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Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible,
and usually fatal lung disease of unknown reasons, generally affecting the
elderly population. Early diagnosis of IPF is crucial for triaging patients’ treat-
ment planning into anti-fibrotic treatment or treatments for other causes of
pulmonary fibrosis. However, current IPF diagnosis workflow is complicated
and time-consuming, which involves collaborative efforts from radiologists,
pathologists, and clinicians and it is largely subject to inter-observer variability.
Purpose: The purpose of this work is to develop a deep learning-based
automated system that can diagnose subjects with IPF among subjects with
interstitial lung disease (ILD) using an axial chest computed tomography (CT)
scan. This work can potentially enable timely diagnosis decisions and reduce
inter-observer variability.
Methods: Our dataset contains CT scans from 349 IPF patients and 529
non-IPF ILD patients.We used 80% of the dataset for training and validation pur-
poses and 20% as the holdout test set.We proposed a two-stage model:at stage
one, we built a multi-scale, domain knowledge-guided attention model (MSGA)
that encouraged the model to focus on specific areas of interest to enhance
model explainability, including both high- and medium-resolution attentions; at
stage two,we collected the output from MSGA and constructed a random forest
(RF) classifier for patient-level diagnosis, to further boost model accuracy. RF
classifier is utilized as a final decision stage since it is interpretable, computa-
tionally fast, and can handle correlated variables. Model utility was examined by
(1) accuracy, represented by the area under the receiver operating character-
istic curve (AUC) with standard deviation (SD), and (2) explainability, illustrated
by the visual examination of the estimated attention maps which showed the
important areas for model diagnostics.
Results: During the training and validation stage, we observe that when we
provide no guidance from domain knowledge, the IPF diagnosis model reaches
acceptable performance (AUC±SD = 0.93±0.07),but lacks explainability;when
including only guided high- or medium-resolution attention, the learned atten-
tion maps are not satisfactory;when including both high- and medium-resolution
attention, under certain hyperparameter settings, the model reaches the high-
est AUC among all experiments (AUC±SD = 0.99±0.01) and the estimated
attention maps concentrate on the regions of interests for this task. Three best-
performing hyperparameter selections according to MSGA were applied to the

Med Phys. 2022;1–12. wileyonlinelibrary.com/journal/mp © 2022 American Association of Physicists in Medicine. 1

 24734209, 0, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16053 by U

niversity of C
alifornia - L

os A
nge, W

iley O
nline L

ibrary on [05/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

mailto:gracekim@mednet.ucla.edu
https://wileyonlinelibrary.com/journal/mp
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmp.16053&domain=pdf&date_stamp=2022-11-05


2 MSGA+RF FOR IPF DIAGNOSIS

holdout test set and reached comparable model performance to that of the
validation set.
Conclusions: Our results suggest that, for a task with only scan-level labels
available, MSGA+RF can utilize the population-level domain knowledge to
guide the training of the network, which increases both model accuracy and
explainability.

KEYWORDS
attention models, computed tomography, deep learning, domain knowledge, idiopathic pulmonary
fibrosis, machine learning, medical imaging

1 INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a specific form of
chronic, progressive, irreversible, and usually lethal lung
disease of unknown causes with an estimated median
survival of 3–5 years since the initial diagnosis.1 In clin-
ical settings, making a correct, rapid, and reliable IPF
diagnosis is critical to triage patients’ treatment planning
into anti-fibrotic treatment or other causes of pul-
monary fibrosis treatment,and even lung transplantation
registry.2

According to the official clinical guideline,2 com-
puted tomography (CT) has become an integral part
of the diagnosis of IPF. Radiological patterns of usual
interstitial pneumonia (UIP) are the hallmark of IPF.2

Specifically,several CT features are frequently observed
in UIP patterns, including honeycombing, subpleural
reticulation, and traction bronchiectasis in a lower lobe
subpleural distribution.2 The diagnosis of IPF involves
the collaboration of multi-disciplinary discussion from
specialists: clinicians, radiologists, and pathologists.2 In
more detail, patients suspected to have IPF should
undergo an in-depth evaluation of potential causes or
associated conditions, such as hypersensitivity pneu-
monitis, connective tissue disease, etc. If there is no
potential cause identified, the chest CT patterns of the
patient are evaluated. Despite the existence of these
guidelines,2 the evaluation of these radiological patterns
is a difficult task and needs a multidisciplinary team of
experts in interstitial lung disease (ILD) with subject to
inter-observer variability.3,4 The average time from the
referral to multidisciplinary diagnosis is a year.

To this end, this research aims to develop a deep
learning-based automated diagnosis system to distin-
guish IPF from non-IPF among subjects with ILD based
on chest CT scans. This diagnostic system is a stand-
alone system without requiring additional efforts from
imaging analysts and radiologists,such as lung segmen-
tation, contouring, or other disease assessment. The
clinical meaning of this research area is to (1) reduce
inter-observer variability in the IPF diagnosis task, (2)
enable timely and reliable IPF diagnosis, and (3) enable
early anti-fibrosis treatment which may prolong patients’
survival time in the long term.5

Several machine learning and deep learning
approaches have been developed to provide diagnostic
support for IPF.6,7 For example, Walsh et al. trained a
deep learning-based method to classify fibrotic lung
disease into UIP, possible UIP, or inconsistent with
UIP based on four CT slice combinations.8 Similarly,
Christe et al. developed a pipeline for the automatic
classification of CT images into several UIP patterns.9

The diagnostic pipeline involves lung segmentation
and voxel-level tissue characterization. The develop-
ment and maintenance of these techniques usually
involve extensive collaborative efforts from radiologists,
imaging analysts, software engineers, data scientists,
which are not as desirable taking time and resource
considerations into account.10

Moreover, some work in this area takes several CT
slices as training or testing samples8,11; whereas our
work takes 3D CT volumes as input to utilize more
information across the lungs.

