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Purpose: Domain knowledge (DK) acquired from prior studies is important for medical diagnosis.
This paper leverages the population-level DK using an optimality design criterion to train a deep
learning model in an end-to-end manner. In this study, the problem of interest is at the patient level to
diagnose a subject with idiopathic pulmonary fibrosis (IPF) among subjects with interstitial lung dis-
ease (ILD) using a computed tomography (CT). IPF diagnosis is a complicated process with multi-
disciplinary discussion with experts and is subject to interobserver variability, even for experienced
radiologists. To this end, we propose a new statistical method to construct a time/memory-efficient
IPF diagnosis model using axial chest CT and DK, along with an optimality design criterion via a
DK-enhanced loss function of deep learning.
Methods: Four state-of-the-art two-dimensional convolutional neural network (2D-CNN) architec-
tures (MobileNet, VGG16, ResNet-50, and DenseNet-121) and one baseline 2D-CNN are imple-
mented to automatically diagnose IPF among ILD patients. Axial lung CT images are retrospectively
acquired from 389 IPF patients and 700 non-IPF ILD patients in five multicenter clinical trials. To
enrich the sample size and boost model performance, we sample 20 three-slice samples (triplets)
from each CT scan, where these three slices are randomly selected from the top, middle, and bottom
of both lungs respectively. Model performance is evaluated using a fivefold cross-validation, where
each fold was stratified using a fixed proportion of IPF vs non-IPF.
Results: Using DK-enhanced loss function increases the model performance of the baseline CNN
model from 0.77 to 0.89 in terms of study-wise accuracy. Four other well-developed models reach
satisfactory model performance with an overall accuracy >0.95 but the benefits brought on by the
DK-enhanced loss function is not noticeable.
Conclusions: We believe this is the first attempt that (a) uses population-level DK with an optimal
design criterion to train deep learning-based diagnostic models in an end-to-end manner and (b)
focuses on patient-level IPF diagnosis. Further evaluation of using population-level DK on prospec-
tive studies is warranted and is underway. © 2021 American Association of Physicists in Medicine
[https://doi.org/10.1002/mp.14754]
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1. INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is defined as a specific
form of chronic, progressive fibrosing interstitial pneumonia
of unknown causes. IPF is limited to the lungs and usually
occurs in older adults.1 It is a rare disease with irreversible
and unpredictable progression and survival.1 The prevalence
estimates of IPF in the USA varied between 14 and 27.9
cases per 100,000 in the population.2 The median survival
time ranges from 2 to 5 yr, but some patients live much
longer.1–3

Idiopathic pulmonary fibrosis is associated with
histopathologic and/or radiologic pattern of usual interstitial
pneumonia (UIP).1 Computed tomography (CT) chest images
are used to determine the presence of the UIP pattern. UIP
pattern is associated with some common CT representations,
including honeycombing, ground glass opacity, reticular pat-
tern with peripheral traction bronchiectasis or bronchiolecta-
sis, etc.3 Notably, these CT features usually occur in the
subpleural and basal areas.

The diagnosis of IPF involves the collaboration of
multidisciplinary discussion from specialists: clinicians,
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radiologists, and pathologists. The up-to-date clinical practice
guideline for IPF, published in 2018, provides a detailed
explanation and flowchart regarding the overall diagnostic
workflow.3 According to the guideline, CT assessment has
become a cornerstone in the diagnosis of IPF. However, using
CT evaluation for IPF diagnosis is a difficult task and subject
to interobserver variability, even for experienced radiolo-
gists.4 Developing an automated diagnosis of IPF using CT
can be helpful for a prototype of this task or a prescreening
tool.

Additionally, in some cases where a definite diagnosis of
IPF could not be made, surgical lung biopsy is suggested.3

However, surgical lung biopsy is also known to be associated
with an increasing risk of in-hospitalization or mortality.5 In
this context, investigating automated CT evaluation for IPF
diagnosis may potentially reduce the need for lung biopsy in
the long run.

Our aim is to develop an efficient and domain knowledge-
assisted diagnosis model for IPF among ILD patients based
on their axial lung CT scans. It is a time/memory efficient
method and no lung segmentation is required. Domain
knowledge (DK) based on previous studies and optimal
design theory is incorporated in the training of diagnostic
models in an end-to-end manner. An added advantage of our
method is that it leverages the population level IPF prognostic
trends (i.e., whether CT images indicate disease progression
or not) across the lung positions, which is an important factor
in the classification of IPF.

There are three potential clinical significance of this work:
(a) it facilitates automatic diagnosis of IPF that saves time
and reduces interobserver variability; (b) it enables early
diagnosis and treatment, which may lead to early antifibrotic
treatment and increase the likelihood of a slow disease pro-
gression; and (c) it potentially reduces the need for lung
biopsy in the diagnosis process. The latter is an important
consideration since biopsy is associated with increased in-
hospital mortality.

