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Abstract

In metagenomic studies, testing the association between microbiome composi-

tion and clinical outcomes translates to testing the nullity of variance

components. Motivated by a lung human immunodeficiency virus (HIV)

microbiome project, we study longitudinal microbiome data by using variance

component models with more than two variance components. Current testing

strategies only apply to models with exactly two variance components and when

sample sizes are large. Therefore, they are not applicable to longitudinal

microbiome studies. In this paper, we propose exact tests (score test, likelihood

ratio test, and restricted likelihood ratio test) to (a) test the association of the

overall microbiome composition in a longitudinal design and (b) detect the

association of one specific microbiome cluster while adjusting for the effects

from related clusters. Our approach combines the exact tests for null hypothesis

with a single variance component with a strategy of reducing multiple variance

components to a single one. Simulation studies demonstrate that our method

has a correct type I error rate and superior power compared to existing methods

at small sample sizes and weak signals. Finally, we apply our method to a

longitudinal pulmonary microbiome study of HIV‐infected patients and reveal

two interesting genera Prevotella and Veillonella associated with forced vital

capacity. Our findings shed light on the impact of the lung microbiome on HIV

complexities. The method is implemented in the open‐source, high‐perfor-
mance computing language Julia and is freely available at https://github.com/

JingZhai63/VCmicrobiome.
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1 | INTRODUCTION

Technology advances have led to a much deeper under-
standing of microbes and their link to human health
(Eckburg et al., 2005; Haas et al., 2011; Hodkinson &
Grice, 2015; Kuleshov et al., 2016; Wang & Jia, 2016). In
particular, for the pulmonary microbiome, Rogers et al.
(2010) hypothesized that a microbial lung community

might exist and can be considered as a unique, distinct
pathogenic entity. The culture‐independent microbial
detection method, 16S ribosomal RNA (rRNA) gene
sequencing, demonstrated the existence of the pulmonary
microbiome, in both healthy (Erb‐Downward et al., 2011;
Morris et al., 2013; Twigg et al., 2013) and disease
populations (Lozupone et al., 2013; Zemanick, Sagel, &
Harris, 2011).
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This paper is motivated by longitudinal microbiome
studies. For instance, the lung human immunodefi-
ciency virus (HIV) microbiome project studies the
respiratory microbiome of HIV‐infected patients and
how the highly active antiretroviral therapy (HAART)
may alter its construction (Twigg et al., 2016). A
longitudinal cohort of HIV‐infected subjects was col-
lected before and up to 3 years after starting HAART.
For a quantitative phenotype in a longitudinal design,
we propose the model

y Xβ Zb G ε
b I G K ε I

h
σ h σ σ

= + + ( ) + ,
~ (0, ), ( )~ (0, ), ~ (0, ),d n g e n

2 2 2
� � �

(1)

where y X G, , , and ε are the vertically stacked vectors/
matrices of individual‐level y X G, ,i i i, and εi. yi is a vector
of ni repeated measures of a quantitative phenotype for
individual i. Xi is the n p×i covariate matrix. Gi is an
n u×i operational taxonomic unit (OTU) abundance
matrix for individual i where u is the total number of
OTUs. These OTUs are related by a known phylogenetic
tree. is an n × 1i vector of the random error. Z is a block
diagonal matrix with 1ni on its diagonal. β is a p × 1
vector of fixed effects and b b= ( )i is the subject‐specific
random effects. K is a kernel matrix capturing distances
between individuals, for example, the UniFrac distance
(Lozupone & Knight, 2005) or the Bray–Curtis dissim-
ilarity (Bray & Curtis, 1957; Web Appendix A). b Gh, ( )
and ε are jointly independent; therefore,

y ZZ K Iσ σ σVar( ) = ′ + + ,d g e n
2 2 2 (2)

where σd
2 is the phenotypic variance due to the

correlation of repeated measurements, σg
2 is the pheno-

typic variance explained by the microbiome, and σe
2 is

the within‐subject variance that cannot be explained by
the microbiome and repeated measurements. The
detection of overall microbiome association is to test
H σ: = 0g0

2 versus H σ: > 0A g
2 . When σ = 0d

2 , Model (1)
reduces to the microbiome regression‐based kernel
association test (MiRKAT; J. Chen, Chen, Zhao, Wu,
& Schaid, 2016; Zhan et al., 2017; Zhao et al., 2015). In
the longitudinal setting, the extra variance component
σd

2 is necessary to capture the correlation between
repeated measurements.