In recent years, numerous deep learning-based algo-
rithms have achieved great success in various med-
ical imaging tasks, such as segmentation, diagnosis,
detection, etc.12,13 The successful application of deep
learning systems in clinical practice relies on these
three prerequisites: (1) the availability of well-labeled
fine-scale data, which are usually at a pixel, regions
of interests (RoI), or image slice level; (2) the extent
of explainability on where and how the deep learning-
based system makes the decision; and (3) the ability to
generalize well to a new dataset.

Attention mechanisms, which originated from natural
language processing, have gained substantial inter-
ests in research problems that deal with label scarcity,
strengthen model generalizability to a new dataset,
and encourage long-range dependencies in computer
vision.14–16 Attention mechanisms are one way to
explain which region of the image the network’s decision
depends on and can enhance the explainability of deep
learning-based systems.17 Attention mechanisms have
recently become popular in the medical imaging domain
to solve the research question of segmentation18–20

classification,21,22 detection,23 and so on.Notably,atten-
tion mechanisms are usually incorporated at multi-
ple resolution scales, to encourage a more effective
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MSGA+RF FOR IPF DIAGNOSIS 3

F IGURE 1 The overall separation of the dataset. Val: validation, which is the subset that is used to evaluate the model performance at a
specific fold

feature connection.24,25 In this work, guided attention
modules of multiple scales are implemented to encour-
age the deep learning-based system to focus on the
areas of interests, which are lung parenchyma, espe-
cially the peripheral lung areas, based on the provided
population-level domain knowledge (DK) acquired from
prior studies.

The goal of this study is to develop an auto-
mated diagnosis system using deep learning that meets
explainability and adequate model performance using
chest high-resolution CT (HRCT) scans to distinguish
IPF from non-IPF among subjects with ILDs.

1 MATERIALS AND METHODS

1.1 Datasets

Lung CT images in this research were collected from
multi-center studies and the UCLA computer vision and
imaging biomarkers (CVIB) Laboratory served as the
imaging core facility. Only subjects with clinical diag-
noses of ILD were included. A total number of 878
volumetric non-contrast HRCT scans were retrospec-
tively collected IPF (N = 349, 39.7%) and non-IPF ILD
cohorts (N = 529, 60.3%). In more detail, non-IPF sub-
jects were clinically diagnosed as systemic sclerosis
ILD (N = 230), rheumatoid arthritis (RA) ILD (N = 103),
myositis ILD (N = 81), hypersensitivity pneumonitis
ILD (N = 74), and Sjogren syndrome ILD (N = 41).
CT images were collected from May 1997 to May
2018. We applied the stratified random sampling of IPF
and non-IPF subjects: the training and validation set
(N = 702, 80.0%, IPF% = 39.7%) and the testing set (N =
176, 20.0%, IPF% = 39.8%), as illustrated in Figure 1.
As a result, the training, validation, and testing set are
composed of CT scans collected from multi-center stud-
ies. A five-fold cross-validation was employed to the

training and validation with stratification of IPF and
non-IPF subjects: four subsets were used to construct
the model and one subset was used to evaluate the
model performance (shown as “Val” in Figure 1).

1.2 Image processing

HRCT scans underwent preprocessing (see Supporting
information A for details). Each CT scan was stan-
dardized to the dimension 256 × 256 × 128, and further
resampled a fixed number (M) of 3D-volumes, with
dimension 128 × 128 × 64 to boost sample size and
reduce the data dimension. We use subject index i and
resample index j = 1,… , M; for example, Xij is the jth
sampled CT volume from subject i (see Supporting infor-
mation B and Table S1 for the key notations). The total
number of resampling M = 20 was chosen after the
evaluation of balance in model performance and com-
putational time (see the details of M = 1, 10, 20, 30 in
Supporting information C.1 and Figure S1).

