Newton's Method for Constrained Optimization (BV Chapters 10, 11)

We only consider convex optimization in this lecture.

Equality constraint

  • Consider equality constrained optimization \begin{eqnarray*} &\text{minimize}& f(\mathbf{x}) \\ &\text{subject to}& \mathbf{A} \mathbf{x} = \mathbf{b}, \end{eqnarray*} where $f$ is convex.

KKT condition

  • The Langrangian function is \begin{eqnarray*} L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \nu^T(\mathbf{A} \mathbf{x} - \mathbf{b}), \end{eqnarray*} where $\nu$ is the vector of Langrange multipliers.

  • Setting the gradient of Langrangian function to zero yields the optimality condition (Karush-Kuhn-Tucker condition) \begin{eqnarray*} \mathbf{A} \mathbf{x}^\star &=& \mathbf{b} \quad \quad (\text{primal feasibility condition}) \\ \nabla f(\mathbf{x}^\star) + \mathbf{A}^T \nu^\star &=& \mathbf{0} \quad \quad (\text{dual feasibility condition}) \end{eqnarray*}

Newton algorithm

  • Let $\mathbf{x}$ be a feasible point, i.e., $\mathbf{A} \mathbf{x} = \mathbf{b}$, and denote Newton direction by $\Delta \mathbf{x}$. By second order Taylor expansion \begin{eqnarray*} f(\mathbf{x} + \Delta \mathbf{x}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^T \Delta \mathbf{x} + \frac 12 \Delta \mathbf{x}^T \nabla^2 f(\mathbf{x}) \Delta \mathbf{x}. \end{eqnarray*} To maximize the quadratic approximation subject to constraint $\mathbf{A}(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{b}$, we solve the KKT equation \begin{eqnarray*} \begin{pmatrix} \nabla^2 f(\mathbf{x}) & \mathbf{A}^T \\ \mathbf{A} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \nu \end{pmatrix} = \begin{pmatrix}

    • \nabla f(\mathbf{x}) \ \mathbf{0} \end{pmatrix} \end{eqnarray*} for the Newton direction.
  • When $\nabla^2 f(\mathbf{x})$ is pd and $\mathbf{A}$ has full row rank, the KKT matrix is nonsingular therefore the Newton direction is uniquely determined.

  • Line search is similar to the unconstrained case.

  • Infeasible Newton step. So far we assume that we start with a feasible point. How to derive Newton step from an infeasible point $\mathbf{x}$? Again from the KKT condition, \begin{eqnarray*} \begin{pmatrix} \nabla^2 f(\mathbf{x}) & \mathbf{A}^T \\ \mathbf{A} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \omega \end{pmatrix} = - \begin{pmatrix} \nabla f(\mathbf{x}) \\ \mathbf{A} \mathbf{x} - \mathbf{b} \end{pmatrix}. \end{eqnarray*} Writing the updated dual variable $\omega = \nu + \Delta \nu$, we have the equivalent form in terms of primal update $\Delta \mathbf{x}$ and dual update $\Delta \nu$ \begin{eqnarray*} \begin{pmatrix} \nabla^2 f(\mathbf{x}) & \mathbf{A}^T \\ \mathbf{A} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \Delta \nu \end{pmatrix} = - \begin{pmatrix} \nabla f(\mathbf{x}) + \mathbf{A}^T \nu \\ \mathbf{A} \mathbf{x} - \mathbf{b} \end{pmatrix}. \end{eqnarray*} The righthand side is recognized as the primal and dual residuals. Therefore the infeasible Newton step is also interpreted as a primal-dual mtehod.

  • It can be shown that the norm of the residual decreases along the Newton direction. Therefore line search is based on the norm of residual.

Inequality constraint - interior point method

  • We consider the constrained optimization \begin{eqnarray*} &\text{minimize}& f_0(\mathbf{x}) \\ &\text{subject to}& f_i(\mathbf{x}) \le 0, \quad i = 1,\ldots,m \\ & & \mathbf{A} \mathbf{x} = \mathbf{b}, \end{eqnarray*} where $f_0, \ldots, f_m: \mathbb{R}^n \mapsto \mathbb{R}$ are convex and and twice continuously differentiable, and $\mathbf{A}$ has full row rank.

  • We assume the problem is solvable with optimal point $\mathbf{x}^\star$ and and optimal value $f_0(\mathbf{x}^\star) = p^\star$.