After the overall association is identified, localiza-
tion of the signal to a specific component of the
microbial community is essential for downstream
mechanistic studies and drug discoveries. For in-
stance, Jangi et al. (2016) found that multiple sclerosis
patients had significantly increased abundance of the

phylum Euryarchaeota. However, such fine cluster
effects can be tagged by other correlated microbials in
the community (Gilbert et al., 2016), leading to false‐
positive discoveries. To detect association from spe-
cific taxonomic clusters, distances and kernel ma-
trices can be formulated using abundances and tree
information from specific clusters. Overall micro-
biome effects are then partitioned into different
clusters at the same taxonomic level. That is,

y ZZ K Iσ σ σVar( ) = ′ + + ,d
i

g i e n
2 2 2

i∑ (3)

where Kσi g i
2
i

∑ is the summation of all microbiome
clusters. We are now interested in testing effects from a
specific taxonomic cluster: H σ: = 0g0

2
i

ver-
sus H σ: > 0A g

2
i

.
Current methods for testing the null variance

component in Models (2) and (3) are based on either
asymptotics or parametric bootstrap. Under the assump-
tion that the response variable vector can be partitioned
into independent subvectors and the number of in-
dependent subvectors is sufficient, asymptotic null
distribution of the likelihood ratio, Wald, and score
tests is available (Self & Liang, 1987; Silvapulle & Sen,
2011; Stram & Lee, 1994). However, the asymptotic
approximation deteriorates when the data are highly
correlated without a sufficient number of independent
blocks. Let m be the total number of phenotypic
variance components except the error variance compo-
nent. When m = 1, Crainiceanu and Ruppert (2004)
developed a computational procedure for obtaining the
approximate finite‐sample distribution of the likelihood
ratio and restricted likelihood ratio test (LRT) statistics.
Greven, Crainiceanu, Küchenhoff, and Peters (2008)
provided a pseudolikelihood‐heuristic extension of this
method to the m > 1 situation. Later Drikvandi,
Verbeke, Khodadadi, and PartoviNia (2013) proposed a
permutation test that does not depend on the distribu-
tion of the random effects and errors except for their
mean and variance and can be applied to the m > 1
situation. However, the permutation test is computa-
tionally prohibitive for high dimensional tests. Qu,
Guennel, and Marshall (2013) proposed a test statistic
that is the weighted sum of the scores from the profile
likelihood. Their method considered testing a subset of
the variance components to be zero. When m = 1, Qu
et al.’s (2013) method is exact; when m > 1, their test
relies on asymptotic theory. Score‐based tests can be less
powerful than the LRTs, especially when sample sizes
are limited as in most of the sequencing studies. Saville
and Herring (2009) developed yet another type of test
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based on the Bayes factors using the Laplace approx-
imation. It cannot be easily extended to multiple
random effects and relies on the subjective choice of
the prior distribution of parameters. Others have
suggested procedures based on Markov chain Monte
Carlo methods (Z. Chen & Dunson, 2003; Kinney &
Dunson, 2007), but they can be time‐consuming,
especially when the number of random effects is large.

In this study, we propose methods of performing the
exact LRT (eLRT), the exact restricted LRT (eRLRT), and the
exact score test (eScore) of a variance component being zero
for the finite sample. Our approach combines the corre-
sponding exact tests for the m = 1 case with a strategy of
reducing the m > 1 case to the m = 1 case (Christensen,
1996; Ofversten, 1993). Our method is the first one that
provides the eLRT, eRLRT, and eScore for testing the zero
variance component when multiple variance components
are present (m > 1).

2 | METHODS

2.1 | Exact tests with one variance
component under H0

We briefly review the three exact tests, eLRT, eRLRT, and
eScore, for testing H σ: = 00 1

2 in the model

V I Vσ σ= + .e n
2

1
2

1 (4)

Note the change of notation for general modeling. In the
motivating microbiome example, σ σ= g1

2 2 and V K=1 ,
the kernel matrix calculated from microbiome abun-
dances. A slight extension allows for testing the more
general case V V Vσ σ= +e

2
0 1

2
1, where V n n

0
×∈  is a

known positive semidefinite matrix. Let Vt = rank( )0 .
Given the thin eigen‐decomposition V UDU= ′0 , define
T D U= ′ t n−1 2 ×∈∕  . (Only t column vectors ofU will be
computed in thin eigen‐decomposition.) Then
Ty TXβ I TV Tσ σ~ ( , + ′)e t

2
1
2

1� and the eLRT and eRLRT
(Crainiceanu & Ruppert, 2004) or the eScore test (Zhou,
Hu, Qiao, Cho, & Zhou, 2016) can be applied to Ty.

Let λ σ σ= e1
2 2∕ be the signal‐to‐noise ratio, Xs = rank( ),

and write the covariance as V I V Vσ λ σ= ( + ) =e n e λ
2

1
2 .

The model parameters are β σ λ( , , )e
2 . Testing H σ: = 00 1

2

is equivalent to testing H λ: = 00 . The log‐likelihood
function is

β V

y Xβ V y Xβ

L σ λ n σ

σ

( , , ) = −
2

ln − 1
2

ln det( )

− 1
2

( − )′ ( − ).

e e λ

e
λ

2 2

2
−1

The LRT statistic is

β β

y A y y A y

V

LRT L σ λ L σ λ

n n

= 2 sup ( , , ) − 2 sup ( , , )

= sup { ln ′ − ln ′

− ln det( )},

H
e

H
e

λ
λ

λ

2 2

0
0

A 0

≥

where P X X X X= ( ′ ) ′X
−1 is the projection matrix onto

the column space X A I P( ), = − X0� , and
A V V X X V X X V= − ( ′ ) ′λ λ λ λ λ

−1 −1 −1 − −1. Let ξ ξ{ , …, }1 ℓ be
the positive eigenvalues of V1 and μ μ{ , …, }k1 the positive
eigenvalues of A V A0 1 0. Then

