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ORTHOGONAL TRACE-SUM MAXIMIZATION: APPLICATIONS,
LOCAL ALGORITHMS, AND GLOBAL OPTIMALITY\ast 

JOONG-HO WON\dagger , HUA ZHOU\ddagger , AND KENNETH LANGE\S 

Abstract. This paper studies the problem of maximizing the sum of traces of matrix quadratic
forms on a product of Stiefel manifolds. This orthogonal trace-sum maximization (OTSM) problem
generalizes many interesting problems such as generalized canonical correlation analysis (CCA),
Procrustes analysis, and cryo-electron microscopy of the Nobel prize fame. For these applications
finding global solutions is highly desirable, but it has been unclear how to find even a stationary
point, let alone test its global optimality. Through a close inspection of Ky Fan's classical result
[Proc. Natl. Acad. Sci. USA, 35 (1949), pp. 652--655] on the variational formulation of the sum of
largest eigenvalues of a symmetric matrix, and a semidefinite programming (SDP) relaxation of the
latter, we first provide a simple method to certify global optimality of a given stationary point of
OTSM. This method only requires testing whether a symmetric matrix is positive semidefinite. A
by-product of this analysis is an unexpected strong duality between Shapiro and Botha [SIAM J.
Matrix Anal. Appl., 9 (1988), pp. 378--383] and Zhang and Singer [Linear Algebra Appl., 524 (2017),
pp. 159--181]. After showing that a popular algorithm for generalized CCA and Procrustes analysis
may generate oscillating iterates, we propose a simple fix that provably guarantees convergence to
a stationary point. The combination of our algorithm and certificate reveals novel global optima of
various instances of OTSM.
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1. Introduction.

1.1. Orthogonal trace-sum maximization. Given Sij = ST
ji \in \BbbR di\times dj for

i, j = 1, . . . ,m, and r \leq mini=1,...,m di, we are interested in solving the following
optimization problem:

(OTSM) maximize
1

2

m\sum 
i,j=1

tr(OT
i SijOj) subject to Oi \in \scrO di,r, i = 1, . . . ,m,

where \scrO d,r = \{ O \in \BbbR d\times r : OTO = Ir\} is the Stiefel manifold of (partially) orthogonal
matrices [8]; Ir denotes the identity matrix of order r. Since adding a positive multiple
of the identity matrix to Sii only increases the objective by a constant amount, without
loss of generality we can assume each Sii is positive semidefinite. In what follows, we
call (OTSM) the orthogonal trace-sum maximization problem. OTSM arises in many
interesting settings, as follows.
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860 JOONG-HO WON, HUA ZHOU, AND KENNETH LANGE

Canonical correlation analysis. Canonical correlation analysis (CCA) [18] seeks
directions to maximize the correlation between two sets of n observations of variables
of possibly different dimensions, A1 \in \BbbR n\times d1 and A2 \in \BbbR n\times d2 :

maximize corr(A1t1, A2t2) subject to tTi ti = 1, i = 1, 2,

where ti \in \BbbR di are the optimization variables, and corr(\cdot , \cdot ) denotes the Pearson
correlation coefficient between two sample vectors. Generalizations of CCA (i) handle
more than two sets of variables A1, . . . , Am (m \geq 2), and (ii) seek partial rotation
matrices (as opposed to vectors) of Ai's to achieve maximal agreement. The popular
MAXDIFF and MAXBET criteria [15,21,31,34] solve

maximize
\sum 
i<j

tr(OT
i A

T
i AjOj) subject to Oi \in \scrO di,r, i = 1, . . . ,m;(MAXDIFF)

maximize
1

2

m\sum 
i,j=1

tr(OT
i A

T
i AjOj) subject to Oi \in \scrO di,r, i = 1, . . . ,m.(MAXBET)

Both MAXDIFF and MAXBET are instances of (OTSM) with Sij = AT
i Aj (if

MAXDIFF, Sii = 0), for i, j = 1, . . . ,m. It is worth noting that when d1 = \cdot \cdot \cdot =
dm = d = r, i.e., the fully orthogonal case, MAXDIFF coincides with MAXBET up
to an additive constant.

Procrustes analysis and little Grothendieck problem. If the variables are fully or-
thogonal and there exist S11, S12, . . . , Smm \in \BbbR d\times d such that the symmetric md\times md
block matrix \~S = (Sij)

m
i,j=1 is positive semidefinite (denoted S \succeq 0), then (OTSM)

reduces to the little Grothendieck problem over the orthogonal group [5], which arises
in generalized Procrustes analysis [13, 14, 30]. Given a collection of n landmarks of
d-dimensional images Ai \in \BbbR n\times d, i = 1, . . . ,m, the goal is to find orthogonal matrices
that minimize the pairwise discrepancy

(1.1) f(O1, . . . , Om) =
1

2

m\sum 
i,j=1

\| AiOi  - AjOj\| 2F =  - 
\sum 
i<j

tr(OT
i A

T
i AjOj) + const.

subject to the constraints that Oi \in \scrO d,d for all i, where \| \cdot \| F is the Frobenius
norm. This problem is a special case of (OTSM) with Sij = AT

i Aj for i, j = 1, . . . ,m.

Clearly, \~S = [A1, . . . , Am]T [A1, . . . , Am] \succeq 0. When m = 2, problem (1.1) reduces to
ordinary (partial) Procrustes analysis [10, Chapter 7].

Cryo-EM and orthogonal least squares. Another instance of (OTSM) involving
fully orthogonal matrices is the least squares regression problem that minimizes the
squared Frobenius norm of the difference between a given n\times d matrix AK+1 and linear

combination
\sum K

i=1 AiOi of given n\times d matrices Ai with Oi \in \scrO d,d, i = 1, . . . ,K. This
least-squares problem has a direct application in single-particle reconstruction with
cryo-electron microscopy (cryo-EM) celebrated by the 2017 Nobel Prize in Chemistry.
Then we can equivalently minimize

1

2

\bigm\| \bigm\| \bigm\| \bigm\| AK+1( - OK+1) - 
K\sum 
i=1

AiOi

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

=
\sum 
i<j

tr(OT
i A

T
i AjOj) + const.(1.2)

subject to the orthogonality constraints on O1, . . . , OK+1. Any minimizer ( \~O1, . . . ,
\~OK+1) of (1.2) supplies a minimizer ( - \~O1

\~OT
K+1, . . . , - \~OK

\~OT
K+1) of the original prob-

lem. This is a special case of (OTSM) with Sij =  - AT
i Aj . In cryo-EM, reconstruction
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ORTHOGONAL TRACE-SUM MAXIMIZATION 861

of the three-dimensional (3D) map of a particle involves estimating viewing directions
of its two-dimensional (2D) projections. Retrieval of the orthogonal matrices repre-
senting the orientations is posed as the above least squares problem [6,33,35,37].

1.2. Global solutions of OTSM. Each instance of (OTSM) above can be
posed as a maximum likelihood estimation problem under an appropriate model.
Finding its global solution is highly desirable for correct inference. While it attains a
maximum because each \scrO di,r is compact and the objective function is continuous in
\BbbR d1\times r\times \cdot \cdot \cdot \times \BbbR dm\times r, (OTSM) is a nonconvex optimization problem since the constraint
set \scrO d1,r \times \cdot \cdot \cdot \times \scrO dm,r is nonconvex. Except for the special case of m = 2 in which
an analytic global maximizer can be found using the singular value decomposition
(SVD) [13,34], we generally have to resort to iterative methods. The nonconvexity of
the problem makes it difficult to test global optimality of a candidate (local) solution.

To add further difficulties, the global solution to (OTSM) is not unique. If
(O \star 

1 , . . . , O
 \star 
m) is a solution to (OTSM), then for any R \in \scrO r,r, (O \star 

1R, . . . , O \star 
mR) is

also a solution.

1.3. Contributions. The contributions of this paper are as follows: (i) pro-
viding a simple certificate that guarantees the global optimality of a local stationary
point of problem (OTSM) (section 3) and (ii) showing that a standard algorithm for
generalized CCA and Procrustes analysis may exhibit oscillation, and proposing an
efficient proximal block relaxation algorithm with a convergence guarantee to a sta-
tionary point (section 4). Our certificate and duality results are developed in close
analogy to the classical result by Ky Fan [11] on the variational formulation of the
sum of largest eigenvalues of a symmetric matrix (section 2). (In the accompanying
supplementary material file OTSM supp.pdf [local/web 625KB], we also establish a
duality between problem (OTSM) and another eigenvalue optimization problem. As
a special case, a strong duality between two separately known results in the litera-
ture [28, 40] is shown.) The certificate only requires testing positive semidefiniteness
of a symmetric matrix constructed from a stationary point and data. Therefore, it
is simple to verify global optimality. The convergence theory for the proposed algo-
rithm proves that the whole sequence \{ Ok = (Ok

1 , . . . , O
k
m)\} of iterates converges to a

stationary point at least at a sublinear rate---this result is stronger than convergence
of the objective value sequence or convergence of a subsequence of \{ Ok\} . To the best
of our knowledge, there has been no convergence result of this stronger kind for the
related problems. Some numerical results of the proposed algorithm combined with
the certificate are presented in section 5.

2. Preliminary: The \bfitm = 1 case and Ky Fan theorem. As a preparation
for what follows, we review the classical results on variational formulations of the sum
of r largest eigenvalues of a symmetric matrix. For a matrix S in the vector space of
d\times d symmetric real matrices (denoted \BbbS d), let \lambda i(S) be the ith largest eigenvalue of
S. Then it is well known that

(2.1)

r\sum 
i=1

\lambda i(S) = max
O\in \scrO d,r

tr(OTSO) = max
U\in \BbbS d

\{ tr(SU) : 0 \preceq U \preceq Id, tr(U) = r\} .