1.3 Elements of two-staged multi-scale
guided attention and random forest model

During the model training stage, the input of the sys-
tem contains three components: {(X1,… , XN), (y1,… ,
yN), D̃K} and the expected output contains two parts:
{(ŷ1,… , ŷN), (𝛽11,… , 𝛽NM)}. Specifically, Xi is the patient-
level CT scan collected from subject i; yi ∈ {0, 1} is the
ground truth indicating whether the subject i is clinically
diagnosed as IPF ( yi = 1) or non-IPF ILD ( yi = 0),which
is used to compute the loss function for model train-
ing; N is the number of subjects in the study; D̃K is a
standardized quantitative measure of population-level
DK collected from previous IPF studies, indicating which
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4 MSGA+RF FOR IPF DIAGNOSIS

F IGURE 2 Population-level domain knowledge at high (a) and medium (b) resolutions. Subplots (a) are produced at the 3%, 28%, 53%,
78%, 97% position along the depth D-axis; subplots (b) are produced at the 13%, 38%, 63%, 75%, 88% position along the D-axis

regions in lung parenchyma are typically prevalent in
pulmonary fibrosis. ŷi is the predicted label for scan i and
ŷi ∈ {0, 1}. 𝛽ij is the estimated attention maps for scan i
and sample j, highlighting the regions that are closed
to D̃K image. We implemented two attention multi-scale
modules at a high- and medium-resolution level, then
𝛽ij = (𝛽h

ij , 𝛽
m
ij ), where 𝛽h

ij and 𝛽m
ij are the estimated atten-

tion map at a high- and medium-resolution for a subject’s
scan i and sample j, respectively. During the model test-
ing stage, only patient-level CT scans (Xi) are required
as model input and model output includes scan-level
predictions (IPF vs. non-IPF, ŷi ,) and estimated attention
maps (𝛽ij).

The dimension of information is: (a) Xi is usually
of dimension 512 × 512 × number of CT slices, where
512 is the number of voxels in the x- and y-dimension
for each CT slice; (b) standardized domain knowl-
edge D̃K is a multi-dimensional array of dimension
256 × 256 × 128 as an input image. It is downsampled
to high- and medium-resolutions, as represented by

D̃K
h

and D̃K
m

, which are dimension 64 × 64 × 32 and
16 × 16 × 8, respectively (Figure 2); (c) for the estimated
attention maps, the dimensions of 𝛽h

ij and 𝛽m
ij are 64 ×

64 × 32 and 16 × 16 × 8,respectively. The image dimen-
sion is represented as H × W × D throughout this paper,
where the depth dimension D is the dimension along
the patient’s body from apex to base and height–width
(H − −W ) plane is the axial plane of each CT slice. The
dimension of intermediate features generated by 3D-
convolutions is H × W × D × C, where C-dimension is
the channel dimension.

1.4 Population-level domain
knowledge

1.4.1 Explainability

In the past 10 years,quantitative CT imaging biomarkers
have been developed and evaluated as clinical studies
among patients with ILD.26 These developed measures
are spatially traceable and can be used as DK to guide
the training of IPF diagnosis model.

Quantitative lung fibrosis (QLF) is a well-developed
automated algorithm to classify CT voxels into different
types, including normal, lung fibrosis,ground glass opac-
ity, honeycombing etc.27 In this study, QLF score is used
to provide a DK map, which is defined as a marginal
probability map that serves as a general guidance on
where disease patterns usually locate,especially for IPF
subjects. Therefore, DK is calculated before the training
of the IPF diagnosis models and is not dependent on
the training and testing procedure of the IPF diagnosis
model.

DK is acquired as follows: (1) Voxel-level predic-
tion: using the QLF algorithm to predict the CT scans
from the 102 eligible IPF subjects on a voxel-level. We
define DKt

v = 1 or 0 indicating if the scan for subject
t at voxel location v is predicted as lung fibrosis; (2)
Population-level sum and standardization: after acquir-
ing the voxel-level prediction for all 102 subjects, we
sum over all subjects for each voxel location by DKv =∑T

t=1 DKt
v ,and then standardize to a scale of [0,1]:D̃Kv =

DKv

maxv DKv
. By definition, D̃K ranges from 0 to 1.
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MSGA+RF FOR IPF DIAGNOSIS 5

F IGURE 3 Attention gate (AG) modules

Domain knowledge (D̃K) is later downsampled to
two resolution scales: 64 × 64 × 32 and 16 × 16 × 8,
as shown in Figure 2. A 3D representation of the
DK map is provided in Supporting information D and
Figure S2. Higher intensity values (more orange) in
Figure 2 represent a greater value of D̃Kv , which con-
centrates on the RoI for this IPF diagnosis task. Lung
areas, especially peripheral lungs, are highlighted in
Figure 2, which agrees with IPF-related CT features.
In the future sections, we will discuss how DK is incor-
porated as an integral part of the loss function during
training to encourage the model to focus on IPF disease
patterns.

1.5 Attention gates

We provide a schematic of the proposed guided atten-
tion gates in Figure 3. The attention gates take inter-
mediate feature maps x,and population-level domain
knowledge D̃K as input and produce two outputs: (1)
a feature map A(x) with the same dimension as the
input(x), and (2) an estimated attention map 𝛽|x. For
simplicity, 𝛽|x is represented as 𝛽 throughout the paper.
Theoretically, attention gates can be incorporated in any
layer of any existing CNN architecture. In this work, we
focus on the attention gates that are suitable for 3D-
CNN architectures,which generate intermediate feature
maps of four dimensions, including height, width, depth,
and channel.