There have been growing interests in providing IPF prog-
nosis support after two proven effective therapeutic treat-
ments.6,7 Specifically, developing robust and sensitive
biomarkers is meaningful for evaluating the efficacy of IPF
clinical trials. Previous research used machine learning tech-
niques (such as support vector machines) to construct quanti-
tative CT scores from texture classification model and they
have shown good clinical applicability.8–10

Our work, different from IPF prognosis, focuses on the
diagnosis of IPF. Computer-aided diagnosis system has
gained popularity over the past few years. Some attempts
have been made to use deep learning methods for interstitial
lung diseases classification problems on multiple input image
scales. The input scales vary from image patches of size
32 � 32,11 one axial slice,12 and frontal-view chest CT
image.13

Patient-level UIP diagnosis classifies patients into three
categories: UIP, possible UIP, or inconsistent with UIP.
Recent methods using deep learning tools have shown
comparable performance when patients are diagnosed by

radiologists.14 Our work differs from this study conducted
by Walsh et al.14 in three ways: (a) our current work
focuses on IPF rather than UIP diagnosis; (b) no lung seg-
mentation is needed in our work; and (c) transfer learning
and DK are incorporated in the present work, which also
uses statistical optimization techniques. Using CT scans to
automatically diagnose IPF is limited so far and we believe
our proposed method can have a potential impact in
patient-level classification of IPF with DK using volumet-
ric CT scans.

2. MATERIALS AND METHODS

2.A. Datasets

Axial lung CT scans are retrospectively acquired from five
multicenter studies, including two IPF studies and three non-
IPF studies. The inclusion criterion is that each patient has
been clinically diagnosed as interstitial lung diseases. CT
scans with IPF diagnosis were confirmed by multidisci-
plinary clinical teams.1,3 CT images of IPF patients were col-
lected from December 2004 to July 2016; CT images of non-
IPF patients were collected from May 1997 to May 2018. For
each patient, only the first available total lung capacity (TLC)
scans are used for the algorithm development and testing. In
total, there are 1089 patients, including 389 IPF and 700 non-
IPF patients, collectively obtained from the five multicenter
studies. CT images were acquired under different CT scan-
ners and protocols, which are summarized in the Supporting
Information A. Figure 1 shows the data flow of image pre-
processing and model construction and Table I summarizes
the disease diagnosis, the number of patient visits, and the
number of CT slices per visit for the five studies with study 1
and 2 involving IPF patients, and study 3, 4, and 5 involving
non-IPF ILD patients. CT scans from study 1 and 2 were con-
firmed as IPF with the IPF diagnostic criteria.1,3 CT scans
from study 3, 4, and 5 were clinically confirmed as other ILD
diseases. CT scans from study 1, 4 and 5 were anonymized
images from multicenter studies, whereas CT scans from
study 2 and 3 were each collected from a single center. We
note that some scans (13.3%, N = 60) from study 3 are non-
volumetric scans, where the spacing between each adjacent
CT slice along the z-dimension is not consistent. Therefore,
the average number of CT slices in study 3 is fewer than that
of other studies.

2.B. Problem statement

Our main research problem is a binary classification task
to determine whether a CT scan is from a subject with IPF vs
non-IPF. The model input is the axial lung CT images of one
patient visit, which are usually of dimension 512 � 512 �-
Ns. Here 512 is the image resolution and Ns is the number of
slices, which varies from different CT scans. The output is a
binary label y∈ 0,1f g indicating whether the CT scan is from
a subject with IPF or not. Further clinical information, such
as gender and age, cannot be retrieved due to the
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anonymization process, and thus is not provided for the auto-
matic diagnosis system.

In clinical settings, the classification task needs to be car-
ried out in a timely manner with limited training samples and
computational storage. Due to the weak supervision nature of
this task (i.e., one ground truth label per CT scan) and the rel-
atively limited number of images available, we propose to use
two-dimensional convolutional neural network (2D-CNN)
models, rather than 3D-CNN, for this work. 2D-CNN models
are commonly used for other medical-related tasks.15–17

Dimensionality reduction is necessary before implement-
ing the 2D-CNN models. These models constrain the third
dimension of the input to be three, corresponding to the RGB
channels. We propose to reduce the input dimension to
224 � 224 � 3 by the incorporation of DK and optimal
design theory. Thus, for each training and testing sample,
only three lung CT slices are used as model inputs. We refer
the three CT slices as a triplet throughout the rest of the
manuscript.

For illustration, Fig. 2 shows four representative triplets
in terms of their original and rescaled images, with differ-
ent clinical diagnoses. After preprocessing, we automati-
cally remove the information that is outside of the body.
Each CT slice is rescaled to a uniform dimension of

224�224, which is the commonly used as the default size
of CNN architectures, to normalize patients with different
sizes along the anteroposterior and lateral dimensions.
Additionally, for prone CT scans, we rotate the scans 180
degrees to align scans with different patient positions.
More details of the preprocessing steps are described in
Section 2.E.