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

( )
LRT n

w

w λμ w

λξ

= sup ln
/(1 + ) +

− ln (1 + ) ,

λ

i
n s

i

i
k

i i i k
n s

i

i

l

i

0

=1
− 2

=1
2

= +1
− 2

=1
∑

∑

∑ ∑≥

�

where, under the null, wi are n s( − ) independent standard
normals. Under the alternative, w λμ~ (0, 1 + )i i� for
i k w= 1,…, , ~ (0, 1)i � for i k n s= + 1,…, − , and they
are jointly independent. The null distribution can be
obtained from computer simulation. A computationally
efficient χ2 approximation algorithm is given in the
Supporting Information Material (Web Appendix B). The
same derivation can be carried out for the eRLRT, in
which case

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

( )

RLRT

n s
w

w λμ w

λμ

= sup ( − ) ln
/(1 + ) +

− ln (1 + ) .

λ

i
n s

i

i
k

i i i k
n s

i

i

k

i

0

=1
− 2

=1
2

= +1
− 2

=1
∑

∑

∑ ∑≥

�

The null distribution generation for eRLRT is shown in
Web Appendix B. Algorithms 1 and 2 in Web Appendix B
contain a univariate optimization for each simulated
point from the null distribution and can be computa-
tionally intensive for obtaining extremely small p‐values.
To further reduce the computational burden, we adopt
the Satterthwaite method to approximate the null
distributions (Zhou et al., 2016).

For eScore, it is easier to work with the original
parameterization V I Vσ σ= +e n

2
1
2

1. The (Rao) score statistic
is based on I σ L(( / ) )σ σ,

−1
1
2 2

1
2

1
2 ∂ ∂ , where the information matrix
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I E σ σ L= (−( / ) )σ σ,
2

1
2

1
2

1
2

1
2 ∂ ∂ ∂ and score function σ L( / )1

2∂ ∂

are evaluated at the maximum likelihood estimator under
the null. The resultant test rejects the null when

⎧⎨⎩
⎫⎬⎭

y I P V I P y
y I P y

KS
n

= max ′( − ) ( − )
′( − )

, tr( )X X

X

1

is large. Let μ μ{ , …, }k1 be the positive eigenvalues of
I P V I P( − ) ( − )X X1 . Then

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

KS
μ w

w n
= max , tr( ) ,i

k
i i

i
n s

i

=1
2

=1
− 2

∑

∑

�

where wi are n s− independent standard normals. The
null distribution can be obtained from computer simula-
tion or inverting the characteristic function (Zhou et al.,
2016). Both options, simulation and approximation of
null distribution, are available in our program, https://
github.com/JingZhai63/VCmicrobiome.

2.2 | Exact tests with more than one
variance component under H0

In this section, we consider the situation when
Y Xβ V~ ( , )� with V I V Vσ σ σ m= + + + , > 1m m0

2
1
2

1
2⋯ .

We are interested in testing H σ: = 0m0
2 versus

H σ: > 0A m
2 . We follow a strategy to reduce the problem

to the m = 1 Case 2 (Christensen, 1996; Ofversten, 1993).
We first obtain an orthonormal basis

Q Q Q Q( , , …, , )m m0 1 +1 of n such that Q0 is an ortho-
normal basis of X Q( ), 1� is an orthonormal basis of

X V X Q( , ) − ( ), i1� � is an orthonormal basis of
X V V X V V( , , …, ) − ( , , …, )i i1 1 −1� � for i m= 2,…, , and

Qm+1 is an orthonormal basis of X V V− ( , , …, )n
m1� .

Denoting their corresponding ranks by r r, …, m0 +1. If
r > 0m , that is X V V X V V V( , , …, ) ( , , …, , )m m m1 −1 1 −1⊊� � ,
then Q Y I Q V Qσ σ0′ ~ ( , + ′ )m e r m m m m

2 2
m� and eLRT,

eRLRT, and eScore can be applied to Q Y′m . The order
of V V,…, m1 does not matter. If r = 0m , that is

X V V X V V( , , …, ) = ( , , …, )m m1 −1 1� � , we construct a test
based on the transformed data Q Y CQ Y′ + ′m m−1 +1 .
Without loss of generality we assume Qm−1 is
nontrivial. If r = 0m−1 , we use Qm−2 and so on. We
consider the following cases:

1. If Q V 0′ =m m−1 , for example, when V X( ) ( ,m ⊂� �

V V, …, )m1 −2 , then this test cannot be performed.
Shifting the order of X V V, , …, m1 −1 might solve the
issue.

2. If Q V Q Iγ′ =m m m r−1 −1 −1 m−1 and γ 0≠ , then

Q Y I Q V Q

Q V Q

I

Q V Q

σ σ

σ

σ γσ

σ

0

0

′ ~ ( , + ′

+ ′ )

= ( , ( + )

+ ′ ),

m e r m m m m

m m m m

e m r

m m m m

−1
2

−1
2

−1 −1 −1

2
−1 −1

2
−1

2

2
−1 −1

m

m

−1

−1

�

�

which is the case (4). The eLRT, eRLRT, and eScore
can be applied without using the CQ y′m+1 piece.