Suppose the attention gates are implemented at
the lth layer and takes the intermediate feature maps
xl that are generated at the previous layer, that is,
(l − 1)th layer, as input. For 3D-CNN architectures, xl is
a four-dimensional tensor with xl ∈ ℝHl×Wl×Dl×Cl

, where
Hl, Wl, Dl, Cl are the height, weight, depth, the number
of channels at the lthlayer, respectively. For simplicity, we
omit the subject index i and sample index j throughout
this section E.The intermediate feature maps xl are first

transformed into two feature spaces f (x)l and h(x)l using
1 × 1 × 1 convolutions: f (x)l

= xl × Wl
f , h (x)l

= xl × Wl
h,

where Wl
f ∈ ℝCl

, f (x)l
∈ ℝHl×Wl×Dl

, Wl
h ∈ ℝCl×Cl

, h(x)l
∈

ℝHl×Wl×Dl×Cl
.

A sigmoid function is applied to the feature space f (x)l

to calculate the attention scores (i.e.,estimated attention
maps) at layer l at a three-dimensional voxel location v =

(vHl
, vWl

, vDl
), 𝛽l

v , where 𝛽l
v =

1

1+exp(−f (x)lv )
. Here, 𝛽l

v is a

scalar, and vHl
∈ ℝHl

, vWl
∈ ℝWl

, vDl
∈ ℝDl

. The dimen-
sion of 𝛽l is decided by the choice of layers l, where the
attention module is implemented in. In our example, let
the model layers where the attention modules are incor-
porated be l = h and l = m,which represent the high and
medium attention, respectively. Based on our design, 𝛽h

is a three-dimensional tensor with 𝛽h ∈ ℝHh×Wh×Dh
=

ℝ64×64×32 and 𝛽m ∈ ℝHm×Wm×Dm
= ℝ16×16×8 .

We further calculate the element-wise multiplication
of h(x)l and the estimated attention maps 𝛽l across
each channel:o (x)l

c = 𝛽l ⊙ h(x)l
c, where o(x)l

c is the cth

channel of the intermediate feature maps o(x)l, o(x)l
c ∈

ℝHl×Wl×Dl
; h(x)l

c, is the cth channel of h(x)l, h(x)l
c ∈

ℝHl×Wl×Dl
, and ⊙ is the elementwise multiplication

operation.
The final output of the attention gate (A(x)l) is

a weighted average of the input intermediate fea-
ture maps x and o(x) : A (x)l

= 𝛾l × o(x)l
+ (1 − 𝛾l) × xl,

where 𝛾l is a trainable scalar parameter initialized at
zero.

1.6 Multi-scale guided-attention model

1.6.1 Loss function

We use the voxel-wise mean absolute error as the
attention-based loss to measure the similarity between
the estimated map of each sample (𝛽l

ij) with the pro-

vided population-level maps (D̃K
l
): Ll

ij = avg(|𝛽l
ij − D̃K

l|)
where 𝛽l

ij is the estimated attention maps for subject i

and sample j at layer l, D̃K
l
is the rescaled domain knowl-

edge map at layer l that has the same dimension as
𝛽l

ij , and avg(x) is the grand average of all elements from
a tensor x.

During training, the attention-based loss func-
tion is calculated by averaging all the samples:

Ll =

∑N
i=1

∑M
j=1 Ll

ij

NM
. In this work, we introduced two

attention modules at high- and medium-resolution
scales; therefore, attention-based loss (Ll) is incor-
porated into the overall loss function under two
forms: Lh and Lm, where h and m represent high and
medium.
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6 MSGA+RF FOR IPF DIAGNOSIS

F IGURE 4 Schematic of the overall system. First, a total number of Msamples are generated from one processed computed tomography
(CT) scan i, Xi. The samples are presented as Xij, where j = 1,… , M. Multi-scale, domain knowledge-guided attention (MSGA) takes each
sample Xij as input and produces: the predicted probability of being idiopathic pulmonary fibrosis (IPF) at the last layer ( ‚pij) the estimated loss

function at a high- (Lh
ij ) and medium- (Lm

ij ), and the estimated attention maps at a high- (�̂�
h
ij ) and medium- (�̂�

m
ij ) resolutions. The overall loss

function for MSGA is a weighted average of three loss function components: overall IPF diagnosis loss (LD), attention-based loss at a high- (Lh)
and medium- (Lm) resolution. At the final decision stage, random forest (RF) takes the output from MSGA from all M samples and produces a
patient-level diagnosis. RB: 3D residual blocks; AG: attention gates (see Figure 3 for the details)

1.6.2 Explainability

The overall schematic diagram of MSGA is provided
in Figure 4b. 3D-residual blocks are used as building
blocks for our model, which is shown as RB1, RB2,
and RB3 in Figure 4b). Detailed implementations of 3D-
residual blocks, including layer name, hyperparameters,
and output size, are provided in Supporting information
E and Table S2. For each scan i, we first produce M
number of 3D samples for each scan, indexed by j =
1,… , M.During the model training procedure,the system
includes three types of input: the processed CT scans
(Xi), the population-level domain knowledge maps at two

resolution scales (D̃K
h

and D̃K
m

), and the patient-level
clinical ground truth (yi). MSGA takes each sample as
a training or testing unit and produces three types of
output for each input sample: the sample-level predicted
score of being IPF (p̂ij)the learned attention map at dif-
ferent resolution scales (𝛽h

ij and 𝛽m
ij ) and the estimated

attention-based loss values at two resolution scales (Lh
ij

and Lm
ij ). The attention gates are incorporated into the

training of the IPF diagnosis model in an end-to-end
manner, at two resolution scales, shown as AG1 and
AG2.