It is well-known that deep learning models usually require
a large amount of training data; accordingly, for each scan,
we randomly sample a user-selected number M of triplets to
enrich the number of training and testing samples. In our
study, we select M = 20. At the same time, we include some
additional experiments by setting an adaptive number for M
based on the number of CT slices for each scan. More details
are provided in the section 2.G.

2.C. Domain knowledge (DK)

We leverage DK in the selection of triplet locations using
a statistical optimality design criterion and the training of the
classification model in an end-to-end manner.

Specifically, we utilize the population-level disease trends
of IPF in our classification task. Previous studies used quan-
tum particle swarm optimization incorporated with a resam-
pling technique and a random forest method to predict the
pixel-level IPF progression status (i.e., whether the pixel of
the segmented CT lung image suggests progressive or not
progressive).,18 Intuitively, CT slices that contain more pro-
gressive pixels have more disease patterns of IPF and thus
could be useful information in the classification task. There-
fore, we assign higher weights for triplets which have well-
represented IPF progressive trends, and vice versa. The
weights for each triplet are then evaluated using an optimal
design criterion.

Before discussing technical details, we first define standard-
ized slice position (SSP) to align patient visits with a varying
number of CT slices. We define SSP¼ nthCTslice number

Ns�1 , where
Ns is the number of slices for that patient visit. SSP ranges from
0 to 1, where 0 is the first CT slice at the very top of the lung
and 1 is the last CT slice at the very bottom of the lung.

Based on the predictive results,18 we plot the percentage of
progressive lung area vs SSP based on the population level, see
Fig. 3(a). The blue line represents the median curve on a popu-
lation level and the gray area represents the 95% quantiles.

We observe that except for the boundaries (i.e., the apex
and base of the lungs), which are defined by the top and bot-
tom 10%, the percentage of progressive lung areas gradually
increases as the slice moves toward the base of the lungs.
This is consistent with previous findings for UIP patterns,
which are indicative of IPF and usually reside in the base of
lung parenchyma. We note that, at the boundaries (the first
and last few CT slices), the number of segmented lung area
voxels are much smaller than that of other areas. Also, there
is a high level of noise effect due to the proton refection near
scapula. Based on these two reasons, the prediction results at
the boundaries are unstable with a wide quantile for the

FIG. 1. Data flow of image preparation and model construction. Ns: the num-
ber of computed tomography slices for each scan, which varies for each scan.

TABLE I. Basic information of the five studies.

Study Type
Disease
diagnosis

Number of
subjects

Number of CT slices per visit
(mean � standard deviation)

1 IPF IPF 245 359 � 106

2 IPF IPF 144 280 � 46

3 Non-
IPF

Other
ILDs

449 53 � 25

4 Non-
IPF

Myositis 81 253 � 75

5 Non-
IPF

Systemic
sclerosis

170 106 � 83
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percentage of progressive lung areas. We therefore remove
the boundaries for future analysis.

Figure 3(a) shows four vertical orange dotted lines, which
are the SSP locations at 0.1, 0.37, 0.64, and 0.9. They are
obtained by removing the top and bottom 10% to avoid the
boundary effects, and then evenly dividing the rest of the lung
positions into three zones, indicated as zone 1, 2, and 3 in the
figure. Specifically, zone 1, 2, and 3 represent SSP locations
from 0.1 to 0.37, from 0.37 to 0.64, and from 0.64 to 0.9,
respectively, and they capture the upper, middle, and lower of
the lungs respectively.

For each triplet, we sample one slice from each zone. We
test the model performance with and without DK-enhanced
loss function in Fig. 3. Without DK, we treat each triplet
identically and assign the same weights for all triplets. With
DK, we assign greater weights to triplets that are more repre-
sentative of the population level IPF progressive trends; see
for example, triplet 2 shown in Fig. 3(c) for calculating the
loss function. Thus, these triplets play an important role in
estimating parameters in the IPF diagnostic model when the
entire process is conducted in an end-to-end manner. We pro-
vide the detailed steps on how to calculate the D-criterion
value of triplet 1, shown in the Fig. 3(b), in the Supporting
Information C.