3. If Q V Q Iγ′m m m r−1 −1 −1 m−1≠ , then the test requires the
CQ y′m+1 term. CQ y′m+1 has the distribution

CQ Y CCσ0′ ~ ( , ′)m e+1
2

� . Since Q Y CQ Y′ ′m m−1 +1⊥ ,
we pick C such that

CC Q V Q Iζ′ = ′ − ,m m m r
−1

−1 −1 −1 m−1

where the scalar ζ is chosen such that
Q V Q Iζ ′ −m m m r

−1
−1 −1 −1 m−1 is positive semidefinite.

Let Q V Q W W W WδΛ′ = ′ = diag( ) ′m m m i−1 −1 −1 be
the eigen‐decomposition, ζ be the smallest positive
eigenvalue, and C W δ ζ= diag( − 1 )i ∕ . Then the
transformed data

Q Y CQ Y

Q V Q Q V Q

σ

σ ζ σ

0′ + ′ ~ ( , (

+ ) ′ + ′ )
m m m

e m m m m m m m

−1 +1 −1
2

2
−1 −1 −1

2
−1 −1∕

�

and the test for case (2.1) can be applied. A larger ζ
leads to a higher signal‐to‐noise ratio σ σ( /( +m m

2
−1

2

σ ζ ))e
2∕ and thus a more powerful test. Finally we test

H σ: = 0m0
2 using the eLRT, eRLRT, or eScore test on

the transformed data:

W Q CQ Y I

W Q V Q W

σ σ ζ

σ

Λ 0

Λ Λ

′( ′ + ′ ) ~ ( , ( + )

+ ′ ′ ).
m m m e r

m m m m

−1 2
−1 +1 −1

2 2

2 −1 2
−1 −1

−1 2

m−1∕∕

∕ ∕

�

We note that if in some applications that matrices
have high or full rank, consuming most or all
available degrees of freedom after the above reduction
strategy. One could proceed with a low rank approx-
imation. For example, if m = 2 and V1 has high or full
rank, one could find the rank rV1 approximation of V1
as follows: Let V Qr = rank( ),K 2 0 is an orthonormal
basis of X( )� , and Qr = rank( )0 0 . A rank
r n r r( − − )/2V K01 ≤ ⌊ ⌋ approximation of V1 is enough
to perform testing. Details can be found in the
software’s documentation (http://vcmicrobiomejl.
readthedocs.io/en/latest/).
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3 | SIMULATION

We evaluate the performance of the exact tests for the
longitudinal microbiome study in three simulation
scenarios (Table 1).

The longitudinal microbiome count data with two
repeated measurements are simulated using the R package
zero‐inflated beta random effect (ZIBR) model (E. Z. Chen
& Li, 2016). To mimic features of real microbiome
datasets, the phylogenetic structure and average count
information are extracted from the real HIV longitudinal
pulmonary microbiome data. This microbiome data set
contains 30 samples, each with 2–4 repeated measure-
ments: baseline, 4 weeks, 1 year, and 3 years (Twigg et al.,
2016). OTU alignment at the species level was produced by
software Mothur (https://www.mothur.org; Schloss et al.,
2009) and the Basic Local Alignment Search Tool (BLAST;
https://blast.ncbi.nlm.nih.gov/Blast.cg; Altschul, Gish,
Miller, Myers, & Lipman, 1990) in the Ribosomal Database
Project (RDP) 16S database release 11.4 (Maidak et al.,
1996). The phylogenetic tree at the OTU level is generated
using the RDP classifier (Twigg et al., 2016). We construct
the higher taxon level, for example, phylum, using the
phylogenetic tree generator phyloT (http://phylot.biobyte.
de/; Letunic & Bork, 2007, 2011) and the NCBI database
taxonomy (https://www.ncbi.nlm.nih.gov/taxonomy; Fed-
erhen, 2012). There are 2,964 OTUs in total, 292 genera,
and 24 phyla. Different distance measures are calculated
using our Julia package PhylogeneticDistance (https://
github.com/JingZhai63/PhylogeneticDistance.jl). The defi-
nition of different distance measures and the details of
simulation of microbiome abundances are provided in
Web Appendices A and C.

Phenotypes are generated under three different
scenarios. For all three scenarios, two covariates are

included in the model. One of them is correlated with
microbiome abundances. For individual i X, ~ (0, 1)i1 �

and GX h= ( ) + (0, 1)i i baseline2 � . Their effects are
β β= = 0.11 2 . We set the within‐individual variance to
σ = 1e

2 . For longitudinal data simulation, the between
individual variance σd

2 is set to 0.6. This corresponds to
60% of the overall baseline phenotypic variance (Twigg
et al., 2016).

3.1 | Scenario 1: Testing the overall
microbiome effect

Longitudinal responses are generated using the
model, y X X ZZ K Iβ β σ σ σ~ ( + , ′ + + )d g e1 1 2 2

2 2 2
� , where

σ = 0,g
2 0.2, 0.5, 1.0, and 1.5. We compare the per-

formance of five different distance measures: un-
weighted UniFrac (Lozupone & Knight, 2005),
weighted UniFrac distance (Lozupone, Hamady,
Kelley, & Knight, 2007), variance adjusted weighted
(VAW) UniFrac distance (Chang, Luan, & Sun, 2011),
and generalized UniFrac distance with parameter
α = 0.0 and 0.5 (J. Chen et al., 2012).