Binary cross-entropy loss is used for the IPF diagno-
sis task:

LD = −
1

NM

∑N
i=1

∑M
j=1[yi log(p̂ij) + (1 − yi) log(1 − p̂ij)],

where yi = 0, 1 if the subject i is clinically diagnosed

as non-IPF or IPF, respectively, and p̂ij is the predicted
probability of subject i, sample j being IPF at the last
layer of MSGA.

The overall loss function of the system is composed of
a weighted average of two attention-based losses and
one diagnosis-based loss:

L = LD + 𝜆hLh + 𝜆mLm,

where LD is the binary cross-entropy for IPF diagnosis,
Lh is the attention-based loss at a high resolution, Lm

is the attention-based loss at a medium resolution. 𝜆h

and 𝜆m are the relative task importance for the high- and
medium-resolution attention models, respectively, with
𝜆h

≥ 0 and 𝜆m
≥ 0.We note that when setting 𝜆h = 0 and

𝜆m = 0,this represents a scenario where both attention
modules are unguided with population-level maps (see
Figure 5 for IPF and Figure S3 for non-IPF examples of
the estimated AG1 and AG2).

1.6.3 Evaluation of explainability

We provide both qualitative and quantitative methods
to examine the extent of explainability in this research.
Qualitatively, the scan-level estimated attention maps
at both high- and medium-resolution can be viewed to
see if highlighted areas correspond to disease-specific
regions (Figure S4).This method can shed some light on
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MSGA+RF FOR IPF DIAGNOSIS 7

F IGURE 5 Estimated attention map for an idiopathic pulmonary fibrosis (IPF) subject with 10 different hyperparameters. One
representative computed tomography (CT) slice (slice number = 153; in total 309 slices for this scan) of the pre-processed image is provided.
One processed CT image is plotted at D = 33 out of 64. The estimated attention maps for high- and medium-resolutions are plotted at D = 17
out of 32 and D = 5 out of 8, respectively. Key CT features of usual interstitial pneumonia (UIP) are highlighted as arrows. Three top performing
combinations based on multi-scale, domain knowledge-guided attention (MSGA) are highlighted as an orange rectangle. The models that used
this scan as validation samples were selected for plotting. For all ten hyperparameter collections (𝝀h and 𝝀

m), both MSGA and MSGA+RF
successfully classify this scan as IPF (true positives)

what specific regions are critical for this IPF diagnosis
task.

From a quantitative perspective, previous research
has shown that histogram analysis of the segmented
lung areas is associated with the disease progression
of IPF subjects.28 Specifically, a low kurtosis of lung
regions is found to be associated with a higher risk
of mortality. In this study, we use kurtosis from the
estimated attention maps as an explainability index to
identify patients with IPF from other causes of pul-
monary fibrosis. More technical details are provided in
the Supporting information G and Table S3.

1.7 Random forest classifier

1.7.1 Enhanced improvement

Random forest (RF) is a popular supervised machine
learning approach, where the model output is decided
based on majority voting of multiple decision trees.29

For a classification task, such as patient-level IPF diag-
nosis, RF outputs the mode of the classes (IPF vs.
non-IPF) predicted by individual decision trees. It has
been widely used in medical fields due to its high accu-
racies, robustness to outliers, explainable nature, and a
possibility of parallel processing.30 RF is chosen as the
final stage classifier for this research since (1) it is easy
to implement and computationally fast; (2) it can han-
dle correlated variables, for example, in our case, the
estimated attention loss from M samples; and (3) it is
a relatively interpretable algorithm where the variable
importance can be used to empirically understand the
model decision process.

The intuition of adding RF in the final decision stage
is that the high magnitude of attention-based loss (Lh

i

and Lm
i ) in the training model can also play a role

in the feedback loop of improving the classification
of IPF and non-IPF, where the hyperparameters are
not close to optimal (Figure S5 for the variable impor-
tance in RF). We provide a figure (Figure S6), which
shows the distribution of the estimated attention loss
values is visually different for IPF and non-IPF sub-
jects. The estimated attention-based loss depicts how
each processed CT scan differs from the population-
level IPF information. Therefore, we utilize the infor-
mation of difference of the processed CT scan from
the population-level IPF information (i.e., Lh

i , and Lm
i )

as well as the predicted probability (i.e., p̂i) for IPF
diagnosis.

For each CT scan i, we leverage these three types
of information acquired from all samples, including the
estimated high- ( Lh

i = (Lh
i1,… , Lh

iM)) and medium- ( Lm
i =

(Lm
i1,… , Lm

iM)) resolution attention loss and the predicted
probability of being IPF ( p̂i = (p̂i1,… , p̂iM) ), to build
an RF model that classifies whether a given CT scan
is from an IPF subject or a non-IPF ILD subject. For
each scan, the designed MSGA produces a vector of
size 1 × M for Lh

i , Lm
i , p̂i , respectively, representing the

estimated high-, medium attention-based loss function
and the predicted IPF score from the M samples. This
is later combined into a vector of size 1 × 3M, in our
case,1 × 60, as the input for the RF model, as shown in
Figure 4c).