2.D. D-optimal design

Model-based optimal design theory has numerous and
useful applications in medical research, engineering, and
many other disciplines.19,20 When we have a statistical
model to describe the relationship between the mean

response variable and covariates, optimal design theory pro-
vides guidance on how to judiciously design an experiment
to optimize the criterion. One common criterion is that
model parameters be estimated as accurately as possible
with minimal cost. Such an objective is attained by a D-opti-
mal and described in more details below. For our project, a
D-optimal design helps us determine the weights to be used
in each triplet to assess the overall trends of the population-
level IPF progressive curve using information from prior
studies [see Fig. 3(a)] via a DK-enhanced loss function
shown as D Zið Þ in the formula (d) in Fig. 3. Additional
background information on optimal designs can be found in
Berger and Wong.20

We now provide some fundamentals on constructing
D-optimal designs. Suppose we have N independent
responses from an assumed statistical model given by
yi ¼ f xið ÞTβþ ɛi, i¼ 1, . . .,N: Here yi is the univariate
response variable from subject i, f xið Þ is a design vector of
dimension p�1, β is the unknown parameter of dimension
p�1, and the error term ɛi is normally distributed with mean
0 and constant variance. For example, we may have two
covariates age and gender in our study and the regression
function f xið Þ = 1, agei, genderið ÞT has p = 3 parameters. If
the interest is to estimate the three parameters in the model,
two common design criteria are D-optimality and A-optimal-
ity, and if interest is to estimate the entire response surface,
G-optimality is frequently used.19 Here D, A, and G stand for
the determinant (Det), average variance, and global criterion,
respectively and the resulting optimal designs have different
properties. The D-optimality criterion is the most popular for
estimating model parameters and mathematically, it is

FIG. 2. Four representative triplets of original images and rescaled computed tomography images. The top row is one idiopathic pulmonary fibrosis (IPF) patient
with radiological diagnosis of usual interstitial pneumonia (UIP) pattern; the second row is one IPF patient with possible UIP diagnosis; the third row is a non-
IPF patient with possible UIP pattern; and the bottom row is one non-IPF patient.
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defined by Det½Cov β̂
� ��. A design that achieves the smallest

D-criterion value among all designs is D-optimal and such a
design estimates the model parameters with the smallest vol-
ume of the confidence ellipsoid for β:

For nonlinear models, the criterion depends on the
unknown parameters that we want to estimate and they have
to be replaced by an initial set of estimates for the model
parameters before the D-optimality criterion can be opti-
mized. The resulting designs are, strictly speaking, locally D-
optimal designs because they depend on the initial set of
model parameters estimates.

Our response variable is the population trends of the per-
centage of progressive lung area over SSP and we estimated
it using data acquired from the pilot study.21 We used the gen-
eralized linear model (GLM) with a logit link function since
the response variable, the percentage of progressive pixels, is
not normally distributed.

We used data and fitted several what we thought are
plausible models: they include polynomial models of
degrees 3 and 4 and more flexible models like fractional
polynomials. The latter class models the mean response as
a polynomial but additionally allows for fractional powers
in each nominal. Fractional polynomials were proposed by
Royston et al.22 where they showed via many examples that
fractional polynomials can fit univariate response variables
in the biomedical sciences much better than polynomials.
They further recommended that for practical applications, it
suffices to consider a set consisting of positive and non-

negative powers only. For this reason, we also used frac-
tional polynomials to estimate the median population level
disease progression. Akaike information criterion (AIC) and
visual examination were used as criteria for model selec-
tion.23 Both criteria suggest that FP is the best model that
describes the median population trends of IPF progression
among all the models we have considered. Details on the
model comparisons and estimated parameters are in the
Supporting Information B.

In a nutshell, for each randomly sampled triplet, we evalu-
ate its D-criterion value based on the determinant of the infor-
mation matrix. Triplets with a larger D-criterion value better
represent the overall population level IPF progressive trends.
The Supporting Information C and D contain further discus-
sion on the D-optimal design under a GLM setting and the
distribution of D-criterion values.

2.E. Two-dimensional convolutional neural network
(2D-CNN)

Before implementing 2D-CNN models, we normalized
each CT scan if the scan did not meet the study-level criteria.
Four main study-level criteria are: (a) align patient’s position
into supine, (b) center a patient position, (c) automatically
remove the location of table information, and (d) rescale to a
uniform image size. If a CT scan was deviated from the gen-
eral platform, we normalized the images prior to the algo-
rithm development. As a result, the processed image has the

FIG. 3. Flowchart of the study design. SSP: standardized slice position, DK: domain knowledge with optimization, CE: cross entropy without optimization in
selecting slices. [Color figure can be viewed at wileyonlinelibrary.com]
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uniform property of creating a consistent lung windowing
based on Hounsfield units, aligning patients’ positions, auto-
matically cropping the scans based on the presence of the
body by canny edge detector using Python library scikit-im-
age,24 resizing to a uniform scale of 224 � 224 by cubic
spline interpolation, and standardizing to a scale of zero to
one.

Traditional 2D-CNNs are designed for processing RGB
images (three channels), which are usually of size
224 � 224 � 3. We use each triplet as one training or testing
sample, where three CT slices correspond to three RGB chan-
nels.

