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Supraglottic Lung Microbiome Taxa Are Associated
with Pulmonary Abnormalities in an HIV
Longitudinal Cohort

To the Editor:

Lung microbiome analysis of acellular BAL suggests the presence of
two distinct lung pneumotypes, background predominant taxa
(BPT) and supraglottic predominant taxa (SPT) (1, 2). The latter

has been shown to be associated with a distinct metabolic profile
and a T-helper cell type 17 proinflammatory phenotype among
healthy individuals (2). We have previously demonstrated an
altered lung microbiome in HIV-infected subjects, including
persistent increases in taxa associated with pneumotypeSPT (3).
However, the lung inflammatory profile and associated lung
function has not been elucidated. In this work, we investigated
associations between lung function, inflammation, and lung
microbiome dysbiosis in an HIV-positive population with relatively
advanced disease who were studied at baseline and over a 1-year
follow-up.

Our study population consisted of 30 HIV-infected, treatment-
naive adults who underwent analysis of lung inflammatory
mediators and pulmonary function testing before antiretroviral
therapy (ART) and again at 4 weeks and 1 year after starting ART
(3). As previously reported (3), these subjects had advanced HIV
disease at baseline (median and interquartile range of CD4 is 280
and 92–385) and had sustained viral control and improved CD4
counts after starting ART. Forty-eight genera had a relative
abundance>2% and were included in this analysis. Taxa were then
classified as either BPT or SPT based on previous classification (1,
2). Taxa not classified in these prior reports were included in the
SPT group if they were known common oropharyngeal organisms.
Taxa not described in these reports were placed in the BPT group if
prior published work demonstrated they were not common oral
taxa or left as unclassified or not defined taxa if no data were
available linking them to a human compartment. In general,
pneumotypeSPT was dominated by supraglottic phyla such
as Bacteroidetes, Firmicutes, and Fusobacterium, whereas
pneumotypeBPT was enriched with background predominant phyla
such as Proteobacteria and Actinobacteria. The pairwise correlation
between genera at baseline (before ART) and at 4 weeks and 1 year
after ART is shown in Figure 1. Most (.80%) pairwise correlations
between taxa within the pneumotypeSPT subgroup were positive
(Figures 1A–1C). Correlations between pneumotypeBPT taxa
were weaker, and the majority of the correlations between
pneumotypeSPT and pneumotypeBPT were negative for all three
time points. The negative correlation between pneumotypeSPT and
pneumotypeBPT increased after receiving ART. These data suggest
that taxa within pneumotypeSPT are relatively uniform and stable
over time, reflecting organisms found in the oral cavity. In contrast,
taxa within pneumotypeBPT are much more variable and likely
influenced by environmental factors. Consistent with prior reports
(4), adjusting for smoking had no significant effects on the
respiratory microbiome.

A weighted Spearman correlation for repeated measures,
using the number of observations as weights, was used to assess the
association of taxa abundance with inflammatory markers as well
as with lung function measurements (5). With the exception for
Granulicatella, pneumotypeSPT taxa were positively associated
with BAL proinflammatory cytokines (Table 1, top panel). It is
worth noting that Tropheryma, which would be classified as BPT
as it is not a typical supraglottic organism (6), was associated with
greater inflammation. The only other pneumotypeBPT organism
associated with lung inflammation was Moraxella, a known
respiratory tract pathogen. Eleven genera were significantly
associated with at least one spirometry or diffusion capacity
measurement (i.e., FEV1; FVC; forced expiratory flow,
midexpiratory phase; and DLCO corrected for hemoglobin
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shown in Table 1, bottom panel). Among them, six genera were
pneumotypeSPT, three were pneumotypeBPT, and two did not belong
to either group. Overall, pneumotypeBPT genera Burkholderia and
Propionibacterium were significantly associated with better lung

function in both spirometry and diffusion capacity. In contrast,
except Neisseria, pneumotypeSPT taxa were associated with poorer
lung function. Finally, we constructed a cooccurrence network using
the SparCC (Sparse Correlation for Compositional Data) package (7)
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Figure 1. Heat map of Spearman correlation between genera at (A) baseline. (B) Four weeks after baseline. (C) One year after baseline. Spearman’s r