The first equality is the celebrated Ky Fan theorem [11], where the involved nonconvex
optimization problem over a Stiefel manifold is a special case of (OTSM) for m = 1.
The second equality is due to [17,25], which state that there always is a tight convex
relaxation of Ky Fan's nonconvex problem. It is also well known that the dual of this
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862 JOONG-HO WON, HUA ZHOU, AND KENNETH LANGE

convex semidefinite programming (SDP) problem is an SDP

(2.2)
minimize rz + tr(M),
subject to zId + M  - L = S, M \succeq 0, L \succeq 0

for variables M,L \in \BbbS d and z \in \BbbR [3, 23,26].
Let us examine the relation between stationary points of these optimization prob-

lems closely. For Ky Fan's nonconvex problem, the Lagrangian is

\scrL (O,\Lambda ) =  - tr(OTSO) +
1

2
tr
\bigl[ 
\Lambda (OTO  - Ir)

\bigr] 
,

by rewriting the constraint O \in \scrO d,r as an equality constraint OTO = Ir. The
Lagrange multiplier matrix \Lambda is symmetric due to the symmetry of the corresponding
constraint. Point O \in \scrO d,r is a stationary point if the directional derivative of \scrL with
respect to W \in \BbbR d\times r

dW\scrL =  - tr
\bigl[ 
(SO)TW

\bigr] 
+ tr

\bigl[ 
(O\Lambda )TW

\bigr] 
vanishes for any W , i.e., if O satisfies the necessary condition for first-order local
optimality. This is equivalent to the existence of a symmetric matrix \Lambda satisfying

(2.3) O\Lambda = SO.

Further, using the constraint OTO = Ir, we have a representation \Lambda = OTSO \in \BbbS r.
The Karush--Kuhn--Tucker (KKT) optimality conditions assert that a locally maximal
point is also stationary [24, Theorem 12.1].

The second-order necessary condition for a local maximum is

(2.4) d2W\scrL = tr(\Lambda WTW ) - tr(WTSW ) \geq 0

for all W \in \BbbR d\times r such that WTO + OTW = 0 [24, Theorem 12.5]; the set of such W
is the tangent space of the Stiefel manifold \scrO d,r at O. For the convex problem (either
the primal or dual), the KKT conditions are

0 \preceq U \preceq Id, tr(U) = r, M \succeq 0, M + zId  - L = S,

tr(LU) = 0, tr[M(Id  - U)] = 0, L \succeq 0.
(2.5)

Assume that \=O is a local maximizer. Let \=\Lambda = \=OTS \=O, \=U = \=O \=OT , and \=M =
\=O(\=\Lambda  - \=zIr) \=OT for \=z = \lambda min(\=\Lambda ), the smallest eigenvalue of \=\Lambda . Since \=O is a stationary
point, it is easy to verify that ( \=U, \=M, \=L = \=M+\=zId - S) satisfies all the KKT conditions
in (2.5) but \=L \succeq 0.1 If r < d, let \=O\bot \in \scrO d - r,r consist of orthonormal columns that
span the null space of \=O, and choose W = \=O\bot K for K \in \BbbR (d - r)\times r so that it satisfies
WT \=O + \=OTW = 0. Then after some algebra,

tr(\=\Lambda WTW ) - tr(WTSW ) = tr(K \=\Lambda KT ) - tr(KT \=O\bot TS \=O\bot K) \geq 0.

Since K is arbitrary, choose K = \beta vTmin for \beta \in \BbbR d - r and vmin \in \BbbR r, where the latter
is the unit eigenvector of \=\Lambda associated with \=z. So,

tr(K \=\Lambda KT ) - tr(KT \=O\bot TS \=O\bot K) = \=z\beta \beta T  - \beta T \=O\bot TS \=O\bot \beta \geq 0 \forall \beta \in \BbbR d - r.

1The construction of matrices \=M and \=L is inspired by [26, Theorem 3.3], in which optimality
conditions of the dual SDP (2.2) is given. In particular, if \=O consists of the orthonormal eigen-
vectors of S corresponding to the r largest eigenvalues, it follows that \lambda r(S) \geq \=z \geq \lambda r+1(S),
\=M = \=O diag(\lambda 1(S)  - \=z, . . . , \lambda r(S)  - \=z) \=OT and \=L = \=O\bot diag(\=z  - \lambda r+1(S), . . . , \=z  - \lambda d(S)) \=O\bot T .
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ORTHOGONAL TRACE-SUM MAXIMIZATION 863

This implies \=zId - r - \=O\bot TS \=O\bot \succeq 0. On the other hand, as any y \in \BbbR d can be written
as y = \=O\alpha + \=O\bot \beta for \alpha \in \BbbR r and \beta \in \BbbR d - r, it can be easily seen that

yT ( \=M + \=zId  - S)y = \beta T (\=zId - r  - \=O\bot TS \=O\bot )\beta \geq 0.

Thus \=L = \=M + \=zId  - S \succeq 0 and \=O satisfies all the KKT conditions. (If r = d, it is
immediate that \=M = S  - \=zId, or \=L = 0.) This implies that all the local maxima of
Ky Fan's nonconvex optimization problem are global maxima.

Conversely, if a stationary point \=O satisfies \=L \triangleq \=M + \=zId  - S \succeq 0 for \=\Lambda , \=U , and
\=M constructed as in the beginning of the previous paragraph, then it is also globally

optimal, which obviously is locally maximal. In other words, \=L \succeq 0 =\Rightarrow (global
optimum) =\Rightarrow (local maximum) =\Rightarrow \=L \succeq 0; hence \=L \succeq 0 is necessary and sufficient
for a stationary point to be globally optimal.

The above analysis of Ky Fan's problem (2.1) sheds light on (OTSM) in three
ways. First, there can be a tight convex relaxation to (OTSM). Second, by analyzing
the KKT conditions of the convex relaxation, we may be able to certify a stationary
point of (OTSM) to be globally optimal. Third, the dual of the convex relaxation
may have to do with a sum of the eigenvalues of a block matrix constructed from
Sij 's. In what follows, we carry out an analysis of the OTSM problem inspired by the
Ky Fan problem. The added complexity due to m > 1 reveals both similarities and
differences between the two problems.

3. Certificate of global optimality.

3.1. Local optimality conditions.

3.1.1. First-order conditions. Rewriting the constraints Oi \in \scrO di,r as equal-
ity constraints OT

i Oi = Ir, the Lagrangian of (OTSM) is

\scrL (O1, . . . , Om,\Lambda 1, . . . ,\Lambda m) =  - 1

2

m\sum 
i,j=1

tr(OT
i SijOj) +

1

2

m\sum 
i=1

tr
\bigl[ 
\Lambda i(O

T
i Oi  - Ir)

\bigr] 
,

where the Lagrange multiplier matrices \Lambda i are symmetric due to the symmetry of the
corresponding constraints. In parallel with section 2, a point O = (O1, . . . , Om) is a
stationary point of problem (OTSM) if the directional derivative of \scrL with respect to
W = (W1, . . . ,Wm) \in \BbbR d1\times r \times \cdot \cdot \cdot \times \BbbR dm\times r

(3.1) dW\scrL =  - 
m\sum 
i=1

m\sum 
j=1

tr
\bigl[ 
(SijOj)

TWi

\bigr] 
+

m\sum 
i=1

tr
\bigl[ 
(Oi\Lambda i)

TWi

\bigr] 
vanishes for any W . A local maximum satisfies condition (3.1), which is equivalent to

(3.2) Oi\Lambda i =

m\sum 
j=1

SijOj , i = 1, . . . ,m,

resembling the first-order condition (2.3) of the Ky Fan problem.
Using the constraint OT

i Oi = Ir, we further have a representation for \Lambda i:

(3.3) \Lambda i = OT
i

\biggl( m\sum 
j=1

SijOj

\biggr) 
=

\biggl( m\sum 
j=1

SijOj

\biggr) T

Oi.
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864 JOONG-HO WON, HUA ZHOU, AND KENNETH LANGE

The second equality follows from the symmetry of the Lagrange multiplier. Substi-
tuting this quantity in (3.2), we obtain

Oi

\biggl( m\sum 
j=1

SijOj

\biggr) T

Oi =

m\sum 
j=1

SijOj , i = 1, . . . ,m.(3.4)

3.1.2. Second-order condition. The second-order necessary condition for lo-
cal maximality of (OTSM) is

(3.5) d2W\scrL =

m\sum 
i=1

tr(\Lambda iW
T
i Wi) - tr(WT \~SW ) \geq 0

for all W = [WT
1 , . . . ,WT

m]T , such that Wi is a tangent vector of \scrO di,r at Oi, i.e.,

(3.6) WT
i Oi + OT

i Wi = 0, i = 1, . . . ,m,

where \~S = (Sij) is the symmetric D\times D block matrix whose (i, j) block is Sij \in \BbbR di\times dj ,
i, j = 1, . . . ,m. Again see the resemblance of condition (3.5) to the second-order
condition (2.4) for Ky Fan's problem.

Unfortunately, in (OTSM) we do not have the luxury of all the local maxima
being globally optimal. We revisit this issue after studying a potentially tight convex
relaxation to the problem in the next subsection. As a partial result, some of the
following characterization of the Lagrange multipliers associated with a local or global
maximum can be deduced from [31, pp. 489--490].

Proposition 3.1. If O = (O1, . . . , Om) \in \scrO d1,r\times \cdot \cdot \cdot \times \scrO dm,r is a local maximizer
of (OTSM), then \Lambda i as defined in (3.3) is positive semidefinite, for i \in \{ 1, . . . ,m\} 
such that di > r. If O is a stationary point but \Lambda i is not positive semidefinite
for some i, then one can find another stationary point \~O = ( \~O1, . . . , \~Om) such that
1
2

\sum 
i,j tr(OiSijOj) < 1

2

\sum 
i,j tr( \~OiSij

\~Oj) and \~\Lambda i = \~Oi
T \sum m

j=1 Sij
\~Oj is positive semi-

definite for all i = 1, . . . ,m. Furthermore, if O is a global maximizer of (OTSM),
then \Lambda i is positive semidefinite for all i.

A full proof is provided in Appendix A.

3.2. Semidefinite programming relaxation. By introducing an appropriate
matrix variable and constraints, we can obtain an upper bound of the optimal value
of (OTSM) by that of an SDP relaxation. Besides providing tight bounds, the SDP
formulation paves the way toward certifying the global optimality of a local solution.
If D =

\sum m
i=1 di, then we can define a D \times D matrix

(3.7) U \triangleq 
1

m
OOT , O = [OT

1 , . . . , O
T
m]T \in \BbbR D\times r,

so that
\sum 

i<j tr(OT
i SijOj), the objective function of (OTSM), is equal to m

2 tr( \~SU),

where \~S = (Sij). We can express (OTSM) in terms of the matrix U by imposing
appropriate constraints. The proof of the following proposition is in Appendix A.

Proposition 3.2. Problem (OTSM) is equivalent to the optimization problem
(3.8)

maximize (m/2) tr( \~SU)
subject to U \succeq 0, rank(U) = r, mUii \preceq Idi

, tr(mUii) = r, i = 1, . . . ,m,
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ORTHOGONAL TRACE-SUM MAXIMIZATION 865

where the optimization variable is a symmetric D \times D matrix U , Uii denotes the ith
diagonal block of U whose size is di \times di, and A \preceq B denotes the Loewner order, i.e.,
B  - A \succeq 0.