Four state-of-the-art 2D-CNN structures are implemented
for this disease classification task, which are MobileNet,25

VGG16,26 ResNet-50,27 and DenseNet-121.28

To compare, a baseline CNN model is also designed with
two convolutional modules and one decision module. The
architecture of the baseline CNN model is provided in
Fig. 4.

For all of the aforementioned models (baseline CNN,
MobileNet, VGG16, ResNet-50, and DenseNet-121), we run
40 epochs using batch size of 10. We use Adam optimizer
with learning rate 0.0001 for all scenarios. These hyper-pa-
rameters are selected based on exploratory attempts. Model
parameters are pretrained by ImageNet29 and updated using
medical images for this task. All models are implemented
using Keras.30

2.F. DK-enhanced training of 2D-CNN

We add a dense layer at the last layer of the CNN for all
models, producing two CNN scores (IPF and non-IPF) for
each input triplet. The softmax function is applied afterwards
to normalize the CNN scores from two real numbers into two
probabilities that sum up to 1. The two probabilities are the
probabilities of the patient being classified into one of two
classes: IPF (l = 1) or non-IPF (l = 0) based on their specific
input triplet. Let si0 and si1 be the CNN scores after the last
dense layers for triplet i being classified as non-IPF or IPF,
respectively. Softmax function is used to calculate the nor-
malized CNN score:

f silð Þ¼ exp silð Þ
exp si0ð Þþ exp si1ð Þ , l¼ 0,1:

Without leveraging DK, categorical cross entropy is used
as the loss function. The categorical cross entropy evaluated
with deep learning model weights W at triplet i and is pre-
sented below:

LWCE Xi,yið Þ¼�yilog f si1ð Þð Þ� 1� yið Þlog f si0ð Þð Þ:
Let Xi be the CT input triplet i, let X¼ X1, . . .,XNð Þ be the

set of all triplets and let y¼ y1, . . .,yNð Þ, where yi is the label
of ground truth for triplet i with yi ¼ 1 if the triplet i is sam-
pled from an IPF patient and yi ¼ 0 if the triplet i is sampled
from a non-IPF patient. The overall categorical cross entropy
is calculated by averaging the categorical cross entropy across
all N triplets:

LWCE X,yð Þ¼ 1
N
∑
N

i¼1
LWCE Xi,yið Þ,

where N = n � M, n and M are the total number of patients
and the number of sampled triplets from each patient, respec-
tively (n = 1089 and M = 20 in our research).

With DK, we designed a DK-enhanced loss function,
where we weigh each triplet by its D-criterion value D(Zi)
and Zi ¼ zi1,zi2,zi3ð Þ is a 3 � 1 vector representing the SSP
for triplet i, and Z¼ Z1, . . .,ZNð Þ is the set of SSPs for all N
triplets. The DK-enhanced loss function is

LWDK X,y,Zð Þ¼ 1
N
∑
N

i¼1
D Zið ÞLWCE Xi,yið Þ:

Two sample proportion tests between DK and CE were
conducted for the overall sensitivity, specificity, and accuracy
on all five models (baseline CNN, MobileNet, VGG16,
ResNet-50, and DenseNet-121), respectively. We set the sig-
nificant level to be 0.05. To account for multiple hypothesis
testing, we used the Bonferroni correction to set the signifi-
cance cutoff for each statistical test at 0:053 ¼ 0:017, where 3 is
the number of tests for each model, that is, the overall sensi-
tivity, specificity, and accuracy.31

2.G. Sensitivity analysis

Sensitivity analysis is defined as a method to determine
the quality of a model by evaluating the extent to which
results are impacted by changing model assumptions, meth-
ods, or certain model inputs. We design three scenarios to
assess whether altering one of the preprocessing steps may
lead to a different model performance, including sampling
different number of triplets for each scan (scenario 1), adding
an isotropic resampling step (scenario 2), and sampling tri-
plets only from lower zones (scenario 3).

Under scenario 1, we sample a varying number of triplets
(i.e., using an adaptive selection of M) for each scan based on
the number of CT slices. This tests if the number of triplets
should vary in scans which contain different numbers of CT
slices. We empirically set Mk=0:1∗Nsk, where Mk is the
number of sampled triplets and Nsk is the number of CT
slices for patient k. For example, if one CT scan contains 250
CT slices (Nsk¼ 250Þ, we set Mk=25 for this patient k, that
is, sample 25 triplets from this scan. The DK-enhanced loss
function under scenario 1 is.

LWDK,S1 X,y,Zð Þ¼ 1
N 0 ∑

N 0

i¼1
D Zið ÞLWCE Xi,yið Þ,

where N 0 ¼∑n
k¼1Mk ¼∑n

k¼10:1�Nsk , N 0 is the total number
of triplets under scenario 1, Mk is the number of triplets for
patient k,n is the total number of patients, and Nsk is the
number of CT slices for patient k.

