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ORTHOGONAL TRACE-SUM MAXIMIZATION: TIGHTNESS OF
THE SEMIDEFINITE RELAXATION AND GUARANTEE OF

LOCALLY OPTIMAL SOLUTIONS\ast 
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Abstract. This paper studies an optimization problem on the sum of traces of matrix quadratic
forms in m semiorthogonal matrices, which can be considered as a generalization of the synchro-
nization of rotations. While the problem is nonconvex, this paper shows that its semidefinite pro-
gramming relaxation solves the original nonconvex problems exactly with high probability under an
additive noise model with small noise in the order of O(m1/4). In addition, it shows that, with high
probability, the sufficient condition for global optimality considered in Won, Zhou, and Lange [SIAM
J. Matrix Anal. Appl., 2 (2021), pp. 859--882] is also necessary under a similar small noise condition.
These results can be considered as a generalization of existing results on phase synchronization.
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1. Introduction. This paper considers the orthogonal trace-sum maximization
(OTSM) problem [35] of estimating m matrices \bfitO 1, . . . ,\bfitO m with \bfitO i \in \BbbR di\times r from
the optimization problem:

(OTSM) maximize
\sum 

1\leq i,j\leq m

tr(\bfitO T
i \bfitS ij\bfitO j) subject to \bfitO i \in \scrO di,r, i = 1, . . . ,m,

where \bfitS ij = \bfitS T
ji \in \BbbR di\times dj for i, j = 1, . . . ,m, r \leq mini=1,...,m di, and \scrO d,r = \{ O \in 

\BbbR d\times r : \bfitO T\bfitO = Ir\} is the Stiefel manifold of semiorthogonal matrices; Ir denotes the
identity matrix of order r.

The OTSM problem has applications in generalized canonical correlation analysis
(CCA) [18] and Procrustes analysis [17, 30]. Furthermore, if d1 = \cdot \cdot \cdot = dm = r, then
(OTSM) reduces to the problem of synchronization of rotations [5], which has wide
applications in multireference alignment [4], cryogenic electron microscopy (cryo-EM)
[29, 36], 2D/3D point set registration [19, 12, 9], and multiview structure from motion
[2, 3, 32].

1.1. Related works. While the OTSM problem is proposed recently in [35],
it is closely related to many well-studied problems. In particular, its special cases
have been studied in the name of angular synchronization, which can be considered
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ORTHOGONAL TRACE-SUM MAXIMIZATION 2181

as a special case of (OTSM) in the complex-valued setting, \BbbZ 2 synchronization, and
synchronization of rotations. The OTSM problem itself can also be considered as a
special case of the group synchronization problem.

Angular synchronization. The complex-valued OTSM problem with d1 =
\cdot \cdot \cdot = dm = 1 is equivalent to a problem called angular synchronization or phase
synchronization, which estimates angles \theta 1, . . . , \theta m \in [0, 2\pi ) from the observation of
relative offsets (\theta i  - \theta j) mod 2\pi . The problem has applications in cryo-EM [28],
comparative biology [16], and many others. To address this problem, Singer [28]
formulates the problem as a nonconvex optimization problem

(1.1) max
\bfitx \in \BbbC m

\bfitx \ast \bfitC \bfitx subject to | x1| = \cdot \cdot \cdot = | xm| = 1,

where xk = ei\theta k for all 1 \leq k \leq m. In fact, (1.1) can be considered as the special case
of (OTSM) when d1 = \cdot \cdot \cdot = dm = r = 2.

The angular synchronization problem (1.1) has been studied extensively. For
example, Singer [28] proposes two methods, by eigenvectors and semidefinite pro-
gramming, respectively. The performance of the method is analyzed using random
matrix theory and information theory. In [4], Bandeira, Boumal, and Singer assume
the model \bfitC = \bfitz \bfitz \ast + \sigma \bfitW , where \bfitz \in \BbbC m satisfies | z1| = \cdot \cdot \cdot = | zm| = 1 and

\bfitW \in \BbbC m\times m is a Hermitian Gaussian Wigner matrix, and show that if \sigma \leq 1
18m

1
4 ,

then the solution of the semidefinite programming approach is also the solution to
(1.1) with high probability. Using a more involved argument and a modified power

method, Zhong and Boumal [37] improve the bound in [4] to \sigma = O(
\sqrt{} 

m
logm ).

There is another line of works that solves (1.1) using power methods. In partic-
ular, Boumal [6] investigates a modified power method and shows that the method

converges to the solution of (1.1) when \sigma = O(m
1
6 ); Liu, Yue, and Man-Cho So

[24] investigate another generalized power method and prove the convergence for

\sigma = O(m
1
4 ); and Zhong and Boumal [37] improve the rate to \sigma = O(

\sqrt{} 
m

logm ).

There are some other interesting works for the angular synchronization problem
that are not based on semidefinite programming or power method. [23] assumes that
the pairwise differences are only observed over a graph, studies the landscape of a
proposed objective function, and shows that the global minimizer is unique when
the associated graph is incomplete and follows the Erd\"os--R\'enyi model. [27] pro-
poses an approximate message passing (AMP) algorithm and analyzes its behavior by
identifying phases where the problem is easy, computationally hard, and statistically
impossible.

\BbbZ \bftwo synchronization. The real-valued OTSM problem with d1 = \cdot \cdot \cdot = dm = 1
is called the \BbbZ 2-synchronization problem [11] for \BbbZ 2 = \{ 1, - 1\} . For this problem,
[14] shows that the solution of the semidefinite programming method matches the
minimax lower bound on the optimal Bayes error rate for the original problem (1.1).

Synchronization of rotations. The OTSM problem with d1 = \cdot \cdot \cdot = dm =
r > 2 is called ``synchronization of rotations"" in some literature. This special case
has wide applications in graph realization and point cloud registration, multiview
structure from motion [2, 3, 32], common lines in cryo-EM [29], orthogonal least
squares [36], and 2D/3D point set registration [19]. [8] studies the problem from the
perspective of manifold optimization and derives the Cram\'er--Rao bounds, which are
the lower bounds of the variance of any unbiased estimator. [31] proposes a distributed
algorithm with theoretical guarantees on convergence. [33] discusses a method to
make the estimator in (OTSM) more robust to outlying observations. Another robust
algorithm based on the maximum likelihood estimator is proposed in [7]. As for
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2182 JOONG-HO WON, TENG ZHANG, AND HUA ZHOU

the theoretical properties, [5] analyzes a semidefinite program approach that solves
the problem approximately and studies its approximation ratio. [25] investigates a
generalized power method for this problem. A recent manuscript [22] follows the line
of [4, 6, 24, 37] and proves that the original problem and the relaxed problem have

the same solution when \sigma \leq O(
\surd 
m

d+
\surd 
d logm

).

Group synchronization. The OTSM problem can also be considered as a spe-
cial case of the group synchronization problem, which recovers a vector of elements
in a group, given noisy pairwise measurements of the relative elements gug

 - 1
v . The

OTSM problem is the special case when the group is \scrO d,r, the set of orthogonal matri-
ces. [1] studies the properties of weak recovery when the elements are from a generic
compact group and the underlying graph of pairwise observations is the d-dimensional
grid. [27] proposes an AMP algorithm for solving synchronization problems over a
class of compact groups. [26] generates the estimation from compact groups to the
class of Cartan motion groups, which includes the important special case of rigid mo-
tions by applying the compactification process. [10] assumes that the measurement
graph is sparse and there are corrupted observations and shows that minimax recov-
ery rate depends almost exclusively on the edge sparsity of the measurement graph
irrespective of other graphical metrics.

1.2. Our contribution. The main contribution of this work is the study of the
OTSM problem under an additive noise model. The main results are threefold: First,
we propose a semidefinite programming approach for solving (OTSM) and show that
it solves (OTSM) exactly when the size of noise is bounded. Second, we show that,
under a similar bounded noise condition, the sufficient condition for global optimality
of a critical point, studied in [35], is in fact necessary and sufficient. Finally, these
noise boundedness conditions are satisfied with high probability under Gaussianity.
These results can be considered as a generalization of [4] from angular synchronization
to the OTSM problem.

2. The OTSM problem.

2.1. Model assumption. In this work, we assume the MAXBET model of
generating \bfitS ij , which postulates the existence of \{ \Theta i\} 1\leq i\leq m and \{ \bfitW ij\} 1\leq i \not =j\leq m

such that \Theta i \in \scrO di,r for all 1 \leq i \leq m, and

(MAXBET) \bfitS ij = \Theta i\Theta 
T
j +\bfitW ij , where \bfitW ij = \bfitW T

ji for all 1 \leq i, j \leq m.

In this model, \Theta i\Theta 
T
j is considered as the ``clean measurement of relative elements,""

and \bfitW ij is considered as an additive noise. This is a natural model for the gen-
eralized CCA in [35]. Consider a latent variable model in which a latent variable
\bfitz \in \BbbR r has zero mean and covariance matrix Ir, and an observation in the ith
group is given by \bfita i = \Theta i\bfitz + \bfitepsilon i \in \BbbR di , i = 1, . . . ,m, with the noise \bfitepsilon i uncorre-
lated with \bfitz and \bfitepsilon j , j \not = i. If the noise covariance is \tau Idi , then the auto-covariance
of group i is \Sigma ii + \tau Idi

. The (population) cross-covariance matrix between groups
i and j is \Sigma ij = \Theta i\Theta 

T
j . The generalized CCA [30, 35] seeks (semi)orthogonal ma-

trices \{ \bfitO i \in \scrO di,r\} such that the expected inner product between matrices \bfitO T
i \bfita i

and \bfitO T
j \bfita j is summed and maximized for each pair (i, j), which is

\sum 
i,j tr(\bfitO 

T
i \Sigma ij\bfitO j).

Also note that \BbbE [\langle \bfitO T
i \bfita i,\bfitO 

T
i \bfita i\rangle ] = tr(\bfitO T

i \Sigma ii\bfitO i) + const. If we assume that \{ \Theta i\} is
(semi)orthogonal, then this problem is precisely (OTSM), and the forthcoming Propo-
sition 2.1 shows that the population version of this generalized CCA recovers precisely
the transformations \{ \Theta i\} of the latent variable \bfitz . Now let us turn to the practical
setting. Appealing to the law of large numbers, the sample estimate of\Sigma ij can then be
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ORTHOGONAL TRACE-SUM MAXIMIZATION 2183

written as \bfitS ij = \Sigma ij+\bfitW ij = \Theta i\Theta 
T
j +\bfitW ij . A statistical interest is whether \{ \Theta i\} can

be precisely estimated by solving the sample version of (OTSM). Model (MAXBET)
is also standard for synchronization problems, such as synchronization of rotations
[33, 8] and group synchronization [1, 27].

In some applications [30, 18], it is also natural to assume the MAXDIFF model
that ignores the auto-covariance terms:

(MAXDIFF) \bfitS ii = 0 and \bfitS ij = \Theta i\Theta 
T
j +\bfitW ij , i \not = j.

In this work, we will present our main results based on the MAXBET model and
discuss the MAXDIFF model in the remarks.

When there is no noise in either the MAXBET or MAXDIFF model, setting
\bfitO i = \Theta i, i = 1, . . . ,m, solves problem (OTSM). The proof is deferred to section 5.1.

Proposition 2.1. In the noiseless case (\bfitW ij = 0 for all i, j), (\bfitO 1, . . . ,\bfitO m) =
(\Theta 1, . . . ,\Theta m) globally solves (OTSM) under the model (MAXBET) or (MAXDIFF).

However, in the presence of noise, Proposition 2.1 does not hold, and problem
(OTSM) is difficult to solve. To establish theoretical guarantees for the noisy setting,
we investigate two approaches; one is based on semidefinite programming, and the
other one is based on finding locally optimal solutions of (OTSM).

2.2. Approach 1: Semidefinite programming relaxation. While the prob-
lem (OTSM) is nonconvex and difficult to solve, we can relax it to a convex optimiza-
tion problem based on semidefinite programming that can be solved efficiently. In
fact, semidefinite programming--based approaches have been proposed and analyzed
for the problem of angular synchronization [28, 4, 37] and synchronization of rotations
[5], and our proposed method can be considered as a generalization of these existing
methods.

The argument of the relaxation is as follows. Let D =
\sum m

i=1 di,

(2.1) \bfitS =

\left[     
\bfitS 11 \bfitS 12 . . . \bfitS 1m

\bfitS 21 \bfitS 22 \bfitS 2m

...
. . .

...
\bfitS m1 \bfitS m2 \cdot \cdot \cdot \bfitS mm

\right]     \in \BbbR D\times D, and \bfitO =

\left[   \bfitO 1

...
\bfitO m

\right]   \in \BbbR D\times r;

then by setting \bfitU = \bfitO \bfitO T , the problem (OTSM) is equivalent to finding

(2.2) \~\bfitU =argmax\{ tr(\bfitS \bfitU ) : \bfitU \succcurlyeq 0, rank(\bfitU )=r, \bfitU ii \preccurlyeq I, tr(\bfitU ii) = r, i=1, . . . ,m\} 

for \bfitU \in \BbbR D\times D such that \bfitU = \bfitU T , which can be relaxed to solving

(SDP) max
\bfitU \in \BbbR D\times D,\bfitU =\bfitU T

\langle \bfitS ,\bfitU \rangle subject to \bfitU \succcurlyeq 0,\bfitU ii \preccurlyeq I, tr(\bfitU ii) = r,

where \bfitM \succcurlyeq 0 (resp., \bfitM \preccurlyeq 0) means that a matrix \bfitM is positive (resp., neg-

ative) semidefinite. If a solution \^\bfitU to problem (SDP) has rank-r, then we can

set \~\bfitU = \^\bfitU , which can be decomposed to \^\bfitU = \~\bfitV \~\bfitV 
T
, where \~\bfitV \in \BbbR D\times r. Write

\~\bfitV = [ \~\bfitV 
T

1 , . . . ,
\~\bfitV 

T

m]T ; then \~\bfitV i \in \scrO di,r for all 1 \leq i \leq m and ( \~\bfitV 1, . . . , \~\bfitV m) globally
solves problem (OTSM).