By dropping the rank constraint from problem (3.8) we obtain a convex, SDP
relaxation of (OTSM):

(P-SDP)
maximize (m/2) tr( \~SU)
subject to U \succeq 0, mUii \preceq Idi , tr(mUii) = r, i = 1, . . . ,m.

This relaxation is tight if the solution U \star has rank r. The solution to (OTSM) is
recovered by the decomposition (3.7). The dual of (P-SDP) is easily seen to be the
following SDP:

(D-SDP)
minimize

\sum m
i=1[rzi + tr(Mi)]

subject to Z + M  - L = \~S, L \succeq 0, Mi \succeq 0, i = 1, . . . ,m,

where Z = diag(mz1Id1
, . . . ,mzmIdm

) and M = diag(mM1, . . . ,mMm). The opti-
mization variables are L \in \BbbS D, Mi \in \BbbS di , zi \in \BbbR , i = 1, . . . ,m. Strong duality
between (P-SDP) and (D-SDP) holds (e.g., Slater's condition is satisfied). A rank-r
solution to the SDP relaxation (P-SDP), if it exists, yields a globally optimal solution
to the original problem (OTSM). However, solving these convex programs is com-
putationally challenging even with modern convex optimization solvers due to their
lifted dimensions. Moreover, if the optimal SDP solution U has rank greater than r,
the factor O in (3.7) is infeasible to the original problem (OTSM).

Thus it is natural to ask when the candidate rank-r solution (3.7) to (P-SDP)
constructed from a stationary point (O1, . . . , Om) of (OTSM) becomes actually an
optimal solution. If this is the case, then the local solution globally solves (OTSM).
We explore this path in the next subsection.

3.3. Certifying global optimality of a stationary point. The KKT condi-
tions for (P-SDP) and (D-SDP) are

U \succeq 0,(KKT-a)

mUii \preceq Idi
, i = 1, . . . ,m,(KKT-b)

tr(mUii) = r,(KKT-c)

Mi \succeq 0, i = 1, . . . ,m,(KKT-d)

Z + M  - L = \~S,(KKT-e)

tr(LU) = 0,(KKT-f)

tr(Mi(Idi  - mUii)) = 0, i = 1, . . . ,m,(KKT-g)

L \succeq 0,(KKT-h)

where Z = diag(mz1Id1
, . . . ,mzmIdm

) for z1, . . . , zm \in \BbbR and M = diag(mM1, . . . ,
mMm). If any tuple (U,Z,M,L) satisfies conditions (KKT-a)--(KKT-h), then U is
an optimal solution to (P-SDP) and (Z,M,L) is optimal for (D-SDP) [36].

Now suppose \=O = ( \=O1, . . . , \=Om) is a stationary point of (OTSM). Recalling
(3.3), let the associated Lagrange multipliers be \=\Lambda i =

\sum m
j=1

\=OT
i Sij

\=Oj . We can find
the quantities that satisfy the KKT conditions above in a similar, but not completely
obvious, manner to section 2. The matrix

(3.9) \=U \triangleq 
1

m
\=O \=OT
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clearly satisfies (KKT-a), (KKT-b), and (KKT-c). Now let \tau i be the smallest eigen-
value of the symmetric matrix \=\Lambda i. Then

(3.10) \=Mi \triangleq 
1

m
\=Oi

\=\Lambda i
\=OT
i  - \=zi \=Oi

\=OT
i = \=Oi

\biggl( 
1

m
\=\Lambda i  - \=ziIr

\biggr) 
\=OT
i

satisfies (KKT-d) for any \=zi \leq \tau i/m. If we define block diagonal matrices

(3.11) \=Z = diag(m\=z1Id1 , . . . ,m\=zmIdm), \=M = diag(m \=M1, . . . ,m \=Mm),

then

tr
\bigl[ 
( \=M + \=Z) \=U

\bigr] 
=

m\sum 
i=1

tr
\bigl[ 
( \=Mi + \=ziIr)m \=Uii

\bigr] 
=

1

m

m\sum 
i=1

tr
\bigl[ 
( \=Oi

\=\Lambda i
\=OT
i  - m\=zi \=Oi

\=OT
i + m\=ziIr) \=Oi

\=OT
i

\bigr] 
=

1

m

m\sum 
i=1

tr(\=\Lambda i) =
1

m

m\sum 
i=1

m\sum 
j=1

tr( \=OT
i Sij

\=Oj) = tr( \~S \=U).

This satisfies (KKT-e) and (KKT-f) for \=L \triangleq \=M + \=Z  - \~S. Finally,

tr(m \=Mi) = tr
\bigl[ 

\=Oi(\=\Lambda i  - m\=ziIr) \=OT
i

\bigr] 
= tr(\=\Lambda i  - m\=ziIr),

tr
\bigl[ 
(m \=Mi)(m \=Uii)

\bigr] 
= tr

\bigl[ 
( \=Oi(\=\Lambda i  - m\=ziIr) \=OT

i )( \=Oi
\=OT
i )

\bigr] 
= tr(\=\Lambda i  - m\=ziIr);

thus (KKT-g) is satisfied. In short, the choices of variables (3.9), (3.10), and (3.11)
satisfy all the KKT conditions except (KKT-h) for any \=zi \leq \tau i/m.

To satisfy this final KKT condition, let \=L(\=z1, . . . , \=zm) = \=M + \=Z  - \~S and observe
that \=M + \=Z = diag

\bigl[ 
\=O1

\=\Lambda 1
\=OT
1 + m\=z1 \=O\bot 

1
\=O\bot T
1 , . . . , \=Om

\=\Lambda m
\=OT
m + m\=zm \=O\bot 

m
\=O\bot T
m

\bigr] 
, where

O\bot 
i \in \scrO di,di - r satisfies O\bot 

i O
\bot T
i = Idi  - OiO

T
i . If the linear matrix inequality (LMI)

(3.12) \=L(\=z1, . . . , \=zm) \succeq 0, \=zi \leq \tau i/m, i = 1, . . . ,m,

has a feasible point (\=z \star 1 , . . . , \=z \star m), then this is a certificate that ( \=O1, . . . , \=Om) is a
global maximizer of (OTSM). While, in general, LMIs are solved by interior-point
methods [23], for LMI (3.12) it is unnecessary. Since \=O\bot 

i
\=O\bot T
i is positive semidefinite,

\=L is monotone (in Loewner order) in the scalars \=z1, . . . , \=zm, i.e.,

\=L(z1, . . . , zm) \succeq \=L(w1, . . . , wm)

whenever zi \geq wi for i = 1, . . . ,m. Thus it is sufficient to check the positive semidef-
initeness at values \=zi = \tau i/m. If it holds, we have found a feasible point. If not, the
LMI is infeasible. We state this result as the following theorem.

Theorem 3.3. Suppose \=O = ( \=O1, . . . , \=Om) is a stationary point of (OTSM). Let
\=\Lambda i =

\sum m
j=1

\=OT
i Sij

\=Oj, and \tau i be the smallest eigenvalue of \=\Lambda i for i = 1, . . . ,m. Then
\=O is a global optimum of (OTSM) if

L \star = diag
\bigl( 

\=O1
\=\Lambda 1

\=OT
1 + \tau 1 \=O\bot 

1
\=O\bot T
1 , . . . , \=Om

\=\Lambda m
\=OT
m + \tau m \=O\bot 

m
\=O\bot T
m

\bigr) 
 - \~S \succeq 0.(CERT)

Remark 3.4. Let \=O = m - 1/2[ \=OT
1 , \cdot \cdot \cdot , \=OT

m]T . It is easy to see that \=O \in \scrO D,r

and L \star \=O = 0 using the stationarity condition (3.2). Therefore, it suffices to test
( \=O\bot )TL \star \=O\bot \succeq 0, where \=O\bot \in \scrO D,D - r fills out \=O to a fully orthogonal matrix. This
matrix is (D  - r)\times (D  - r) and may be easier to handle than the D \times D matrix L \star .
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Example 3.5. To see the significance of Theorem 3.3, consider the example ex-
amined by Ten Berge [30, p. 270] in the context of the MAXDIFF problem (Sii = 0,
i = 1, . . . ,m). Let m = 3, d1 = d2 = d3 = d, and set S12 =  - Id, S13 = Id, S23 = Id.
Using Theorem 3.3, it is easy to see that any triple of (partially) orthogonal matrices
( \=O1, \=O2, \=O3) \in \scrO d,r \times \scrO d,r \times \scrO d,r such that \=O3 = \=O1 + \=O2 satisfies (CERT) for any
r \leq d. Indeed, for choices \Lambda i = Ir and \tau i = 1 for all i,

L \star =

\left[  Id Id  - Id
Id Id  - Id
 - Id  - Id Id

\right]  =

\left[  Id
Id
 - Id

\right]  \bigl[ 
Id Id  - Id

\bigr] 
\succeq 0.

Specifically, for d = 3 and r = 2, the triple

(3.13) \=O1 =

\left[  1 0
0 1
0 0

\right]  , \=O2 =

\left[   - 1/2
\surd 

3/2

 - 
\surd 

3/2  - 1/2
0 0

\right]  , \=O3 =

\left[  1/2
\surd 

3/2

 - 
\surd 

3/2 1/2
0 0

\right]  
is a global maximizer. The global maximum value is 3.

Unlike the Ky Fan problem of the previous section, condition (CERT) is hardly
necessary for global optimality. This is a key difference of (OTSM) from the Ky
Fan problem. To see this, let \=O = ( \=O1, . . . , \=Om) be a local maximizer, and recall
Idi

= \=Oi
\=OT
i + \=O\bot 

i
\=O\bot T
i . It follows from the tangency condition (3.6) that

tr(\=\Lambda iW
T
i Wi) = tr(Wi

\=\Lambda iW
T
i

\=Oi
\=OT
i ) + tr(Wi

\=\Lambda iW
T
i

\=O\bot 
i

\=O\bot T
i )

= tr( \=OT
i Wi

\=\Lambda iW
T
i

\=Oi) + tr(\=\Lambda iW
T
i

\=O\bot 
i

\=O\bot T
i Wi)

= tr(WT
i

\=Oi
\=\Lambda i

\=OT
i Wi) + tr(\=\Lambda iW

T
i

\=O\bot 
i

\=O\bot T
i Wi)

\geq tr(WT
i

\=Oi
\=\Lambda i

\=OT
i Wi) + \tau i tr(WT

i
\=O\bot 
i

\=O\bot T

i Wi).