3.2 | Scenario 2: Localizing fine
microbiome cluster effects

We cluster OTUs into six phyla, Actinobacteria, Bacter-
oidetes, Fusobacteria, Proteobacteria, Firmicutes, and other.
We assume that only cluster other, Gh ( )i1 , has effects. That
is y X X ZZ K Iβ β σ σ σ~ ( + , ′ + + )d l g l e1 1 2 2

2
=1

6 2 2
l

∑� , where
σ = 0, 0.5, 1.5g

2
1

and σ = 0g
2
l

for l = 2,…, 6. Due to the
correlation between phyla, marginal tests of five individual
phyla may show a false signal if we do not adjust for the
effects of Gh ( )i1 . We show that testing of variance
components in a joint model has the correct type I error.

TABLE 1 Simulation configurations

Sample size Kernel type Clustering # Repeat σg
2 Method

Scenario 1: Testing the overall microbiome effect

100 K K K K, , ,W U VAW α None 2 0–1.5 eRLRTeScore

100 K K K K, , ,W U VAW α None 1 0–1.5 eRLRTeLRTeScore

Scenario 2: Localizing fine microbiome cluster effects

100 KW Yes 2 0–1.5 eRLRTeScore

100 KW Yes 1 0–1.5 eRLRTeScore

Scenario 3: Comparing with existing methods

20, 30, 50, 100 KW None 2 0–1.5 eRLRTeScoreLinScore

20, 30, 50, 100 KW None 1 0–1.5 eRLRTeLRTeScoreLinScoreMiRKAT

Note. For all simulations, σ = 1e
2 and σ = 0d

2 when the number of repeats (# Repeat) = 1 or σ = 1e
2 and σ = 0.6d

2 when the number of repeats > 1. There are
2,964 OTUs presented in the simulated count data. A phylogenetic tree generated using the real pulmonary microbiome data is used for kernel calculation and
phenotype simulations. KW : weighted UniFrac kernel; KU : unweighted UniFrac kernel; KVAW : variance adjusted weighted UniFrac kernel; Kα: generalized
UniFrac kernels with α = 0 and 0.5
OTU: operational taxonomic unit.
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3.3 | Scenario 3: Comparing with
existing methods

We compare our method with MiRKAT (Zhao et al.,
2015) and LinScore (Qu et al., 2013). As MiRKAT can
only be used for testing overall microbiome effects for
cross‐sectional designs, we first compare the three
methods when σ = 0d

2 . Responses are generated accord-
ing to simulation Scenario 1, where σ = 0,…, 1.5g

2 .
In Scenarios 1 and 2, the sample size is fixed at n = 100.

In Scenario 3, we compare the performance of the three
methods under sample sizes 20, 30, 50, and 100. The
performance of five different kernels is compared in
Scenario 1. For Scenarios 2 and 3, we focus on the
weighted UniFrac distance kernel only, which demon-
strates a higher power than the other kernels in Scenario 1.
Thousand Monte Carlo replicates are generated for all
simulations and we use the nominal significance level 0.05
to evaluate Type 1 error and power.

4 | RESULTS

4.1 | Simulation results

4.1.1 | Scenario 1: Testing the overall
microbiome effect

The type I error rate of eRLRT, eLRT, and eScore tests
with various distance kernel matrices using real long-
itudinal OTU count data are shown in Table 2. Figure 1
shows the power comparison with different kernels. In
Figure 1a,c, five different kernels are constructed using
OTU count data directly. In Figure 1b,d, OTU counts
are summarized at the phylum level for kernel
calculations.

Figure 1 shows that kernel type greatly impacts the
power. The weighted UniFrac kernel yields the highest
power and the unweighted UniFrac kernel has the least

power (Figure 1a,c). The pattern of the power increase
with effect size differs according to which taxon‐level
count data are used to calculate the kernel. The power of
five kernels became similar to each other in Figure 1b,d.
Furthermore, the power of the unweighted UniFrac
kernel KUW , which is the least powerful kernel in Figure
1a,c, greatly improves in Figure 1b,d. The reason is when
the reads are summarized at the higher phylum level, the
difference of abundance between each phylum is less
notable. The less variability of abundance between
lineages, the more similar the power of detecting
microbiome association. As expected, reducing variance
components leads to reduced degrees of freedom for
association testing and the test is slightly less powerful in
the longitudinal study compared to the cross‐sectional
study given the same effect size in this simulation.

4.1.2 | Scenario 2. Localizing fine
microbiome cluster effects

Table 3 shows the Type 1 error rates for testing the
microbiome effect at the phylum level, with and without
adjusting for the effect contributed by cluster, other . Most
Type 1 error rates are inflated when not adjusting for cluster
other effects. In the cross‐sectional design, the Type I error
rates of Bacteroidetes and Proteobacteria stay correct due to
its weak correlation with cluster other (Pearson correlation
= 0.04, 0.11 with p = 0.70, 0.24, respectively). After
adjustment, Type 1 error rates stay correct even when
confounding effects are large (Table 3).