This work shows that if the noises\bfitW ij are ``small,"" then the solutions of problems

(OTSM) and (SDP) are equivalent in the sense that \^\bfitU = \~\bfitV \~\bfitV 
T
with \~\bfitV rank-r; hence

the convex relaxation is tight. Furthermore, each \~\bfitV i converges to \Theta i as m \rightarrow \infty , as
desired for CCA applications.
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2184 JOONG-HO WON, TENG ZHANG, AND HUA ZHOU

2.3. Approach 2: Characterization of critical points. While the semidef-
inite programming (SDP) approach is convex and can be solved with high accuracy,
it has a large computational cost when D is large, and solving the original noncon-
vex problem (OTSM) without lifting the variable (from \bfitO to \bfitU ) is more efficient.
A natural question is, Is there any guarantee on whether a critical point of problem
(OTSM), which local nonconvex optimization algorithms usually deliver, is globally
optimal?

Using the optimality conditions for the convex relaxation (SDP), Won, Zhou, and
Lange [35] study sufficient conditions for a critical point of problem (OTSM) to be
globally optimal. Specifically, the first-order necessary condition for local optimality
of (OTSM) is

(2.3) \bfitO i\Lambda i =

m\sum 
j=1

\bfitS ij\bfitO j , i = 1, . . . ,m,

for some symmetric matrix\Lambda i. The latter matrix is the Lagrange multiplier associated
with the constraint \bfitO i \in \scrO di,r and has a representation \Lambda i =

\sum m
j=1 \bfitO 

T
i \bfitS ij\bfitO j . In

what follows, a critical point is defined as (\bfitO 1, . . . ,\bfitO m) with \bfitO i \in \scrO di,r satisfying
(2.3). If \tau i is the smallest eigenvalue of \Lambda i, then a critical point is a global optimum
of (OTSM) if

\bfitL (\bfitO ,\Lambda ) \succcurlyeq 0, where \bfitO = [\bfitO T
1 , . . . ,\bfitO 

T
m]T , \Lambda = (\Lambda 1, . . . ,\Lambda m), and

\bfitL (\bfitO ,\Lambda )=

\left[   \bfitO 1\Lambda 1\bfitO 
T
1 +\tau 1(Id1 - \bfitO 1\bfitO 

T
1 )

. . .

\bfitO m\Lambda m\bfitO T
m+\tau m(Idm

 - \bfitO m\bfitO T
m)

\right]    - \bfitS .

(2.4)

A block relaxation-type algorithm that converges to a critical point is also proposed
in [35]. However, characterization of such a point that does not satisfy condition (2.4)
has remained an open question.

This paper shows that, if the noises \bfitW ij are ``small"" in a similar sense to that
of Approach 1, the sufficient condition (2.4) is also necessary for global optimality.
Thus, under this regime we can fully determine whether or not a critical point, which
can be found by a simple local algorithm, is globally optimal. Furthermore, each
\bfitO i converges to \Theta i as m \rightarrow \infty , up to a common phase shift, as desired for CCA
applications.

2.4. Notation. This work sometimes divides a matrix \bfitX of size D\times D into m2

submatrices such that the (i, j) block is a di \times dj submatrix. We use \bfitX ij or [\bfitX ]ij
to denote this submatrix. Similarly, sometimes we divide a matrix of \bfitY \in \BbbR D\times r or a
vector \bfity \in \BbbR D into m submatrices or an m vector, where the ith component, denoted
by \bfitY i, [\bfitY ]i or \bfity i, [\bfity ]i, is a matrix of size di \times r or a vector of length di.

For any matrix \bfitX , we use \| \bfitX \| to represent its operator norm and \| \bfitX \| F to
represent its Frobenius norm. In addition, \bfitP \bfitX represents an orthonormal matrix
whose column space is the same as \bfitX , \bfitP \bfitX \bot is an orthonormal matrix whose column
space is the orthogonal complement of the column space of \bfitX , \Pi \bfitX = \bfitP \bfitX \bfitP T

\bfitX is
the projector to the column space of \bfitX , and \Pi \bfitX \bot is the projection matrix to the
orthogonal complement of the column space of \bfitX . If \bfitY \in \BbbR n\times n is symmetric, we use
\lambda 1(\bfitY ) \geq \lambda 2(\bfitY ) \geq \cdot \cdot \cdot \geq \lambda n(\bfitY ) to denote its eigenvalues in descending order.
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3. Main results. In this section, we present our main results. The first main
result, Theorem 3.1, shows that if the noises \bfitW ij are ``small,"" then the convex relax-
ation in (SDP) solves the original problem (OTSM) exactly. The second main result,
Theorem 3.9, shows that if the noises \bfitW ij are ``small,"" then a critical point is globally
optimal if and only if condition (2.4) holds.

3.1. Theoretical guarantees on the SDP approach. This section provides
conditions that if the noises \bfitW ij are ``small,"" then the solution of problem (SDP)
has rank-r and is equivalent to the solution of the problem (OTSM) in the sense that
\^\bfitU = \~\bfitV \~\bfitV 

T
with \~\bfitV rank-r; hence the convex relaxation is tight.

We begin with two deterministic conditions on \bfitW in Theorem 3.1 and Corol-
lary 3.3, with showing that the condition holds with high probability under a Gauss-
ian model in Corollary 3.4, and with a statement on the consistency of the solution
in Corollary 3.7. The statement of the first deterministic theorem is as follows.

Theorem 3.1. If m \geq \| \bfitW \| (4
\surd 
r + 1) + 1 and \bfitW \in \BbbR D\times D is small in the sense

that

m > 4m
2
\bigl( 
max1\leq i\leq m \| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2

\sqrt{} 
r
m

\bigr) 
m - \| \bfitW \| (4

\surd 
r + 1) - 1

+2

\biggl( 
max

1\leq i\leq m
\| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2

\sqrt{} 
r

m

\biggr) 
+ 8\| \bfitW \| 

\sqrt{} 
r

m
+ 2\| \bfitW \| ,(3.1)

then the solutions of (OTSM) and relaxation (SDP) are equivalent in the sense that

a solution \^\bfitU to (SDP) also solves (2.2).

The proof of Theorem 3.1 will be presented in section 4.1. While the condi-
tion (3.1) is rather complicated, we expect that it holds for large m when \| \bfitW \| and
maxi=1,...,m \| (\bfitW \Theta )i\| F grow slowly as m increases. To prove this idea rigorously,
we introduce the notion of \Theta -discordant noise, which is inspired by the notion of
``z-discordant matrix"" in [4, Definition 3.1].

Definition 3.2 (\Theta -discordance). Let \Theta = (\Theta 1, . . . ,\Theta m) \in \times m
i=1\scrO di,r. Recall

D =
\sum 

i=1 di. A matrix \bfitW is said to be \Theta -discordant if it is symmetric and satisfies

\| \bfitW \| \leq 3
\surd 
D and maxi=1,...,m \| [\bfitW \Theta ]i\| F \leq 3

\surd 
Dr logm.

Based on the definition of \Theta -discordant noise, The next corollary is a determin-
istic, nonasymptotic statement that simplifies the condition (3.1) in Theorem 3.1. Its
proof is deferred to section 4.2.

Corollary 3.3. Let d = D/m. If m \geq 8 and \sigma  - 1\bfitW is \Theta -discordant for

(3.2) \sigma \leq m1/4

60
\surd 
dr

,

then condition (3.1) holds, and the solutions of (OTSM) and (SDP) are equivalent.

Next, we apply a natural probabilistic model and investigate the \Theta -discordant
property. In particular, we follow [6, 4, 37] and use an additive Gaussian noise model
to generate the symmetric noise matrix \bfitW :

Upper triangular part of W \in \BbbR D\times D is elementwisely

independent and identically distributed (i.i.d.) sampled from N(0, \sigma 2).(3.3)

For this model, we have the following corollary that shows if \sigma \leq O(m
1/4

\surd 
dr

), then (3.1)

holds with high probability. Its proof is deferred to section 4.3.
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Corollary 3.4. Assume the additive Gaussian noise model in (3.3), m \geq 3 or

m \geq 2 and minmi=1 di \geq 6; then with probability at least 1 - 1/m - 2 exp( - (3 - 2
\surd 
2)2

4 D),
\bfitW satisfies the \Theta -discordant property.

As a result, if \sigma \leq m1/4

60
\surd 
dr

and m \geq 8, then with the same probability, the condition

(3.1) holds, and the solutions of (OTSM) and (SDP) are equivalent.

Remark 3.5. The assumption m \geq 8 in Corollary 3.3 can be relaxed but with a
different constant factor in the upper bound of \sigma in (3.2). For example, if m \geq 3 is

assumed, then we need \sigma \leq m1/4

124
\surd 
dr
.

Remark 3.6. The result in this section can be naturally adapted to the MAXDIFF
model. The main intermediate results for the proof of Theorem 3.1 given in section 4.1,
including Lemma 4.1 and Lemma 4.2, still hold with \bfitW ii = 0. While the estimations
in Lemma 4.3 do not hold, following the steps given at the end of section 5.2.1, we are
still able to obtain similar bounds on the difference between \~\bfitV and\Theta . In summary, we
are able to obtain parallel results to Theorem 3.1 and Corollary 3.3 for the MAXDIFF
setting. In particular, if \bfitW is generated using the model in Corollary 3.3, then
the solutions of (OTSM) and (SDP) with the MAXDIFF model are equivalent with

probability at least 1  - 1/m  - 2 exp( - (3 - 2
\surd 
2)2

4 D) if \sigma \leq m1/4

120
\surd 
dr

and m \geq 10. This

more restrictive bound under the MAXDIFF model is expected since (MAXDIFF)
utilizes less information on the clean signal \Theta for the same number of measurements.

Following the proof of Theorem 3.1, we have a consistency result, i.e., that the
solution of (SDP) recovers the true signal \Theta if m is sufficiently large.

Corollary 3.7. Assuming the conditions in Corollary 3.3, then the solution of

(SDP), \~\bfitU , admits a decomposition \~\bfitU = \~\bfitV \~\bfitV 
T
with \~\bfitV \in \BbbR D\times r such that

max
i=1,...,m

\| \~\bfitV i  - \Theta i\| F \leq 
2
\bigl( 
3\sigma 

\surd 
dmr logm+ 36\sigma 2d

\surd 
rm
\bigr) 

m - 3\sigma 
\surd 
dm(4

\surd 
r + 1) - 1

.(3.4)

Thus, if \sigma = o(m
1/4

\surd 
dr

), then maxi=1,...,m \| \~\bfitV i  - \Theta i\| F \rightarrow 0 as m \rightarrow \infty .

Remark 3.8. For the MAXDIFF model, (3.4) is replaced with

max
i=1,...,m

\| \~\bfitV i  - \Theta i\| F \leq 
6\sigma 

\surd 
dmr logm+ 72\sigma 2dm

\surd 
rm

m - 2

m - 12\sigma 
\surd 
dm3r

m - 2

.

The bound follows from the discussion of Lemma 4.3 in the MAXDIFF setting. If

\sigma = o(m
1/4

\surd 
dr

), then maxi=1,...,m \| \~\bfitV i  - \Theta i\| F \rightarrow 0 as m \rightarrow \infty .

3.2. Theoretical guarantees on critical points. This section presents the
condition on the size of the noise \bfitW that ensures condition (2.4) holds for any glob-
ally optimal point (\bfitO 1, . . . ,\bfitO m) and its associated Lagrange multipliers (\Lambda 1, . . . ,\Lambda m).
We begin with two deterministic conditions on \bfitW in Theorem 3.9 and Corollary 3.10,
show that the condition in Corollary 3.10 holds with high probability under the
additive Gaussian model (3.3) in Corollary 3.11, and establish the consistency in
Corollary 3.14.

D
ow

nl
oa

de
d 

09
/0

3/
22

 to
 1

31
.1

79
.2

22
.3

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ORTHOGONAL TRACE-SUM MAXIMIZATION 2187

Recall that the first-order necessary condition for local optimality of (OTSM) is
given in (2.3). The associated Lagrange multiplier is symmetric:
(3.5)

\Lambda i = \bfitO T
i

\left(  m\sum 
j=1

\bfitS ij\bfitO j

\right)  =

\left(  m\sum 
j=1

\bfitS ij\bfitO j

\right)  T

\bfitO i =
1

2

m\sum 
j=1

\bfitO T
i \bfitS ij\bfitO j +

1

2

m\sum 
j=1

\bfitO T
j \bfitS ji\bfitO i.

It is also known that a necessary condition for global optimality of a critical point is
that the \Lambda i in (3.5) is symmetric and positive semidefinite for all i [35, Proposition
3.1]. Note this result does not imply condition (2.4). The first deterministic result
implying condition (2.4) is given in the following.

Theorem 3.9. Suppose noise \bfitW is small in the sense that

m \geq \| \bfitW \| (4
\surd 
r + 1) + max

1\leq i\leq m
\| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2

\sqrt{} 
r

m

+
2m(max1\leq i\leq m \| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2

\sqrt{} 
r
m )

m - 4\| \bfitW \| 
\surd 
r

+ 16\| \bfitW \| 2 r

m
.(3.6)

If (\bfitO 1, . . . ,\bfitO m) is a global optimum of (OTSM), then (\bfitO 1, . . . ,\bfitO m) and its associated
Lagrange multipliers (\Lambda 1, . . . ,\Lambda m) satisfy condition (2.4).

The proof of this theorem is deferred to section 4.5. Theorem 3.9 implies that,
under the small noise regime quantified by inequality (3.6), condition (2.4) is necessary
and sufficient for global optimality.

The following corollary is a deterministic, nonasymptotic statement that simplifies
condition (3.6) using the notion of \Theta -discordance (Definition 3.2). The idea is similar
to (3.1). The left-hand side of condition (3.6) dominates the right-hand side (RHS)
as m \rightarrow \infty if \| \bfitW \| and maxi=1,...,m \| (\bfitW \Theta )i\| F are bounded or increase slowly as m
increases. Thus, we can expect that inequality (3.6) is satisfied if noise variance \sigma is
small and the number of observations m is large.