  • KKT condition: \begin{eqnarray*} \mathbf{A} \mathbf{x}^\star = \mathbf{b}, f_i(\mathbf{x}^\star) &\le& 0, i = 1,\ldots,m \quad (\text{primal feasibility}) \\ \lambda^\star &\succeq& \mathbf{0} \\ \nabla f_0(\mathbf{x}^\star) + \sum_{i=1}^m \lambda_i^\star \nabla f_i(\mathbf{x}^\star) + \mathbf{A}^T \nu^\star &=& \mathbf{0} \quad \quad \quad \quad \quad \quad (\text{dual feasibility}) \\ \lambda_i^\star f_i(\mathbf{x}^\star) &=& 0, \quad i = 1,\ldots,m. \end{eqnarray*}

Barrier method

  • Alternative form makes inequality constraints implicit in the objective \begin{eqnarray*} &\text{minimize}& f_0(\mathbf{x}) + \sum_{i=1}^m I_-(f_i(\mathbf{x})) \\ &\text{subject to}& \mathbf{A} \mathbf{x} = \mathbf{b}, \end{eqnarray*} where \begin{eqnarray*} I_-(u) = \begin{cases} 0 & u \le 0 \\ \infty & u > 0 \end{cases}. \end{eqnarray*}

  • The idea of the barrier method is to approximate $I_-$ by a differentiable function \begin{eqnarray*} \hat I_-(u) = - (1/t) \log (-u), \quad u < 0, \end{eqnarray*} where $t>0$ is a parameter tuning the approximation accuracy. As $t$ increases, the approximation becomes more accurate.

  • The barrier method solves a sequence of equality-constraint problems \begin{eqnarray*} &\text{minimize}& t f_0(\mathbf{x}) - \sum_{i=1}^m \log(-f_i(\mathbf{x})) \\ &\text{subject to}& \mathbf{A} \mathbf{x} = \mathbf{b}, \end{eqnarray*} increasing the parameter $t$ at each step and starting each Newton minimization at the solution for the previous value of $t$.

  • The function $\phi(\mathbf{x}) = - \sum_{i=1}^m \log (-f_i(\mathbf{x}))$ is called the logarithmic barrier or log barrier function.

  • Denote the solution at $t$ by $\mathbf{x}^\star(t)$. Using duality theory, it can be shown \begin{eqnarray*} f_0(\mathbf{x}^\star(t)) - p^\star \le m / t. \end{eqnarray*}

  • Feasibility and phase I methods. Barrier method has to start from a strictly feasible point. We can find such a point by solving \begin{eqnarray*} &\text{minimize}& s \\ &\text{subject to}& f_i(\mathbf{x}) \le s, \quad i = 1,\ldots,m \\ & & \mathbf{A} \mathbf{x} = \mathbf{b} \end{eqnarray*} by the barrier method.

Primal-dual interior-point method

  • Difference from barrier method: no double loop.

  • In the barrier method, it can be show that a point $\mathbf{x}$ is equal to $\mathbf{x}^\star(t)$ if and only if
    \begin{eqnarray*} \nabla f0(\mathbf{x}) + \sum{i=1}^m \lambda_i \nabla f_i(\mathbf{x}) + \mathbf{A}^T \nu &=& \mathbf{0} \

    • \lambda_i f_i(\mathbf{x}) &=& 1/t, \quad i = 1,\ldots,m \ \mathbf{A} \mathbf{x} &=& \mathbf{b}. \end{eqnarray*}
  • We define the KKT residual
    \begin{eqnarray*} r_t(\mathbf{x}, \lambda, \nu) = \begin{pmatrix} \nabla f_0(\mathbf{x}) + Df(\mathbf{x})^T \lambda + \mathbf{A}^T \nu \

    • \text{diag}(\lambda) f(\mathbf{x}) - (1/t) \mathbf{1} \ \mathbf{A} \mathbf{x} - \mathbf{b} \end{pmatrix} \triangleq \begin{pmatrix} r_{\text{dual}} \\ r_{\text{cent}} \\ r_{\text{pri}} \end{pmatrix}, \end{eqnarray} where \begin{eqnarray} f(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{pmatrix}, \quad Df(\mathbf{x}) = \begin{pmatrix} \nabla f_1(\mathbf{x})^T \\ \vdots \\ \nabla f_m(\mathbf{x})^T \end{pmatrix}. \end{eqnarray*}
  • Denote the current point and Newton step as
    \begin{eqnarray*} \mathbf{y} = (\mathbf{x}, \lambda, \nu), \quad \Delta \mathbf{y} = (\Delta \mathbf{x}, \Delta \lambda, \Delta \nu). \end{eqnarray*} In view of the linear equation \begin{eqnarray*} r_t(\mathbf{y} + \Delta \mathbf{y}) \approx r_t(\mathbf{y}) + Dr_t(\mathbf{y}) \Delta \mathbf{y} = \mathbf{0}, \end{eqnarray*} we solve $\Delta \mathbf{y} = - D r_t(\mathbf{y})^{-1} r_t(\mathbf{y})$, i.e., \begin{eqnarray*} \begin{pmatrix} \nabla^2 f0(\mathbf{x}) + \sum{i=1}^m \lambda_i \nabla^2 f_i(\mathbf{x}) & Df(\mathbf{x})^T & \mathbf{A}^T \

    • \text{diag}(\lambda) Df(\mathbf{x}) & - \text{diag}(f(\mathbf{x})) & \mathbf{0} \ \mathbf{A} & \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \Delta \lambda \\ \Delta \nu \end{pmatrix} = - \begin{pmatrix} r_{\text{dual}} \\ r_{\text{cent}} \\ r_{\text{pri}} \end{pmatrix} \end{eqnarray*} for the primal-dual search direction.