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ABSTRACT
Variance components estimation and mixed model analysis are central themes in statistics with applications
in numerous scientific disciplines. Despite the best efforts of generations of statisticians and numerical
analysts, maximum likelihood estimation (MLE) and restricted MLE of variance component models remain
numerically challenging. Building on the minorization–maximization (MM) principle, this article presents
a novel iterative algorithm for variance components estimation. Our MM algorithm is trivial to implement
and competitive on large data problems. The algorithm readily extends to more complicated problems such
as linear mixed models, multivariate response models possibly with missing data, maximum a posteriori
estimation, and penalized estimation. We establish the global convergence of the MM algorithm to a
Karush–Kuhn–Tucker point and demonstrate, both numerically and theoretically, that it converges faster
than the classical EM algorithm when the number of variance components is greater than two and all
covariance matrices are positive definite. Supplementary materials for this article are available online.
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1. Introduction

Variance components and linear mixed models (LMMs) are
among the most potent tools in a statistician’s toolbox, find-
ing numerous applications in agriculture, biology, economics,
genetics, epidemiology, and medicine. Given an observed n × 1
response vector y and n × p predictor matrix X, the simplest
variance components model postulates that Y ∼ N(Xβ , �),
where � = ∑m

i=1 σ 2
i V i, and the V1, . . . , Vm are m fixed

positive semidefinite matrices. The parameters of the model can
be divided into mean effects β = (β1, . . . , βp) and variance
components σ 2 = (σ 2

1 , . . . , σ 2
m). Throughout we assume � is

positive definite. The extension to singular � will not be pursued
here. Estimation revolves around the log-likelihood function

L(β , σ 2) = −1
2

ln det � − 1
2
(y − Xβ)T�−1(y − Xβ). (1)

Among the commonly used methods for estimating variance
components, maximum likelihood estimation (MLE) (Hart-
ley and Rao 1967) and restricted (or residual) MLE (REML)
(Harville 1977) are the most popular. REML first projects y to
the null space of X and then estimates variance components
based on the projected responses. If the columns of a matrix
B span the null space of XT, then REML estimates the σ 2

i by
maximizing the log-likelihood of the redefined response vector
BTY , which is normally distributed with mean 0 and covariance
BT�B = ∑m

i=1 σ 2
i BTV iB.

There exists a large literature on iterative algorithms for
finding MLE and REML (Laird and Ware 1982; Lindstrom and
Bates 1988, 1990; Harville and Callanan 1990; Callanan and
Harville 1991; Bates and Pinheiro 1998; Schafer and Yucel 2002).
Fitting variance components models remains a challenge in
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models with a large sample size n or a large number of vari-
ance components m. Newton’s method (Lindstrom and Bates
1988) converges quickly but is numerically unstable owing to
the non-concavity of the log-likelihood. Fisher’s scoring algo-
rithm replaces the observed information matrix in Newton’s
method by the expected information matrix and yields an ascent
algorithm when safeguarded by step halving. However, the cal-
culation and inversion of expected information matrices cost
O(mn3) + O(m3) flops and quickly become impractical for
large n or m, unless V i are low rank, block diagonal, or have
other special structures. The expectation–maximization (EM)
algorithm initiated by Dempster Laird, and Rubin (1977) is
a third alternative (Laird and Ware 1982; Laird, Lange, and
Stram 1987; Lindstrom and Bates 1988; Bates and Pinheiro
1998). Compared to Newton’s method, the EM algorithm is
easy to implement and numerically stable, but painfully slow to
converge. In practice, a strategy of priming Newton’s method
by a few EM steps leverages the stability of EM and the faster
convergence of second-order methods.

In this article we derive a novel minorization–maximization
(MM) algorithm for finding the MLE and REML estimates
of variance components. We prove global convergence of the
MM algorithm to a Karush–Kuhn–Tucker (KKT) point and
explain why MM generally converges faster than EM for mod-
els with more than two variance components. We also sketch
extensions of the MM algorithm to the multivariate response
model with possibly missing responses, the LMM, maximum
a posteriori (MAP) estimation, and penalized estimation. The
numerical efficiency of the MM algorithm is illustrated through
simulated datasets and a genomic example with 200 variance
components.
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2. Preliminaries

2.1. Background on MM Algorithms

Throughout we reserve Greek letters for parameters and indi-
cate the current iteration number by a superscript t. The MM
principle for maximizing an objective function f (θ) involves
minorizing the objective function f (θ) by a surrogate function
g(θ | θ (t)) around the current iterate θ (t) of a search (Lange,
Hunter, and Yang 2000). Minorization is defined by the two
conditions

f (θ (t)) = g(θ (t) | θ (t)) (2)
f (θ) ≥ g(θ | θ (t)) , θ �= θ (t).

In other words, the surface θ �→ g(θ | θ (t)) lies below the
surface θ �→ f (θ) and is tangent to it at the point θ = θ (t).
Construction of the minorizing function g(θ | θ (t)) constitutes
the first M of the MM algorithm. The second M of the algorithm
maximizes the surrogate g(θ | θ (t)) rather than f (θ). The
point θ (t+1) maximizing g(θ | θ (t)) satisfies the ascent property
f (θ (t+1)) ≥ f (θ (t)). This fact follows from the inequalities

f (θ (t+1)) ≥ g(θ (t+1) | θ (t)) ≥ g(θ (t) | θ (t)) = f (θ (t)), (3)

reflecting the definition of θ (t+1) and the tangency and domi-
nation conditions (2). The ascent property makes the MM algo-
rithm remarkably stable. The validity of the descent property
depends only on increasing g(θ | θ (t)), not on maximizing g(θ |
θ (t)). With obvious changes, the MM algorithm also applies
to minimization rather than to maximization. To minimize a
function f (θ), we majorize it by a surrogate function g(θ | θ (t))
and minimize g(θ | θ (t)) to produce the next iterate θ (t+1).
The acronym should not be confused with the maximization–
maximization algorithm in the variational Bayes context (Jeon
2012).

The MM principle (De Leeuw 1994; Heiser 1995; Lange,
Hunter, and Yang 2000; Kiers 2002; Hunter and Lange 2004)
finds applications in multidimensional scaling (Borg and Groe-
nen 2005), ranking of sports teams (Hunter 2004), variable
selection (Hunter and Li 2005; Yen 2011), optimal experiment
design (Yu 2010), multivariate statistics (Zhou and Lange 2010),
geometric programming (Lange and Zhou 2014), survival mod-
els (Hunter and Lange 2002; Ding, Tian, and Yuen 2015),
sparse covariance estimation (Bien and Tibshirani 2011), and
many other areas (Lange 2016). The celebrated EM principle
(Dempster Laird, and Rubin 1977) is a special case of the
MM principle. The Q function produced in the E step of an
EM algorithm minorizes the log-likelihood up to an irrelevant
constant. Thus, both EM and MM share the same advantages:
simplicity, stability, graceful adaptation to constraints, and the
tendency to avoid large matrix inversion. The more general MM
perspective frees algorithm derivation from the missing data
straitjacket and invites wider applications (Wu and Lange 2010).
Figure 1 shows the minorization functions of EM and MM for a
variance components model with m = 2 variance components.