In practice, symbiosis of bacteria causes correlation
between them (Dickson, Erb‐Downward, & Huffnagle,
2013; Xu et al., 2007; Zeng et al., 2016). Precise medication
that targets specific pathogens can minimize the damage to
essential symbiotic microbial species, and preserve commu-
nity structure and function in the healthy (and developing)
microbiome (Blaser, 2016; Hicks, Taylor, & Hunkler, 2013).
Simulation Scenario 2 demonstrates that our method is
capable of localizing fine microbiome cluster effects.

4.1.3 | Scenario 3: Comparing with
existing methods MiRKAT and LinScore

Table 4 presents the Type 1 error rate and power for eRLRT,
eLRT, eScore, MiRKAT, and LinScore tests in detecting
overall microbiome effects. The power is shown for both
cross‐sectional and longitudinal studies with sample size
from 20 to 100. eRLRT and eLRT outperform LinScore and
MiRKAT in baseline simulation studies. For repeated
measurements, eRLRT outperforms LinScore under small
sample sizes (e.g., n 50≤ ). Under sample size n = 100,
eRLRT has similar or slightly higher power compared to
LinScore when the association strength is weak. Microbiome

TABLE 2 Scenario 1: Type I error of eLRT, eRLRT and eScore
for detecting the overall microbiome effects

Simulation
Design Method

Kernel type

KW KU KVAW K0 K0.5

Cross‐sectional eRLRT 0.046 0.043 0.045 0.048 0.047
eLRT 0.046 0.043 0.051 0.052 0.046
eScore 0.039 0.031 0.047 0.045 0.042

Longitudinal eRLRT 0.041 0.053 0.045 0.041 0.042
eScore 0.034 0.048 0.048 0.050 0.045

Note. Five distance measures, weighted UniFrac kernel (KW ), unweighted
UniFrac kernel (KU ), variance adjusted weighted UniFrac kernel (KVAW ),
and generalized UniFrac kernels with α = 0 (K0) and 0.5 (K0.5) are
compared
eLRT: exact likelihood ratio test; eRLRT: exact restricted likelihood ratio
test; eScore: exact score test; OTU: operational taxonomic unit.
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studies usually have a limited sample size due to the high
cost. The higher power of the exact tests at small sample sizes
will be particularly valuable for biologists and physicians for
identifying the associated microbiome clusters.

4.2 | Analysis of longitudinal
pulmonary microbiome data

It is well known that HIV infection is associated with
alterations in the respiratory microbiome (Twigg et al.,
2016). However, due to limited investigation, the clinical
implications of lung microbial dysbiosis are currently
unknown. As an initial step to reveal the connection of
the respiratory microbiome to pulmonary complications in
HIV‐infected individuals, we investigate the relationship

between pulmonary function and the respiratory micro-
biota profiles in the bronchoalveolar lavage (BAL) fluid of
30 HIV‐infected patients at the advanced stage (baseline
mean CD4 count, 262 cells/mm3). Their acellular BAL fluid
was sampled at baseline, 4 weeks, 1 year, and 3 years. 16S
rRNA gene sequencing technology was used to quantify
pulmonary microbiota. The details of microbiome composi-
tion have been discussed in Section 2.3. Pulmonary
function is measured by spirometry and diffusion capacity
tests. Spirometry tests measure how much and how quickly
air can move out of lung. Typical spirometry tests include
forced vital capacity, forced expiratory volume in 1 s
(FEV1), and average forced expiratory flow (FEF). Diffusion
capacity of the lungs for carbon monoxide (DLCO)
measures how much oxygen travels from the lung alveoli

FIGURE 1 Scenario 1: Power of eRLRT, eLRT, and eScore using different distance measures. Figures to the left shows results where the
OTU counts are used to calculate distances, and figures to the right shows that OTU counts are summarized at the phylum level to construct
the distances. K K K K, , ,W U0 0.5 , and KVAW represent the generalized UniFrac distance with α = 0, 0.5, weighted UniFrac distance,
unweighted UniFrac distance, and variance adjusted weighted UniFrac distance, respectively. eLRT: exact likelihood ratio test; eRLRT: exact
restricted likelihood ratio test; eScore: exact score test; OTU: operational taxonomic unit
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to the blood stream. DLCO corrected for hemoglobin
(DsbHb) and diffusion capacity corrected for alveolar
volume and hemoglobin (DVAsbHb) are evaluated. De-
scriptive statistics of these measures are summarized in
Web Appendix Table 1.