After the training process of the MSGA is completed,
we continue to build an RF-based classifier for each
hyperparameter selection (𝜆h and 𝜆m) and for each fold.
At each fold, we construct an RF using training samples
only. For simplicity, we fix the hyperparameters during
the training of RF for each model: RF classifier was
consistently configured to use 90 decision trees with a
maximum depth of 4.
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8 MSGA+RF FOR IPF DIAGNOSIS

1.8 Overall proposed method:
multi-scale, domain knowledge-guided
attention +random forest

We propose a two-stage model for scan-level IPF
diagnosis.

1.8.1 Stage one (multi-scale, domain
knowledge-guided attention)

For each CT scan i, MSGA provides (1) two estimated
attention maps at high- and medium- resolutions and
(2) three outputs, including the loss function for high-
(Lh

i ) and medium- (Lm
i ) attention gates, and the binary

cross-entropy loss for IPF diagnosis (LD
i ). The training

process of stage one is end-to-end. For each hyperpa-
rameter selection, we constructed five MSGA models,
leaving one fold of data as the validation set as a time.

1.8.2 Stage two (random forest)

For each CT scan, RF takes the features produced by
MSGA as input and produces the final probability of
being IPF for each scan. We then built an RF model for
each MSGA model using the training cases in that fold
only. The mean and standard deviations (SDs) across
five folds for both MSGA and MSGA+RF were reported
as validation set performance. Based on the validation
set performance, we further selected the best perform-
ing hyperparameter combination as our final model to
apply to the test set. Test set performance was reported
as the mean and SD across five-fold models.

1.9 Model implementation details

For model training, we used Adam optimizer with an ini-
tial learning rate of 10−4, followed by an exponential
decay after 20 epochs of decay rate 0.05. The batch
size was set to be 5 and the model trained after 200
epochs was saved for evaluation.The hardware of Tesla
V100-SXM2-32GB and GeForce RTX 2080 Ti and Keras
framework were used.31 Sensitivity analysis of epoch
numbers is included in Supporting information C.

2 RESULTS

2.1 Model results: multi-scale, domain
knowledge-guided attention (validation set
performance)

We report the performance of MSGA from two per-
spectives of accuracy and explainability. Accuracy was

assessed by the area under the curve (AUC) from an
ROC analysis. The other assessment is done to visu-
ally examine explainability, which is characterized by
reviewing the estimated attention maps.

2.1.1 Multi-scale, domain
knowledge-guided attention model accuracy:
idiopathic pulmonary fibrosis diagnosis

Regarding the sample-level IPF diagnosis, Table 1 sum-
marizes the AUC values of MSGA with mean and SD
across folds under the validation set,with different selec-
tions of hyperparameters (𝜆h and 𝜆m). Both 𝜆h and 𝜆m

are selected from a range of values:0,1,10,50,100,200.
This range of hyperparameter searching was selected
by examining the empirical values of each loss function
component. Also, similar work which optimizes a multi-
objective loss function utilizes hyperparameters within
this range.17,21

As shown in Table 1, without including guided atten-
tion by attention-based loss function ( 𝜆h = 0 and 𝜆m =
0), the IPF diagnosis model reached an AUC (± SD) of
0.93(±0.07). In most cases (9 out of 10 hyperparameter
combinations), only incorporating guided high- (𝜆h > 0
and 𝜆m = 0) or medium-resolution attention ( 𝜆h = 0 and
𝜆m > 0) decreased the performance of IPF diagnosis,
compared to without guided attention in the loss func-
tion ( 𝜆h = 0 and 𝜆m = 0). Under one hyperparameter
setting ( 𝜆h = 0 and 𝜆m = 100), the average AUC across
five folds is 0.94, which is slightly higher than that of the
unguided model (average AUC = 0.93).

Our proposal,which included both high- and medium-
resolution attentions,was able to reach the highest AUC
(± SD) value of 0.99 (±0.01) for all of the experiments,
under certain hyperparameter selections ( 𝜆h = 10 and
𝜆m = 100). Three top performing hyperparameter com-
binations are (1) 𝜆h = 200 and 𝜆m = 1; (2) 𝜆h = 50 and
𝜆m = 200; (3) 𝜆h = 10 and 𝜆m = 100.Notably,model per-
formance is sensitive to the selection of relative task
importance. For example, under certain hyperparame-
ter combinations, that is, 𝜆h = 1 and 𝜆m = 200,the AUC
(± SD) decreased to 0.76 (±0.23).