2.2. Convex Matrix Functions

For symmetric matrices, we write A � B when B − A is positive
semidefinite and A ≺ B if B − A is positive definite. A matrix-

Figure 1. Surrogate functions of EM and MM minorize the log-likelihood surface of
a 2-variance component model at point (σ 2(t)

1 , σ 2(t)
2 ) = (18.5, 0.7). MM surrogate

function hugs the log-likelihood surface tighter than EM.

valued function f is said to be (matrix) convex if
f [λA + (1 − λ)B] � λf (A) + (1 − λ)f (B)

for all A, B, and λ ∈ [0, 1]. Our derivation of the MM variance
components algorithm hinges on the convexity of the two func-
tions mentioned in the next lemma. See standard text Boyd and
Vandenberghe (2004) for the verification of both facts.

Lemma 1. (a) The matrix fractional function f (A, B) =
ATB−1A is jointly convex in the m × n matrix A and the
m × m positive-definite matrix B. (b) The log determinant
function f (B) = ln det B is concave on the set of positive-
definite matrices.

3. Univariate Response Model

Our strategy for maximizing the log-likelihood (1) is to alternate
updating the mean parameters β and the variance components
σ 2. Updating β given σ 2 is a standard general least-squares
problem with solution

β(t+1) = (XT�−(t)X)−1XT�−(t)y, (4)
where �−(t) represents the inverse of �(t) = ∑m

i=1 σ
2(t)
i V i.

Updating σ 2 given β(t) depends on two minorizations. If we
assume that all of the V i are positive definite, then the joint
convexity of the map (X, Y) �→ XTY−1X for positive definite
Y implies that

�(t)�−1�(t) =
( m∑

i=1
σ

2(t)
i V i

) ( m∑
i=1

σ 2
i V i

)−1 ( m∑
i=1

σ
2(t)
i V i

)

�
m∑

i=1

σ
2(t)
i∑

j σ
2(t)
j

⎛⎝∑
j σ

2(t)
j

σ
2(t)
i

σ
2(t)
i V i

⎞⎠
×

⎛⎝∑
j σ

2(t)
j

σ
2(t)
i

σ 2
i V i

⎞⎠−1 ⎛⎝∑
j σ

2(t)
j

σ
2(t)
i

σ
2(t)
i V i

⎞⎠
=

m∑
i=1

σ
4(t)
i
σ 2

i
V i.
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When one or more of the V i are rank deficient, we replace each
V i by V i,ε = V i+εI for ε > 0 small and let �(t)

ε = ∑
i σ

2(t)
i V i,ε .

Sending ε to 0 in �(t)
ε �−1

ε �(t)
ε � ∑m

i=1(σ
4(t)
i /σ 2

i )V i,ε now gives
the desired majorization �(t)�−1�(t) � ∑m

i=1(σ
4(t)
i /σ 2

i )V i in
the general case. Negating both sides leads to the
minorization

−(y − Xβ)T�−1(y − Xβ) 
 −(y − Xβ)T�−(t)

×
( m∑

i=1

σ
4(t)
i
σ 2

i
V i

)
�−(t)(y − Xβ) (5)

that effectively separates the variance components σ 2
1 , . . . , σ 2

m in
the quadratic term of the log-likelihood (1).

The convexity of the function A �→ − log det A is equivalent
to the supporting hyperplane minorization

− ln det � ≥ − ln det �(t) − tr[�−(t)(� − �(t))] (6)

that separates σ 2
1 , . . . , σ 2

m in the log determinant term of the log-
likelihood (1). Combination of the minorizations (5) and (6)
gives the overall minorization

g(σ 2 | σ 2(t))

= −1
2

tr(�−(t)�) − 1
2
(y − Xβ(t))T�−(t)

×
( m∑

i=1

σ
4(t)
i
σ 2

i
V i

)
�−(t)(y − Xβ(t)) + c(t) (7)

=
m∑

i=1

[
−σ 2

i
2

tr(�−(t)V i) − 1
2

σ
4(t)
i
σ 2

i
(y − Xβ(t))T�−(t)

V i�
−(t)(y − Xβ(t))

]
+ c(t),

where c(t) is an irrelevant constant. Maximization of g(σ 2 |
σ 2(t)) with respect to σ 2

i yields the simple multiplicative
update

σ
2(t+1)
i = σ

2(t)
i

√
(y − Xβ(t))T�−(t)V i�

−(t)(y − Xβ(t))

tr(�−(t)V i)
,

i = 1, . . . , m. (8)

As a sanity check on our derivation, consider the partial deriva-
tive

∂

∂σ 2
i

L(β , σ 2) = −1
2

tr(�−1V i)

+1
2
(y − Xβ)T�−1V i�

−1(y − Xβ). (9)

Given σ
2(t)
i > 0, it is clear from the update formula (8) that

σ
2(t+1)
i < σ

2(t)
i when ∂

∂σ 2
i

L < 0. Conversely σ
2(t+1)
i > σ

2(t)
i

when ∂

∂σ 2
i

L > 0.
Algorithm 1 summarizes the MM algorithm for MLE of the

univariate response model (1). The update formula (8) assumes
that the numerator under the square root sign is nonnegative
and the denominator is positive. The numerator requirement
is a consequence of the positive semidefiniteness of V i. The
denominator requirement is not obvious but can be verified

Input : y, X, V1, . . . , Vm
Output: MLE β̂ , σ̂ 2

1 , . . . , σ̂ 2
m

1 Initialize σ
(0)
i > 0, i = 1, . . . , m

2 repeat
3 �(t) ← ∑m

i=1 σ
2(t)
i V i

4 β(t) ← arg minβ (y − Xβ)T�−(t)(y − Xβ)

5 r(t) ← y − Xβ(t)

6 σ
2(t+1)
i ← σ

2(t)
i

√
(r(t)T�−(t)V i�

−(t)r(t))/tr(�−(t)V i),
i = 1, . . . , m

7 until objective value converges
Algorithm 1: MM algorithm for MLE of the variance com-
ponents of model (1).

through the Hadamard (elementwise) product representation
tr(�−(t)V i) = 1T(�−(t) � V i)1. The following lemma of Schur
(1911) is crucial. We give a self-contained probabilistic proof in
supplementary materials S.1.

Lemma 2 (Schur). The Hadamard product of a positive-definite
matrix with a positive semidefinite matrix with positive diagonal
entries is positive definite.

We can now obtain the following characterization of the MM
iterates.

Proposition 1. Assume V i has strictly positive diagonal entries.
Then tr(�−(t)V i) > 0 for all t. Furthermore if σ

2(0)
i > 0 and

�−(t)(y − Xβ(t)) /∈ null(V i) for all t, then σ
2(t)
i > 0 for all

t. When V i is positive definite, σ
2(t)
i > 0 holds if and only if

y �= Xβ(t).

Proof. The first claim follows easily from Schur’s lemma. The
second claim follows by induction. The third claim follows from
the observation that null(V i) = {0}.

In most applications, Vm = I. Proposition 1 guarantees that
if σ

2(0)
m > 0 and the residual vector y − Xβ(t) is nonzero, then

σ
2(t)
m remains positive and thus �(t) remains positive definite

throughout all iterations. This fact does not prevent any of the
sequences σ

2(t)
i from converging to 0. In this sense, the MM

algorithm acts like an interior point method, approaching the
optimum from inside the feasible region.

