = 211, T (141, ®V)O6 | (1i®1,)

now entails the update
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Lyoy= 7 (1®1,) T (1, @V )OG,](1,81,)

(10)
= Iy — r7'TyMyly + 17 'TyR,T ViR,

where M ; is the d x d matrix defined by (6) and R, is the m x d matrix defined by (5). The
second equation invokes the identities V; V'V, = V;, tr(V;V;") = rank(V;), and the cyclic
permutation property of the trace.

In the case & = 1, the single update reduces to

1
) :;(Y — XB,) " V(Y — XB,),

which matches the earlier result of Glanz & Carvalho (2018). When I'; is the scalar a]?, the up-
date (10) reduces to the classical update (Dempster et al., 1977)

4
O-n,‘ — T H— _
%= o~ @ = 0 = X8 T e e - X8,

Algorithm 2 summarises the EM algorithm for fitting the multi-response model (2). The addi-
tive update of I'; in the EM algorithm differs markedly from the multiplicative update in the
MM algorithm. The computational cost of each EM iteration is similar to that of MM. Both
are dominated by the inversion of the md x md covariance matrix £,.

For the univariate response case d = 1, Zhou et al. (2019) show that the MM algorithm
enjoys a faster convergence rate than EM. Here, we verify the same behaviour empirically for
a variance component model with d = 4 responses for m = 500 subjects, k£ = 3 variance com-
ponents, and p = 3 fixed effect covariates. We start both algorithms from the same initial point
in each of 100 simulation replicates. Figure 2 shows that MM algorithm converges faster than
EM in all replicates.

input : Y, X, V...,V

output: MLE B, f‘l, e ,f‘k

1 Initialize I'g; positive definite, j = 1,...,k ;

2 repeat

3 ﬂnj — Fn]‘ & Vj )

4| Qe Y Qs

5 B, + argming [vec(Y — XB)|'Q, ! [vec(Y — X B)] ;
6 R,, + reshape(Q,! vec(Y — X B,,),m,d) ;

7 for j=1,...,k do

8 My {tr ((2,1)rsVj) M<rs<d

9 Fn+1,j — Fnj — T‘;lrannanj + rj’lI‘anszRnFnj
10 end

11 until objective value converges;

Algorithm 2: The EM algorithm for MLE in the multi-response
variance component model.
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4.3 A Problem Involving a Moore—Penrose Inverse

The derivations so far assume that the variance components I'; are unstructured covariance
matrices with kd(d + 1)/2 parameters. Under a limited sample size, I'; cannot be estimated re-
liably, especially when the numbers of responses d and variance components & are large. A more
parsimonious model imposes a low rank structure on all I'; except that associated with V', = I,,..
Then maximising the MM surrogate function (7) boils down to the problem of minimising

tr(MX)+tr(NX),

where M and N are known d x d positive definite matrices and X is a positive semidefinited x d
matrix of rank 7 < d. Denote the thin eigendecompositionX = UXU T, where U T U = I,. and
X = diag(oy, ..., 6,) with 6; > 0. We first determine the optimal eigenvalues ¢; and then ei-
genvectors U. The objective is

tr(U T MUZ)+t(U T NUZT)
tr(AZ)+tr(BX™)

r r
1
= Yo+ Yo; by,
=1 =1

where A =U " MU, B=U T NU. Setting the derivatives to zero yields the optimal eigen-

values O; =/ b,»l-/al-,-.

Now the task is to minimise

fU)=2 % Vaib; =2 % \/m
=1 =1

under the orthogonality constraint U T U = I,., which is subject to a suite of algorithms for
manifold optimisation such as Manopt (Boumal ef al., 2014) or a simple projected gradient de-
scent algorithm. We record the gradient as

u," Nu; w. Mu;
Vof (U) =24 | “—Mu; + 2 | ~———"Nu.
W/ (U) u," Mu, ! u," Nu; “

Alternatively, split variables by replacing U by 4and U T by B T . Then impose the constraints
A=Band BT A =1I,. The penalised objective

(BT MAZ)+t(B T NAE+)+§||B TA- L2 +’§||A "y
for p > 0 large has differential with respect to A4 of

SB"M+3X"B"N+pB"A4—-1,)"B" +p4—-B)".
Set this equal to 0 and solve for A4 in the form
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AT =—(p 'ZB"M+p"'2*B"N —2BT YU, +BBT )"
A similar update holds for B.

5 DISCUSSION

The senior (citizen) author of this paper remembers being mesmerised by Nan Laird’s EM
seminar at UCLA in the late 1970s. Nan opened an entirely new toolbox of optimisation. The
beautiful abstraction and generality of the EM principle has served the statistics community
well for decades. The principle is capable of generating maximum likelihood algorithms moti-
vated by intermediate quantities of natural statistical interest. It is worth stressing that EM and
Fisher scoring are unique contributions by statisticians to optimisation practice. However, there
is no panacea in optimisation. Each problem class presents unique challenges and deserves to be
attacked from a variety of perspectives. Often hybrid algorithms work best.

The MM principle distils the essence of EM and frees it from the sometimes elusive notion of
missing data. As we have witnessed, EM and MM algorithms for the same problem do not nec-
essarily coincide. When they differ, their rates of convergence and computational complexity
can also differ. Our exposition of EM and MM algorithms for variance component models illus-
trates these points. In this case, the MM algorithm appears faster.

The current paper offers, at best, a snapshot of the current state of the MM art. New applica-
tions are in the pipeline. Our recent research on constrained optimisation shows how the MM
principle, set projection, and the Courant penalty method can cooperate to solve constrained
problems involving nonconvexity and sparsity (Chi et al., 2014; Keys et al., 2019; Landeros
et al., 2022; Xu et al., 2017). Many challenges remain in theory, numerical practice, and soft-
ware development. Fortunately, current researchers stand on the shoulders of giants such as
Nan Laird and Jan de Leeuw in attacking these issues. We are profoundly grateful to Nan for
her many advances in computational statistics. Only a handful of statisticians can claim a legacy
of such distinction.
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