Corollary 3.10. Let d = D/m. Suppose that m \geq 2,

(3.7) \sigma \leq m1/4

31
\surd 
dr

,

and \sigma  - 1\bfitW is \Theta -discordant; then (3.6) holds. Thus if (\bfitO 1, . . . ,\bfitO m) is a global
optimum of (OTSM), then (\bfitO 1, . . . ,\bfitO m) and its associated Lagrange multipliers
(\Lambda 1, . . . ,\Lambda m) satisfy condition (2.4).

The proof is deferred to section 4.6.
Finally, since Corollary 3.4 shows that \bfitW in the additive Gaussian noise model

(3.3) is \Theta -discordant after scaling by \sigma , Corollary 3.10 implies the following result on
the probabilistic model.

Corollary 3.11. Suppose the additive Gaussian noise model in (3.3) holds. If

\sigma \leq m1/4

31
\surd 
rd

and m \geq 3 or m \geq 2 and mini=1,...,m di \geq 6, then with probability at least

1 - 1/m - 2 exp( - (3 - 2
\surd 
2)2

4 D), any global optimum (\bfitO 1, . . . ,\bfitO m) of (OTSM) and its
associated Lagrange multipliers (\Lambda 1, . . . ,\Lambda m) satisfy condition (2.4).

Remark 3.12. The upper bound of \sigma in the RHS of (3.7) can be made smaller if

m increases. For example, if we have m \geq 4, then (3.7) can be relaxed to \sigma \leq m1/4

29
\surd 
dr
;

if m \geq 9, \sigma \leq m1/4

26
\surd 
dr

suffices.
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Remark 3.13. If instead the MAXDIFF model is assumed, the present analysis

holds for m \geq 4 and (3.7) replaced with \sigma \leq m1/4

64
\surd 
dr
. This is a worse bound as opposed

to m1/4

29
\surd 
dr

for (MAXBET) (See Remark 3.12). To obtain the same bound as (3.7), we

need m \geq 9; see section 4.7. Similar to the SDP relaxation, the more restrictive bound
in the MAXDIFF model is expected since (MAXDIFF) utilizes less information on
the clean signal \Theta for the same number of measurements.

The following consistency result is a by-product of the proof of Theorem 3.9. Re-
call that problem (OTSM) is invariant to ``simultaneous rotation,"" i.e., postmultiply-
ing a fully orthogonal matrix \bfitQ \in \scrO r,r to \bfitO i's (see, e.g., [34, equation (8.2)]).

Corollary 3.14. Let (\bfitO 1, . . .,\bfitO m)\in \times m
i=1\scrO di,r be a global optimum of (OTSM).

If the noise \sigma  - 1\bfitW is \Theta -discordant and m > 144\sigma 2dr, we have an estimation error

min
\bfitQ \in \scrO r,r

max
1\leq i\leq m

\| \bfitO i\bfitQ  - \Theta i\| F \leq 
2

\biggl( 
3\sigma 
\sqrt{} 

dr logm
m + 36\sigma 2d

\sqrt{} 
r
m

\biggr) 
1 - 12\sigma 

\sqrt{} 
dr
m

.

Thus if \sigma = o(m
1/4

\surd 
dr

), then we have min\bfitQ \in \scrO r,r
max1\leq i\leq m \| \bfitO i\bfitQ  - \Theta i\| F \rightarrow 0 as

m \rightarrow \infty , as desired.

Remark 3.15. If the MAXDIFF model is assumed, m > 2, and m3/2  - 2m1/2  - 
12\sigma 

\surd 
drm - 3 > 0, then under \Theta -discordance

min
\bfitQ \in \scrO r,r

max
1\leq i\leq m

\| \bfitO i\bfitQ  - \Theta i\| F \leq 
2

\biggl( 
3\sigma 
\sqrt{} 

dr logm
m + 36\sigma 2 d

\surd 
r\surd 

m - 2/
\surd 
m

\biggr) 
1 - 12\sigma 

\surd 
dr\surd 

m - 2/
\surd 
m

 - 3
m

.

3.3. Comparison with existing works. Our results generalize the work [4]
on angular synchronization, which analyzes the setting d = r = 1 with complex
values. In particular, Theorem 3.1, Corollary 3.3, Corollary 3.4, and Corollary 3.11
are generalizations of Lemma 3.2, Theorem 2.1, and Proposition 4.5 in [4], respectively.
Corollary 3.3 is similar to Lemma 3.2 in [4] in the sense that both results establish
deterministic conditions such that the original problem and the relaxed problem have
the same solutions under a ``discordant"" condition. In addition, Corollary 3.4 is a
generalization of [4, Theorem 2.1] in the sense that both results establish upper bounds
on the size of noise \sigma under an additive Gaussian model. At last, both Corollary 3.11
and Proposition 4.5 in [4] show that local solutions satisfying an assumption are global
optima.

Theorem 2.1 and Proposition 4.5 in [4] require \sigma \leq 1
18m

1
4 . In comparison, Corol-

lary 3.4 and Corollary 3.11 require \sigma \leq 1
60m

1
4 and \sigma \leq 1

31m
1
4 under the setting

d = r = 1, so our result is only worse by a constant factor.
The upper bound \sigma \leq 1

18m
1
4 in [4, Theorem 2.1] is later improved to \sigma \leq 

O(
\sqrt{} 

m
logm ) in [37], based on a much more complicated argument and an algorithmic

implementation. After finishing this work, we became aware of a recent manuscript
[22], which investigates the synchronization-of-rotations problem using the method in
[37], and proves that the original problem and the relaxed problem have the same

solution when \sigma \leq O(
\surd 
m

d+
\surd 
d logm

). While it is better than our rate \sigma \leq O(m
1/4

d ) when

r = d, our analysis investigates a more generic problem where r could be smaller
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than d and establishes deterministic conditions that can be verified for a variety of
probabilistic models. In comparison, the method in [22] is specifically designed for
the additive Gaussian noise model.

While the results in this section are generalizations of the results in [4] to the
group of semiorthogonal matrices, we remark that the generalization is nontrivial in
two aspects. First, as commented in the conclusion of [4], the noncommutative nature
of semiorthogonal matrices renders the analysis more difficult. For example, the
derivation in (5.29) is more difficult than the corresponding equation in [4, equation
(4.3)]. Second, to analyze the more generic problem, we introduce a novel optimality
certificate in Lemma 4.1, which is very different from the corresponding certificate in
[4, Lemma 4.4]. In particular, our certificate concerns three variables, c, \bfitT (1), and

\bfitT (2), while [4, Lemma 4.4] only depends on a single variable. More importantly, the
certificate in [4, Lemma 4.4] has an explicit formula, but there is no explicit formula

for the certificates (c,\bfitT (1),\bfitT (2)) in our work. To address this issue, we let c = m/2

and define \bfitT (1) and \bfitT (2) in a constructive way in (5.10).
Ling [21] also proposes a generalization of [4] to the group of orthogonal matrices,

which can be considered as our setting with r = d. Similar to [4, Lemma 4.4], the
certificate in [21, Proposition 5.1] is based on a single variable with an explicit formula.

While  - \bfitT (1) in our work serves a similar purpose as the certificates in [4, Lemma 4.4]

and [21, Proposition 5.1], \bfitT (2) and c are required for our setting and do not have
an explicit formula. In comparison, under the setting of orthogonal matrices (i.e.,

r = d), our rate is in the order of \sigma = O(m
1/4

d ), which is slightly worse than the

rate of O(m
1/4

d3/4 ) in [21] by a factor of d1/4. We suspect that this is due to the more
generic problem that we analyze, and our rate could be improved with a different way
of constructing the certificates than (5.10), but we will leave it as a possible future
direction. Related, in the simulation study presented in Appendix A, it is numerically
demonstrated that the certificate (2.4) of global optimality is satisfied by the critical
points generated by the proximal block ascent algorithm in [35] for a wide range of
noise variances, even if condition (3.6) or (3.7) is not satisfied. This observation also
suggests that condition (3.7) may be further improved.

4. Proof of main results.

4.1. Proof of Theorem 3.1. Recall that (OTSM) and (2.2) are equivalent in

the sense that \~\bfitU ij = \^\bfitO i
\^\bfitO 
T

j for all 1 \leq i, j \leq m, where \~\bfitU = ( \~\bfitU ij) is a solution to

(2.2) and \^\bfitO = ( \^\bfitO i) is a solution to (OTSM). It is sufficient to show that (2.2) and
its relaxation (SDP) have the same solution. Then, the proof of Theorem 3.1 can be
divided into three components as follows.

1. Lemma 4.1 shows that if \bfitS admits a decomposition \bfitT (1) + \bfitT (2) + cI, where
\bfitT (1), \bfitT (2), and a solution of (2.2) satisfy the conditions (4.1)--(4.2), then this solution
is also the unique solution to the relaxed problem (SDP).

2. By constructing the certificates \bfitT (1) and \bfitT (2), Lemma 4.2 establishes (4.3), a
sufficient condition such that (4.1)--(4.2) hold.

3. Lemma 4.3 establishes a perturbation result for the solution of (2.2). When
\bfitW is small, the perturbation result can be used to verify (4.3).

We first present our lemmas and a short proof of Theorem 3.1 based on these
lemmas and leave the technical proofs of the lemmas to section 5.

Lemma 4.1 (a condition for the equivalence between (2.2) and (SDP)). Let \~\bfitU 

be a solution to (2.2), and assume that it admits a decomposition \~\bfitU = \~\bfitV \~\bfitV 
T

with
\~\bfitV \in \BbbR D\times r. If there exists a decomposition \bfitS = \bfitT (1) + \bfitT (2) + cI such that
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\bfitT (1) = \Pi \~\bfitV 
\bot \bfitT (1)\Pi \~\bfitV 

\bot , \bfitT 
(2)
ii = \Pi \~\bfitV i

\bfitT 
(2)
ii \Pi \~\bfitV i

for all 1 \leq i \leq m,(4.1)

\{ PT
\~\bfitV i
\bfitT 

(2)
ii P \~\bfitV i

\} mi=1 and  - PT
\~\bfitV 

\bot \bfitT 
(1)P \~\bfitV 

\bot are positive definite matrices,(4.2)

then \~\bfitU is also the unique solution to the relaxed problem (SDP). Therefore, (2.2) and
(SDP) have the same unique solution.

Lemma 4.2 (a simplified condition in terms of the solution of (2.2)). Let \~\bfitU 

be a solution to (2.2), and assume that it admits a decomposition \~\bfitU = \~\bfitV \~\bfitV 
T

with
\~\bfitV \in \BbbR D\times r. If

(4.3)
m

2
\geq max

1\leq i\leq m

\bigm\| \bigm\| \bigm\| \sum m
j=1 \bfitW ij

\~\bfitV i

\bigm\| \bigm\| \bigm\| + 2m max
1\leq i\leq m

\| \~\bfitV i  - \Theta i\| + \| \Theta T \~\bfitV  - mI\| + \| \bfitW \| ,

then there exist \bfitT (1) and \bfitT (2) such that \bfitS = \bfitT (1) + \bfitT (2) + m
2 I, and (4.1)--(4.2) hold

with c = m/2.

Lemma 4.3 (perturbation bounds of the solutions of (2.2)). If m > \| \bfitW \| (4
\surd 
r+

1) + 1, then for \~\bfitU , any solution to (2.2), there is a decomposition \~\bfitU = \~\bfitV \~\bfitV 
T

with
\~\bfitV \in \BbbR D\times r such that

\| \~\bfitV  - \Theta \| F \leq 4\| \bfitW \| 
\sqrt{} 

r
m ,

max
1\leq i\leq m

\| [\bfitW \~\bfitV ]i\| F \leq max
1\leq i\leq m

\| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2
\sqrt{} 

r
m ,

(4.4)

and

(4.5) max
1\leq i\leq m

\| \~\bfitV i  - \Theta i\| F \leq 
2
\bigl( 
max1\leq i\leq m \| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2

\sqrt{} 
r
m

\bigr) 
m - \| \bfitW \| (4

\surd 
r + 1) - 1

.

Proof of Theorem 3.1. Lemma 4.1 and Lemma 4.2 imply that, to prove The-
orem 3.1, it is sufficient to prove (4.3), which can be verified by application of
Lemma 4.3.

4.2. Proof of Corollary 3.3.

Proof of Corollary 3.3. Under the \Theta -discordant property, inequality (3.1) is sat-
isfied if m is greater than

8m[3\sigma 
\surd 
drm logm+ 36\sigma 2d

\surd 
rm]

m - 2 - 6\sigma 
\surd 
dm(2

\surd 
r + 1)

+2[3\sigma 
\sqrt{} 
drm logm+36\sigma 2d

\surd 
rm]+24\sigma 

\surd 
dr+6\sigma 

\surd 
dm

or, by dividing the above expression by m,

1 >

\left(  2 +
8

1 - 2
m  - 6\sigma 

\surd 
d(2

\surd 
r+1)\surd 

m

\right)  \biggl[ 3\sigma \surd dr logm\surd 
m

+
36\sigma 2d

\surd 
r\surd 

m

\biggr] 
+

24\sigma 
\surd 
dr

m
+

6\sigma 
\surd 
d\surd 

m
.

If \sigma \leq m1/4

60
\surd 
dr
, then the RHS of the above inequality is upper bounded by\left(  2 +

8

1 - 2
m  - 6

60
2
\surd 
r+1\surd 
r

1
m1/4

\right)  \biggl[ 3

60

\surd 
logm

m1/4
+

36

3600

1\surd 
r

\biggr] 
+

24

60

1

m3/4
+

6

60

1\surd 
r

1

m1/4

\leq 

\Biggl( 
2 +

8

1 - 2
m  - 18

60
1

m1/4

\Biggr) \biggl[ 
3

60

\surd 
logm

m1/4
+

36

3600

\biggr] 
+

24

3600

1

m3/4
+

6

3600

1

m1/4D
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since r \geq 1 and 2
\surd 
r+1\surd 
r

\leq 3. The last line is decreasing in m if m \geq 8. At m = 8, the

denominator in the last line is 1 - 2
8  - 18

60
1

81/4
> 0, and the value of the whole line is

less than 1.