3.1. Univariate Response: Two Variance Components

The major computational cost of Algorithm 1 is inversion of
the covariance matrix �(t) at each iteration. The special case
of m = 2 variance components deserves attention as repeated
matrix inversion can be avoided by invoking the simultaneous
congruence decomposition for two symmetric matrices, one of
which is positive definite (Rao 1973; Horn and Johnson 1985).
This decomposition is also called the generalized eigenvalue
decomposition (Golub and Van Loan 1996; Boyd and Vanden-
berghe 2004). If one assumes � = σ 2

1 V1 + σ 2
2 V2 and lets

(V1, V2) �→ (D, U) be the decomposition with U nonsingular,
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Input : y, X, V1, V2
Output: MLE β̂ , σ̂ 2

1 , σ̂ 2
2

1 Simultaneous congruence decomposition:
(D, U) ← (V1, V2)

2 Transform data: ỹ ← UTy, X̃ ← UTX
3 Initialize σ

(0)
1 , σ (0)

1 > 0
4 repeat
5 w(t)

i ← (σ
2(t)
1 di + σ

2(t)
2 )−1, i = 1, . . . , n

6 β(t) ← arg minβ
∑n

i=1 w(t)
i (ỹi − x̃T

i β)2

7 r(t) ← ỹ − X̃β(t)

8 σ
2(t+1)
1 ←

σ
2(t)
1

√
r(t)T(σ

2(t)
1 D+σ

2(t)
2 I)−1D(σ

2(t)
1 D+σ

2(t)
2 I)−1r(t)

tr[(σ 2(t)
1 D+σ

2(t)
2 I)−1D]

9 σ
2(t+1)
2 ← σ

2(t)
2

√
r(t)T(σ

2(t)
1 D+σ

2(t)
2 I)−2r(t)

tr[(σ 2(t)
1 D+σ

2(t)
2 I)−1]

10 until objective value converges
Algorithm 2: Simplified MM algorithm for MLE of model
(1) with m = 2 variance components and � = σ 2

1 V1 +
σ 2

2 V2.

UTV1U = D diagonal, and UTV2U = I, then

�(t) = U−T(σ
2(t)
1 D + σ

2(t)
2 In)U−1

�−(t) = U(σ
2(t)
1 D + σ

2(t)
2 In)

−1UT (10)

det(�(t)) = det(σ 2(t)
1 D + σ

2(t)
2 In) det(V2).

With the revised responses ỹ = UTy and the revised predictor
matrix X̃ = UTX, the update (8) requires only vector operations
and costs O(n) flops. Updating the fixed effects is a weighted
least-squares problem with the transformed data (ỹ, X̃) and
observation weights w(t)

i = (σ
2(t)
1 di + σ

2(t)
2 )−1. Algorithm 2

summarizes the simplified MM algorithm for two variance com-
ponents.

3.2. Numerical Experiments

This section compares the numerical performance of MM, EM,
Fisher scoring (FS), and the lme4 package in R (Bates et al.
2015) on simulated data from a two-way ANOVA random
effects model and a genetic model. For ease of comparison,
all algorithm runs start from σ 2(0) = 1 and terminate when the
relative change (L(t+1) − L(t))/(|L(t)| + 1) in the log-likelihood
is less than 10−8.

Two-way ANOVA: We simulated data from a two-way
ANOVA random effects model

yijk = μ + αi + βj + (αβ)ij + εijk,
1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ c,

where αi ∼ N(0, σ 2
1 ), βj ∼ N(0, σ 2

2 ), (αβ)ij ∼ N(0, σ 2
3 ), and

εijk ∼ N(0, σ 2
e ) are jointly independent. Here, i indexes levels in

factor 1, j indexes levels in factor 2, and k indexes observations
in the (i, j)-combination. This corresponds to m = 4 variance
components. In the simulation, we set σ 2

1 = σ 2
2 = σ 2

3 and varied
the ratio σ 2

1 /σ 2
e ; the numbers of levels a and b in factor 1 and

factor 2, respectively; and the number of observations c in each

combination of factor levels. For each simulation scenario, we
simulated 50 replicates. The sample size was n = abc for each
replicate.

Tables 1 and 2 show the average number of iterations and the
average runtimes when there are a = b = 5 levels of each factor.
Based on these results and further results not shown for other
combinations of a and b, we draw the following conclusions: FS
takes the fewest iterations; the MM algorithm always takes fewer
iterations than the EM algorithm; the faster rate of convergence
of FS is outweighed by the extra cost of evaluating and inverting
the information matrix. Table 1 in supplementary materials S.2
shows that all algorithms converged to the same objective values.

Genetic model: We simulated a quantitative trait y from a
genetic model with two variance components and covariance
matrix � = σ 2

a �̂+σ 2
e I, where �̂ is a full-rank empirical kinship

matrix estimated from the genome-wide measurements of 212
individuals using Option 29 of the Mendel software (Lange et al.
2013). In this example, MM had run times similar to FS, and
both were much faster than EM and lme4.

In summary, the MM algorithm appears competitive even in
small-scale examples. Many applications involve a large number
of variance components. In this setting, the EM algorithm suf-
fers from slow convergence and FS from an extremely high cost
per iteration. Our genomic example in Section 7 reinforces this
point.

4. Global Convergence of the MM Algorithm

The KKT necessary conditions for a local maximum σ 2 =
(σ 2

1 , . . . , σ 2
m) of the log-likelihood (1) require each component

of the score vector to satisfy

∂

∂σ 2
i

L(σ 2) ∈
{

{0} σ 2
i > 0

(−∞, 0] σ 2
i = 0 .

In this section, we establish the global convergence of Algo-
rithm 1 to a KKT point. To reduce the notational burden, we
assume that X is null and omit estimation of fixed effects β . The
analysis easily extends to the nontrivial X case. Our convergence
analysis relies on characterizing the properties of the objective
function L(σ 2) and the MM algorithmic mapping σ 2 �→ M(σ 2)
defined by Equation (8). Special attention must be paid to the
boundary values σ 2

i = 0. We prove convergences for two cases,
which cover most applications. For example, the genetic model
in Section 3 satisfies Assumption 1, while the two-way ANOVA
model satisfies Assumption 2.

Assumption 1. All V i are positive definite.

Assumption 2. V1 is positive definite, each V i is nontrivial,H =
span{V2, . . . , Vm} has dimension q < n, and y /∈ H.

The key condition y /∈ span{V2, . . . , Vm} in the second
case is also necessary for the existence of an MLE or REML
(Demidenko and Massam 1999; Grzadziel and Michalski 2014).
In supplementary materials, we derive a sequence of lemmas en
route to the global convergence result declared in Theorem 1.

Theorem 1. Under either Assumption 1 or 2, the MM sequence
{σ 2(t)}t≥0 has at least one limit point. Every limit point is a fixed
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Table 1. FS converges fastest and MM takes fewer iterations than EM.