The last inequality is due to WT
i

\=O\bot 
i ( \=O\bot 

i )TWi \succeq 0 and \=\Lambda i \succeq \tau iIr (see, e.g., [19, pp.
482--483]). Thus the local maximality condition (3.5) is sufficiently satisfied if

m\sum 
i=1

tr(WT
i

\=Oi
\=\Lambda i

\=OT
i Wi) +

m\sum 
i=1

\tau i tr
\bigl( 
WT

i
\=O\bot 
i

\=O\bot T
i Wi

\bigr) 
 - tr(WT \~SW ) \geq 0

for all W = [WT
1 , . . . ,WT

m]T . This will be the case if L \star \succeq 0, but not only if.
Nevertheless, there are a few special cases that condition (CERT) is also necessary

for global optimality.

Corollary 3.6. For the MAXDIFF problem with m = 2, i.e., S11 = 0 and
S22 = 0, if a point ( \=O1, \=O2) is a global maximizer, then condition (CERT) is satisfied.
This is true for any r \leq min\{ d1, d2\} .

Corollary 3.7. For m = 2 and r = 1, if a point ( \=O1, \=O2) is a global maximizer
of (OTSM), then condition (CERT) is satisfied.

Corollary 3.8. If Sij has rank less than or equal to r with singular value de-
composition Sij = Vi\Sigma ijV

T
j for Vi \in \scrO di,r, Vj \in \scrO dj ,r, and \Sigma ij is an r\times r nonnegative

diagonal matrix for i, j = 1, . . . ,m, then (V1, . . . , Vm) solves (OTSM) globally.

The last corollary provides a data-only sufficient condition for global optimality,
which does not require computing a stationary point. Its hypothesis is satisfied, e.g., if
Ai's share left singular vectors in the MAXDIFF or MAXBET problems: Ai = R\Sigma iV

T
i

D
ow

nl
oa

de
d 

06
/1

9/
21

 to
 1

31
.1

79
.2

20
.6

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

868 JOONG-HO WON, HUA ZHOU, AND KENNETH LANGE

for some R \in \scrO r,r. Corollary 3.7 is due to [16, Result 4], which we discuss in the next
subsection. Proofs of the other corollaries are provided in Appendix A.

We also point out a special case in which a qualified local optimality implies
condition (CERT). For m = 2 involving fully orthogonal matrices (i.e., d1 = d2 = r;
note in this case (OTSM) coincides with both MAXDIFF and MAXBET), it is well-
known that a locally maximal point \=O = ( \=O1, \=O2) such that \=\Lambda 1 = \=OTS12

\=O2 is positive
semidefinite also implies global optimality [12, 30]. Theorem 3.3 recovers this result.
To see this, observe that \=\Lambda 1 = \=OT

1 S12
\=O2 = \=OT

2 S21
\=O1 = \=\Lambda 2 by symmetry. Let

\=\Lambda = \=\Lambda 1 = \=\Lambda 2. Then,

L \star =

\biggl[ 
\=O1

\=\Lambda \=OT
1  - S12

 - ST
12

\=O2
\=\Lambda \=OT

2

\biggr] 
=

\biggl[ 
\=O1

 - \=O2

\biggr] 
\=\Lambda 

\biggl[ 
\=O1

 - \=O2

\biggr] T
\succeq 0,

since S12 = O1\Lambda OT
2 = ST

21. We see the circle L \star \succeq 0 =\Rightarrow (global optimum) =\Rightarrow 
(local maximum with \=\Lambda \succeq 0) =\Rightarrow L \star \succeq 0 for m = 2 and r = d1 = d2, similar to the
Ky Fan problem. In fact, a stationary point with \=\Lambda \succeq 0 suffices, and by Proposition
3.1, any stationary point can be improved to satisfy this condition.

Table 1 summarizes the results discussed so far and their parallelism with those
in section 2.

3.4. Other certificates. Sufficient conditions for global optimality of problem
(OTSM) appear understudied. Here we discuss three such conditions collected from
the generalized CCA and Procrustes analysis literature.

Ten Berge [30] shows that if d1 = \cdot \cdot \cdot = dm = r (fully orthogonal) and \=\Lambda ij \triangleq 
\=OT
i Sij

\=Oj is symmetric and positive semidefinite for all i < j for global optimality, then
( \=O1, . . . , \=Om) is a global solution. This sufficient condition is excessively strong, and,
in fact, he uses Example 3.5 to show that the condition is hardly met: no orthogonal
matrices ( \=O1, \=O2, \=O3) exist such that  - \=OT

1
\=O2, \=OT

1
\=O3, and \=OT

2
\=O3 are simultaneously

symmetric and positive semidefinite. Nevertheless, Ten Berge's sufficient condition
is implied by Theorem 3.3. To see this, observe that \=\Lambda i =

\sum m
j=1

\=\Lambda ij is symmetric
(and positive semidefinite), satisfying the stationarity condition (3.2). Also since
Sij = \=Oi

\=\Lambda ij
\=OT
j ,

L \star = diag( \=O1
\=\Lambda 1

\=O1, . . . , \=Om
\=\Lambda m

\=Om) - \~S

=

\left[   
\=O1

. . .
\=Om

\right]   
\left[   
\sum 

j \not =1
\=\Lambda 1j  - \=\Lambda 12 \cdot \cdot \cdot  - \=\Lambda 1m

...
. . .

...
 - \=\Lambda m1 \cdot \cdot \cdot  - \=\Lambda m,m - 1

\sum 
j \not =m

\=\Lambda mj

\right]   
\left[   

\=OT
1

. . .
\=OT
m

\right]   .

It is easy to check that the middle block matrix is positive semidefinite, and so is L \star .
Hanafi and Ten Berge [16] show that if unit vectors oi \in \BbbR di , i = 1, . . . ,m, satisfy

\~So = diag(\lambda 1, . . . , \lambda m)o with o = (oT1 , . . . , o
T
m)T and diag(\lambda 1Id1

, . . . , \lambda mIdm
) - \~S \succeq 0,

then (o1, . . . , om) maximizes 1
2

\sum m
i,j=1 o

T
i Sijoj globally. Obviously, this is a special

case of Theorem 3.3 for r = 1. Corollary 3.7 follows from this result.
If a stationary point ( \=O1, . . . , \=Om) satisfies the second-order condition (3.5) for

all W = [WT
1 , . . . ,WT

m]T \in \BbbR D\times r, i.e., each Wi does not necessarily observe the
tangency condition (3.6) at \=Oi, then this is obviously sufficient for the point to be
globally optimal. Liu, Wang, and Wang, [21, Theorem 2.4] describe this condition in
a matrix form:

(3.14) \scrL  \star \triangleq diag(KT
d1,r(Id1

\otimes \=\Lambda 1)Kd1,r, . . . ,K
T
dm,r(Idm

\otimes \=\Lambda m)Kdm,r) - \scrS \succeq 0,
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where \scrS = (Ir \otimes Sij), and Kmn is the commutation matrix such that Kmn vecA =
vecAT for A \in \BbbR m\times n; vec(\cdot ) is the usual vectorization operator, and \otimes denotes the
Kronecker product. Condition (3.14) can be related to Theorem 3.3 by the similarity
transform of \scrL  \star with \scrK = diag(Kd1,r, . . . ,Kdm,r):

\scrK \scrL  \star \scrK T = diag(Id1 \otimes \=\Lambda 1, . . . , Idm \otimes \=\Lambda m) - \scrK \scrS \scrK T

= diag(Id1
\otimes \=\Lambda 1, . . . , Idm

\otimes \=\Lambda m) - \~\scrS \succeq 0, \~\scrS = (Sij \otimes Ir).

The second equality uses the fact Kdi,r(Ir \otimes Sij)K
T
dj ,r

= Sij \otimes Ir. Observe the

resemblance of the last line to condition (CERT). When r = 1, these two conditions
actually coincide, hence also with the Hanafi--Ten Berge condition. For r > 1, besides
the expenses of constructing a larger matrix than L \star (rD\times rD versus D\times D), condition
(3.14) is usually stronger than Theorem 3.3. For instance, in Example 5.1 of section 5
stationary points obtained by Algorithm 4.1 in section 4 satisfy condition (CERT) for
all possible values of r, but for those points \scrL  \star \succeq 0 only when r = 1.

Table 1
Comparison between Ky Fan's problem and the orthogonal trace-sum maximization problem

(OTSM). Set \Gamma 2 refers to the set of locally maximal points.

Ky Fan OTSM

Domain \=O \in \scrO d,r
\=O = ( \=O1, . . . , \=Om) \in \scrO d1,r \times \cdot \cdot \cdot \times \scrO dm,r

Lagrange multiplier(s) \=\Lambda = \=OTS \=O = \=\Lambda T \=\Lambda i =
\sum m

j=1
\=OT
i S \=Oj = \=\Lambda T

i , i = 1, . . . ,m

Lifting matrix \=U = \=O \=OT \=U = 1
m

\=O \=OT

Cutoff matrix \=z = \lambda min(\=\Lambda ) \=Z = diag([\tau iIdi ]mi=1), \tau i = \lambda min(\Lambda i)
Nonneg. part of \=\Lambda \=M = \=O(\=\Lambda  - \=zIr) \=OT \=M = diag([ \=Oi(\=\Lambda i  - \tau iIr) \=OT

i ]mi=1)

Nonpos. part of \=\Lambda \=L = \=M + \=zId  - S \=L = \=M + \=Z  - \~S
Certificate matrix \=L \succeq 0 (\forall \=O \in \Gamma 2) \=L \succeq 0 (\exists \=O \in \Gamma 2)

4. Proximal block relaxation algorithm. In order to apply Theorem 3.3 to
verify condition (CERT), an algorithm that generates iterates converging to a station-
ary point is needed. Although problem (OTSM) has been studied in the generalized
CCA and Procrustes analysis context for a long time, algorithms that possess this
desired property appear rare. In this section, we propose such an algorithm.