4.3. Proof of Corollary 3.4.

Proof of Corollary 3.4. Considering Corollary 3.3, it is sufficient to show that
Gaussian noise \bfitW satisfies the \Theta -discordance with high probability under the MAX-
BET model. Assume \sigma  - 1\bfitW ij has i.i.d. standard normal entries. Then from [\bfitW \Theta ]i =\sum m

j=1 \bfitW ij\Theta j \in \BbbR di\times r, it is obvious that this matrix has zero-mean normal entries.
To see the variance, note

vec(\bfitW ij\Theta j) = vec(Idi\bfitW ij\Theta j) = (\Theta T
j \otimes Idi) vec(\bfitW ij).

Then Cov(vec(\bfitW ij)) = \sigma 2Ididj and

Cov(vec(\bfitW ij\Theta j)) = \sigma 2(\Theta T
j \otimes Idi)(\Theta 

T
j \otimes Idi)

T = \sigma 2(\Theta T
j \otimes Idi)(\Theta j \otimes Idi)

= \sigma 2(\Theta T
j \Theta j \otimes IdiIdi) = \sigma 2(Ir \otimes Idi) = \sigma 2Irdi ;

i.e., \bfitW ij\Theta j has i.i.d. normal entries with variance \sigma 2. Then [\bfitW \Theta ]i is the sum of m
i.i.d. copies of \bfitW ij\Theta j ; hence entries have variance m\sigma 2. Now from Theorem 9.26 of
[15],

Pr

\biggl( 
1

\sigma 
\surd 
m
\| [\bfitW \Theta ]i\| \geq 

\sqrt{} 
di +

\surd 
r + t

\biggr) 
\leq e - t2/2

for t \geq 0. Applying the union bound and noting that 1\surd 
r
\| [\bfitW \Theta ]i\| F \leq \| (\bfitW \Theta )i\| 2, we

obtain

Pr

\biggl( 
max

i=1,...,m
\| [\bfitW \Theta ]i\| F \leq \sigma (

\sqrt{} 
drm+ r

\surd 
m+ t

\surd 
r)

\biggr) 
> 1 - me - t2/2,

where d = mini=1,...,m di. Now choose t such that e - t2/2 = 1/m2, i.e., t = 2
\surd 
logm.

Then,

(4.6) Pr

\biggl( 
max

i=1,...,m
\| [\bfitW \Theta ]i\| F \leq \sigma (

\sqrt{} 
drm+ r

\surd 
m+ 2

\sqrt{} 
r logm)

\biggr) 
> 1 - 1

m
.

Since d \geq max\{ r, 2\} and m \geq 2, we have r \leq 
\surd 
dr and

\surd 
dm \geq 2. Furthermore, if

m \geq 3, then m \leq m logm. Thus

(4.7)
\sqrt{} 
drm+ r

\surd 
m+ 2

\sqrt{} 
r logm \leq 3

\sqrt{} 
drm logm \leq 3

\sqrt{} 
Dr logm.

If m = 2 and d \geq 6,\sqrt{} 
2dr +

\surd 
2r2 + 2

\sqrt{} 
r log 2 \leq 3

\sqrt{} 
2dr log 2 \leq 3

\sqrt{} 
Dr log 2.

Thus if m \geq 3 or m \geq 2 and d \geq 6, then maxi=1,...,m \| [ 1\sigma \bfitW \Theta ]i\| F \leq 3
\surd 
Dr logm with

probability at least 1 - 1/m.

To bound \| \bfitW \| , observe that \bfitW 
d
= \bfitW (1) + \bfitW (2), where \bfitW (1) \in \BbbR D\times D has

entries i.i.d. from N(0, \sigma 2/2), and \bfitW (2) is generated as follows: [\bfitW (2)]ij = [\bfitW (1)]Tji
for i \not = j, and [\bfitW (2)]ii has entries i.i.d. from N(0, \sigma 2/2) under (MAXBET), or
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2192 JOONG-HO WON, TENG ZHANG, AND HUA ZHOU

[\bfitW (2)]ii =  - [\bfitW (2)]ii under (MAXDIFF). Marginally both \bfitW (1) and \bfitW (2) have
entries i.i.d. from N(0, \sigma 2/2). Then, [13, Theorem II.13] implies that

Pr

\Biggl( \surd 
2

\sigma 
\| \bfitW (1)\| \geq 2

\surd 
D + t

\Biggr) 
= Pr

\Biggl( \surd 
2

\sigma 
\| \bfitW (2)\| \geq 2

\surd 
D + t

\Biggr) 
< e - t2/2.

Applying the union bound and \| \bfitW \| \leq \| \bfitW (1)\| + \| \bfitW (2)\| yields

Pr
\Bigl( 
\| \bfitW \| \leq \sigma 

\surd 
2(2

\surd 
D + t)

\Bigr) 
> 1 - 2e - t2/2

for t\geq 0. Choose t=( 3\surd 
2
 - 2)

\surd 
D to have Pr (\| \bfitW \| \leq 3\sigma 

\surd 
D)>1 - 2e - 

(3 - 2
\surd 

2)2

4 D.

4.4. Proof of Corollary 3.7. The proof follows from (4.5) in Lemma 4.3 and
Corollary 3.3.

4.5. Proof of Theorem 3.9. As a preparation, we provide intermediate results
first. Proofs of these results are provided in section 5.3.

Lemma 4.4. Let \Lambda i be the Lagrange multiplier of a critical point (\bfitO 1, . . . ,\bfitO m)
of problem (OTSM). That is, it is a symmetric r \times r matrix satisfying \bfitO i\Lambda i =\sum m

j=1 \bfitS ij\bfitO j. Then, for block matrices \bfitO = [\bfitO T
1 , . . . ,\bfitO 

T
m]T and \Theta = [\Theta T

1 , . . . ,\Theta 
T
m]T ,

the following holds under (MAXBET):

\| \Lambda i  - mI\| \leq \| 
\sum m

j=1 \bfitW ij\bfitO j\| +m\| \bfitO T
i \Theta i  - Ir\| + \| \Theta T\bfitO  - mIr\| .

Under (MAXDIFF), we have

\| \Lambda i  - (m - 1)I\| \leq \| 
\sum 

j \not =i \bfitW ij\bfitO j\| +m\| \bfitO T
i \Theta i  - Ir\| + \| \Theta T\bfitO  - mIr\| .

Results parallel to Lemma 4.3 are also obtained.

Lemma 4.5. Let ( \~\bfitO 1, . . . , \~\bfitO m) \in \times m
i=1\scrO d,r be a a global optimum of (OTSM). If

we build a block matrix \~\bfitO = [ \~\bfitO 
T

1 , . . . ,
\~\bfitO 
T

m]T , then there exists an orthogonal matrix
\bfitR \in \scrO r,r such that ( \~\bfitO 1\bfitR , . . . , \~\bfitO m\bfitR ) is also a global optimum and for \bfitO = \~\bfitO \bfitR the
following error estimates hold:

\| \bfitO  - \Theta \| F \leq 

\Biggl\{ 
4\| \bfitW \| 

\surd 
r\surd 
m

under (MAXBET),

4\| \bfitW \| 
\surd 
r\surd 

m - 2/
\surd 
m

under (MAXDIFF),
(4.8)

\| \Theta T\bfitO  - mIr\| \leq 

\Biggl\{ 
4\| \bfitW \| 

\surd 
r under (MAXBET),

4\| \bfitW \| 
\surd 
r

1 - 2/m under (MAXDIFF),

(4.9)

max
1\leq i\leq m

\| [\bfitW \bfitO ]i]\| F \leq max
1\leq i\leq m

\| [\bfitW \Theta ]i\| F +

\Biggl\{ 
4\| \bfitW \| 2

\surd 
r\surd 
m

under (MAXBET),

4\| \bfitW \| 2
\surd 
r\surd 

m - 2/
\surd 
m

under (MAXDIFF),

(4.10)

max
1\leq i\leq m

\| \bfitO i  - \Theta i\| F \leq 

\left\{     
2
\Bigl( 
max1\leq i\leq m \| [\bfitW \bfTheta ]i\| F+4\| \bfitW \| 2

\surd 
r\surd 
m

\Bigr) 
m - 4\| \bfitW \| 

\surd 
r

under (MAXBET),

2
\Bigl( 
max1\leq i\leq m \| [\bfitW \bfTheta ]i\| F+4\| \bfitW \| 2

\surd 
r\surd 

m - 2/
\surd 

m

\Bigr) 
m - 4\| \bfitW \| 

\surd 
r

1 - 2/m
 - 3

under (MAXDIFF),

(4.11)
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where

m >

\Biggl\{ 
4\| \bfitW \| 

\surd 
r under (MAXBET),

5+4\| \bfitW \| 
\surd 
r+

\surd 
16\| \bfitW \| 2r+40\| \bfitW \| 

\surd 
r+1

2 under (MAXDIFF).

Assume the data model (MAXBET). We want a condition on the noise matrices
\bfitW ij that guarantees the certificate (2.4) to hold. Let ( \~\bfitO 1, . . . , \~\bfitO m) be a global

optimum of (OTSM) and \~\bfitO = [ \~\bfitO 
T

1 , . . . ,
\~\bfitO 
T

m]. Since \bfitL \^\bfitO = 0 for \^\bfitO = [ \^\bfitO 
T

1 , . . . ,
\^\bfitO 
T

m]

whenever ( \^\bfitO 1, . . . , \^\bfitO m) is a critical point, it suffices to find a condition that

\bfitx T\bfitL ( \~\bfitO , \~\Lambda )\bfitx \geq 0 for all \bfitx = (\bfitx 1, . . . ,\bfitx m),\bfitx i \in \BbbR di such that \~\bfitO 
T
\bfitx = 0,

where \~\Lambda = (\~\Lambda 1, . . . , \~\Lambda m), \~\Lambda i =
\sum m

j=1
\~\bfitO 
T

i \bfitS ij
\~\bfitO j , is the collection of the associated

Lagrange multipliers.
Let (\bfitO 1, . . . ,\bfitO m) be a critical point and \bfitO = [\bfitO T

1 , . . . ,\bfitO 
T
m]T . Then, for any \bfitx 

satisfying \bfitO T\bfitx = 0,

\bfitx T\bfitL (\bfitO ,\Lambda )\bfitx =

m\sum 
i=1

\Bigl( 
\bfitx T
i \bfitO i\Lambda i\bfitO 

T
i \bfitx i + \tau i\bfitx 

T
i \bfitO 

\bot 
i \bfitO 

\bot T
i \bfitx 

\Bigr) 
 - \bfitx T\bfitS \bfitx 

\geq 
m\sum 
i=1

\Bigl( 
\tau i\bfitx 

T
i \bfitO i\bfitO 

T
i \bfitx i + \tau i\bfitx 

T
i \bfitO 

\bot 
i \bfitO 

\bot T
i \bfitx i

\Bigr) 
 - \bfitx T\bfitS \bfitx 

=

m\sum 
i=1

\tau i\| \bfitx i\| 2  - \bfitx T\bfitS \bfitx .

The block matrix (2.1) can be written as

(4.12) \bfitS = \Theta \Theta T +\bfitW ,

where \bfitW is a block matrix constructed from \bfitW ij in a similar fashion to (2.1). Then

\bfitx T\bfitS \bfitx = \bfitx T\Theta \Theta T\bfitx + \bfitx T\bfitW \bfitx = \bfitx T (\Theta  - \bfitO )(\Theta  - \bfitO )T\bfitx + \bfitx T\bfitW \bfitx 

= \| (\Theta  - \bfitO )T\bfitx \| 2 + \bfitx T\bfitW \bfitx \leq \| \Theta  - \bfitO \| 2\| \bfitx \| 2 + \| \bfitW \| \| \bfitx \| 2.(4.13)

The second equality is due to \bfitO T\bfitx = 0. Hence we have

(4.14) \bfitx T\bfitL (\bfitO ,\Lambda )\bfitx \geq 
m\sum 
i=1

\tau i\| \bfitx i\| 2  - \| \Theta  - \bfitO \| 2\| \bfitx \| 2  - \| \bfitW \| \| \bfitx \| 2.

Combining Weyl's inequality and Lemma 4.4, we obtain a lower bound on \tau i:

\tau i \geq m - \| [\bfitW \bfitO ]i\|  - m\| \bfitO T
i \Theta i  - I\|  - \| \Theta T\bfitO  - mI\| .

Substituting this with inequality (4.15), we see

\bfitx T\bfitL (\bfitO ,\Lambda )\bfitx \geq (m - \| \Theta T\bfitO  - mI\| )\| \bfitx \| 2  - \| \Theta  - \bfitO \| 2\| \bfitx \| 2

 - 
m\sum 
i=1

\Bigl( 
\| [\bfitW \bfitO ]i\| \| \bfitx i\| 2 +m\| \bfitO T

i \Theta i  - I\| \| \bfitx i\| 2
\Bigr) 
 - \| \bfitW \| \| \bfitx \| 2

\geq 
\Bigl( 
m - \| \Theta T\bfitO  - mI\|  - \| \Theta  - \bfitO \| 2

 - max
i=1,...,m

\| [\bfitW \bfitO ]i\|  - m max
i=1,...,m

\| \bfitO T
i \Theta i  - I\|  - \| \bfitW \| 

\biggr) 
\| \bfitx \| 2.