σ 2
1 /σ 2

e Method c = # observations per combination

5 10 20 50

0.00 MM 143.12(99.76) 118.26(62.91) 96.26(50.61) 81.10(33.42)
EM 2297.72(797.95) 1711.70(485.92) 1170.06(365.48) 788.10(216.60)
FS 25.64(11.20) 21.10(7.00) 16.46(4.37) 13.88(2.88)

0.05 MM 121.86(98.52) 69.38(50.23) 55.88(37.34) 29.50(18.80)
EM 1464.26(954.27) 538.04(504.42) 254.90(253.86) 104.98(157.97)
FS 16.78(9.13) 12.62(6.22) 9.68(3.22) 8.10(1.34)

0.10 MM 84.74(59.33) 62.98(50.48) 40.46(31.43) 25.86(18.79)
EM 985.46(830.49) 360.32(462.62) 157.70(231.91) 68.26(107.85)
FS 15.20(10.10) 10.58(5.92) 8.58(3.56) 7.50(1.72)

1.00 MM 31.04(33.27) 29.60(27.66) 25.32(25.39) 24.90(20.76)
EM 130.18(299.03) 161.14(290.23) 64.20(135.38) 84.88(137.88)
FS 6.62(4.72) 6.32(3.64) 5.12(1.87) 5.36(1.50)

10.00 MM 29.80(35.42) 34.16(38.25) 28.82(28.44) 20.90(14.28)
EM 115.94(274.33) 177.30(301.71) 80.12(155.67) 75.02(127.38)
FS 12.72(5.14) 12.86(4.94) 11.66(3.95) 11.76(3.66)

20.00 MM 30.10(32.92) 32.72(39.02) 23.70(21.20) 19.62(15.67)
EM 148.04(318.40) 85.86(180.28) 61.74(140.84) 37.36(83.89)
FS 18.76(7.51) 17.40(5.21) 17.22(5.67) 16.28(5.03)

NOTE: Shown above are average number of iterations until convergence for MM, EM, and FS for fitting a two-way ANOVA model with a = b = 5 levels of both factors.
Standard errors are given in parentheses.

Table 2. MM shows shortest run times than EM, FS, and lme4.

σ 2
1 /σ 2

e Method c = # observations per combination

5 10 20 50

0.00 MM 11.46(7.77) 10.06(5.29) 11.93(6.35) 10.44(3.99)
EM 189.32(71.32) 148.20(48.13) 147.87(49.97) 96.28(24.97)
FS 34.27(33.47) 24.89(8.55) 23.70(14.15) 20.46(4.54)

lme4 25.84(12.10) 22.32(1.25) 27.34(4.06) 36.14(5.59)

0.05 MM 9.79(7.72) 6.19(4.22) 6.87(4.37) 4.45(2.20)
EM 116.03(75.57) 47.72(45.35) 30.60(29.88) 14.23(19.68)
FS 19.18(10.23) 15.37(7.48) 12.78(4.06) 12.39(2.35)

lme4 22.76(1.96) 24.88(2.60) 28.72(3.10) 47.34(16.29)

0.10 MM 7.07(4.78) 6.29(4.94) 5.14(3.72) 3.95(2.23)
EM 78.96(66.19) 35.48(45.81) 19.53(27.71) 9.67(13.56)
FS 17.36(11.26) 14.44(9.00) 12.08(6.31) 11.47(2.40)

lme4 22.66(1.83) 28.90(8.70) 30.16(4.43) 44.58(4.89)

1.00 MM 2.66(2.61) 3.22(2.91) 3.57(3.15) 3.85(2.50)
EM 10.71(23.93) 15.88(27.52) 8.35(16.26) 11.34(16.65)
FS 7.88(5.44) 9.10(4.95) 7.12(2.42) 8.46(2.27)

lme4 23.12(1.75) 30.22(9.37) 29.96(4.47) 42.82(8.32)

10.00 MM 2.48(2.72) 3.24(3.19) 3.84(3.35) 3.35(1.71)
EM 9.66(22.02) 15.98(26.57) 10.24(18.78) 10.27(15.40)
FS 15.19(6.05) 16.39(6.11) 15.81(5.15) 18.14(5.46)

lme4 35.02(3.83) 47.12(8.10) 63.24(15.33) 102.78(34.49)

20.00 MM 2.57(2.49) 3.13(3.53) 3.13(2.44) 3.07(1.81)
EM 12.28(25.71) 8.44(16.89) 8.01(17.12) 5.47(9.76)
FS 22.09(8.53) 22.03(6.14) 23.08(7.21) 23.99(7.38)

lme4 37.34(12.91) 50.24(8.59) 63.62(17.39) 91.14(28.39)

NOTE: Shown above are average run times (milliseconds) for fitting a two-way ANOVA model with a = b = 5 levels of both factors. Standard errors are given in parentheses.

point of M(σ 2). If the set of fixed points is discrete, then the MM
sequence converges to one of them. Finally, when the iterates
converge, their limit is a KKT point.

5. MM Versus EM

Examination of Tables 2 and 3 suggests that the MM algorithm
usually converges faster than the EM algorithm. We now provide

an explanation for this observation. Again for notational conve-
nience, we consider the REML case where X is null. Since the
EM principle is just a special instance of the MM principle, we
can compare their convergence properties in a unified frame-
work. Consider an MM map M(θ) for maximizing the objective
function f (θ) via the surrogate function g(θ | θ (t)). Close to the
optimal point θ∞,

θ (t+1) − θ∞ ≈ dM(θ∞)(θ (t) − θ∞),
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Table 3. MM and FS show superior performance than EM and lme4.

σ 2
a /σ 2

e Method Iteration Runtime (ms) Objective

0.00 MM 198.02(102.23) 133.61(822.67) −375.59(9.63)
EM 1196.10(958.51) 29.71(12.34) −375.60(9.64)
FS 7.60(3.07) 19.34(33.77) −375.59(9.63)

lme4 – 401.02(142.04) −375.59(9.64)

0.05 MM 185.86(99.41) 17.26(1.76) −377.39(10.52)
EM 1227.62(1030.07) 29.82(12.74) −377.40(10.52)
FS 7.84(2.74) 14.97(1.55) −377.39(10.52)

lme4 – 425.04(144.00) −377.39(10.52)

0.10 MM 169.24(99.75) 16.97(1.59) −378.40(11.44)
EM 924.80(912.23) 26.06(11.26) −378.41(11.45)
FS 7.32(2.75) 15.06(1.38) −378.40(11.44)

lme4 – 435.14(128.87) −378.40(11.44)

1.00 MM 58.96(23.69) 15.53(0.75) −409.54(10.90)
EM 105.10(79.65) 15.49(0.96) −409.54(10.90)
FS 5.80(1.05) 14.66(0.89) −409.54(10.90)

lme4 – 493.14(52.80) −409.54(10.90)

10.00 MM 110.00(63.13) 16.22(1.12) −532.48(8.77)
EM 642.48(1470.38) 22.32(18.37) −532.57(8.75)
FS 14.98(5.21) 14.78(0.97) −531.72(8.92)

lme4 – 2897.12(15006.38) −532.48(8.77)

20.00 MM 110.52(34.81) 16.07(0.91) −590.87(7.15)
EM 1014.22(1775.40) 27.03(22.33) −590.89(7.15)
FS 17.72(3.13) 14.79(0.93) −588.46(7.27)

lme4 – 5059.24(20692.67) −590.79(7.15)

NOTE: Shown above are average performance for fitting a genetic model. Standard errors are given in parentheses.

where dM(θ∞) is the differential of the mapping M at the opti-
mal point θ∞ of f (θ). Hence, the local convergence rate of the
sequence θ (t+1) = M(θ (t)) coincides with the spectral radius of
dM(θ∞). Familiar calculations (Lange 2010) demonstrate that

dM(θ∞) = I − [d2g(θ∞ | θ∞)]−1d2f (θ∞).