correlation matrix was reordered by the hierarchical clustering algorithm with complete agglomeration. Red color represents positive correlation, whereas
blue color shows negative correlation. Genera in pneumotypeBPT are in dark cyan font, and genera in pneumotypeSPT are in dark pink font. Dark gray font
represents not defined pneumotype taxa. (D) A cooccurrence network of genus-level taxa generated by the SparCC (Sparse Correlation for Compositional
Data) package and visualized by Cytoscape 3.2.6. Cooccurrences were assessed by significant weighted Spearman’s r calculated using all time points
with permutation P,0.05 and r.0.6. Genera identified as pneumotypeBPT are in light blue, and genera identified as pneumotypeSPT are in light pink. The
undefined genera are in light gray. The lung function parameters and inflammation markers are in yellow and purple, respectively. The dark red line
indicates the positive association; the green line indicates the negative association. BPT=background predominant taxa; DsbHb=DLCO corrected
for hemoglobin; FEF= forced expiratory flow; IP-10= IFN-inducible protein 10; MCP-1=monocyte chemoattractant protein-1; SPT= supraglottic
predominant taxa.
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among genus-level taxa with significant associations with
inflammatory cytokines, chemokines, and pulmonary function
outcomes (Figure 1D). Genera within pneumotypeSPT and
pneumotypeBPT cooccurred with each other, forming two well-
defined clusters. Additionally, most genera in pneumotypeSPT (5 out
of 8) were significantly correlated with chemokine/cytokine levels. In
contrast, most SPT-characteristic genera (5 out of 6) were negatively
correlated with lung function except for Neisseria. Similar results
were observed if each time point was analyzed separately.

In this study, we defined lung microbiome pneumotypes based
on prior publications (1, 2). PneumotypeSPT taxa are likely derived
from the oral cavity and supraglottic region, considered widely as
representing a true lower respiratory tract microbiome that have
the potential to cause local inflammation. All other taxa have
traditionally been grouped in the BPT pneumotype and are felt
to represent “background” organisms. Our results highlight
strengths and caveats to this paradigm, particularly in the
context of HIV. The significant positive correlations between
oropharyngeal taxa in Figures 1A–1C strongly support the
concept of a supraglottic pneumotype. The lack of correlation
between BPT taxa emphasizes that in the absence of SPT taxa, the
pneumotypeBPT tends to be unique in different individuals.
However, the concept that the pneumotypeBPT represents just
background taxa needs to be reexamined. First, Tropheryma
whipplei, a pneumotypeBPT taxa, was associated with lung
inflammation. Widespread colonization of Tropheryma has been
reported in the lungs of HIV-infected subjects and is dramatically
reduced with ART (6). Although we classified Tropheryma as
pneumotypeBPT as it has not been found in the oral cavity when
sampled from oral washings (6), this organism is known to be
present in the gastrointestinal tract, where it may cause Whipple’s
disease. As such, Tropheryma is likely entering the lung
compartment through the blood after translocation from the gut.
Moraxella is another example of a taxa that was included in the

BPT group but is clearly associated with lung inflammation in our
cohort. Moraxella is a known lower respiratory tract pathogen
that can cause lower airway inflammation. Even though they do
not fall into the SPT category, certain groups of Moraxella
(e.g., Moraxella catarrhalis) are known lung pathogens (8). These
results highlight the fact that although most background taxa do
not cause lung inflammation, there are instances through which
bacteria not usually found in the supraglottic space may
gain access to the lower respiratory tract and be associated
with inflammation. The beneficial effect of some BPT taxa with
lung function is intriguing. Whether this represents a true
protective effect or just the absence of SPT bacteria requires
further study. Finally, this work supports the paradigm that the
presence of supraglottic taxa in the lower respiratory tract
resulting from chronic low-grade aspiration seen in virtually all
humans may be a susceptibility marker to chronic lung diseases
seen in both HIV-infected subjects and non–HIV-infected aging
population. This paradigm is further supported by recent
work (9).