(4.15)
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2194 JOONG-HO WON, TENG ZHANG, AND HUA ZHOU

Thus if

m \geq \| \Theta T\bfitO  - mI\| + \| \Theta  - \bfitO \| 2

+ max
i=1,...,m

\| [\bfitW \bfitO ]i\| +m max
i=1,...,m

\| \bfitO T
i \Theta i  - I\| + \| \bfitW \| ,(4.16)

then we have \bfitL (\bfitO ,\Lambda ) \succcurlyeq 0.
Now suppose ( \~\bfitO 1, . . . , \~\bfitO m) is a global optimum and \~\Lambda = (\~\Lambda 1, . . . , \~\Lambda m) is the

collection of the associated Lagrange multipliers. Let \~\bfitO = [ \~\bfitO 
T

1 , . . . ,
\~\bfitO 
T

m]T . Then, by
Lemma 4.5 there exists \bfitR \in \scrO r,r such that \bfitO = \~\bfitO \bfitR satisfies inequalities (4.8)--(4.11).
Then, for this \bfitO the RHS of inequality (4.16) can be bounded:

\| \Theta T\bfitO  - mI\| + max
i=1,...,m

\| (\bfitW \bfitO )i\| +m max
i=1,...,m

\| \bfitO T
i \Theta i  - I\| + \| \Theta  - \bfitO \| 2 + \| \bfitW \| 

\leq 4\| \bfitW \| 
\surd 
r + max

1\leq i\leq m
\| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2

\sqrt{} 
r
m

+
2m(max1\leq i\leq m \| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2

\sqrt{} 
r
m )

m - 4\| \bfitW \| 
\surd 
r

+ 16\| \bfitW \| 2 r

m
+ \| \bfitW \| .

If this bound is less than or equal to m, the resulting inequality is precisely (3.6),
and then condition (4.16) is satisfied. In other words, \bfitL (\bfitO ,\Lambda ) \succcurlyeq 0, where \Lambda =
(\Lambda 1, . . . ,\Lambda m) and \Lambda i =

\sum m
j=1 \bfitO 

T
i \bfitS ij\bfitO j = \bfitR \~\Lambda i\bfitR 

T , i = 1, . . . ,m, are the associated
Lagrange multipliers.

Finally, observing that

\bfitL 
\bigl( 
\bfitA , (\bfitB 1, . . . ,\bfitB m)

\bigr) 
= \bfitL 

\bigl( 
\bfitA \bfitQ , (\bfitQ T\bfitB 1\bfitQ , . . . ,\bfitQ T\bfitB m\bfitQ )

\bigr) 
for any \bfitQ \in \scrO r,r, \bfitA = [\bfitA T

1 , . . . ,\bfitA 
T
m]T with \bfitA i \in \BbbR di\times r, and \bfitB i \in \BbbR r\times r shows that

\bfitL ( \~\bfitO , \~\Lambda ) \succcurlyeq 0.
For the similar result under the model (MAXDIFF), see section 4.7.

4.6. Proof of Corollary 3.10. Under the \Theta -concordance of 1
\sigma \bfitW , the RHS of

inequality (3.6) in Theorem 3.9 is upper bounded by

12\sigma 
\surd 
Dr + 3\sigma 

\sqrt{} 
Dr logm+ 36\sigma 2D

\sqrt{} 
r

m
+

2m(3\sigma 
\surd 
Dr logm+ 36\sigma 2D

\sqrt{} 
r
m )

m - 12\sigma 
\surd 
Dr

+ 144\sigma 2Dr

m
+ 3\sigma 

\surd 
D

(4.17)

if \sigma < m
12

\surd 
Dr

. If (4.17) is less than or equal to m or equivalently

1 \geq 12\sigma 

\sqrt{} 
dr

m
+ 3\sigma 

\sqrt{} 
dr logm

m
+ 36\sigma 2d

\sqrt{} 
r

m

+
2(3\sigma 

\surd 
drm logm+ 36\sigma 2d

\surd 
rm)

m - 12\sigma 
\surd 
drm

+ 144\sigma 2 dr

m
+ 3\sigma 

\sqrt{} 
d

m

(4.18)

for \sigma < m1/2

12
\surd 
dr
, then from the proof of Theorem 3.9, we see that condition (4.16) is

satisfied, and thus the claim is proved.
The fourth term on the RHS of inequality (4.18) is

2

\biggl( 
3\sigma 
\sqrt{} 

dr logm
m + 36\sigma 2d

\sqrt{} 
r
m

\biggr) 
1 - 12\sigma 

\sqrt{} 
dr
m

\leq 2

1 - 12
31

1
m1/4

\Biggl( 
3\sigma 

\sqrt{} 
dr logm

m
+ 36\sigma 2d

\sqrt{} 
r

m

\Biggr) 
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if \sigma \leq m1/4

31
\surd 
dr
. Thus, by replacing \sigma with m1/4

31
\surd 
dr
, the RHS of (4.18) is upper bounded

by

12

31

1

m1/4
+

\Biggl( 
1 +

2

1 - 12
31

1
m1/4

\Biggr) \biggl( 
3

31

\surd 
logm

m1/4
+

36

961

1\surd 
r

\biggr) 
+

144

961

1

m1/2
+

3

31

1\surd 
rm1/4

.

Since r \geq 1,
\surd 
logm
m1/4 \leq 

\sqrt{} 
2
e , and the rest of the terms are decreasing in m, the above

quantity is less than 1 for m \geq 2.

4.7. Theorem3.9, Corollary 3.10, andCorollary 3.11 under (MAXDIFF).
Under the MAXDIFF model, inequality (4.13) is replaced by

\bfitx T\bfitS \bfitx \leq \| \Theta  - \bfitO \| 2\| \bfitx \| 2  - 
m\sum 
i=1

\| \Theta i\Theta 
T
i \bfitx i\| 2 + \| \bfitW \| \| \bfitx \| 2

\leq 
\biggl( 
\| \Theta  - \bfitO \| 2  - min

1\leq i\leq m
\| \Theta i\| 2 + \| \bfitW \| 

\biggr) 
\| \bfitx \| 2

and (4.15) by

\bfitx T\bfitL (\bfitO ,\Lambda )\bfitx \geq 
\biggl( 
m - 1 - \| \Theta T\bfitO  - mI\|  - max

i=1,...,m
\| [\bfitW \bfitO ]i\| 

 - m max
i=1,...,m

\| \bfitO T
i \Theta i  - I\|  - \| \Theta  - \bfitO \| 2  - \| \bfitW \| + min

1\leq i\leq m
\| \Theta i\| 2

\biggr) 
\| \bfitx \| 2

=

\biggl( 
m - \| \Theta T\bfitO  - mI\|  - max

i=1,...,m
\| [\bfitW \bfitO ]i\| 

 - m max
i=1,...,m

\| \bfitO T
i \Theta i  - I\|  - \| \Theta  - \bfitO \| 2  - \| \bfitW \| 

\biggr) 
\| \bfitx \| 2

since \| \Theta i\| = 1 for all i. Thus condition (4.16) for \bfitL (\bfitO ,\Lambda ) \succcurlyeq 0 to hold remains
unchanged. Applying Lemma 4.5, we obtain

m \geq 4\| \bfitW \| 
\surd 
r

1 - 2/m +max1\leq i\leq m \| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2
\surd 
r\surd 

m - 2/
\surd 
m

+ \| \bfitW \| 

+
2m(max1\leq i\leq m \| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2

\surd 
r\surd 

m - 2/
\surd 
m
)

m - 4\| \bfitW \| 
\surd 
r

1 - 2/m  - 3
+ 16\| \bfitW \| 2 r

(
\surd 
m - 2/

\surd 
m)2

.

Proceeding as above for (MAXBET), we obtain the bound on \sigma as stated in Re-
mark 3.13.

Furthermore, inequality (4.6) is replaced by

Pr

\biggl( 
max

i=1,...,m
\| [\bfitW \Theta ]i\| F \leq \sigma (

\sqrt{} 
dr(m - 1) + r

\surd 
m - 1 + 2

\sqrt{} 
r logm)

\biggr) 
> 1 - 1

m

(recall that d = minm=1,...,m di), and inequality (4.7) holds for m \geq 2 for all d since
m - 1 \leq m logm for all m \geq 2. Thus the conclusion of Corollary 3.11 holds without

modification, provided that m \geq 4 and \sigma \leq m1/4

64
\surd 
dr

as stated in Remark 3.13.

4.8. Proof of Corollary 3.14. The desired results follow immediately from
inequality (4.11) of Lemma 4.5 and Definition 3.2.
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5. Proofs of technical lemmas and propositions.

5.1. Proof of Proposition 2.1.

Proof of Proposition 2.1. First consider model (MAXBET). We have \bfitS ij =

\Theta i\Theta 
T
j for all i, j. Then the objective of (OTSM) is\sum 

i,j

tr(\bfitO T
i \Theta i\Theta 

T
j \bfitO j) =

\sum 
i,j

tr[(\Theta T
i \bfitO i)

T (\Theta T
j \bfitO j)].

Each term is bounded by the von Neumann--Fan inequality [20, Example 2.8.7]

(5.1) tr[(\Theta T
i \bfitO i)

T (\Theta T
j \bfitO j)] \leq 

r\sum 
k=1

\sigma k(\Theta 
T
i \bfitO i)\sigma k(\Theta 

T
j \bfitO j),

where \sigma k(\bfitM ) is the kth largest singular value of matrix \bfitM . Since \bfitO T
i \Theta i\Theta 

T
i \bfitO i \preccurlyeq 

\bfitO T
i \bfitO i = Ir, we see maxk=1,...,r \sigma k(\Theta 

T
i \bfitO i) \leq 1 for all \bfitO i \in \scrO di,r, i = 1, . . . ,m.

Thus the largest possible value of the RHS of inequality (5.1) is r, and (OTSM) has
maximum m2r. This is achieved by \bfitO i = \Theta i for i = 1, . . . ,m since \Theta T

i \Theta i = Ir.
It is straightforward to modify the above proof for model (MAXDIFF). The

maximum is m(m - 1)r.

5.2. Proofs of Lemmas for Theorem 3.1.

Proof of Lemma 4.1. For any \bfitU in the constraint set of (SDP) such that \bfitU \not = \~\bfitU 
and \bfitX = \bfitU  - \~\bfitU , we have PT

\~\bfitV 
\bot \bfitX P \~\bfitV 

\bot = PT
\~\bfitV 

\bot \bfitU P \~\bfitV 
\bot  - PT

\~\bfitV 
\bot 
\~\bfitU P \~\bfitV 

\bot = PT
\~\bfitV 

\bot \bfitU P \~\bfitV 
\bot \succcurlyeq 0

and PT
\~\bfitV i
\bfitX iiP \~\bfitV i

= PT
\~\bfitV i
\bfitU iiP \~\bfitV i

 - PT
\~\bfitV i

\~\bfitU iiP \~\bfitV i
= PT

\~\bfitV i
\bfitU iiP \~\bfitV i

 - I \preccurlyeq 0. In summary, \bfitX 

has the properties of

(5.2) PT
\~\bfitV 

\bot \bfitX P \~\bfitV 
\bot \succcurlyeq 0, tr(\bfitX ii) = 0 and PT

\~\bfitV i
\bfitX iiP \~\bfitV i

\preccurlyeq 0 for all 1 \leq i \leq m.

In addition, either PT
\~\bfitV 

\bot \bfitX P \~\bfitV 
\bot is nonzero or PT

\~\bfitV i
\bfitX iiP \~\bfitV i

is nonzero for some i. If

they are all zero matrices, then we have

PT
\~\bfitV 

\bot \bfitU P \~\bfitV 
\bot = PT

\~\bfitV 
\bot 
\~\bfitU P \~\bfitV 

\bot = 0,(5.3)

PT
\~\bfitV i
\bfitU iiP \~\bfitV i

= PT
\~\bfitV i

\~\bfitU iiP \~\bfitV i
= Ir.(5.4)

Since \bfitU ii \succcurlyeq 0, we have \~\bfitV 
T

i \bfitU ii
\~\bfitV i \succcurlyeq 0. Combining it with tr(PT

\~\bfitV i
\bfitU iiP \~\bfitV i

) = r (due

to (5.4)) and r = tr(\bfitU ii) = tr(PT
\~\bfitV i
\bfitU iiP \~\bfitV i

) + tr( \~\bfitV 
T

i \bfitU ii
\~\bfitV i), we have \~\bfitV 

T

i \bfitU ii
\~\bfitV i = 0.

Combining it with \bfitU ii \succcurlyeq 0, we have \~\bfitV 
T

i \bfitU ii = 0 and \bfitU T
ii
\~\bfitV i = 0. It implies that

\bfitU ii = \~ViZi
\~V T
i for some positive semidefinite Zi. That \bfitU ii \preccurlyeq I and tr(\bfitU ii) = r in

turn implies that Zi = Ir. Thus,

(5.5) \bfitU ii = \~\bfitV i
\~\bfitV 

T

i .

In addition, (5.3) and \bfitU \succcurlyeq 0 mean that \bfitU = \Pi T
\~\bfitV 
\bfitU \Pi \~\bfitV ; that is, there exists a matrix

\bfitZ \in \BbbR r\times r such that \bfitU = \~\bfitV \bfitZ \~\bfitV 
T
, and as a result, \bfitU ii = \~\bfitV i\bfitZ \~\bfitV 

T

i . Combining it with

(5.5), we have \bfitZ = I and \bfitU = \~\bfitV \~\bfitV 
T
= \~\bfitU , which is a contradiction to assumption

\bfitU \not = \~\bfitU .
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Combining the property of \bfitX in (5.2) with the assumption of \bfitT in (4.2) that

\{ PT
\~\bfitV i
\bfitT 

(2)
ii P \~\bfitV i

\} mi=1 and  - PT
\~\bfitV 

\bot \bfitT 
(1)P \~\bfitV 

\bot are positive definite matrices, we have

tr(\bfitX \bfitS ) = tr(\bfitX \bfitT (1)) + tr(\bfitX \bfitT (2)) + c tr(\bfitX )

= tr[(PT
\~\bfitV 

\bot \bfitX P \~\bfitV 
\bot )(PT

\~\bfitV 
\bot \bfitT 

(1)P \~\bfitV 
\bot )] +

\sum m
i=1 tr(\bfitX ii\bfitT 

(2)
ii )

= tr[(PT
\~\bfitV 

\bot \bfitX P \~\bfitV 
\bot )(PT

\~\bfitV 
\bot \bfitT 

(1)P \~\bfitV 
\bot )]

+
\sum m

i=1 tr[(P
T
\~\bfitV i
\bfitX iiP \~\bfitV i

)(PT
\~\bfitV i
\bfitT 

(2)
ii P \~\bfitV i

)] < 0.