In other words, the local convergence rate is determined by
how well the surrogate surface g(θ | θ∞) approximates the
objective surface f (θ) near the optimal point θ∞. In the EM
literature, dM(θ∞) is called the rate matrix (Meng and Rubin
1991). Fast convergence occurs when the surrogate g(θ | θ∞)

hugs the objective f (θ) tightly around θ∞. Figure 1 shows a case
where the MM surrogate locally dominates the EM surrogate.
We demonstrate that this is no accident.

The Q-function in the EM algorithm

gEM(σ 2 |σ 2(t)) = −1
2

m∑
i=1

[
rank(V i) · ln σ 2

i + rank(V i)
σ

2(t)
i
σ 2

i

−σ
4(t)
i
σ 2

i
tr(�−(t)V i)

]
−1

2

m∑
i=1

σ
4(t)
i
σ 2

i
yT�−(t)V i�

−(t)y

minorizes the log-likelihood up to an irrelevant constant. Sup-
plementary materials S.6 gives a detailed derivation for the more
general multivariate response case. Both surrogates gEM(σ 2 |
σ 2(∞)) and gMM(σ 2 | σ 2(∞)) are parameter separated. This
implies that both second differentials d2gEM(σ 2(∞) | σ 2(∞))

and d2gMM(σ 2(∞) |σ 2(∞)) are diagonal. A small diagonal entry
of either matrix indicates fast convergence of the correspond-
ing variance component. Our next result shows that, under

Assumption 1, on average the diagonal entries of d2gEM(σ 2(∞) |
σ 2(∞)) dominate those of d2gMM(σ 2(∞) | σ 2(∞)) when m > 2.
Thus, the EM algorithm tends to converge more slowly than the
MM algorithm, and the difference is more pronounced as the
number of variance components m grows. See supplementary
materials S.4 for the proof.

Theorem 2. Let σ 2(∞) � 0m be a common limit point of
the EM and MM algorithms. Then both second differentials
d2gMM(σ 2(∞) | σ 2(∞)) and d2gEM(σ 2(∞) | σ 2(∞)) are diagonal
with

d2gEM(σ 2(∞) | σ 2(∞))ii = − rank(V i)

2σ
4(∞)
i

d2gMM(σ 2(∞) | σ 2(∞))ii = −yT�−(∞)V i�
−(∞)y

σ
2(∞)
i

= − tr(�−(∞)V i)

σ
2(∞)
i

.

Furthermore, the average ratio

1
m

m∑
i=1

d2gMM(σ 2(∞) | σ 2(∞))ii
d2gEM(σ 2(∞) | σ 2(∞))ii

= 2
mn

m∑
i=1

tr(�−(∞)σ
2(∞)
i V i) = 2

m
< 1

for m > 2 when all V i have full rank n.

It is not clear whether a similar result holds under Assump-
tion 2. Empirically, we observed faster convergence of MM
than EM, for example, in the two-way ANOVA example
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(Table 1). Also note that both the EM and MM algorithms
must evaluate the traces tr(�−(t)V i) and quadratic forms
(y − Xβ(t))T�−(t)V i�

−(t)(y − Xβ(t)) at each iteration. Since
these quantities are also the building blocks of the approximate
rate matrices d2g(σ 2(t) |σ 2(t)), one can rationally choose either
the EM or MM updates based on which has smaller diagonal
entries measured by the �1, �2, or �∞ norms. At negligible extra
cost, this produces a hybrid algorithm that retains the ascent
property and enjoys the better of the two convergence rates
under either Assumption 1 or 2.

6. Extensions

Besides its competitive numerical performance, Algorithm 1 is
attractive for its simplicity and ease of generalization. In this
section, we outline MM algorithms for multivariate response
models possibly with missing data, LMMs, MAP estimation,
and penalized estimation.

6.1. Multivariate Response Model

Consider the multivariate response model with an n × d
response matrix Y , which has no missing entries, mean E Y =
XB, and covariance

� = cov(vecY) =
m∑

i=1
�i ⊗ V i.

The p × d coefficient matrix B collects the fixed effects, the
�i are unknown d × d variance components, and the V i are
known n × n covariance matrices. If the vector vecY is nor-
mally distributed, then Y equals a sum of independent matrix
normal distributions (Gupta and Nagar 1999). We now make
this assumption and pursue estimation of B and the �i, which
we collectively denote as �. Under the normality assumption,
Roth’s Kronecker product identity vec(CDE) = (ET⊗C)vec(D)

yields the log-likelihood

L(B, �) = −1
2

ln det � − 1
2

vec(Y − XB)T�−1 (11)

vec(Y − XB)

= −1
2

ln det � − 1
2
[vecY − (Id ⊗ X)vecB]T

�−1[vecY − (Id ⊗ X)vecB].
Updating B given �(t) is accomplished by solving the general
least-squares problem met earlier in the univariate case. Update
of �i given B(t) is difficult due to the positive semidefinite-
ness constraint. Typical solutions involve reparameterization
of the covariance matrix (Pinheiro and Bates 1996). The MM
algorithm derived in this section gracefully accommodates the
covariance constraints.

Updating � given B(t) requires generalizing the minorization
(5). In view of Lemma 1 and the identities (A ⊗ B)(C ⊗ D) =
(AC) ⊗ (BD) and (A ⊗ B)−1 = A−1 ⊗ B−1, we have

�(t)�−1�(t) = m

[
1
m

m∑
i=1

�
(t)
i ⊗ V i

] [
1
m

m∑
i=1

�i ⊗ V i

]−1

×
[

1
m

m∑
i=1

�
(t)
i ⊗ V i

]

� m
1
m

m∑
i=1

(�
(t)
i ⊗ V i)(�i ⊗ V i)

−1(�(t)
i ⊗ V i)

=
m∑

i=1
(�

(t)
i �−1

i �
(t)
i ) ⊗ V i,

or equivalently

�−1 � �−(t)
[ m∑

i=1
(�

(t)
i �−1

i �
(t)
i ) ⊗ V i

]
�−(t). (12)

This derivation relies on the invertibility of the matrices V i. One
can relax this assumption by substituting Vε,i = V i +εIn for V i
and sending ε to 0.

The majorization (12) and the minorization (6) jointly yield
the surrogate

g(� | �(t)) = −1
2

m∑
i=1

{
tr[�−(t)(�i ⊗ V i)]

+(vec R(t))T[(�(t)
i �−1

i �
(t)
i )⊗V i] (vec R(t))

}
+c(t),

where R(t) is the n×d matrix satisfying vec R(t) = �−(t)vec(Y−
XB(t)) and c(t) is an irrelevant constant. Based on the Kronecker
identities (vec A)Tvec B = tr(ATB) and vec(CDE) = (ET ⊗
C)vec(D), the surrogate can be rewritten as

g(� | �(t)) = −1
2

m∑
i=1

{
tr[�−(t)(�i ⊗ V i)]

+tr(R(t)TV iR(t)�(t)
i �−1

i �
(t)
i )

}
+ c(t)

= −1
2

m∑
i=1

{
tr[�−(t)(�i ⊗ V i)]

+tr(�(t)
i R(t)TV iR(t)�(t)

i �−1
i )

}
+ c(t).