4.1. Oscillation of the standard algorithm. We first point out a flaw in
the block ascent algorithm widely employed in both the generalized CCA [15, 31, 32]
and the Procrustes analysis contexts [10, 13, 30]. This algorithm cyclically updates
each orthogonal matrix Oi with other blocks Oj , j \not = i, held fixed. To update the
ith block in the k + 1st cycle, let Oprev = (Ok+1

1 , . . . , Ok+1
i - 1 , O

k
i , O

k
i+1, . . . , O

k
m), then

maximize tr
\bigl[ 
OT

i (
\sum m

j=1 SijO
prev
j )

\bigr] 
. This block update scheme is natural since the

domain \scrO d1,r\times \cdot \cdot \cdot \times \scrO dm,r has a product structure. Furthermore, each maximization
is explicit: let us invoke the von Neumann--Fan inequality

tr(ATB) \leq 
\sum 
l

\sigma l(A)\sigma l(B),

which holds for any two matrices A and B of the same dimensions with the lth largest
singular values \sigma l(A) and \sigma l(B), respectively; equality is attained when A and B share
a simultaneous ordered SVD (see, e.g., [19]). Thus if B =

\sum m
j=1 SijO

prev
j has an SVD

of PiDiQ
T
i , where Di is r\times r nonnegative diagonal, then the optimal choice of A = Oi
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is PiQ
T
i . The latter matrix is orthogonal. This method can be considered a linearized

version of the alternating variable algorithm of [21, Algorithm 4.1].
However, convergence of this standard algorithm is not guaranteed. To be precise,

let Ok = (Ok
1 , . . . , O

k
m) be the kth iterate after k cycles of the algorithm. While it

can be shown that the sequence of objective values \{ f(Ok)\} converges [31], it cannot
be said that the iterates \{ Ok\} themselves converge. The main reason is that the map
B =

\sum 
j \not =i SijOj \mapsto \rightarrow PiQ

T
i is set-valued. If B is rank deficient, any orthonormal basis

of the null space of BT (resp., B) can be chosen as left (resp., right) singular vectors
corresponding to the zero singular value; the product PiQ

T
i may not be unique [2,

Proposition 7]. Each update of the ith block may place it too far from its previous
location. To see the potential peril of this update scheme, let us revisit Example 3.5.
Suppose the algorithm is initialized with O0 = (I, J, I), where

I =

\left[  1 0
0 1
0 0

\right]  \in \scrO 3,2 and J =

\left[  0 1
1 0
0 0

\right]  \in \scrO 3,2.

Both I  - J and I + J have rank 1, and  - J \in argmaxOi\in \scrO 3,2
tr
\bigl[ 
OT

i (I  - J)
\bigr] 
, I \in 

argmaxOi\in \scrO 3,2
tr
\bigl[ 
OT

i (I + J)
\bigr] 
. Taking these particular values as the outputs of an

instance of the above set-valued map, we have the following sequence of Ok:

(I, J, I)\rightarrow ( - J, I, - J)\rightarrow ( - I, - J, - I)\rightarrow (J, - I, J)\rightarrow (I, J, I)\rightarrow \cdot \cdot \cdot .

Thus the standard algorithm oscillates while the objective does not change from a
suboptimal value of 1 (recall the globally optimal value is 3).

4.2. Proximal regularization. We propose a simple modification of the stan-
dard algorithm that leads to a convergent algorithm. Define a bivariate function
fi : \scrO di,r \times (\scrO d1,r \times \cdot \cdot \cdot \times \scrO dm,r) \rightarrow \BbbR as fi(Oi,\Theta ) = tr

\bigl[ 
OT

i (
\sum m

j=1 Sij\Theta j)
\bigr] 

for
i = 1, . . . ,m, where \Theta = (\Theta 1, . . . ,\Theta m). Then the objective function of (OTSM) can
be denoted by f(O) = 1

2

\sum m
i=1 fi(Oi, O), where O = (O1, . . . , Om). For the update of

the ith block in the k + 1st cycle, we consider a spherical quadratic approximation of
fi at Ok

i , i.e.,
(4.1)

fi(O
k
i , O

prev)+tr[\nabla 1fi(O
k
i , O

prev)T (Oi - Ok
i )] - 1

2\alpha 
\| Oi - Ok

i \| 2F +
\sum 
j \not =i

fj(O
prev
j , Oprev),

where Oprev = (Ok+1
1 , . . . , Ok+1

i - 1 , O
k
i , O

k
i+1, . . . , O

k
m), and \nabla 1fi(Oi,\Theta ) =

\sum m
j=1 Sij\Theta j

is the derivative of fi in the first variable; \alpha > 0 is a given constant. We then maximize
this approximation with respect to Oi, with the other coordinates held fixed. This par-
tial maximization is also explicit, as it can be easily seen that maximizing the objective
(4.1) is equivalent to maximizing tr

\bigl[ 
OT

i (
\sum m

j=1 SijO
prev
j +\alpha  - 1Ok

i )
\bigr] 
. Therefore, we can

employ the von Neumann--Fan inequality to A = Oi and B =
\sum m

j=1 SijO
prev
j +\alpha  - 1Ok

i .

If B has an SVD of PiDiQ
T
i , then the optimal choice of A is again PiQ

T
i , which is or-

thogonal. This fact suggests Algorithm 4.1, which includes that standard algorithm as
a special case (\alpha = +\infty ). The quadratic regularization term in objective (4.1) keeps
the update Ok+1

i in the proximity of its previous value Ok
i , and the \alpha moderates the de-

gree of attraction. Algorithm 4.1 is also an instance of the minorization-maximization
(MM) algorithm (see, e.g., [20]): at each update, the surrogate function defined on
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(\scrO d1,r \times \cdot \cdot \cdot \times \scrO dm,r)\times (\scrO d1,r \times \cdot \cdot \cdot \times \scrO dm,r)

g(O | \Theta ) = f(\Theta ) +

m\sum 
i=1

tr[\nabla 1fi(\Theta i,\Theta )T (Oi  - \Theta i)] - 
1

2\alpha 

m\sum 
i=1

\| Oi  - Ok
i \| 2F

minorizes the objective function f(O) at \Theta = (Ok+1
1 , . . . , Ok+1

i - 1 , O
k
i , O

k
i+1, . . . , O

k
m)

for a certain range of \alpha and is partially maximized. As a consequence of being an
MM algorithm, each update monotonically improves the objective function f . Due
to the compactness of each \scrO di,r, actually the sequence of objective values \{ f(Ok)\} 
converges.

In the next subsection we proceed to show that the sequence of iterates \{ Ok\} 
converges to a stationary point, in contrast to the standard algorithm. In particular,
in the example of the previous subsection, with any finite \alpha > 0 the maximizers of
tr
\bigl[ 
OT

i ( - J + I +\alpha  - 1I)
\bigr] 
, tr

\bigl[ 
OT

i ( - I + I +\alpha  - 1J)
\bigr] 
, and tr

\bigl[ 
OT

i (I + J +\alpha  - 1I)
\bigr] 

in \scrO 3,2

are uniquely determined by I, J , and I. This yields O0 = (I, J, I) = O1 = O2 = \cdot \cdot \cdot 
in Algorithm 4.1. In fact, the point (I, J, I) is a stationary point. (Convergence to
a global maximizer, e.g., (3.13), requires a good initial point. We discuss this in
section 5 with another global solution.) Note, however, the map in lines 5 and 6 of
Algorithm 4.1 is nevertheless set-valued, since there is no guarantee of full rank of B.

Algorithm 4.1 Proximal block relaxation algorithm for solving (OTSM).

1: Initialize O1, . . . , Om; Set \alpha \in (0, 1/maxi=1,...,m \| Sii\| 2)
2: For k = 1, 2, . . .
3: For i = 1, . . . ,m
4: Set B =

\sum m
j=1 SijOj + \alpha  - 1Oi

5: Compute SVD of B as PiDiQ
T
i

6: Set Oi = PiQ
T
i

7: End For
8: If there is no progress, then break
9: End For
10: Return (O1, . . . , Om)

4.3. Global convergence. Algorithm 4.1 with \alpha > 0 converges despite the
nonuniqueness of the map in lines 5 and 6.

Theorem 4.1. The sequence \{ (Ok
1 , . . . , O

k
m)\} generated by Algorithm 4.1 con-

verges to a stationary point of (OTSM) for \alpha \in (0, 1/maxi=1,...,m \| Sii\| 2); \| \cdot \| 2
denotes the spectral norm. Furthermore, the rate of convergence is at least sublinear.

This result is stronger than typical global convergence results that all the limit
points are stationary [19,39], or that the gradient vanishes [1,24]. Theorem 4.1 can be
shown using Theorems 1 and 2 in Xu and Yin [38] by noting that Algorithm 4.1 falls
into their ``deterministic block prox-linear"" class of algorithms and problem (OTSM)
possesses the Kurdyka--\Lojasiewicz property [4]. In the accompanying supplementary
material file OTSM supp.pdf [local/web 625KB], we provide a simpler proof utilizing
the closedness [39] of the map in lines 5 and 6, and the geometry of the product of
Stiefel manifolds.

Remark 4.2. In case Sii = 0 for i = 1, . . . ,m, e.g., the MAXDIFF problem, the
\alpha can be chosen as an arbitrary positive constant.
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5. Numerical experiments.

5.1. Setup. In this section we test Algorithm 4.1 equipped with the certificates
of global optimality and suboptimality discussed in section 3 with both synthetic
and real-world examples. Algorithm 4.1 was implemented in the Julia programming
language [7] and run on a standard laptop computer (Macbook Pro, i5@2.4GHz, 16GB
RAM). We set the proximity constant \alpha = 1000 and terminated the algorithm if the
mean change m - 1

\sum m
i=1 \| Ok

i  - Ok - 1
i \| F was less than 10 - 8 and the relative change

of the objective function was less than 10 - 10, or a maximum iteration of 50000 was
reached. For comparison, we also tested the generic Riemanian trust-region method [1]
implemented in the Manopt MATLAB toolbox [9]. The maximum number of outer
iterations of this method was set to 10000. For both methods, four initialization
strategies were considered:

1. (``eye"") The ith block O0
i of the initial point takes the first r columns of Idi

.
2. (``tb"") Take the eigenvectors corresponding to the r largest eigenvalues of the

data matrix \~S = (Sij) to form a D \times r orthogonal matrix \~V . Split \~V into m

blocks so that \~V = [ \~V T
1 , . . . , \~V T

m ]T , where \~Vi \in \BbbR di\times r, i = 1, . . . ,m. Project
each block \~Vi to the Stiefel manifold \scrO di,r to obtain O0

i .