2.1.2 Model explainability: estimated
attention maps

We explored the model explainability by plotting the
estimated attention maps at both high- and medium-
resolutions (𝛽h

ij , 𝛽
m
ij ) using one randomly sampled IPF as

an example, shown in Figure 5. We also provided one
non-IPF ILD subject in Supporting information F and
Figure S3. We note that without guided attention mod-
els (Figure 5, column a), the observed attention maps
are uninformative and lack explainability.
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MSGA+RF FOR IPF DIAGNOSIS 9

TABLE 1 Area under curve (AUC) mean and standard deviation values of multi-scale, domain knowledge-guided attention (MSGA)
performance on validation set for various 𝜆h and 𝜆m (task importance) parameters

𝝀m

0 1 10 50 100 200

𝝀
h 200 0.87 (0.14) 0.98 (0.02) 0.88 (0.21) 0.89 (0.18) 0.87 (0.21) 0.97 (0.02)

100 0.85 (0.20) 0.96 (0.04) 0.86 (0.20) 0.90 (0.10) 0.84 (0.21) 0.97 (0.03)

50 0.83 (0.20) 0.88 (0.09) 0.89 (0.22) 0.84 (0.22) 0.97 (0.01) 0.98 (0.02)

10 0.87 (0.21) 0.92 (0.09) 0.84 (0.17) 0.85 (0.21) 0.99 (0.01) 0.81 (0.23)

1 0.87 (0.18) 0.84 (0.21) 0.95 (0.07) 0.89 (0.08) 0.89 (0.12) 0.76 (0.23)

0 0.93 (0.07) 0.93 (0.07) 0.93 (0.09) 0.86 (0.15) 0.94 (0.04) 0.85 (0.21)

Note: 𝜆h and 𝜆m are the relative task importance parameters in the overall loss function, representing high- and medium-resolution attentions, respectively. Three top
performing combinations (𝜆h = 200 and 𝜆m = 1; 𝜆h = 50 and 𝜆m = 200; 𝜆h = 10 and 𝜆m = 100) are in bold font.

When we provide guidance from population-level
DK in constructing the overall loss function, the esti-
mated attention maps begin to focus on the lung
parenchyma. Specifically, when the relative task impor-
tance is low (column b), the attention maps begin to
concentrate on the lungs, but it is not clear. When we
add solely the high-resolution guided attention in the
loss function (Figure 5, columns c and e), visual exam-
inations indicate that high-resolution attention maps
can characterize the lungs, while the medium-resolution
attention maps are less informative. On the other
hand, when only medium-resolution guidance is added
(Figure 5, columns d and f), both high- and medium-
resolution attention maps do not concentrate on the lung
parenchyma.

Finally, when we provide guidance on both high- and
medium-resolution attentions with considerable relative
task importance (Figure 5, columns g, h, i, and j), the
estimated attention maps become instructive, focus on
the lung parenchyma, and suppress irrelevant back-
ground areas. Under certain hyperparameter collection
(columns h, i, and j), both the estimated attention map
and a high- and medium-resolution can focus on periph-
eral lungs,which are the key regions for making a correct
IPF diagnosis. These highlighted areas are critical for
this task of IPF diagnosis and are incorporated into the
training of deep learning systems.

2.2 Model results: multi-scale, domain
knowledge-guided attention +random
forest (validation set performance)

Table 2 summarizes the model performance using
MSGA+RF with mean and SE across five folds under
the validation set, under different selections of hyper-
parameters (𝜆h and 𝜆m). Top three hyperparameter
selections based on MSGA remained one of the
best performing hyperparameter groups for MSGA+RF
(average AUC ≥ 0.98); therefore, these three models
were selected as best performing models and were used

as the final models for this task (see Table S4 for the
each fold).

We also calculated and plotted the variable impor-
tance for the constructed RF using the normalized total
reduction of Gini impurity brought by each feature (as
shown in Supporting information H). Variable impor-
tance plots show that when MSGA can perform well
(Figure S5a), RF mostly leveraged information from the
predicted probability of IPF generated in the last layer of
MSGA for the final classification; when MSGA performs
unsatisfactorily (Figure S5c), attention-based loss val-
ues play a role in the final classification of MSGA+RF
and boosted the model performance.

2.3 Test set performance

Based on the validation set performance and the
estimated attention maps, we applied the three best
performing models to the holdout test set (N = 176).
The three best performing models (i.e., (1) 𝜆h =
200 and 𝜆m = 1; (2) 𝜆h = 50 and 𝜆m = 200; (3) 𝜆h =
10 and 𝜆m = 100) had the AUC (± SD) values
0.987 (±0.007), 0.975 (±0.011), and 0.980 (±0.018),
respectively.

3 DISCUSSIONS AND CONCLUSIONS

We presented a two-stage model for automated IPF
diagnosis among subjects with ILD based on chest
HRCT images. The model combines an MSGA, for
explainability and an RF model for enhancing accu-
racy in the final decision. MSGA+RF is well-suited
for other weakly supervised tasks in medical imag-
ing domains, where population-level DK is avail-
able. Several advantages can be addressed using
MSGA+RF.First,population-level DK from the prior stud-
ies was utilized, which may overcome the black-box
approaches of deep learning and the time and expert-
dependent labeling of machine learning. Guided with
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10 MSGA+RF FOR IPF DIAGNOSIS

TABLE 2 Area under curve (AUC) mean and standard deviation values of multi-scale, domain knowledge-guided attention + random forest
(MSGA+RF performance on validation set for various 𝜆h and 𝜆m (task importance) parameters

𝝀m

0 1 10 50 100 200

𝝀
h 200 0.95 (0.04) 0.98 (0.01) 0.99 (0.01) 0.97 (0.01) 0.97 (0.04) 0.98 (0.02)

100 0.97 (0.03) 0.98 (0.02) 0.97 (0.03) 0.95 (0.06) 0.96 (0.04) 0.97 (0.02)