The first trace is linear in �i with the coefficient of entry (�i)jk
equal to

tr(�−(t)
jk V i) = 1T

n (V i � �
−(t)
jk )1n,

where �
−(t)
jk is the (j, k)th n × n block of �−(t) and � indicates

element-wise product. The matrix Mi of these coefficients can
be written as

Mi = (Id ⊗ 1n)
T[(1d1T

d ⊗ V i) � �−(t)](Id ⊗ 1n).

The directional derivative of g(� | �(t)) with respect to �i in
the direction �i is

−1
2

tr(Mi�i) + 1
2

tr(�(t)
i R(t)TV iR(t)�(t)

i �−1
i �i�

−1
i )

= −1
2

tr(Mi�i) + 1
2

tr(�−1
i �

(t)
i R(t)TV iR(t)�(t)

i �−1
i �i).

Because all directional derivatives of g(� | �(t)) vanish at a
stationarity point, the matrix equation

Mi = �−1
i �

(t)
i R(t)TV iR(t)�(t)

i �−1
i (13)

holds. Fortunately, this equation admits an explicit solution.
For positive scalers a and b, the solution to the equation b =
x−1ax−1 is x = ±√

a/b. The matrix analog of this equation
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input : Y , X, V1, . . . , Vm
output: MLE B̂, �̂1, . . . , �̂m

1 Initialize �
(0)
i positive definite, i = 1, . . . , m

2 repeat
3 �(t) ← ∑m

i=1 �
(t)
i ⊗ V i

4 B(t) ← arg minB [vecY − (Id ⊗
X)vecB]T�−(t)[vecY − (Id ⊗ X)vecB]

5 R(t) ← reshape(�−(t)vec(Y − XB(t)), n, d)

6 for i = 1, . . . , m do
7 Cholesky L(t)

i L(t)T
i ←

(Id ⊗ 1n)T[(1d1T
d ⊗ V i) � �−(t)](Id ⊗ 1n)

8 �
(t+1)
i ←

L−(t)T
i [L(t)T

i (�
(t)
i R(t)TV iR(t)�(t)

i )L(t)
i ]1/2L−(t)

i
9 end

10 until objective value converges
Algorithm 3: The MM algorithm for MLE of the multivari-
ate response model (11).

is the Riccati equation B = X−1AX−1, whose solution is
summarized in the next lemma.

Lemma 3. Assume A and B are positive definite and L is the
Cholesky factor of B. Then Y = L−T(LTAL)1/2L−1 is the
unique positive-definite solution to the matrix equation B =
X−1AX−1.

The Cholesky factor L in Lemma 3 can be replaced by the
symmetric square root of B. The solution, which is unique,
remains the same. The Cholesky decomposition is preferred
for its cheaper computational cost and better numerical
stability.

Algorithm 3 summarizes the MM algorithm for fitting the
multi-response model (3). Each iteration invokes m Cholesky
decompositions and symmetric square roots of d × d positive-
definite matrices. Fortunately in most applications, d is a small
number. The following result guarantees the non-singularity of
the Cholesky factor throughout the iterations. See supplemen-
tary materials S.8 for the proof.

Proposition 2. Assume V i has strictly positive diagonal entries.
Then the symmetric matrix Mi = (Id ⊗ 1n)T[(1d1T

d ⊗ V i) �
�−(t)](Id ⊗ 1n) is positive definite for all t. Furthermore if
�

(0)
i � 0 and no column of R(t) lies in the null space of V i for

all t, then �
(t)
i � 0 for all t.

6.2. Multivariate Response, Two Variance Components

When there are m = 2 variance components � = �1 ⊗
V1 + �2 ⊗ V2, repeated inversion of the nd × nd covariance
matrix � reduces to a single n × n simultaneous congruence
decomposition and, per iteration, two d×d Cholesky decompo-
sitions and one d × d simultaneous congruence decomposition.
The simultaneous congruence decomposition of the matrix pair
(V1, V2) involves generalized eigenvalues d = (d1, . . . , dn) and
a nonsingular matrix U such that UTV1U = D = diag(d) and

UTV2U = I. If the simultaneous congruence decomposition
of (�

(t)
1 , �(t)

2 ) is (	(t), �(t)) with �(t)T�
(t)
1 �(t) = 	(t) =

diag(λ(t)) and �(t)T�
(t)
2 �(t) = Id, then

�(t) = (�−(t) ⊗ U−1)T(	(t) ⊗ D + Id ⊗ In)

×(�−(t) ⊗ U−1)

�−(t) = (�(t) ⊗ U)(	(t) ⊗ D + Id ⊗ In)
−1(�(t) ⊗ U)T

det �(t) = det(	(t) ⊗ D + Id ⊗ In)

× det[(�−(t) ⊗ U−1)T(�−(t) ⊗ U−1)]
= det(	(t) ⊗ D + Id ⊗ In) det(�(t)

2 ⊗ V2)

= det(	(t) ⊗ D + Id ⊗ In) det(�(t)
2 )n det(V2)

d.

Updating the fixed effects reduces to a weighted least-squares
problem for the transformed responses Ỹ = UTY , transformed
predictor matrix X̃ = UTX, and observation weights (λ

(t)
k di +

1)−1. Algorithm 4 summarizes the simplified MM algorithm.
The lengthy derivations are relegated to supplementary materi-
als S.5.

Input : Y , X, V1, V2
Output: MLE B̂, �̂1, �̂2

1 Simultaneous congruence decomposition:
(D, U) ← (V1, V2)

2 Transform data: Ỹ ← UTY , X̃ ← UTX
3 Initialize �

(0)
1 , �(0)

2 positive definite
4 repeat
5 Simultaneous congruence decomposition

(	(t), �(t)) ← (�
(t)
1 , �(t)

2 )

6 B(t) ←
arg minB [vec(Ỹ�(t)) − (�(t)T ⊗ X̃)vecB]T(	(t) ⊗ D +
Id ⊗ In)−1[vec(Ỹ�(t)) − (�(t)T ⊗ X̃)vecB]

7 Cholesky L(t)
1 L(t)T

1 ←
�(t)diag

(
tr

(
D(λ

(t)
k D + In)−1

)
, k = 1, . . . , d

)
�(t)T

8 Cholesky L(t)
2 L(t)T

2 ←
�(t)diag

(
tr

(
(λ

(t)
k D + In)−1

)
, k = 1, . . . , d

)
�(t)T

9 N(t)
1 ←

D1/2[(Ỹ − X̃B(t))�(t)) � (dλ(t)T + 1n1T
d )]	(t)�−(t)

10 N(t)
2 ← [(Ỹ − X̃B(t))�(t)) � (dλ(t)T + 1n1T

d )]�−(t)

11 �
(t+1)
i ← L−(t)T

i (L(t)T
i M(t)T

i M(t)
i L(t)

i )1/2L−(t)
i , i = 1, 2

12 until objective value converges
Algorithm 4: MM algorithm for multivariate response
model � = �1 ⊗ V1 + �2 ⊗ V2 with two variance
components matrices. Note that � denotes a Hadamard
quotient.