Under scenario 2, in order to mitigate the possible con-
founding effects caused by varying slice thicknesses and pixel
spacing, we resample all CT scans to a uniform isotropic cube
of volume 1 � 1 � 1 mm3 by cubic spline interpolation. In
this step, we exclude scans which have inconsistent spacing
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along the z-dimension across all CT slices (nonvolumetric
scans, N = 68, 6.2%). This step aims to align scans with dif-
ferent pixel spacing and slice thicknesses. The DK-enhanced
loss function under scenario 2 is.

LWDK,S2 X0,y,Zð Þ¼ 1
N
∑
N

i¼1
D Zið ÞLWCE X0

i,yi
� �

,

where X0
i is the CT input triplet i using Xi after isotropic

resampling.
Regarding scenario 3, since IPF-related radiological fea-

tures usually occur in the lower lungs, it is instructive to add
one experiment to use triplets only collected from lower lungs
(i.e., zone 3 in Fig. 3 (a)). Under this circumstance, the DK-
enhanced loss function is.

LWDK,S3 ~X,y, Z
� �

¼ 1
N
∑
N

i¼1
D ~Zi
� �

LWCE ~Xi,yi
� �

,

where ~Zi ¼ ~zi1, ~zi2, ~zi3ð ÞT is the 3∗1 standardized slice position
for triplet i which are sampled from zone 3 only, that is,
~zij∈ 0:64,0:9ð �, j¼ 1,2,3 for all triplet i: ~Xi is the CT input tri-
plet i collected based on the standardized slice position ~Zi:

3. RESULTS

In this section, we summarize the main results and the sen-
sitivity analysis results in 3.A and 3.B, respectively.

3.A. Main results

We pooled CT images from all five studies (two IPF
studies and three non-IPF studies) together for the training

and testing of the model. We performed a stratified fivefold
cross-validation, a commonly used technique to separate
training and testing sets, where the proportion of IPF vs
non-IPF is fixed across all folds. During cross-validation,
these five folds were separated at the patient level, therefore,
no triplets from the same patient are evaluated in both train-
ing and testing samples. During the testing phase, M triplets
were sampled from each scan following the manner as dis-
cussed, producing M predictive results (IPF vs non-IPF) for
each scan. The final predictive result for each scan was
decided based on majority vote of all M triplets. We set
M = 20 for our task. We use sensitivity, specificity, and
accuracy as statistical measures. Sensitivity is defined as the
number of scans which are correctly classified as IPF
divided by the total number of IPF scans. Specificity is
defined as the number of scans which are correctly classified
as non-IPF divided by the total number of non-IPF ILD
scans. Accuracy measures the proportion of CT scans that
are correctly classified.

Table II summarizes the study-wise and overall model per-
formance using five models (Baseline CNN, MobileNet,
VGG16, ResNet-50, and DenseNet-121) under two loss func-
tions, that is, cross-entropy loss (CE) and DK-enhanced loss
function (DK). Note that study 1 and study 2 include IPF
patients, which is referred to as positives in this research,
with sensitivity information only. Similarly, study 3, 4, and 5
contain non-IPF ILD patients, which is defined as negatives,
with specificity information only. For baseline CNN model,
using DK significantly increases the overall sensitivity
(P < 0.001), but decreases the overall specificity (P < 0.01).
There is no significant difference between DK and CE for
other methods under this scenario.

FIG. 4. Baseline CNN architecture. [Color figure can be viewed at wileyonlinelibrary.com]
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3.B. Sensitivity analysis results

The complete results for scenario 1 (selecting a varying
number of triplets per scan), 2 (adding isotropic resam-
pling), and 3 (sampling from lower zones only) are provided
in the Supporting Information Tables S4–S6, respectively.
For each of the scenario, we calculate the absolute differ-
ence in terms of the overall model sensitivity, specificity,
and accuracy between the main results (Table II) and that of
each scenario. We calculate the median and interquartile
range (IQR) across all ten models for each metric, under
each scenario.

Under scenario 1, the median (�IQR) for the overall
model sensitivity, specificity, and accuracy between the main
results and that of scenario 1 across all ten model architec-
tures is 0.04 (�0.04), 0.01 (� 0.03), and 0.02 (�0.03),
respectively.

Under scenario 2, the median (�IQR) for the overall
model sensitivity, specificity, and accuracy between the main
results and that of scenario 2 across all models is 0.01
(�0.03), 0.01 (�0.01), and 0.01 (�0.02), respectively.

Under scenario 3, the median (�IQR) for the overall
model sensitivity, specificity, and accuracy between the main
results and that of scenario 3 across ten models is 0.03 (�
0.03), 0.01 (�0.01), and 0.02 (�0.01), respectively.