(5.6)

The first equality uses assumption (4.1). The last inequality is strict because either
PT

\~\bfitV 
\bot \bfitX P \~\bfitV 

\bot is nonzero or PT
\~\bfitV i
\bfitX iiP \~\bfitV i

is nonzero for some 1 \leq i \leq m. Then (5.6)

implies that tr(\bfitS \bfitU ) < tr(\bfitS \~\bfitU ) for all \bfitU \not = \~\bfitU , and as a result, \~\bfitU is the unique
solution to (SDP).

Proof of Lemma 4.2. In this proof, we aim to construct the certificate in Lemma
4.1. The process can be divided into three steps:

\bullet Find a decomposition of \bfitS = \bfitS (1) + \bfitS (2) based on the first-order optimality.
\bullet Construct the certificate \bfitT (1) and \bfitT (2) from the decomposition \bfitS (1) and \bfitS (2).

The explicit expression is given in (5.10).
\bullet Verify that the certificate satisfies the conditions in Lemma 4.1.

Step 1: Decomposition of \bfitS based on the first-order optimality. We
investigate the first-order condition for any solution of (2.2) and summarize the result
in Lemma 5.1 as below.

Lemma 5.1. Let \~\bfitU = \~\bfitV \~\bfitV 
T

be a solution to (2.2) with \~\bfitV \in \BbbR D\times r. Then the

input matrix \bfitS can be decomposed into \bfitS = \bfitS (1)+\bfitS (2), where \bfitS (1) and \bfitS (2) are such
that

[\bfitS (1)]ij =

\Biggl\{ 
\bfitS ij , i \not = j,

\bfitS ii  - 
\sum m

j=1 \bfitS ij
\~\bfitV j

\~\bfitV 
T

i , i = j,
(5.7)

[\bfitS (2)]ij =

\Biggl\{ 
0, i \not = j,\sum m

j=1 \bfitS ij
\~\bfitV j

\~\bfitV 
T

i , i = j,
(5.8)

and satisfy that

(5.9) \bfitS (1) = \Pi \~\bfitV 
\bot \bfitS (1)\Pi \~\bfitV 

\bot and \bfitS 
(2)
ii = \Pi \~\bfitV i

\bfitS 
(2)
ii \Pi \~\bfitV i

for all 1 \leq i \leq m.

The properties of \bfitS (1) and \bfitS (2) in (5.9) are exactly the same as the condition

(4.1) for certificates \bfitT (1) and \bfitT (2) in Lemma 4.1. As a result, it is convenient to

construct our certificates \bfitT (1) and \bfitT (2) based on \bfitS (1) and \bfitS (2). In fact, the explicit
expression of (5.10) in step 2 shows that \bfitT (1) is derived from \bfitS (1) and \bfitT (2) is derived

from \bfitS (2).

Proof of Lemma 5.1. Since \~\bfitV must satisfy the first-order local optimality condi-
tion (2.3), that is, \~\bfitV i\Lambda i =

\sum 
j \bfitS ij

\~\bfitV j , we can construct the block diagonal matrix

\bfitS (2) by letting \bfitS 
(2)
ii = \~\bfitV i\Lambda i

\~\bfitV 
T

i =
\sum 

j \bfitS ij
\~\bfitV j

\~\bfitV 
T

i . Then it follows that

\Pi \~\bfitV i
\bfitS 

(2)
ii \Pi \~\bfitV i

= \~\bfitV i\Lambda i
\~\bfitV 

T

i = \bfitS 
(2)
ii .
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2198 JOONG-HO WON, TENG ZHANG, AND HUA ZHOU

Furthermore,

[\bfitS (2) \~\bfitV ]i = \bfitS 
(2)
ii

\~\bfitV i = \~\bfitV i\Lambda i =
\sum 
j

\bfitS ij
\~\bfitV j = [\bfitS \~\bfitV ]i.

Thus \bfitS (2) \~\bfitV = \bfitS \~\bfitV , and for \bfitS (1) = \bfitS  - \bfitS (2), we see \bfitS (1) \~\bfitV = 0 and \~\bfitV 
T
\bfitS (1) = 0 (by

symmetry). This implies \Pi \~\bfitV 
\bot \bfitS (1)\Pi \~\bfitV 

\bot = \bfitS (1). Hence condition (5.9) is satisfied.

Step 2: Construction and verification of a certificate. We construct the
certificates \bfitT (1) and \bfitT (2) based on \bfitS (1) and \bfitS (2) as follows:

(5.10) \bfitT 
(1)
ij =

\Biggl\{ 
\bfitS 

(1)
ij , i \not = j,

\bfitS 
(1)
ii  - c\Pi \~\bfitV 

\bot 
i
, i = j

, \bfitT 
(2)
ij =

\Biggl\{ 
\bfitS 

(2)
ij , i \not = j,

\bfitS 
(2)
ii  - c\Pi \~\bfitV i

, i = j.

It remains to verify that the certificate satisfies the assumptions in Lemma 4.1.

Step 2a: Proof of (4.1). From the properties of \bfitS (1) and \bfitS (2) from step 1, it

is clear that \bfitS = \bfitT (1) + \bfitT (2) + cI, \Pi \~\bfitV 
\bot \bfitT (1)\Pi \~\bfitV 

\bot = \bfitT (1), and \bfitT 
(2)
ii = \Pi \~\bfitV i

\bfitT 
(2)
ii \Pi \~\bfitV i

.

Step 2b: Prove that \{ PT
\~\bfitV i
\bfitT 

(2)
ii P \~\bfitV i

\} mi=1 is positive definite. Applying, for

all 1 \leq i \leq m,

\| \~\bfitV T

i [\bfitS 
(2)]ii \~\bfitV i  - mI\| \leq 

\bigm\| \bigm\| \bigm\| \sum m
j=1 \bfitW ij

\~\bfitV i

\bigm\| \bigm\| \bigm\| +m\| \~\bfitV T

i \Theta i  - I\| + \| \Theta T \~\bfitV  - mI\| (5.11)

(which will be proved in step 3) and Weyl's inequality for perturbation of eigenvalues

and noting that \| \~\bfitV T

i \Theta i  - I\| \leq \| \~\bfitV i  - \Theta i\| , we see PT
\~\bfitV i
\bfitT 

(2)
ii P \~\bfitV i

is positive definite for

all 1 \leq i \leq m if

(5.12) m > c+ max
1\leq i\leq m

\bigm\| \bigm\| \bigm\| \sum m
j=1 \bfitW ij

\~\bfitV i

\bigm\| \bigm\| \bigm\| +m max
1\leq i\leq m

\| \~\bfitV i  - \Theta i\| + \| \Theta T \~\bfitV  - mI\| ,

which follows from (4.3) with c = m/2.

Step 2c: Prove that  - PT
\~\bfitV 

\bot \bfitT 
(1)P \~\bfitV 

\bot is positive definite. Let Sp(\bfitX ) be the

column space of the matrix \bfitX , and define the subspaces L1 = Sp(\Theta ), L2 = \{ \bfitx \in \BbbR D :

\bfitx i \in Sp(\Theta i)\} , and L3 = L\bot 
2 = \{ \bfitx \in \BbbR D : \bfitx i \in Sp(\Theta \bot 

i )\} , and let \bfitS (1)\ast =  - m\Pi L2\cap L\bot 
1

and \bfitT (1)\ast = \bfitS (1)\ast  - c\Pi L3
=  - m\Pi L2\cap L\bot 

1
 - c\Pi L3

. More specifically, we have

(5.13) [\bfitS (1)\ast ]ij = \Theta i\Theta 
T
j for i \not = j, [\bfitS (1)\ast ]ii =  - (m - 1)\Theta i\Theta 

T
i

and \bfitT (1)\ast as follows: \bfitT 
(1)\ast 
ij = \bfitS 

(1)\ast 
ij , \bfitT 

(1)\ast 
ii = \bfitS 

(1)\ast 
ii  - c\Pi \bfTheta \bot 

i
.

Considering that dim(L2 \cap L\bot 
1 ) = dim(L2)  - dim(L1) = rm  - r and dim(L3) =

D  - dim(L2) = D  - rm, we have \lambda r+1(\bfitT 
(1)\ast ) =  - c. Applying Weyl's inequality and

noting \| \Theta i\Theta 
T
i  - \~\bfitV i

\~\bfitV 
T

i \| = \| \Theta i(\Theta i  - \~\bfitV i)
T + ( \~\bfitV i  - \Theta i) \~\bfitV 

T

i \| \leq 2\| \Theta i  - \~\bfitV i\| , we have

| \lambda r+1(\bfitT 
(1)\ast ) - \lambda r+1(\bfitT 

(1))| \leq \| \bfitT (1)\ast  - \bfitT (1)\| 

\leq \| \bfitS (1)\ast  - \bfitS (1)\| + cmax1\leq i\leq m \| \Pi \bfTheta \bot 
i
 - \Pi \~\bfitV 

\bot 
i
\| 

= \| \bfitS (1)\ast  - \bfitS (1)\| + cmax1\leq i\leq m \| \Theta i\Theta 
T
i  - \~\bfitV i

\~\bfitV 
T

i \| 

\leq \| \bfitS (1)\ast  - \bfitS (1)\| + 2cmax1\leq i\leq m \| \Theta i  - \~\bfitV i\| .
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Combining it with

\| \bfitS (1)\ast  - \bfitS (1)\| \leq m max
1\leq i\leq m

\| \~\bfitV i  - \Theta i\| + max
1\leq i\leq m

\| 
\sum m

j=1 \bfitW ij
\~\bfitV j\| 

+ \| \Theta T \~\bfitV  - mI\| + \| \bfitW \| 
(5.14)

(which will be proved in step 3) and

(5.15) c > (m+ 2c) max
1\leq i\leq m

\| \~\bfitV i  - \Theta i\| + max
1\leq i\leq m

\| 
m\sum 
j=1

\bfitW ij
\~\bfitV j\| + \| \Theta T \~\bfitV  - mI\| +\| \bfitW \| 

(which follows from (4.3) with c = m/2), \lambda r+1(\bfitT 
(1)) is negative, which means that

\bfitT (1) has at least D  - r negative eigenvalues. By definition, \bfitT (1) has r zero eigenval-
ues with eigenvectors spanning the column space of \~\bfitV , so PT

\~\bfitV 
\bot \bfitT 

(1)P \~\bfitV 
\bot is negative

definite.
Step 3: Proof of auxiliary inequalities (5.11) and (5.14).

Step 3a: Proof of (5.11). Combining (5.8) with

(5.16)
\sum m

j=1 \Theta 
T
j
\~\bfitV j = \Theta T \~\bfitV ,

we see\bigm\| \bigm\| \bigm\| \~\bfitV T

i [\bfitS 
(2)]ii \~\bfitV i  - mI

\bigm\| \bigm\| \bigm\| =
\bigm\| \bigm\| \bigm\| \~\bfitV T

i

\Bigl( \sum m
j=1\bfitS ij

\~\bfitV j

\Bigr) 
 - mI

\bigm\| \bigm\| \bigm\| 
\leq 
\bigm\| \bigm\| \bigm\| \sum m

j=1 \bfitW ij
\~\bfitV j

\bigm\| \bigm\| \bigm\| + \bigm\| \bigm\| \bigm\| \~\bfitV T

i \Theta i

\Bigl( \sum m
j=1\Theta 

T
j
\~\bfitV j

\Bigr) 
 - mI

\bigm\| \bigm\| \bigm\| 
\leq 
\bigm\| \bigm\| \bigm\| \sum m

j=1 \bfitW ij
\~\bfitV i

\bigm\| \bigm\| \bigm\| + \bigm\| \bigm\| \bigm\| \~\bfitV T

i \Theta i  - I
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum m

j=1\Theta 
T
j
\~\bfitV j

\bigm\| \bigm\| \bigm\| + \bigm\| \bigm\| \bigm\| \sum m
j=1\Theta 

T
j
\~\bfitV j  - mI

\bigm\| \bigm\| \bigm\| 
\leq 
\bigm\| \bigm\| \bigm\| \sum m

j=1 \bfitW ij
\~\bfitV i

\bigm\| \bigm\| \bigm\| +m
\bigm\| \bigm\| \bigm\| \~\bfitV T

i \Theta i  - I
\bigm\| \bigm\| \bigm\| + \bigm\| \bigm\| \bigm\| \Theta T \~\bfitV  - mI

\bigm\| \bigm\| \bigm\| ,
where \bfitS ij = \bfitW ij +\Theta i\Theta 

T
j when i \not = j is used for the first inequality.

Step 3b: Proof of (5.14). Applying (5.7), (5.8), and (5.13), we have that, for
both MAXBET and MAXDIFF models,

(5.17) [\bfitS (1)  - \bfitS (1)\ast ]ij =

\Biggl\{ 
\bfitS ij  - \Theta i\Theta 

T
j = \bfitW ij , i \not = j,

\bfitW ii  - (
\sum m

j=1\bfitS ij
\~\bfitV j) \~\bfitV 

T

i +m\Theta i\Theta 
T
i , i = j.

As a result,

\| \bfitS (1)  - \bfitS (1)\ast \| \leq \| \bfitW \| + max
1\leq i\leq m

\bigm\| \bigm\| \bigm\| \Bigl( \sum m
j=1\bfitS ij

\~\bfitV j

\Bigr) 
\~\bfitV 

T

i  - m\Theta i\Theta 
T
i

\bigm\| \bigm\| \bigm\| .(5.18)

Using (5.16), we have

\| (
\sum m

j=1\Theta i\Theta 
T
j
\~\bfitV j) \~\bfitV 

T

i  - m\Theta i\Theta 
T
i \| = \| (

\sum m
j=1\Theta 

T
j
\~\bfitV j) \~\bfitV 

T

i  - m\Theta T
i \| 

\leq \| (
\sum m

j=1\Theta 
T
j
\~\bfitV j) - mI\| +m\| \~\bfitV i  - \Theta i\| =\| \Theta T \~\bfitV  - mI\| +m\| \~\bfitV i  - \Theta i\| .