3. (``sb"") Replace the diagonal blocks Sii of \~S by - 
\sum m

j=1(SijS
T
ij)

1/2, where M1/2

denotes the matrix square root of the positive semidefinite matrix M . Take
the eigenvectors corresponding to the r largest eigenvalues of the resulting
negative semidefinite matrix to form a D \times r orthogonal matrix \~V . Proceed
as strategy ``tb.""

4. (``lww1"") Set O0
1 to the top r eigenvectors of S11. Then set O0

k = UkQk,
where Uk is the top r eigenvectors of Skk and Qk is the Q factor in the QR
decomposition of Uk

\sum 
j<k SkjO

0
j , k = 2, . . . ,m.

The initial point of strategy ``tb"" coincides with that which gives the second upper
bound of the orthogonal Procrustes problem [30, p. 273], and also with the starting
point strategy 2 of [21, p. 1495] for the MAXBET problem. Strategy ``sb"" extends
[28, p. 380] for the orthogonal Procrustes problem; see Lemma A.1 in Appendix A,
and also the accompanying supplementary material file OTSM supp.pdf [local/web
625KB]. Strategy ``lww1"" is the starting point strategy 1 by [21, p. 1494].

5.2. Small examples.

Example 5.1 (CCA of port wine data). We consider generalized CCA of the
subset of the data from sensory evaluation of port wines analyzed by Hanafi and
Kiers [15, Table 2]. The goal is to capture the agreement between m = 4 assessors in
the assessment of the appearance of n = 8 port wines. Note that the dimensions are
disparate: d1 = 4, d2 = 3, d3 = 4, and d4 = 3. The MAXDIFF criterion was tested
for all possible r = 1, 2, 3. The results are summarized in Table 2. Algorithm 4.1
achieved global optimum for all r and for all initial point strategies. A similar phe-
nomenon occurred with MAXBET, whose results are provided in the accompanying
supplementary material file OTSM supp.pdf [local/web 625KB], except for r = 3 with
strategies ``eye"" and ``lww1."" On the other hand, Manopt occasionally converged to
a stationary point violating the conclusion of Proposition 3.1. In addition, Algorithm
4.1 was orders of magnitudes faster than Manopt. In all cases certified to be globally
optimal, the smallest eigenvalues of L \star in condition (CERT) (denoted \lambda min(L \star )) were
numerically zero up to the fourteenth digit after the decimal point, whereas those of
\scrL  \star (denoted \lambda min(\scrL  \star )) in condition (3.14) were often definitely negative.
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Table 2
Port wine data, MAXDIFF. In ``classification,"" ``not loc. opt."" means that the iterate at ter-

mination is stationary but violates Proposition 3.1.

r Init Method Iter Time (sec) Obj Classification \lambda min(L \star ) \lambda min(\scrL  \star )

1

eye
PBA 10 0.0001923 209.8 global opt. -1.276e-14 -1.276e-14
Manopt 9 0.07502 209.8 global opt. -2.482e-15 -2.482e-15

sb
PBA 10 0.0002432 209.8 global opt. -2.101e-14 -2.101e-14
Manopt 7 0.05024 209.8 global opt. 6.234e-15 6.234e-15

tb
PBA 9 0.0001739 209.8 global opt. -1.159e-14 -1.159e-14
Manopt 5 0.03958 209.8 global opt. -1.951e-14 -1.951e-14

lww1
PBA 10 0.0002291 209.8 global opt. 2.599e-15 2.599e-15
Manopt 9 0.05789 209.8 global opt. -1.024e-15 -1.024e-15

2

eye
PBA 10 0.0002719 271.2 global opt. -1.471e-14 -79.61
Manopt 11 0.1084 271.2 global opt. -2.707e-15 -79.61

sb
PBA 9 0.0002301 271.2 global opt. -6.812e-14 -79.61
Manopt 7 0.08470 271.2 global opt. -4.465e-14 -79.61

tb
PBA 9 0.0002238 271.2 global opt. -2.418e-14 -79.61
Manopt 6 0.07996 271.2 global opt. -1.992e-14 -79.61

lww1
PBA 10 0.0002762 271.2 global opt. -1.364e-13 -79.61
Manopt 12 0.1024 271.2 global opt. -1.219e-14 -79.61

3

eye
PBA 13 0.0002659 284.1 global opt. -3.292e-14 -106.1
Manopt 13 0.1814 280.7 not loc. opt. -- --

sb
PBA 9 0.0001853 284.1 global opt. -1.370e-14 -106.1
Manopt 6 0.1135 284.1 global opt. -5.021e-14 -106.1

tb
PBA 10 0.0002105 284.1 global opt. -1.16e-13 -106.1
Manopt 6 0.1078 284.1 global opt. -4.389e-15 -106.1

lww1
PBA 11 0.0002893 284.1 global opt. 4.392e-15 -106.1
Manopt 12 0.1530 280.7 not loc. opt. -- --

Example 5.2. We revisit Example 3.5 for d = 3 and r = 1, 2, 3. The results are
summarized in Table 3. Strategies ``eye"" and ``lww1"" gave suboptimal stationary
points as initial points, and both algorithms could not make progress. Strategy ``sb""
yielded global optima for both r = 1, 2. For r = 3, no strategy could certify global
optimality. For r = 2, while both ``sb"" and ``tb"" were successful, Algorithm 4.1 took
the full 50000 iterations to achieve the same accuracy as Manopt, which in this case
took 22 outer iterations. The stationary points reached from the two initial points
were all quite different from each other, and also from the analytic solution (3.13).
The error \| \=O1+ \=O2 - \=O3\| \infty was between 8.877\times 10 - 7 and 6.146\times 10 - 6. Together with
the smallest eigenvalue of L \star computed being  - 6.674\times 10 - 6, this relatively large error
reflects the hardness of this problem illustrated in Example 3.5. This difficulty was
also experienced with an extra run of the commercial interior-point method solver
MOSEK [22] to solve the convex relaxtion (P-SDP). While the optimal objective
value was 3 up to the eighth digit after the decimal point, MOSEK failed to obtain
a rank-two solution. With this exception, Algorithm 4.1 terminated in a fraction of
time for Manopt.

Additional examples. In the supplementary material (OTSM supp.pdf [local/web
625KB]), Examples 5.1 and 5.2 of [21] are considered under both MAXDIFF and
MAXBET criteria, and new global optima are found.

5.3. Simulation studies. Following the orthogonal Procrustes analysis model,
we generated n sets of d-dimensional landmarks from the standard normal distribution
independently, and randomly rotated them by m orthogonal matrices of size d \times r.
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Table 3
Example 5.2. In ``classification,"" ``stationary"" means that the iterate at termination is station-

ary but its global optimality is not confirmed by using Theorem 3.3.

r Init Method Iter Time (sec) Obj Classification \lambda min(L \star ) \lambda min(\scrL  \star )

1

eye
PBA 2 0.0005041 1.000 stationary -1.000 -1.000
Manopt 1 0.001597 1.000 stationary -1.000 -1.000

sb
PBA 12 0.0001631 1.500 global opt. -1.608e-10 -1.608e-10
Manopt 7 0.02612 1.500 global opt. -1.045e-7 -1.045e-7

tb
PBA 2 0.0001112 1.000 stationary -1.000 -1.000
Manopt 1 0.001039 1.000 stationary -1.000 -1.000

lww1
PBA 2 0.0001182 1.000 stationary -1.000 -1.000
Manopt 1 0.0009643 1.000 stationary -1.000 -1.000

2

eye
PBA 2 0.0001587 2.000 stationary -1.000 -1.000
Manopt 1 0.001062 2.000 stationary -1.000 -1.000

sb
PBA 50000 0.5982 3.000 global opt. -6.674e-6 -6.674e-6
Manopt 22 0.2152 3.000 global opt. -1.241e-6 -1.183e-6

tb
PBA 50000 0.4910 3.000 global opt. -6.674e-6 -6.674e-6
Manopt 22 0.1925 3.000 global opt. -1.322e-6 -1.322e-6

lww1
PBA 2 0.0001049 2.000 stationary -1.000 -1.000
Manopt 1 0.0009794 2.000 stationary -1.000 -1.000

3

eye
PBA 2 6.970e-5 3.000 stationary -1.000 -1.000
Manopt 1 0.001210 3.000 stationary -1.000 -1.000

sb
PBA 14 0.0002474 4.000 stationary -1.000 -1.000
Manopt 8 0.03438 4.000 stationary -1.000 -1.000

tb
PBA 11 0.0001370 4.000 stationary -1.000 -1.000
Manopt 7 0.02888 4.000 stationary -1.000 -1.000

lww1
PBA 2 5.438e-5 3.000 stationary -1.000 -1.000
Manopt 1 0.0009759 3.000 stationary -1.000 -1.000

For this set of n\times d matrices, normal error with variance \sigma 2 to obtain Ai was added,
i = 1, . . . ,m. The data matrix \~S = (Sij) was constructed with Sij = AT

i Aj , i \not = j,
and Sii = 0. Values of m = 5, n = 100, and d \in \{ 10, 20, . . . , 100\} were used. The
noise levels considered were \sigma \in \{ 0.1, 1.0, 5.0, 10.0\} . The rank r was set to 3. Initial
value strategies ``sb"" and ``tb"" were used for both Algorithm 4.1 and Manopt, as they
showed good performance in the small examples. One hundred samples of random
sets were generated for each combination of simulation parameters. In Figure 1, error-
versus-time curves are plotted for typical instances. Algorithm 4.1 was more than an
order of magnitude faster than Manopt. (For d = 100, Manopt did not terminate for
more than three days, hence the results were omitted.) There was little difference
between the two initial value strategies, hence the differences of the final objective
values between Algorithm 4.1 and Manopt are plotted in Figure 1 for strategy ``tb""
only. The final objective values of the two algorithms agreed in most cases, while
Algorithm 4.1 tended to give larger values. The proportions of certified global optima
are reported in Table 4 for d that are multiples of tens. Not surprisingly, when the
noise level was low both Algorithm 4.1 and Manopt almost always solved (OTSM)
globally. Even if \sigma was as large as 10.0, the success rate was between 8\% and 24\%.