4. DISCUSSION

We developed a deep learning-based model for IPF diag-
nosis: (1) from a clinical perspective, by incorporating DK
regarding the disease pattern distribution of IPF; (2) from a
methodological perspective, by including optimal design
methods in building a loss function. Methodologically, to the
best of our knowledge, this is the first work that leverages the
merits of optimal design in the training of deep learning
methods in an end-to-end manner. Clinically, providing

automatic IPF diagnosis support is timely and meaningful
because the proposed method (1) facilitates automated IPF
diagnosis and reduces inter- and intrareader disagreement; (2)
enables early antifibrotic treatment and so may prolong
patient’s survival time; (3) decreases the likelihood of requir-
ing of lung biopsy in the long run and its attendant’s risks.

In medical imaging domain, as contrary to natural imag-
ing, well-labeled and high-quality images are time-consum-
ing and expensive to acquire. Therefore, many researches aim
to tackle the limited sample size problem in medical imaging
by utilizing DK.32,33 Unlike previous work, we now focus on
the population-level information acquired from the previous
studies and utilize both DK and optimal design guidelines in
the training process of the deep learning models.

Each of the earlier studies used in this research contains
either IPF patients in study 1 and study 2 or non-IPF patients
in study 3, study 4, and study 5, and one may argue that the
diagnosis model captures confounding effects (or batch
effects) rather than IPF-related CT features. Admittedly, this
is one limitation of this work due to the availability of imag-
ing data and the nature of retrospective data collection. How-
ever, we note that each study is conducted at multiple sites
with different protocols and a variety of experimental condi-
tions that likely involve CT scanners, slice thickness, recon-
struction kernel, and patient positions, see the Supporting
Information for an expanded list of potential confounders.
This heterogeneous experimental setup contributes to a fair
model that concentrates on the underlying CT features of IPF
rather than picking up other confounding factors.

In addition, to address this concern of confounding effects,
we have added multiple model generalizability experiments
(see Supporting Information E for more details). By setting
aside one study as the holdout test set at one time, we evalu-
ate the generalizability of the constructed model to unseen
domains (i.e., institutions and clinical diagnoses) using Mobi-
leNet. The results suggest that, most experiments can

TABLE II. Study-wise model performance and overall model performance.

Model (Loss function)

Sensitivity (IPF patients) Specificity (Non-IPF ILD patients) Overall model performance

Study 1 Study 2 Study 3 Study 4 Study 5 Sensitivity Specificity Accuracy

Baseline CNN (CE) 0.77 (0.38) 0.68 (0.39) 0.96 (0.04) 0.94 (0.09) 0.98 (0.02) 0.74 (0.38) 0.97 (0.03) 0.89 (0.12)

Baseline CNN (DK) 0.89 (0.13) 0.81 (0.20) 0.91 (0.07) 0.88 (0.19) 0.96 (0.03) 0.86 (0.15) 0.94 (0.05) 0.91 (0.04)

MobileNet (CE) 0.97 (0.01) 0.96 (0.07) 1 (0) 0.96 (0.05) 0.99 (0.02) 0.97 (0.02) 0.98 (0) 0.98 (0.01)

MobileNet (DK) 0.98 (0.02) 0.94 (0.06) 1 (0) 0.96 (0.04) 0.98 (0.01) 0.96 (0.02) 0.98 (0.01) 0.97 (0.01)

VGG16 (CE) 0.96 (0.03) 0.87 (0.07) 0.99 (0.02) 0.95 (0.06) 0.99 (0.01) 0.93 (0.04) 0.98 (0.01) 0.96 (0.01)

VGG16 (DK) 0.95 (0.04) 0.86 (0.09) 0.99 (0.02) 0.95 (0.06) 0.99 (0.01) 0.92 (0.05) 0.98 (0.01) 0.96 (0.01)

ResNet-50 (CE) 0.96 (0.02) 0.92 (0.05) 0.98 (0.05) 0.97 (0.03) 0.99 (0.01) 0.95 (0.02) 0.98 (0.01) 0.97 (0.01)

ResNet-50 (DK) 0.96 (0.02) 0.90 (0.09) 1 (0) 0.96 (0.05) 0.99 (0.01) 0.94 (0.03) 0.98 (0.01) 0.97 (0.01)

DenseNet-121 (CE) 0.97 (0.02) 0.98 (0.02) 1 (0) 0.97 (0.04) 0.98 (0) 0.97 (0.01) 0.98 (0.01) 0.98 (0)

DenseNet-121 (DK) 0.96 (0.04) 0.94 (0.06) 1 (0) 0.97 (0.04) 0.99 (0) 0.95 (0.02) 0.99 (0.01) 0.97 (0)