(5.19)

Applying (5.18), (5.19), and \bfitS ij = \bfitW ij +\Theta i\Theta 
T
j when i \not = j, (5.14) is proved.
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Proof of Lemma 4.3. First, we remark that the choice of \~\bfitV \in \BbbR D\times r is only unique
up to an r\times r orthogonal matrix. That is, for any orthogonal matrix \bfitO \in \BbbR r\times r, \~\bfitV \bfitO 
is also a potential choice. In this proof, we choose \~\bfitV such that \Theta T \~\bfitV \in \BbbR r\times r is a
symmetric, positive semidefinite matrix, and as a result, tr(\Theta T \~\bfitV ) = \| \Theta T \~\bfitV \| \ast .

Then we have that

\| \~\bfitV  - \Theta \| 2F =
\sum m

i=1 \| \~\bfitV i  - \Theta i\| 2F =
\sum m

i=1 \| \~\bfitV i\| 2F + \| \Theta i\| 2F  - 2 tr( \~\bfitV i\Theta 
T
i )

=

m\sum 
i=1

\| \~\bfitV i\| 2F + \| \Theta i\| 2F  - 2 tr(\Theta T
i
\~\bfitV i) = 2rm - 2 tr

\Biggl( 
m\sum 
i=1

\Theta T
i
\~\bfitV i

\Biggr) 
= 2rm - 2 tr(\Theta T \~\bfitV ) = 2rm - 2\| \Theta T \~\bfitV \| \ast ,

(5.20)

where \| \cdot \| \ast represents the nuclear norm that is the summation of all singular values
(and since \bfitV T \~\bfitV is positive semidefinite, it is also the summation of its eigenvalues).

Using the definition in (2.2), we have

(5.21) tr( \~\bfitV 
T
\bfitS \~\bfitV ) \geq tr(\Theta T\bfitS \Theta ).

Applying \bfitS = \Theta \Theta T +\bfitW , (5.21) implies

tr( \~\bfitV 
T
\bfitW \~\bfitV ) + \| \~\bfitV T

\Theta \| 2F = tr( \~\bfitV 
T
\bfitW \~\bfitV ) + tr( \~\bfitV 

T
\Theta \Theta T \~\bfitV )

\geq tr(\Theta T\bfitW \Theta ) + tr(\Theta T\Theta \Theta T\Theta ) = tr(\Theta T\bfitW \Theta ) + \| \Theta T\Theta \| 2F

and

(5.22) tr( \~\bfitV 
T
\bfitW \~\bfitV ) - tr(\Theta T\bfitW \Theta ) \geq \| \Theta T\Theta \| 2F  - \| \~\bfitV T

\Theta \| 2F = rm2  - \| \~\bfitV T
\Theta \| 2F .

Since \| \bfitX \| 2F =
\sum 

i \lambda i(\bfitX )2, we have

rm2  - \| \~\bfitV T
\Theta \| 2F =

\sum r
i=1(m

2  - \lambda i( \~\bfitV 
T
\Theta )2)

\geq m
\sum r

i=1(m - \lambda i( \~\bfitV 
T
\Theta )) = m(rm - \| \~\bfitV T

\Theta \| \ast ).
(5.23)

The combination of (5.22), (5.23), \| \~\bfitV \| F = \| \Theta \| F =
\surd 
rm, tr(\bfitA \bfitB ) \leq \| \bfitA \| F \| \bfitB \| F ,

and \| \bfitA \bfitB \| F \leq \| \bfitA \| \| \bfitB \| F implies that

m(rm - \| \~\bfitV T
\Theta \| \ast ) \leq tr( \~\bfitV 

T
\bfitW \~\bfitV ) - tr(\Theta T\bfitW \Theta )

= tr(( \~\bfitV  - \Theta )T\bfitW \~\bfitV ) + tr(\Theta T\bfitW ( \~\bfitV  - \Theta ))

\leq \| \bfitW \| \| \~\bfitV  - \Theta \| F \| \~\bfitV \| F + \| \bfitW \| \| \~\bfitV  - \Theta \| F \| \Theta \| F
= 2\| \bfitW \| \| \~\bfitV  - \Theta \| F

\surd 
rm.

Combining it with (5.20), we have

m
2 \| \~\bfitV  - \Theta \| 2F \leq 2\| \bfitW \| \| \~\bfitV  - \Theta \| F

\surd 
rm,(5.24)

which implies

\| \~\bfitV  - \Theta \| F \leq 4\| \bfitW \| 
\sqrt{} 

r
m ,(5.25)

proving the first inequality in (4.4). It implies that

\| \~\bfitV T
\Theta  - mI\| F = \| ( \~\bfitV  - \Theta )T\Theta \| F \leq \| \~\bfitV  - \Theta \| F

\surd 
m \leq 4\| \bfitW \| 

\surd 
r.(5.26)
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Applying (5.25), the second inequality in (4.4) is proved:

max
1\leq i\leq m

\| [\bfitW \~\bfitV ]i\| F \leq max
1\leq i\leq m

\| [\bfitW \Theta ]i\| F + max
1\leq i\leq m

\| [\bfitW ( \~\bfitV  - \Theta )]i\| F

\leq max
1\leq i\leq m

\| [\bfitW \Theta ]i\| F + \| \bfitW \| \| \~\bfitV  - \Theta \| F

\leq max
1\leq i\leq m

\| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2
\sqrt{} 

r
m .

(5.27)

Now let us consider \=\bfitV \in \BbbR D\times r defined by \=\bfitV i = \Theta i and \=\bfitV j = \~\bfitV j for all

1 \leq j \leq m, j \not = i. By definition we have tr( \~\bfitV 
T
\bfitS \~\bfitV ) \geq tr( \=\bfitV 

T
\bfitS \=\bfitV ), and it is equivalent

to tr(( \~\bfitV  - \=\bfitV )T\bfitS \~\bfitV )+tr( \~\bfitV 
T
\bfitS ( \~\bfitV  - \=\bfitV )) - tr(( \~\bfitV  - \=\bfitV )T\bfitS ( \~\bfitV  - \=\bfitV )) \geq 0. By the definition

of \=\bfitV , \~\bfitV , and \bfitS , we have

2 tr(( \~\bfitV i  - \Theta i)
T\Theta i\Theta 

T \~\bfitV ) + 2 tr(( \~\bfitV i  - \Theta i)
T [\bfitW \~\bfitV ]i)

 - tr(( \~\bfitV i  - \Theta i)
T\bfitS ii( \~\bfitV i  - \Theta i)) \geq 0.

(5.28)

Recall that \~\bfitV is chosen such that \Theta T \~\bfitV is symmetric and positive semidefinite,
and apply the fact that, when\bfitA is positive semidefinite, then tr(\bfitB \bfitA ) = tr(\bfitB T\bfitA ); and
when both \bfitA ,\bfitB are positive semidefinite, tr(\bfitA \bfitB ) \geq tr(\bfitA \lambda min(\bfitB )I) \geq \lambda min(\bfitB ) tr(\bfitA )
(\lambda min represents the smallest eigenvalue), we have

tr
\bigl[ 
(\Theta i  - \~\bfitV i)

T\Theta i\Theta 
T \~\bfitV 
\bigr] 
= tr

\bigl[ 
(I - \~\bfitV 

T

i \Theta i)(\Theta 
T \~\bfitV )

\bigr] 
= 1

2 tr
\bigl[ 
(2I - \~\bfitV 

T

i \Theta i - \Theta T
i
\~\bfitV i)(\Theta 

T \~\bfitV )
\bigr] 
= 1

2 tr
\bigl[ 
( \~\bfitV i - \Theta i)

T ( \~\bfitV i - \Theta i)(\Theta 
T \~\bfitV )

\bigr] 
\geq 1

2 tr
\bigl[ 
( \~\bfitV i  - \Theta i)

T ( \~\bfitV i  - \Theta i)
\bigr] 
\lambda r(\Theta 

T \~\bfitV ) = 1
2\| \~\bfitV i  - \Theta i\| 2F\lambda r(\Theta 

T \~\bfitV ).

(5.29)

In addition, we have

(5.30) tr(( \~\bfitV i - \Theta i)
T\bfitS ii( \~\bfitV i - \Theta i)) \geq  - \| \bfitS ii\| \| \~\bfitV i - \Theta i\| 2F \geq  - (1+\| \bfitW ii\| )\| \~\bfitV i - \Theta i\| 2F ,

and tr(\bfitA \bfitB ) \leq \| \bfitA \| F \| \bfitB \| F implies

(5.31) tr(( \~\bfitV i  - \Theta i)
T [\bfitW \~\bfitV ]i) \leq \| \~\bfitV i  - \Theta i\| F \| \bfitW T \~\bfitV \| F .

Combining (5.28), (5.29), (5.30), and (5.31),

\| \~\bfitV i  - \Theta i\| F \| [\bfitW \~\bfitV ]i\| F \geq \| \~\bfitV i  - \Theta i\| 2F (\lambda r(\Theta 
T \~\bfitV ) - 1 - \| \bfitW ii\| ).

Combining it with (5.27) and (5.26), which implies that \lambda r(\Theta 
T \~\bfitV ) \geq m - 4\| \bfitW \| 

\surd 
r,

and noting that \| \bfitW \| \geq \| \bfitW ii\| , (4.5) is proved.

5.2.1. Lemma 4.3 under (MAXDIFF).

Proof of Lemma 4.3 under (MAXDIFF). Following the proof of Lemma 4.3 un-
der (MAXBET), we have

2\| \bfitW \| \| \~\bfitV  - \Theta \| F
\surd 
rm \geq tr( \~\bfitV 

T
\bfitW \~\bfitV ) - tr(\Theta T\bfitW \Theta )

\geq (rm2  - \| \~\bfitV T
\Theta \| 2F ) - (rm - 

\sum m
i=1 \| \~\bfitV 

T

i \Theta i\| 2F )
\geq m

2 \| \~\bfitV  - \Theta \| 2F  - 
\sum m

i=1 \| \~\bfitV i  - \Theta i\| 2F = (m2  - 1)\| \~\bfitV  - \Theta \| 2F ,

where the first inequality is (5.23), the second inequality is from the definition of

\bfitS under the MAXDIFF setting, and the third inequality is from r  - \| \~\bfitV T

i \Theta i\| 2F \leq 
\| \~\bfitV i  - \Theta i\| 2F = 2r  - tr( \~\bfitV 

T

i \Theta i) since \| \~\bfitV T

i \Theta \| 2F  - 2 tr( \~\bfitV 
T

i \Theta ) + r = \| \~\bfitV T

i \Theta i  - Ir\| 2F .
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2202 JOONG-HO WON, TENG ZHANG, AND HUA ZHOU

As a result, if m > 2,

\| \~\bfitV  - \Theta \| F \leq 4\| \bfitW \| 
\surd 
rm

m - 2 , \| \~\bfitV T
\Theta  - mI\| F \leq 4\| \bfitW \| m

\surd 
r

m - 2 ,

max
1\leq i\leq m

\| [\bfitW \~\bfitV ]i\| F \leq max
1\leq i\leq m

\| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2
\surd 
rm

m - 2 .

In addition, (5.28) is replaced with 2 tr(( \~\bfitV i - \Theta i)
T\Theta i\Theta 

T \~\bfitV )+2 tr(( \~\bfitV i - \Theta i)
T [\bfitW \~\bfitV ]i)

\geq 0. Then we have 1
2\lambda r(\Theta 

T \~\bfitV )\| \Theta i  - \~\bfitV i\| 2F \leq \| \Theta i  - \~\bfitV i\| F (\| [\bfitW \~\bfitV ]i\| F ) and

max
1\leq i\leq m

\| \Theta i  - \~\bfitV i\| F \leq 
2max1\leq i\leq m \| [\bfitW \Theta ]i\| F + 8\| \bfitW \| 2

\surd 
rm

m - 2

m - 4\| \bfitW \| m
\surd 
r

m - 2

for m > 4\| \bfitW \| 
\surd 
r + 2.

5.3. Proof of lemmas for Theorem 3.9.

Proof of Lemma 4.4. From \bfitO i\Lambda i =
\sum m

j=1 \bfitS ij\bfitO j , we have \Lambda i =
\sum m

j=1 \bfitO 
T
i \bfitS ij\bfitO j .

Hence, under (MAXBET),

\| \Lambda i  - mIr\| = \| 
\sum m

j=1 \bfitO 
T
i \bfitS ij\bfitO j  - mIr\| 

\leq \| \bfitO T
i

\sum m
j=1 \bfitW ij\bfitO j\| + \| \bfitO T

i \Theta i

\sum m
j=1 \Theta 

T
j \bfitO j  - mIr\| 

\leq \| 
\sum m

j=1 \bfitW ij\bfitO j\| + \| (\bfitO T
i \Theta i  - Ir)

\sum m
j=1 \Theta 

T
j \bfitO j +

\sum m
j=1 \Theta 

T
j \bfitO j  - mIr\| 

\leq \| 
m\sum 
j=1

\bfitW ij\bfitO j\| + \| (\bfitO T
i \Theta i  - Ir)

m\sum 
j=1

\Theta T
j \bfitO j\| + \| 

m\sum 
j=1

\Theta T
j \bfitO j  - mIr\| 

\leq \| 
\sum m

j=1 \bfitW ij\bfitO j\| + \| \bfitO T
i \Theta i  - Ir\| \| 

\sum m
j=1 \Theta 

T
j \bfitO j\| + \| \Theta T\bfitO  - mIr\| 

\leq \| 
\sum m

j=1 \bfitW ij\bfitO j\| +m\| \bfitO T
i \Theta i  - Ir\| + \| \Theta T\bfitO  - mIr\| 

since \| \Theta T
j \bfitO j\| \leq 1. Under the MAXDIFF model,

\| \Lambda i  - (m - 1)Ir\| = \| 
\sum 

j \not =i \bfitO 
T
i \bfitS ij\bfitO j  - (m - 1)Ir\| 

\leq \| \bfitO T
i

\sum 
j \not =i \bfitW ij\bfitO j\| + \| \bfitO T

i \Theta i

\sum 
j \not =i \Theta 

T
j \bfitO j  - (m - 1)Ir\| 

\leq \| 
\sum 

j \not =i \bfitW ij\bfitO j\| + \| (\bfitO T
i \Theta i  - Ir)

\sum m
j=1 \Theta 

T
j \bfitO j +

\sum 
j \not =i \Theta 

T
j \bfitO j  - (m - 1)Ir\| 

\leq \| 
\sum 

j \not =i \bfitW ij\bfitO j\| + \| (\bfitO T
i \Theta i  - Ir)

\sum 
j \not =i \Theta 

T
j \bfitO j\| + \| 

\sum 
j \not =i \Theta 

T
j \bfitO j  - (m - 1)Ir\| 

\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
j \not =i

\bfitW ij\bfitO j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| +
\bigm\| \bigm\| \bigm\| \bfitO T

i \Theta i  - Ir

\bigm\| \bigm\| \bigm\| 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
j \not =i

\Theta T
j \bfitO j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| + \| \Theta T\bfitO  - mIr  - \Theta T
i \bfitO i + Ir\| 

\leq \| 
\sum 

j \not =i \bfitW ij\bfitO j\| + (m - 1)\| \bfitO T
i \Theta i  - Ir\| + \| \Theta T\bfitO  - mIr\| + \| \bfitO T

i \Theta i  - Ir\| 

= \| 
\sum 

j \not =i \bfitW ij\bfitO j\| +m\| \bfitO T
i \Theta i  - Ir\| + \| \Theta T\bfitO  - mIr\| .