5.4. Real-world examples.

Example 5.3 (cryo-EM). Ab initio modeling for the single-particle reconstruction
(SPR) problem in cryo-EM refers to the procedure of obtaining a preliminary 3D map
of the particle in the ice from 2D images by tomographic inversion. Since each cryo-
EM image is a noisy projection of the particle with unknown orientation, reliable
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Fig. 1. Simulation studies. Left: relative error versus wall clock time for each method and
initialization strategy. Right: objective value difference between Algorithm 4.1 and Manopt at con-
vergence.

estimation of orientations from a collection of images is an important step in SPR. A
popular approach is based on the common-lines property [6]: the Fourier slice theorem
implies that any pair of projection images possesses a pair of radial lines on which
their Fourier transforms coincide. Once the common lines of all the pairs among m
projections are given, the orientations can be estimated via orthogonal least squares
[37]. For a pair of images i and j, if the common line between images i and j appears in
the direction of cij = (cos \theta ij , sin \theta ij , 0)T in image i and in cji = (cos \theta ji, sin \theta ji, 0)T in
image j, then the unknown 3D rotation matrices Oi and Oj in the special orthogonal
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Table 4
Frequency of certified global optimality, large examples.

d Init Method
Certification rate (\sigma )

0.1 1.0 5.0 10

10 sb PBA 1.0 .94 .19 .17
Manopt 1.0 .94 .19 .17

tb PBA 1.0 .94 .19 .17
Manopt 1.0 .94 .19 .17

20 sb PBA 1.0 .88 .14 .17
Manopt 1.0 .88 .14 .17

tb PBA 1.0 .88 .14 .17
Manopt 1.0 .88 .14 .17

30 sb PBA 1.0 .91 .12 .12
Manopt 1.0 .91 .12 .12

tb PBA 1.0 .91 .12 .12
Manopt 1.0 .91 .12 .12

40 sb PBA 1.0 .86 .10 .19
Manopt 1.0 .86 .10 .19

tb PBA 1.0 .86 .10 .19
Manopt 1.0 .86 .10 .19

50 sb PBA 1.0 .86 .22 .21
Manopt 1.0 .86 .22 .21

tb PBA 1.0 .86 .22 .21
Manopt 1.0 .86 .22 .21

d Init Method
Certification rate (\sigma )

0.1 1.0 5.0 10

60 sb PBA 1.0 .78 .21 .20
Manopt 1.0 .78 .21 .20

tb PBA 1.0 .78 .21 .20
Manopt 1.0 .78 .21 .20

70 sb PBA 1.0 .79 .14 .15
Manopt 1.0 .79 .14 .15

tb PBA 1.0 .79 .14 .15
Manopt 1.0 .79 .14 .15

80 sb PBA 1.0 .91 .18 .14
Manopt 1.0 .91 .18 .14

tb PBA 1.0 .91 .18 .14
Manopt 1.0 .91 .18 .14

90 sb PBA 1.0 .80 .21 .23
Manopt 1.0 .80 .21 .23

tb PBA 1.0 .80 .21 .23
Manopt 1.0 .80 .21 .23

100 sb PBA 1.0 .76 .23 .21
Manopt - - - -

tb PBA 1.0 .76 .23 .21
Manopt - - - -

group SO(3) should approximately satisfy OT
i cij = OT

j cji. Thus for estimating these
matrices for all pairs among the m images, we may minimize\sum 

i<j

\| OT
i cij  - OT

j cji\| 2F ,

which is (OTSM) with d1 = \cdot \cdot \cdot = dm = r = 3, Sij = cijc
T
ji for i \not = j, and Sii = 0,

i = 1, . . . ,m (i.e., MAXDIFF), but the domain is SO(3) \times \cdot \cdot \cdot \times SO(3) instead of
\scrO 3,3 \times \cdot \cdot \cdot \times \scrO 3,3. Algorithm 4.1 can be trivially modified for this setting, since the
projection of B = PDQT \in \BbbR r\times r (full SVD) onto SO(r) is P diag(1, . . . , 1, - 1)QT if
the singular values of B are sorted in descending order.

We generated m noisy projections of a ribosomal subunit provided with ASPIRE
software for SPR2 that implements the orthogonal least squares method via SDP
relaxation (m = 100, 500, 1000). The orientations of the projections were distributed
uniformly over SO(3). White Gaussian noise was added to the clean projections to
generate noisy images of size 65 by 65 with signal-to-noise ratios (SNRs) \infty , 1, 1/2,
1/4, 1/8, and 1/16. Common-line pairs were detected with a 1\circ resolution using the
functionality of ASPIRE. Due to the presence of noise, the common-line detection
rate deteriorates as SNR decreases. Orientations were estimated using two methods,
i.e., SDP relaxation of ASPIRE (which utilizes the SDPLR solver3) and Algorithm 4.1
initialized with ``sb."" The mean squared error of the estimated rotation matrices was
computed using the formula of [37, eq. (8.2)]. Because we had difficulties in installing
ASPIRE on the Macbook Pro laptop and common-line detection is computationally
demanding, all the computations except for Algorithm 4.1 were conducted on a Linux

2Available at http://spr.math.princeton.edu/content/download-software.
3Available at http://sburer.github.io/files/SDPLR-1.03-beta.zip.
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Table 5
Example 5.3. ``CL rate"" refers to the common-line detection rate. In ``classification,"" ``station-

ary"" means that the iterate at termination is stationary but its global optimality is not confirmed by
using Theorem 3.3; ``not stat."" means that it does not satisfy the first-order local optimality condition
(2.3).

m SNR CL rate Method MSE Time (sec) Iters Classification

100 \infty 0.9990 PBA 0.0000 0.0582 14 global opt.
SDPLR 0.0000 1.3764 - global opt.

1 0.9442 PBA 0.0010 0.0309 13 global opt.
SDPLR 0.0010 0.8879 - global opt.

1/2 0.8275 PBA 0.0148 0.0392 13 global opt.
SDPLR 0.0148 0.8510 - global opt.

1/4 0.6048 PBA 0.1253 0.0333 15 global opt.
SDPLR 0.1253 0.8089 - global opt.

1/8 0.3628 PBA 0.6646 0.0635 29 global opt.
SDPLR 0.6646 0.9883 - global opt.

1/16 0.1834 PBA 2.1363 0.2265 110 stationary
SDPLR 1.7991 1.3070 - not stat.

500 \infty 0.9994 PBA 0.0000 0.6996 14 global opt.
SDPLR 0.0000 2.9501 - global opt.

1 0.8899 PBA 0.0038 0.6890 12 global opt.
SDPLR 0.0038 2.3761 - global opt.

1/2 0.7250 PBA 0.0338 0.7755 14 global opt.
SDPLR 0.0338 3.1371 - global opt.

1/4 0.4860 PBA 0.1959 0.9834 16 global opt.
SDPLR 0.1959 5.4611 - global opt.

1/8 0.2678 PBA 0.7366 1.0938 20 global opt.
SDPLR 0.7366 13.1841 - global opt.

1/16 0.1263 PBA 1.6252 1.5513 30 global opt.
SDPLR 1.6252 11.2194 - global opt.

1000 \infty 0.9994 PBA 0.0000 2.5524 13 global opt.
SDPLR 0.0000 10.1951 - global opt.

1 0.9177 PBA 0.0017 2.5475 13 global opt.
SDPLR 0.0017 9.7137 - global opt.

1/2 0.7889 PBA 0.0188 2.4491 13 global opt.
SDPLR 0.0188 19.7047 - global opt.

1/4 0.5686 PBA 0.1297 2.6885 14 global opt.
SDPLR 0.1297 34.6575 - global opt.

1/8 0.3365 PBA 0.5384 3.8236 20 global opt.
SDPLR 0.5384 67.5752 - global opt.

1/16 0.1687 PBA 1.3403 6.6967 35 stationary
SDPLR 1.3403 102.6977 - stationary

workstation with two Intel Xeon E5-2680v2@2.80GHz CPUs (256GB RAM) and eight
Nvidia GTX 1080 GPUs (8GB VRAM/GPU).

The results are collected in Table 5. Except for the extremely challenging case
with a low number of measurements (m = 100) and SNR (1/16), Algorithm 4.1
produced solutions of the same quality as ASPIRE/SDPLR in much shorter time
(recall that ASPIRE was run on a much more powerful workstation), which, in turn,
are certified to be globally optimal except the case m = 1000 and SNR = 1/16. Hence
these solutions cannot be further improved under the least squares regime. In case
the two methods disagree, the solution computed by using an SDP relaxation of the
orthogonal least squares method failed to be even first-order stationary, possibly due
to the rounding procedure of the SDP solution to SO(3), even though the resulting
MSE was lower.
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Example 5.4 (generalized CCA). Our second real-world data example considers
gene-level interaction analysis based on genotype data [27,41]. Let Ai \in \{ 0, 1, 2\} n\times di

be the genotype matrix of gene i, where n is the number of individuals and di is the
number of single nucleotide polymorphisms (SNPs) in gene i. To test the interaction
between m genes, the maximal canonical correlations among m genes, i.e., (OTSM),
were computed. To demonstrate the scalability of the proximal block relaxation al-
gorithm (Algorithm 4.1), we computed the top r \in \{ 1, 2, 3\} generalized canonical
correlations using the MAXDIFF criterion among the first m \in \{ 2, . . . , 100\} genes
on chromosome 1 of n = 488, 377 samples from the UK Biobank [29]. (In contrast,
conventional analyses [27, 41] are restricted to m = 2 and r = 1.) The numbers of
SNPs di range from 10 to 271 with mean 34.33 in these genes. Figure 2 displays the
run times, all under 15 seconds, of Algorithm 4.1 using the same convergence criteria
as in section 5.1, together with the histogram of di's of the 100 genes. Among the 297
local solutions, 107 (36\%) of them were certified to be globally optimal using Theorem
3.3.
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Fig. 2. Left panel displays the run times of the proximal block relaxation algorithm (Algorithm
4.1) for finding the top r canonical correlations among the first m genes on chromosome 1 of
n = 488, 377 UK Biobank samples. Right panel shows the distribution of di (number of SNPs) in
the first 100 genes.

6. Conclusion. We have presented an in-depth analysis of the orthogonal trace-
sum maximization (OTSM) problem, which subsumes various linear and quadratic
optimization problems on a product of Stiefel manifolds. In a close analogy with
classical results on eigenvalue optimization, a fairly general condition for certifying
global optimality of a stationary point of the problem is derived. A practical algorithm
to reach a stationary point with a global convergence guarantee is also proposed.
We believe both are new to the literature. Numerical experiments show that the
combination of our algorithm and certificate, with initial value strategies ``sb"" and
``tb,"" can reveal global optima of various instances of OTSM. A further analysis on the
probability of global optima of the algorithm, under some distributional assumption
on the data, is warranted.

Appendix A. Technical proofs.