6.3. Multivariate Response Model with Missing Responses

In many applications, the multivariate response model (11)
involves missing responses. For instance, in testing multiple
longitudinal traits in genetics, some trait values yij may be
missing due to dropped patient visits, while their genetic covari-
ates are complete. Missing data destroy the symmetry of the



358 H. ZHOU ET AL.

log-likelihood (11) and complicates finding the MLE. Fortu-
nately, MM Algorithm 3 easily adapts to this challenge.

The familiar EM argument (McLachlan and Krishnan 2008,
sec. 2.2) shows that

− n
2

ln det �(t)

− 1
2

tr{�−(t)[vec(Z(t) − XB(t))vec(Z(t) − XB(t))T + C(t)]}
(14)

minorizes the observed log-likelihood at the current iterate
(B(t), �(t)

1 , . . . , �(t)
m ). Here, Z(t) is the completed response matrix

given the observed responses Y(t)
obs and the current parameter

values. The complete data Y is assumed to be normally dis-
tributed N(vec(XB(t)), �(t)). The block matrix C(t) is 0 except
for a lower-right block consisting of a Schur complement.

To maximize the surrogate (14), we invoke the familiar
minorization (6) and majorization (12) to separate the variance
components �i. At each iteration, we impute missing entries by
their conditional means, compute their conditional variances
and covariances to supply the Schur complement, and then
update the fixed effects and variance components by the explicit
updates of Algorithm 3. The required conditional means and
conditional variances can be conveniently obtained in the
process of inverting �(t) by the sweep operator of computational
statistics (Lange 2010, Section 7.3).

6.4. Linear Mixed Model

The LMM plays a central role in longitudinal data analysis.
Consider the single-level LMM (Laird and Ware 1982; Bates and
Pinheiro 1998) for n independent data clusters (yi, Xi, Zi) with

Y i = Xiβ + Ziγ i + εi, i = 1, . . . , n,

where β is a vector of fixed effects, the γ i ∼ N(0, Ri(θ)) are
independent random effects, and εi ∼ N(0, σ 2Ini) captures
random noise independent of γ i. We assume the matrices Zi
have full column rank. The within-cluster covariance matrices
Ri(θ) depend on a parameter vector θ ; typical choices for Ri(θ)

impose autocorrelation, compound symmetry, or unstructured
correlation. It is clear that Y i is normal with mean Xiβ , covari-
ance �i = ZiRi(θ)ZT

i + σ 2Ini , and log-likelihood

Li(β , θ , σ 2) = −1
2

ln det �i − 1
2
(yi − Xiβ)T�−1

i (yi − Xiβ).

The next three technical facts about pseudo-inverses are used
in deriving the MM algorithm for LMM and their proofs are in
supplementary materials S.9–S.11.

Lemma 4. If A has full column rank and B has full row rank,
then (AB)+ = B+A+.

Lemma 5. If A and B are positive semidefinite matrices with the
same range, then

lim
ε↓0

(B + εI)(A + εI)−1(B + εI) = BA+B.

Lemma 6. If R and S are positive-definite matrices, and the
conformable matrix Z has full column rank, then the matrices
ZRZT and ZSZT share a common range.

The convexity of the map (X, Y) �→ XTY−1X and Lemmas
4–6 now yield via the obvious limiting argument the majoriza-
tion

�(t)�−1�(t) = (ZiRi(θ
(t))ZT

i +σ 2(t)Ini)(ZiRi(θ)ZT
i +σ 2Ini)
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i ZT+
i ]R−1

i (θ)[Z+
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(t))ZT
i ]

+σ 4(t)

σ 2 Ini .

In combination with the minorization (6), this gives the surro-
gate

gi(θ , σ 2 | θ (t), σ 2(t))

= −1
2

tr(ZT
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2
r(t)T
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2
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−σ 4(t)

2σ 2 (yi − Xiβ
(t))T�
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(t)) + c(t),

for the log-likelihood Li(θ , σ 2), where

r(t)
i = (Z+

i ZiRi(θ
(t))ZT

i )�
−(t)
i (yi − Xiβ

(t))

= Ri(θ
(t))ZT

i �
−(t)
i (yi − Xiβ

(t)).

The parameters θ and σ 2 are nicely separated. To maximize
the overall minorization function

∑
i gi(θ , σ 2 | θ (t), σ 2(t)), we

update σ 2 via

σ 2(t+1) = σ 2(t)

√√√√∑
i(yi − Xiβ

(t))T�
−2(t)
i (yi − Xiβ

(t))∑
i tr(�−(t)

i )
.

For structured models such as autocorrelation and compound
symmetry, updating θ is a low-dimensional optimization prob-
lem that can be approached through the stationarity condition∑

i
vec

(
ZT

i �
(t)
i Zi − R−1

i (θ)r(t)
i r(t)T

i R−1
i (θ)

)T ∂

∂θj
vec Ri(θ)

= 0

for each component θj. For the unstructured model with
Ri(θ) = R for all i, the stationarity condition reads

∑
i

ZT
i �

(t)
i Zi = R−1

(∑
i

r(t)
i r(t)T

i

)
R−1

and admits an explicit solution based on Lemma 3.
The same tactics apply to a multilevel LMM (Bates and

Pinheiro 1998) with responses

Y i = Xiβ + Zi1γ i1 + · · · Zimγ im + εi.

Minorization separates parameters for each level (variance com-
ponent). Depending on the complexity of the covariance matri-
ces, maximization of the surrogate can be accomplished analyt-
ically. For the sake of brevity, details are omitted.
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6.5. MAP Estimation

Suppose β follows an improper flat prior, the variance com-
ponents σ 2

i follow inverse gamma priors with shapes αi > 0
and scales γi > 0, and these priors are independent. The log-
posterior density then reduces to

−1
2

ln det � − 1
2
(y − Xβ)T�−1(y − Xβ)

−
m∑

i=1
(αi + 1) ln σ 2

i −
m∑

i=1

γi

σ 2
i

+ c, (15)

where c is an irrelevant constant. The MAP estimator of (β , σ 2)
is the mode of the posterior distribution. The update (4) of β

given σ 2 remains the same. To update σ 2 given β , apply the
same minorizations (5) and (6) to the first two terms of equation
(15). This separates parameters and yields a convex surrogate
for each σ 2

i . The minimum of the σ 2
i surrogate is defined by the

stationarity condition

0 = −1
2

tr(�−(t)V i)

+σ
4(t)
i

2σ 4
i

(y − Xβ(t))T�−(t)V i�
−(t)(y − Xβ(t))

−αi + 1
σ 2

i
+ γi

σ 4
i

.

Multiplying this by σ 4
i gives a quadratic equation in σ 2

i . The pos-
itive root should be taken to meet the nonnegativity constraint
on σ 2

i .
For the multivariate response model (11), we assume the

variance components �i follow independent inverse Wishart
distributions with degrees of freedom νi > d − 1 and scale
matrix  i � 0. The log density of the posterior distribution
is

−1
2

ln det � − 1
2

vec(Y − XB)T�−1vec(Y − XB)

−1
2

m∑
i=1

(νi + d + 1) ln det �i − 1
2

m∑
i=1

tr( i�
−1
i ) + c,

(16)

where c is an irrelevant constant. Invoking the minorizations (6)
and (12) for the first two terms and the supporting hyperplane
minorization for − ln det �i gives the surrogate function

g(�|�(t)) = −1
2

m∑
i=1

tr(�−(t)(�i ⊗ V i))

−1
2

m∑
i=1

tr
(
�

(t)
i R(t)TV iR(t)�(t)

i �−1
i

)
−1

2

m∑
i=1

(νi + d + 1)tr(�−(t)
i �i)

−1
2

m∑
i=1

tr( i�
−1
i ) + c(t).