The following technical lemma is needed to prove Lemma 4.5.

Lemma 5.2. Suppose \bfitX ,\bfitY \in \scrO d,r, and \Lambda \in \BbbR d\times d is symmetric and positive
semidefinite. Then, there holds tr[\bfitX \Lambda (\bfitY  - \bfitX )] \leq 0.

Proof. Note

tr[\bfitX \Lambda (\bfitY  - \bfitX )] \leq tr(\Lambda T\bfitX T (\bfitY  - \bfitX )) = tr(\Lambda (\bfitX T\bfitY  - Ir))

= tr(\Lambda \bfitX T\bfitY ) - tr(\Lambda ) = tr(\bfitY T\bfitX \Lambda ) - tr(\Lambda )

= tr(\Lambda \bfitY T\bfitX ) - tr(\Lambda ) = tr
\Bigl[ 
\Lambda 
\Bigl( 

1
2\bfitX 

T\bfitY + 1
2\bfitY 

T\bfitX  - Ir

\Bigr) \Bigr] 
.
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Since \bfitX \bfitX T \preccurlyeq Id, (\bfitX 
T\bfitY )T (\bfitX T\bfitY ) = \bfitY T\bfitX \bfitX T\bfitY \preccurlyeq \bfitY T\bfitY = Ir. Thus \| \bfitX T\bfitY \| 2 \leq 1.

Likewise \| \bfitY T\bfitX \| 2 \leq 1. Then, because 1
2\bfitX 

T\bfitY + 1
2\bfitY 

T\bfitX is symmetric,

\lambda max

\Bigl( 
1
2\bfitX 

T\bfitY + 1
2\bfitY 

T\bfitX 
\Bigr) 
\leq 
\bigm\| \bigm\| \bigm\| 1
2\bfitX 

T\bfitY + 1
2\bfitY 

T\bfitX 
\bigm\| \bigm\| \bigm\| \leq 1

2\| \bfitX 
T\bfitY \| 2 + 1

2\| \bfitY 
T\bfitX \| \leq 1

and 1
2\bfitX 

T\bfitY + 1
2\bfitY 

T\bfitX  - Ir \preccurlyeq 0. Since \Lambda \succcurlyeq 0, it follows that tr[\bfitX \Lambda (\bfitY  - \bfitX )] \leq 0.

Proof of Lemma 4.5. Let the singular value decomposition of \Theta T \~\bfitO be \bfitU \Sigma \bfitV T ,
where \bfitU ,\bfitV \in \scrO r,r and \Sigma \in \BbbR r\times r is diagonal with nonnegative entries. Let \bfitR =

\bfitV \bfitU T \in \scrO r\times r. Then, for \bfitO = \~\bfitO \bfitR , it holds \Theta T\bfitO = \bfitU \Sigma \bfitU T \succcurlyeq 0.
Clearly, (\bfitO 1, . . . ,\bfitO m) = ( \~\bfitO 1\bfitR , . . . , \~\bfitO m\bfitR ) is globally optimal. Therefore,

tr(\Theta T\bfitS \Theta ) \leq tr(\bfitO T\bfitS \bfitO ),

which is similar to inequality (5.21) in the proof of Lemma 4.3. It immediately follows
that, under (MAXBET),

2
\surd 
mr\| \bfitW \| \| \bfitO  - \Theta \| F \geq tr(\bfitO T\bfitW \bfitO ) - tr(\Theta T\bfitW \Theta ) \geq m

2 \| \bfitO  - \Theta \| 2F

and, under (MAXDIFF),

2
\surd 
mr\| \bfitW \| \| \bfitO  - \Theta \| F \geq tr(\bfitO T\bfitW \bfitO ) - tr(\Theta T\bfitW \Theta ) \geq 

\bigl( 
m
2  - 1

\bigr) 
\| \bfitO  - \Theta \| 2F ,

from which inequality (4.8) holds. Inequality (4.10) follows from

\| [\bfitW \bfitO ]i\| F \leq \| [\bfitW (\bfitO  - \Theta )]i\| F + \| [\bfitW \Theta ]i\| F = \| \bfitW i\cdot (\bfitO  - \Theta )\| F + \| [\bfitW \Theta ]i\| F
\leq \| \bfitW i\cdot \| \| \bfitO  - \Theta \| F + \| [\bfitW \Theta ]i\| F \leq \| \bfitW \| \| \bfitO  - \Theta \| F + \| [\bfitW \Theta ]i\| F

and inequality (4.8), where \bfitW i\cdot = [\bfitW i1, . . . ,\bfitW im], is the ith row block of \bfitW .
Inequality (4.8) also implies

(5.32) \| \Theta T\bfitO  - mIr\| \leq 

\Biggl\{ 
4\| \bfitW \| 

\surd 
r under (MAXBET),

4\| \bfitW \| 
\surd 
r

1 - 2/m under (MAXDIFF).

We first consider the MAXBET model. The global optimality of (\bfitO 1, . . . ,\bfitO m)
asserts that the associated Lagrange multiplier \Lambda i of \bfitO i satisfies \bfitO i\Lambda i =

\sum m
j=1 \bfitS ij\bfitO j

(see (2.3)) and is symmetric and positive semidefinite [35, Proposition 3.1]. Since
\bfitS ij = \Theta i\Theta 

T
j +\bfitW ij ,

(5.33)

m\sum 
j=1

\bfitS ij\bfitO j =

m\sum 
j=1

\Theta i\Theta 
T
j \bfitO j +

m\sum 
j=1

\bfitW ij\bfitO j = \Theta i\Theta 
T\bfitO + [\bfitW \bfitO ]i.

Thus from Lemma 5.2, we have

0 \geq tr[(\Theta i  - \bfitO i)
T
\sum 

j \not =i \bfitS ij\bfitO j ]

= tr[(\Theta i  - \bfitO i)
T\Theta i\Theta 

T\bfitO ] + tr[(\Theta i  - \bfitO i)
T [\bfitW \bfitO ]i].

(5.34)

Using that \Theta T\bfitO is symmetric and positive semidefinite, we have, similar to inequality
(5.29),

(5.35) tr[(\Theta i  - \bfitO i)
T\Theta i\Theta 

T\bfitO ] \geq 1
2\lambda r(\Theta 

T\bfitO )\| \Theta i  - \bfitO i\| 2F .
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Then the Cauchy--Schwarz inequality and inequality (4.10) entail

1
2\lambda r(\Theta 

T\bfitO ) max
1\leq i\leq m

\| \Theta i  - \bfitO i\| F \leq max
1\leq i\leq m

\| [\bfitW \bfitO ]i\| F \leq max
1\leq i\leq m

\| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2
\surd 
r\surd 
m
.

Combining inequality (5.32) and Weyl's inequality, \lambda r(\Theta 
T\bfitO ) \geq m  - 4\| \bfitW \| 

\surd 
r, and

inequality (4.11) is obtained.
Under the MAXDIFF model, (5.33) becomes \bfitO i\Lambda i =

\sum 
j \not =i \bfitS ij\bfitO j = \Theta i\Theta 

T\bfitO  - 
\Theta i\Theta 

T
i \bfitO i + [\bfitW \bfitO ]i, and inequality (5.34) is replaced by

0 \geq tr[(\Theta i  - \bfitO i)
T\Theta i\Theta 

T\bfitO ] - tr[(\Theta i  - \bfitO i)
T\Theta i\Theta 

T
i \bfitO i] + tr[(\Theta i  - \bfitO i)

T [\bfitW \bfitO ]i].

Inequality (5.35) remains intact, and

 - tr[(\Theta i - \bfitO i)
T\Theta i\Theta 

T
i \bfitO i]=tr[(\bfitO i - \Theta i)

T\Theta i\Theta 
T
i (\bfitO i  - \Theta i)] - tr[(\Theta i  - \bfitO i)

T\Theta i\Theta 
T
i \Theta i]

\geq  - \| \Theta i\Theta 
T
i \| \| \bfitO i  - \Theta i\| 2F  - tr[(\Theta i  - \bfitO i)

T\Theta i]

\geq  - \| \bfitO i  - \Theta i\| 2F  - tr(Ir  - \bfitO T
i \Theta i)

\geq  - \| \bfitO i  - \Theta i\| 2F  - 1
2 [\| \bfitO i\| 2F + \| \Theta i\| 2F  - 2 tr(\bfitO T

i \Theta i)] =  - 3
2\| \bfitO i  - \Theta i\| 2F ,

where the third line is due to \| \Theta i\Theta 
T
i \| \leq 1. Hence the Cauchy--Schwarz inequality

and inequality (4.10) now give

1
2 (\lambda r(\Theta 

T\bfitO ) - 3) max
1\leq i\leq m

\| \Theta i  - \bfitO i\| F \leq max
1\leq i\leq m

\| [\bfitW \bfitO ]i\| F

\leq max
1\leq i\leq m

\| [\bfitW \Theta ]i\| F + 4\| \bfitW \| 2
\surd 
r\surd 

m - 2/
\surd 
m
.

Inequality (5.32) and Weyl's inequality now result in \lambda r(\Theta 
T\bfitO ) \geq m - 4\| \bfitW \| 

\surd 
r

1 - 2/m ,

and inequality (4.11) is obtained. For a valid bound we need m > 4\| \bfitW \| 
\surd 
r

1 - 2/m + 3.

Solving the involved quadratic inequality provides the desired lower bound for m.

6. Conclusion. This paper studies the OSTM problem [35]. It shows two results
when the noise is small: first, that while the problem is nonconvex, its solution can
be achieved by solving its convex relaxation; second, condition (2.4) is necessary
and sufficient for global optimality of a critical point, making the former a genuine
certificate.

A future direction is to improve the estimation on maximum noise that this
method can handle. While this paper shows that the method succeeds when \sigma =
O(m1/4), we expect that it would also hold for noise as large as \sigma = O(m1/2), which
has been proven in [37] for phase synchronization and in [22] for synchronization of
rotations. We suspect that the suboptimality of this result arises from the estimation
of max1\leq i\leq m \| 

\sum m
j=1 \bfitW ij

\~\bfitV j\| in (4.4), where standard tools from the theory of mea-

sure concentration cannot be used as \~\bfitV depends on \bfitW . Likewise, in certifying global
optimality of a critical point, estimation of max1\leq i\leq m \| 

\sum m
j=1 \bfitW ij\bfitO j\| in inequality

(4.10) becomes a bottleneck. To solve this problem, some decoupling techniques in
probability theory might be needed to disentangle the dependence structure. An-
other future direction is to use a more generic model than the additive Gaussian noise
model, which would have a larger range of real-life applications.

Appendix A. Simulation study.
We conducted a simulation study to see how tight the conditions (3.6) and (3.7)

are. Under the data generation model (MAXBET), we fixed d = 5, r = 3 and varied

D
ow

nl
oa

de
d 

09
/0

3/
22

 to
 1

31
.1

79
.2

22
.3

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ORTHOGONAL TRACE-SUM MAXIMIZATION 2205

Table 1
Frequency of satisfaction of conditions (3.6), (3.7) and certificate (2.4).

m \sigma (3.6)† (3.7) (2.4)†

10

0.01 100 TRUE 100
0.10 10 FALSE 100
1.00 0 FALSE 0
1.50 0 FALSE 0

20

0.01 100 TRUE 100
0.10 0 FALSE 100
1.00 0 FALSE 21
1.50 0 FALSE 0

30

0.01 100 TRUE 100
0.10 0 FALSE 100
1.00 0 FALSE 99
1.50 0 FALSE 0

\dagger Reported numbers are out of 100 replicates in each scenario.

the number of groups m \in \{ 2, 5, 10\} and the noise level \sigma \in \{ 0.01, 0.1, 1, 10\} . The
semiorthogonal matrices \Theta 1, . . . ,\Theta m were generated by taking the QR decomposition
of random d \times r matrices with i.i.d. standard normal entries. The upper triangular
part including the diagonal of \bfitW was generated from i.i.d. normal with mean zero
and variance \sigma 2. For each combination of m and \sigma , we generated 100 replicates and
reported the number of replicates for which the proximal block ascent algorithm in [35]
produced a critical point satisfying certificate (2.4) using the ten Berge initialization
strategy (``tb"" in [35]) in Table 1. In addition, we also counted the frequency of
satisfying conditions (3.6) and (3.7) for Corollaries 3.10 and 3.11, respectively, and
the certificate of global optimality of a critical point (2.4).

Table 1 shows that condition (3.6) is satisfied at small noise levels. Condition
(3.7), which is fully determined by the combination of m and \sigma , is less frequently sat-
isfied than (3.6). In case either condition (3.6) or (3.7) is satisfied, the certificate (2.4)
is always satisfied as predicted by the theory. It is remarkable that certificate (2.4) is
satisfied more frequently than condition (3.6) or (3.7), leaving room for improvement
of these conditions.
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