Proof of Proposition 3.1. Let i \in \{ 1, . . . ,m\} be such that di > r. Let \tau i =
\lambda min(\Lambda i), the smallest eigenvalue of the symmetric matrix \Lambda i, and let vi \in \BbbR r be
the associated unit eigenvector, i.e., \Lambda ivi = \tau ivi. If O\bot 

i \in \scrO di,di - r fills out Oi to
a fully orthogonal matrix, then for any xi \in \BbbR di - r, Wi = O\bot 

i xiv
T
i and Wj = 0 for

j \not = i satisfy the tangency condition (3.6). Then, tr(WT \~SW ) = tr(WT
i SiiWi) =
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xT
i O

\bot T
i SiiO

\bot 
i xi, and

tr(\Lambda iW
T
i Wi) = tr(\Lambda ivix

T
i O

\bot T
i O\bot 

i xiv
T
i ) = tr(\Lambda ivix

T
i xiv

T
i ) = \| xi\| 2vTi \Lambda ivi = \| xi\| 2\tau i.

Further, tr(\Lambda jW
T
j Wj) = 0 for j \not = i. Thus the second-order condition (3.5) entails

0 \leq 
m\sum 
i=1

tr(\Lambda iW
T
i Wi) - tr(WTSW ) = xT

i (\tau iIdi - r  - O\bot T
i SiiO

\bot 
i )xi.

Thus \tau iIdi - r \succeq O\bot T
i SiiO

\bot 
i . Since O\bot T

i SiiO
\bot 
i is positive semidefinite (recall Sii \succeq 0),

it follows that \tau i \geq 0, proving the first claim.
Now suppose O = (O1, . . . , Om) is a stationary point with \Lambda i \not \succeq 0 for some i.

Denote the objective of (OTSM) by f(O). Let the full singular value decomposition
of \Lambda i be \Lambda i = PiDiQ

T
i , where Pi, Qi \in \scrO r,r, and Di \succeq 0 is diagonal. Then it must

be Pi \not = Qi since otherwise \Lambda i \succeq 0. Now let \Theta i = OiPiQ
T
i \in \scrO di,r. Recall that

\Lambda i = OT
i

\sum m
j=1 SijOj . It follows that

tr

\biggl( 
\Theta T

i

m\sum 
j=1

SijOj

\biggr) 
= tr

\biggl( 
QiP

T
i OT

i

m\sum 
j=1

SijOj

\biggr) 
= tr(QiP

T
i \Lambda i) = tr(QiP

T
i PiDiQ

T
i )

= tr(Di)

> tr(QT
i PiDi) = tr(PiDiQ

T
i ) = tr(\Lambda i) = tr

\biggl( 
OT

i

m\sum 
j=1

SijOj

\biggr) 
.

Note the update Oi \leftarrow \Theta i corresponds to Algorithm 4.1 (line 6) with \alpha = \infty , or
the standard block ascent algorithm of section 4.1. By the ascent property of the
algorithm, if we let \Theta = (O1, . . . , Oi - 1,\Theta i, Oi+1, . . . , Om), then we have f(O) < f(\Theta ).
Now if we run Algorithm 4.1 with \alpha \in (0, 1/maxi=1,...,m \| Sii\| 2), then the algorithm

will converge to a stationary point \~O by Theorem 4.1. Again by the ascent property
of Algorithm 4.1, we see f(O) < f(\Theta ) \leq f( \~O). If the associated Lagrange multipliers
\~\Lambda i = \~OT

i

\sum m
j=1 Sij

\~Oj are not all positive semidefinite, then repeat the above procedure

with \Lambda i \leftarrow \~\Lambda i until no strict progress is possible. Eventually, we arrive at a stationary
point with the desired property.

The above proof of the second claim also shows that \Lambda i \succeq 0 for all i is a necessary
condition for global optimality.

Proof of Proposition 3.2. It suffices to show the constraints Oi \in \scrO di,r, i =
1, . . . ,m, are equivalent to the constraints of problem (3.8). From (3.7), clearly the
former implies the latter. To show the opposite, first note that U \succeq 0 and rank(U) = r
if and only if mU = EET , E = [ET

1 , . . . , E
T
m]T \in \BbbR D\times r, for some Ei \in \BbbR di\times r,

i = 1, . . . ,m. Then mUii = EiE
T
i \preceq Idi and tr(mUii) = tr(ET

i Ei) = r jointly imply
that all r singular values of Ei are 1. That is, Ei \in \scrO di,r.

Proof of Corollary 3.6. Suppose S12 = ST
21 \in \BbbR d1\times d2 has a singular value

decomposition S12 = U\Sigma V T with U \in \scrO d1,d, V \in \scrO d2,d, and \Sigma = diag(\sigma 1, . . . , \sigma d) \in 
\BbbS d, where d = min\{ d1, d2\} and \sigma 1 \geq \cdot \cdot \cdot \geq \sigma d \geq 0. Since O1O

T
2 \in \BbbR d1\times d2 has r unit

singular values and the rest are zero, the von Neumann--Fan inequality entails

tr(OT
1 S12O2) = tr[(O1O

T
2 )TS12] \leq 

r\sum 
i=1

\sigma i,
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with equality if and only if O1 = U1R (resp., O2 = V1R), where R \in \scrO r,r and U1

(resp., U2) consists of the left (resp., right) singular vectors of S12 associated with
\sigma 1, . . . , \sigma r in this order. If we denote such orthogonal matrices by \=O1 and \=O2, then
\=OT
1 U = [R 0] = \=OT

2 V and ( \=O1, \=O2) is a globally optimal stationary point. The
associate Lagrange multipliers are \=\Lambda 1 = \=OT

1 S12
\=O2 = \=OT

2 S21
\=O1 = \=\Lambda 2 . Thus

\=\Lambda = \=\Lambda 1 = \=\Lambda 2 = \=OT
1 U\Sigma V T \=O2 = RT \Sigma 1R = RT diag(\sigma 1, . . . , \sigma r)R,

and the diagonal blocks of the certificate matrix L \star are

L \star 
11 = \=O1

\=\Lambda \=OT
1 + \sigma r

\=O\bot 
1

\=O\bot T
1 = U \~\Sigma UT , L \star 

22 = \=O2
\=\Lambda \=OT

2 + \sigma r
\=O\bot 
2

\=O\bot T
2 = V \~\Sigma V T ,

where \~\Sigma = diag(\Sigma 1, Id - r) \succeq \Sigma . It follows that

L \star =

\biggl[ 
U \~\Sigma UT  - U\Sigma V T

 - V \Sigma UT V \~\Sigma V T

\biggr] 
\succeq 

\biggl[ 
U\Sigma UT  - U\Sigma V T

 - V \Sigma UT V \Sigma V T

\biggr] 
=

\biggl[ 
U
 - V

\biggr] 
\Sigma 

\biggl[ 
U
 - V

\biggr] T
\succeq 0.

Proof of Corollary 3.8. The following lemma extends Theorem 2 of [28] for
Sii \succeq 0, i = 1, . . . ,m, and is used to prove the claim of the corollary.

Lemma A.1. If Sij = ST
ji \in \BbbR di\times dj , i, j = 1, . . . ,m, has a singular value decompo-

sition Sij = Uij\Sigma ijV
T
ij with Uij \in \scrO di,d, Vij \in \scrO dj ,d, and \Sigma ij = diag(\sigma 1, . . . , \sigma d) \in \BbbS d,

where d = min\{ di, dj\} and \sigma 1 \geq \cdot \cdot \cdot \geq \sigma d \geq 0, then for X = diag(X1, . . . , Xm)

with Xi =
\sum m

j=1 Uij\Sigma ijU
T
ij =

\sum m
j=1(SijS

T
ij)

1/2, the symmetric matrix X  - \~S, where
\~S = (Sij) is the data matrix, is positive semidefinite.

Proof. Since Sji = Uji\Sigma jiV
T
ji = ST

ij = Vij\Sigma ijU
T
ij , we can set Vij = Uji and

\Sigma ij = \Sigma ji. For any y = (yT1 , . . . , y
T
m)T with yi \in \BbbR di , let a = \Sigma 

1/2
ij UT

ijyi and b =

\Sigma 
1/2
ij V T

ij yj = \Sigma 
1/2
ji UT

jiyj . Then from the fact 2aT b \leq aTa + bT b,

2yTi Sijyj = 2yTi Uij\Sigma ijU
T
jiyj \leq yTi Uij\Sigma ijU

T
ijyi + yTj Uji\Sigma jiU

T
jiyj .

Thus,

yT (X  - \~S)y =  - 
\sum 

i,j:j \not =i

yTi Sijyj +

m\sum 
i=1

yTi (Xi  - Sii)yi

\geq  - 1

2

m\sum 
i=1

yTi Uij\Sigma ijU
T
ijyi  - 

1

2

m\sum 
j=1

yTj Uji\Sigma jiU
T
jiyj +

m\sum 
i=1

yTi

\left(  m\sum 
j=1

(SijS
T
ij)

1/2  - Sii

\right)  yi

=  - 
m\sum 
i=1

\sum 
j \not =i

yi(SijS
T
ij)

1/2yi +

m\sum 
i=1

\sum 
j \not =i

yi(SijS
T
ij)

1/2yi = 0.

Proof of Corollary 3.8. If Sij has a singular value decomposition Sij = Vi\Sigma ijV
T
j ,

where \Sigma ij = \Sigma ji is r \times r nonnegative diagonal, then

Xi =

m\sum 
j=1

(SijS
T
ij)

1/2 = Vi

\left(  m\sum 
j=1

\Sigma ij

\right)  V T
j = Vi\Sigma i\cdot V

T
i , \Sigma i\cdot =

m\sum 
j=1

\Sigma ij .
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From Lemma A.1, X  - \~S = diag(X1, . . . , Xm) - \~S \succeq 0. Furthermore,

m\sum 
j=1

SijVj =

m\sum 
j=1

Vi\Sigma ijV
T
j Vj = Vi\Sigma i

and \Sigma i\cdot =
\sum m

j=1 V
T
i SijVj . Thus we can set \=Oi = Vi and \=\Lambda i = \Sigma i\cdot in Theorem 3.3.

Let \tau i be the smallest diagonal entry of \Sigma i\cdot . Then,

diag
\bigl( 
V1\Sigma 1\cdot V

T
1 + \tau 1V

\bot 
1 V \bot T

1 , . . . , Vm\Sigma m\cdot V
T
m + \tau mV \bot 

m V \bot T
m

\bigr) 
\succeq diag(X1, . . . , Xm) = X,

hence L \star \succeq X  - \~S \succeq 0.
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