50 0.97 (0.03) 0.96 (0.03) 0.97 (0.03) 0.94 (0.05) 0.97 (0.02) 0.98 (0.02)

10 0.95 (0.06) 0.98 (0.02) 0.97 (0.03) 0.95 (0.05) 0.99 (0) 0.96 (0.02)

1 0.99 (0.02) 0.98 (0.02) 0.97 (0.05) 0.94 (0.05) 0.97 (0.03) 0.92 (0.08)

0 0.97 (0.03) 0.98 (0.01) 0.99 (0.01) 0.94 (0.04) 0.95 (0.03) 0.95 (0.06)

Note: 𝜆h and 𝜆m are the relative task importance parameters in the overall loss function, representing high- and medium-resolution attentions, respectively. Three top
performing combinations based on MSGA (𝜆h = 200 and 𝜆m = 1; 𝜆h = 50 and 𝜆m = 200; 𝜆h = 10 and 𝜆m = 100) are in bold font.

population-level DK at various resolution scales, we can
accomplish satisfactory model performance only using
the clinical information of IPF diagnosis in subjects with
ILD.

Second, using attention models at various resolution
scales increase model explainability, which is a crucial
step for transparency in AI for medical applications.Over
the past decade, there have been extensive discussions
regarding enhancing the explainability of deep learning-
based systems, especially in clinical settings.32 Building
explainable deep learning models can increase trust
in models and it is a critical step for model diagnos-
tics. Saliency maps,33 and class activation mapping34

are effective post hoc methods for visualizing deep
learning models; attention mechanisms, on the other
hand, can encourage the network to focus on spe-
cific areas of interest (in our case, lung parenchyma)
in a trainable and end-to-end manner. Furthermore,
using attention models at different resolution scales
can effectively capture more useful information for
this diagnosis task and improve model performance.
For example, low-resolution attention gates can focus
more on the overall disease distribution, whereas high-
resolution attention gates are able to capture more
detailed disease characteristics. Previous research also
found that combining multi-scale features can improve
model performance.20,35

The third advantage is in accuracy. To boost model
performance, traditional machine learning models tend
to increase model accuracy by adding model features in
a classifier.36 We borrowed a similar idea here by adding
RF classifiers using the feature sets learned from the
estimated loss function of learning from MSGA, as the
final decision stage.This is necessary since we note that
results on the validation set are sensitive to the selection
of relative task importance (i.e., 𝜆h and 𝜆m). For exam-
ple, in Table 1,36 hyperparameter combinations,7 out of
36 combinations have a mean AUC less than 0.85 using
stratified five-fold cross-validation on the validation sets.
However,after adding the RF classifier,as results shown
in Table 2, all 36 combinations have a mean AUC

greater than 0.92. Therefore, in our example, having a
two-stage model increases the model’s robustness
against changes regarding relative task importance.
Overall, RF can boost the performance of the worst-
performing models, but it does not aid the best-
performing models. The ceiling effect may be one
reason since the three best-performing models have
achieved an AUC of greater than 0.98 without RF,
leaving limited room for improvement.

Based on our understanding, it is infeasible to com-
pare our results with other literature since little research
has been concentrated on developing automated soft-
ware for a scan-level IPF diagnosis. On a similar note,
Walsh et al. developed an algorithm to classify several
CT slices into different UIP patterns and reported an
accuracy of 76.4% on the test set.8 Christe et al. built an
automated UIP classification model that includes lung
segmentation, tissue characterization, and quantifica-
tion. This algorithm can perform on par with radiologists
with a reported accuracy of 81%.9 The novelty of
this study is to utilize the DK and multi-scale atten-
tion gated model. The DK of the expected spatial
location in ILD patterns in the lung serves as indi-
rect lung segmentation. Multi-scale attention models
increase the explainability of this model, increase model
performance, and lead to reliable measurements.

Most of the criticism in deep learning models is that
model accuracy does not guarantee satisfactory model
explainability on the validation set in deep learning. To
overcome this issue, we designed a two-stage model
that combines explainability achieved by a deep learning
approach, MSGA, and accuracy by a machine learning
technique, RF. Strengthened by the combined benefit of
a transparent model decision process and boosted diag-
nostic performance, the proposed method serves as an
important step for clinical applications.

Certain limitations exist in this work: (1) the cur-
rent MSGA setup requires population-level DK acquired
from prior studies; (2) only volumetric CT scans with
consistent slice spacing were included in the train-
ing and testing sets, which limited the applicability of
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MSGA+RF FOR IPF DIAGNOSIS 11

this trained model to other non-volumetric CT scans;
(3) the selections of relative task importance requires
extensive computational time and resources in hyper-
parameter selections. (4) It is worth investigating the
model performance when applying to datasets from
different institutions, which may contain CT scans col-
lected from different non-IPF disease types, disease
severity, and various CT imaging protocols. Although
some research works demonstrated the superior gen-
eralizability of attention models to unseen datasets,16

the evaluation of our proposed model to independent
datasets is underway and is out of the scope of this
paper.

In this paper, we have developed an automated
IPF diagnosis using CT images and demonstrated a
promising method of attention maps for both enhanc-
ing explainability and increasing performance. Future
work includes examining the trained MSGA+RF on
independent cohort and prospective studies.
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