The optimal �i satisfies the stationarity condition

(Id ⊗ 1n)
T[(1d1T

d ⊗ V i) � �−(t)](Id ⊗ 1n)

+(νi + d + 1)�
−(t)
i

= �−1
i (�

(t)
i R(t)TV iR(t)�(t)

i +  i)�
−1
i ,

which can be solved by Lemma 3.

6.6. Variable Selection

In the statistical analysis of high-dimensional data, the impo-
sition of sparsity leads to better interpretation and more stable
parameter estimation. MM algorithms mesh well with penal-
ized estimation. The simple variance components model (1)
illustrates this fact. For the selection of fixed effects, minimiz-
ing the lasso-penalized log-likelihood −L(β , σ 2) + λ

∑
j |βj|

is often recommended (Schelldorfer, Bühlmann, and van de
Geer 2011). The only change to the MM Algorithm 1 is that in
estimating β , one solves a lasso penalized general least-squares
problem rather than an ordinary general least-squares problem.
The updates of the variance components σ 2

i remain the same.
For estimation of a large number of variance components, one
can minimize the ridge-penalized log-likelihood

−L(β , σ 2) + λ

m∑
i=1

σ 2
i

subject to the nonnegativity constraints σ 2
i ≥ 0. The variance

update (8) becomes

σ
2(t+1)
i = σ

2(t)
i

√
(y − Xβ(t))T�−(t)V i�

−(t)(y − Xβ(t))

tr(�−(t)V i) + 2λ
,

i = 1, . . . , m,

which clearly exhibits shrinkage but no thresholding. The lasso
penalized log-likelihood

− L(β , σ 2) + λ

m∑
i=1

σi (17)

subject to nonnegativity constraint σi ≥ 0 achieves both ends.
The update of σi is chosen among the positive roots of a quartic
equation and the boundary 0, whichever yields a lower objective
value. Next section illustrates variance component selection
using lasso penalty on a real genetic dataset.

7. A Numerical Example

Quantitative trait loci (QTL) mapping aims to identify genes
associated with a quantitative trait. Current sequencing tech-
nology measures millions of genetic markers in study subjects.
Traditional single-marker tests suffer from low power due to the
low frequency of many markers and the corrections needed for
multiple hypothesis testing. Region-based association tests are a
powerful alternative for analyzing next-generation sequencing
data with abundant rare variants.

Suppose y is an n × 1 vector of quantitative trait measure-
ments on n people, X is an n×p predictor matrix (incorporating



360 H. ZHOU ET AL.

Table 4. Top 10 genes selected by the lasso penalized variance component model
(17) are tallied with their marginal p-values in an association study of 200 genes and
the complex trait height.

Lasso Rank Gene Marginal p-value # Variants

1 DOLPP1 2.35 × 10−6 2
2 C9orf21 3.70 × 10−5 4
3 PLS1 2.29 × 10−3 5
4 ATP5D 6.80 × 10−7 3
5 ADCY4 1.01 × 10−3 11
6 SLC22A25 3.95 × 10−3 14
7 RCSD1 9.04 × 10−4 4
8 PCDH7 1.20 × 10−4 7
9 AVIL 8.34 × 10−4 11

10 AHR 1.14 × 10−3 7

predictors such as sex, smoking history, and principal compo-
nents for ethnic admixture), and G is an n × m genotype matrix
of m genetic variants in a predefined region. The LMM assumes

Y = Xβ + Gγ + ε, γ ∼ N(0, σ 2
g I), ε ∼ N(0, σ 2

e In),

where β are fixed effects, γ are random genetic effects, and σ 2
g

and σ 2
e are variance components for the genetic and environ-

mental effects, respectively. Thus, the phenotype vector Y has
covariance σ 2

g GGT +σ 2
e In, where GGT is the kernel matrix cap-

turing the overall effect of the m variants. Current approaches
test the null hypothesis σ 2

g = 0 for each region separately and
then adjust for multiple testing (Lee et al. 2014; Zhou et al. 2016).
Instead of this marginal testing strategy, we consider the joint
model

y = Xβ + s−1/2
1 G1γ 1 + · · · + s−1/2

m Gmγ m + ε,
γ i ∼ N(0, σ 2

i I), ε ∼ N(0, σ 2
e In)

and select the variance components σ 2
i via the penalization (17).

Here, si is the number of variants in region i, and the weights
s−1/2
i put all variance components on the same scale.

We illustrate this approach using the COPDGene exome
sequencing study (Regan et al. 2010). After quality control, 399
individuals and 646,125 genetic variants remain for analysis.
Genetic variants are grouped into 16,619 genes to expose those
genes associated with the complex trait height. We include
age, sex, and the top 3 principal components in the mean
effects. Because the number of genes vastly exceeds the sample
size n = 399, we first pare the 16,619 genes down to 200
genes according to their marginal likelihood ratio test p-values
and then carry out penalized estimation of the 200 variance
components in the joint model (17). This is similar to the sure
independence screening strategy for selecting mean effects (Fan
and Lv 2008). Genes are ranked according to the order they
appear in the lasso solution path. Table 4 lists the top 10 genes
together with their marginal LRT p-values. Figure 1 in the
supplementary materials displays the corresponding segment of
the lasso solution path. It is noteworthy that the ranking of genes
by penalized estimation differs from the ranking according to
marginal p-values. The same phenomenon occurs in selection of
highly correlated mean predictors. This penalization approach
for selecting variance components warrants further theoretical
study.

8. Discussion

The current article leverages the MM principle to design pow-
erful and versatile algorithms for variance components estima-
tion. The MM algorithms derived are notable for their simplic-
ity, generality, numerical efficiency, and theoretical guarantees.
Both ordinary MLE and REML are apt to benefit. Other exten-
sions are possible. In nonlinear models (Bates and Watts 1988;
Lindstrom and Bates 1990), the mean response is a nonlinear
function in the fixed effects β . One can easily modify the MM
algorithms to update β by a few rounds of Gauss–Newton
iteration. The variance components updates remain unchanged.

One can also extend our MM algorithms to elliptically sym-
metric densities

f (y) = e− 1
2 κ(δ2)

(2π)
n
2 (det �)

1
2

defined for y ∈ R
n, where δ2 = (y − μ)T�−1(y − μ) denotes

the Mahalanobis distance between y and μ. Here, we assume
that the function κ(s) is strictly increasing and strictly con-
cave. Examples of elliptically symmetric densities include the
multivariate t, slash, contaminated normal, power exponential,
and stable families. Previous work (Huber and Ronchetti 2009;
Lange and Sinsheimer 1993) has focused on using the MM prin-
ciple to convert parameter estimation for these robust families
into parameter estimation under the multivariate normal. One
can chain the relevant majorization κ(s) ≤ κ(s(t))+κ ′(s(t))(s −
s(t)) with our previous minorizations and simultaneously split
variance components and pass to the more benign setting of
the multivariate normal. These extensions are currently under
investigation.
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