Exact tests and LinScore are used to study the
association. Associations with p values less than 0.05
are reported to be significant. Covariates include
gender, race, smoking status, CD4 counts, and HIV
virus load (Table 5). The missing covariate is imputed
by its mean. For the overall microbiome association
test, no tests find significant associations. However at
the phylum level, Bacteroidetes shows a significant
association with spirometry while Firmicutes shows a
significant association with diffusing capacity mea-
sures. Similar results have been reported by Hewitt
and Molyneaux (2017) and Tunney et al. (2013). We
then focus on analyzing genera from both phyla
Bacteroidetes and Firmicutes given their important
status in normal lungs (Cui et al., 2014). Only by
eRLRT and eScore, genus Prevotella, Porphyromonas,
and Parvimonas show significant effects on FEF and
FEV1 (Table 5). Genus Veillonella shows a significant
association with FEF. It appears that both Parvimonas
and Veillonella in phylum Firmicutes are significantly
associated with FEF and both genus Prevotella and
Porphyromonas in phylum Bacteroidetes are signifi-
cantly associated with FEF and FEV1. We therefore

perform the test in a joint model to localize the fine
cluster effect. Interestingly, by eRLRT the significant
association between genus Parvimonas and FEF still
remains after adjusting for the effects from genus
Veillonella. But the opposite is not true. This supports
the findings of the previous studies that Parvimonas
abundance changed in subjects with pulmonary dis-
ease (e.g., asthma or COPD) compared to the control
group (Kim et al., 2018; Pragman, Kim, Reilly, Wendt,
& Isaacson, 2012). However, either Prevotella or
Porphyromonas lost its significance when adjusting
for the other. This likely suggests that Prevotella and
Porphyromonas are correlated and both tag effects to
lung function. In comparison, LinScore only detects
the significant microbiome effect of Bacteroidetes with
FEF. Our results further support the conclusions from
previous studies and sheds light for future clinical
causality research (Segal et al., 2017; Twigg et al.,
2016; Weiden et al., 2017). None of the tests (exact
tests, LinScore, and MiRKAT) identify significant
associations using only baseline data (results not
shown). In conclusion, our exact tests provides
innovative association evidence of pulmonary micro-
biome and lung function in the HIV‐infected popula-
tion, which have not been reported before. While the
modeling is compelling, interpretation of the data and
how correlations translate to meaningful clinical
outcomes needs further study.

TABLE 3 Scenario 2: Type I error rate of localizing fine microbiome cluster effects

Longitudinal design

No adjustment for Other Adjustment for Other

Effect size σg
2 Effect size σg

2

0 0.5 1.5 0 0.5 1.5

Phylum eRLRT, eScore eRLRT, eScore eRLRT, eScore eRLRT,eScore eRLRT,eScore eRLRT,eScore

Actinobacteria 0.050, 0.038 0.108, 0.075 0.151, 0.100 0.049, 0.038 0.051, 0.048 0.033, 0.040

Bacteroidetes 0.045, 0.040 0.060, 0.055 0.061, 0.055 0.041, 0.040 0.047, 0.042 0.042, 0.037

Firmicutes 0.043, 0.043 0.049, 0.044 0.063, 0.067 0.042, 0.043 0.041, 0.043 0.052, 0.051

Fusobacteria 0.052, 0.048 0.038, 0.041 0.060, 0.048 0.052, 0.048 0.045, 0.044 0.048, 0.037

Proteobacteria 0.051, 0.046 0.041, 0.048 0.056, 0.050 0.049, 0.042 0.040, 0.035 0.053, 0.036

Cross‐sectional design

Actinobacteria 0.041, 0.036 0.117, 0.065 0.111, 0.083 0.050, 0.040 0.052, 0.043 0.048, 0.035

Bacteroidetes 0.051, 0.047 0.048, 0.049 0.051, 0.041 0.051, 0.041 0.048, 0.043 0.048, 0.037

Firmicutes 0.037, 0.038 0.059, 0.052 0.068, 0.062 0.044, 0.038 0.051, 0.045 0.052, 0.048

Fusobacteria 0.053, 0.050 0.070, 0.060 0.078, 0.065 0.052, 0.033 0.051, 0.041 0.048, 0.040

Proteobacteria 0.042, 0.035 0.038, 0.042 0.053, 0.047 0.048, 0.047 0.049, 0.050 0.041, 0.033

Note. Only cluster Other contains effects, 0, 0.5 and 1.5. Type 1 error rates are evaluated with or without adjustment for effect from cluster Other . The weighted
UniFrac kernel is used. Top panel shows results from simulation using longitudinal data while the bottom panel shows results using cross‐sectional data only

eLRT: exact likelihood ratio test; eRLRT: exact restricted likelihood ratio test; eScore: exact score test.
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5 | DISCUSSION

In this report, motivated by a longitudinal pulmonary
microbiome study, we develop and implement three
computationally efficient exact variance component tests
(eScore, eLRT, and eRLRT). Our method extends previous
exact variance component tests to the case when the null
hypothesis contains more than one variance component
(Zhou et al., 2016). They can be applied to longitudinal

studies testing the overall microbiome effects, as well as
cross‐sectional studies identifying microbiome associations
at the fine‐grained level. The latter has been emerging as
the focus of many current microbiome studies (Lloyd‐Price
et al., 2017; Nayfach, Rodriguez‐Mueller, Garud, & Pollard,
2016; Truong, Tett, Pasolli, Huttenhower, & Segata, 2017).
Unlike Qu et al. (2013) and Zhao et al.’s (2015) score test
that uses moment‐matching to approximate null distribu-
tion, our tests are exact in finite samples, therefore