In conclusion, we demonstrated that there are significant
correlations among lung microbiome composition, lower
respiratory tract inflammation, and lung function in patients living
with HIV. Our findings contribute to a growing body of work
demonstrating correlations between the host microbiome and
chronic disease (10), with implications for both the HIV-infected
and HIV-uninfected population. n
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Anti-FXa Activity with Intermediate-Dose
Thromboprophylaxis in COVID-19

To the Editor:

We read with interest the article by Dutt and colleagues describing
measurement of anti–factor Xa (FXa) activity in ward patients with
coronavirus disease (COVID-19) as well as those requiring intensive
care (1). The authors suggest that patients admitted to an ICU with
COVID-19 may warrant a higher starting dose of pharmacological
thromboprophylaxis, although the optimal dose in these patients
is uncertain pending upcoming randomized controlled trials.
Current guidelines from various medical societies suggest routine
pharmacological thromboprophylaxis in patients with COVID-19.
However, there is a lack of consensus on whether standard-dose or
higher intermediate-dose thromboprophylaxis should be used (2–5).
We would like to present our experience with measuring anti-FXa

activity using a higher, weight-based dose of enoxaparin for
thromboprophylaxis. This retrospective observational study was
deemed exempt by our institutional review board.

In early April, we noticed a high rate of thrombosis and
thromboembolism among critically ill patients with COVID-19, an
observation consistent with those in other institutions (6–8). Therefore,
we adopted intermediate-dose thromboprophylaxis for critically ill
patients with COVID-19 with enoxaparin (0.5 mg/kg twice daily), as
described in Table 1, as our new standard of care. The dosages were
selected based on several single-center studies suggesting higher rates
of attainment of target anti-FXa activity with higher-dose enoxaparin
(9, 10). Importantly, the target anti-FXa activity for pharmacologic
prophylaxis is not evidence based, and adjusting doses to provide higher
attainment of target activity was not demonstrated to improve clinical
outcomes.

We monitored anti-FXa activity for the first 40 patients
receiving this dosing strategy. Anti-FXa was checked 3–4
hours after the third or fourth dose of the intermediate-dose
enoxaparin regimen. The enoxaparin dose was then adjusted as
necessary to achieve a target anti-FXa activity of 0.2–0.5 U/ml.

Results are shown in Table 2. Seventy-five percent (n= 33) of
patients achieved the targeted anti-FXa activity without further dose
adjustment. Twenty-five percent (n=11) of patients had their dose
adjusted from institutional guideline recommended doses at some
point in their hospitalization. Only three patients had dose adjustment
because of their anti-FXa activity, with decreased dosage for two
patients, one of whom later developed venous thromboembolism.
Only two patients had enoxaparin decreased or stopped because of
bleeding (hematuria in both cases). Four patients had their dosages
increased to a therapeutic regimen because of clinically suspected
(n=2) or confirmed (n=2) clotting events. Both patients with
confirmed clotting events and one patient with a suspected
clotting event were initially on standard-dose thromboprophylaxis
before the institutional transition to intermediate-dose
thromboprophylaxis.

We achieved a high rate of the targeted anti-FXa activity
using this intermediate dosing scheme. Most patients outside the
target anti-FXa range were above rather than below goal
concentrations. After reviewing this data, our institution decided
to continue intermediate-dose thromboprophylaxis but eliminate
routine anti-FXa monitoring because it rarely resulted in
dose adjustments. Only 2 of the 10 patients with anti-FXa activity
of greater than 0.5 U/ml were decreased because of this
monitoring, which was likely due to concern over the high
rates of thromboembolic complications in this population.
In addition, anti-FXa monitoring for thromboprophylaxis is
controversial, especially in intensive care (11–13). There is no
clear relationship between anti-FXa activity and the safety or
efficacy of thromboprophylaxis. Although low anti-FXa activity has
been associated with thromboembolism, there is no proven benefit
to adjusting the enoxaparin dose to a “target” anti-FXa activity.
Furthermore, the target anti-FXa activity of 0.2–0.5 U/ml has not been
rigorously validated.

In conclusion, our results may assist others considering
intermediate-dose thromboprophylaxis and anti-FXa
monitoring in critically ill patients with COVID-19. Our
findings suggest that intermediate-dose thromboprophylaxis led
to anti-FXa activity according to predefined criteria in most of
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