Note: Mean and standard deviations shown in brackets are calculated across the results from each testing fold. CE: cross entropy loss without domain knowledge-en-
hanced loss function; DK: domain knowledge-enhanced loss function. Statistically significant results (P < 0.017) are highlighted in bold font. The significance cutoff
0.017 is decided by Bonferroni correction for multiple testing, which is dividing the prespecified significance level 0.05 by the number of tests (3, including the overall sen-
sitivity, specificity, and accuracy) for each model.
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successfully classify more than 90% of patients in the holdout
study (accuracies greater than 90%). This suggests that most
experiments are able to generalize well to unseen domains.
Notably, there is a certain level of decrease in overall model
accuracy compared to results provided in the Table II, when
using one study as the holdout study at a time. For example,
for six of eight generalizability experiments, we observe a
1%–4% degradation in model accuracy; for two of eight
experiments, we observe a 25%-26% decrease in model accu-
racy, which we provide some explanations in the Supporting
Information E. This degradation in performance may due to
the fact that the number of training and testing samples are
fewer since we set one study aside as the holdout set. At the
same time, this lack of generalizability is not surprising as
such findings are frequently reported in many areas of
research when deep learning models are applied to unseen
domains.34 This provides a warning that when deploying the
developed model to scans collected from other institutions or
ILD patients with different clinical diagnoses, some decrease
in model performance is to be expected. Many domain adap-
tation and domain generalization techniques have been devel-
oped to tackle this problem, but they are out of the scope for
this paper.35

In summary, we have, for the first time, incorporated the
population-level DK (i.e., IPF progression trends across the
lung position acquired from pilot studies) with ideas of opti-
mal design methodology into the training of deep learning
models. Specifically, we sample 20 triplets from each patient
visit to augment the number of training data and boost model
performance. These triplets were randomly sampled with one
from each zone (the top, middle, and bottom of the lungs).
Intuitively, these 20 triplets should not be treated identically,
as these randomly sampled CT slices might not be fully repre-
sentative and reflect the disease characteristics fairly. Some
triplets might contain three slices which are adjacent to each
other, and thus contain less disease information. To this end,
we estimated the population-level disease trends across lung
positions from previous studies and evaluated the importance
of each triplet by its D-optimality value. The triplet with a lar-
ger value is “a better design” for estimating the parameters of
the population-level trends, and consequently, it is believed to
be more representative of the overall disease trends. We then
design the DK-enhanced loss function, where the D-criterion
value of each triplet is used as a weight to evaluate the impor-
tance of each triplet. This process is incorporated into the
training of the deep learning models in an end-to-end man-
ner.

Current experiments show that incorporating DK in the
training of deep learning models increases the overall accu-
racy from 0.89 to 0.91 for the baseline CNN model. However,
this increase in the overall accuracy using DK is not observed
for other well-known model architectures, including Mobile-
Net, VGG16, ResNet50, and DenseNet-121. This may occur
due to the existence of ceiling effect, since other well-devel-
oped deep learning architectures have already achieved a sat-
isfactory model performance with overall accuracy greater
than 0.95. We also expect the proposed methodology is

generally applicable to tackle other similar problems in the
medical arena as well, even though our work here only con-
cerns IPF diagnosis.

Sensitivity analysis experiments suggest that (1) selecting a
flexible number of triplets per scan, (2) isotropic resampling
each scan to a constant size of 1 mm3 cube, and (3) sampling
triplets only from lower zones may change the overall model
sensitivity, specificity, accuracy in a reasonable range.

Our future work includes exploring the constructed model
on prospective studies, where IPF and non-IPF ILD patients
are collected under the same imaging protocols. This is a
more accurate reflection of the clinical applicability of the
developed model, as contrary to using fivefold cross-valida-
tion without independent studies.

5. CONCLUSIONS

We develop an efficient IPF diagnosis model using DK
(i.e., population-level disease information) and optimal
design theory. This study shows satisfactory performance
using various well-known deep learning models in the task of
IPF diagnosis using CT images. To the best of our knowl-
edge, this is the first work that (1) leverages population DK
with optimal design criterion to train deep learning models in
an end-to-end fashion; (2) focuses on patient-level IPF diag-
nosis solely based on CT images.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig S1. The true median curve in blue shows the percentage
of progressive pixels vs standardized slice position (SSP).
The other colored curves are the best fits to the overall popu-
lation trends from the other three models. The gray area rep-
resents the 95% quantile of the true curve and the two dotted
vertical lines at SSP = 0.10 and 0.90 represent the noticeable
boundary effects.
Fig S2. Distribution of criterion values while fixing z1,z2,z3
respectively.
Table S1. CT acquisition and image reconstruction condi-
tions of the five studies.
Table S2. Model fitting performance: three preselected models
and their corresponding estimated parameters and AIC values.
Table S3. Experimental setup and results for model general-
izability testing by using one study at a time as the holdout
test study.
Table S4. Study-wise model performance and overall model
performance with an adaptive selection of triplets per scan.
Table S5. Study-wise model performance and overall model
performance by adding a resampling step during the prepro-
cessing procedure.
Table S6. Study-wise model performance and overall model
performance using triplets collected from lower zones only.
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