TABLE 4 Scenario 3: Comparing with existing methods

Effect size (σg
2)

n #Repeat Method 0 0.10 0.2 0.5 0.8 1.0 1.5

20 1 eScore 0.045 0.059 0.050 0.074 0.078 0.079 0.104

eLRT 0.051 0.089 0.095 0.111 0.118 0.141 0.152

eRLRT 0.050 0.097 0.088 0.108 0.122 0.142 0.160

MiRKAT 0.048 0.056 0.046 0.071 0.069 0.077 0.104

LinScore 0.050 0.060 0.046 0.075 0.072 0.078 0.106

2 eScore 0.050 0.055 0.040 0.057 0.068 0.077 0.088

eRLRT 0.051 0.055 0.074 0.081 0.092 0.085 0.118

LinScore 0.049 0.057 0.063 0.055 0.072 0.078 0.090

30 1 eScore 0.043 0.059 0.050 0.074 0.078 0.079 0.104

eLRT 0.046 0.089 0.095 0.111 0.118 0.141 0.152

eRLRT 0.052 0.097 0.088 0.108 0.122 0.142 0.160

MiRKAT 0.055 0.056 0.046 0.071 0.069 0.077 0.104

LinScore 0.054 0.060 0.046 0.075 0.072 0.078 0.106

2 eScore 0.045 0.058 0.067 0.093 0.114 0.127 0.151

eRLRT 0.052 0.063 0.081 0.105 0.127 0.145 0.178

LinScore 0.046 0.054 0.061 0.076 0.088 0.132 0.134

50 1 eScore 0.036 0.070 0.071 0.118 0.151 0.164 0.240

eLRT 0.048 0.084 0.094 0.135 0.188 0.214 0.306

eRLRT 0.049 0.086 0.088 0.127 0.192 0.201 0.307

MiRKAT 0.047 0.065 0.069 0.114 0.156 0.183 0.257

LinScore 0.045 0.070 0.077 0.124 0.176 0.189 0.267

2 eScore 0.047 0.069 0.084 0.110 0.148 0.177 0.257

eRLRT 0.041 0.074 0.097 0.134 0.188 0.217 0.315

LinScore 0.051 0.063 0.096 0.156 0.205 0.261 0.333

100 1 eScore 0.050 0.096 0.165 0.304 0.383 0.390 0.532

eLRT 0.052 0.114 0.191 0.377 0.472 0.516 0.664

eRLRT 0.049 0.105 0.195 0.375 0.460 0.510 0.661

MiRKAT 0.051 0.093 0.181 0.329 0.427 0.483 0.622

LinScore 0.048 0.106 0.194 0.347 0.439 0.507 0.630

2 eScore 0.037 0.140 0.205 0.277 0.378 0.411 0.525

eRLRT 0.041 0.161 0.244 0.327 0.447 0.498 0.626

LinScore 0.046 0.121 0.214 0.347 0.451 0.545 0.652

Note. Type 1 error rate and power from eLRT, eRLRT, eScore, LinScore, and MiRKAT at baseline when #Repeat = 1. When #Repeat = 2, only LinScore is
compared with eRLRT and eScore. Sample sizes (n) range from 20 to 100 and effect sizes (σg

2) range from 0 to 1.5.
eLRT: exact likelihood ratio test; eRLRT: exact restricted likelihood ratio test; eScore: exact score test.
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beneficial to studies with a limited sample size. Compared
to the score test, our eLRT and eRLRT tests can further
boost power when the microbiome effects are weak.
Simulation studies verify that our exact tests have the
correct size and many innovative utilizations. In the
application to the real longitudinal pulmonary microbiome
study, only our exact tests detect multiple interesting genera
associated with lung function. We then further demon-
strated the ability of our exact tests to differentiate
associated genera by using two real data examples.
Although the derivation of eLRT and eRLRT require the
normality assumption, a sensitivity simulation shows that
even with a misspecified phenotypic distribution, like the t‐
distribution, our tests still preserve the correct Type I error
rate (Web Appendix E, Table 2). The software package is
implemented in an open‐source, high‐performance com-
puting language Julia and is freely available. We offer
unweighted, weighted, VAW, and generalized UniFrac
distance calculation to further ease the computation and
advance microbiome studies.

There are a few directions for future work. First, there are
linear mixed effects models not of form (3), for example,
those including both random intercepts and random slopes
(Drikvandi et al., 2013). Our methods extend to these cases
naturally and we defer them to future research. The second
direction is to incorporate multiple types of kernels into exact
tests. Finally, we consider extension to the generalized linear
mixed effects models, although it can be challenging
especially for LRT and RLRT. Score‐based tests may be
possible through penalized quasi‐likelihood (H. Chen et al.,
2016; Lin, 1997).

6 | SOFTWARE

The Julia package is freely available at https://github.
com/JingZhai63/VCmicrobiome. In the real longitudinal
data analysis with sample size 30 and 2,964 OTUs, the
elapsed CPU times are 0.1 and 0.04 s for eRLRT and
eScore, respectively. The analysis was performed by a
MacBook Pro with 2.3 GHz Intel Core i7 processor and
8 GB 1600MHz DDR3 memory.
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