BIOSTAT M280

home

syllabus

schedule

announcements

Course Schedule

BIOSTAT M280 tentative schedule and handouts (expect frequent updates)

Readings:

Week Tuesday Thursday Homework
1 4/2 introduction and course logistics [slides: ipynb, html] 4/4 computer languages, Julia intro. [slides: ipynb, html]  
2 4/9 plotting in Julia [slides: ipynb, html], Jupyter Notebook [slides: ipynb, html] 4/11 computer arithmetic [slides: ipynb, html], algo. intro. [slides: ipynb, html] HW1 [ipynb, html]
3 4/16 BLAS [slides: ipynb, html], NLA on GPU [slides: ipynb, html], triangular systems [slides: ipynb, html] 4/18 GE/LU [slides: ipynb, html] HW2 [ipynb, html]
4 4/23 Cholesky [slides: ipynb, html], QR (GS, Householder, Givens) [slides: ipynb, html] 4/25 Sweep operator [slides: ipynb, html]  
5 4/30 summary of linear regression [slides: ipynb, html], condition number [slides: ipynb, html], iterative methods intro [slides: ipynb, html] 5/2 conjugate gradient [slides: ipynb, html], easy linear system [slides: ipynb, html] HW3 [ipynb, html]
6 5/7 eigen-decomposition and SVD [slides: ipynb, html] 5/9 optimization intro. [slides: ipynb, html], optimization in Julia [slides: ipynb, html] HW4 [ipynb, html]
7 5/14 Newton-Raphson, Fisher scoring, GLM, nonlinear regression (Gauss-Newton) [slides: ipynb, html] 5/16 quasi-Newton [slides: ipynb, html] HW5 [ipynb, html]
8 5/21 KKT [slides: ipynb, html], constrained optimization [slides: ipynb, html] 5/23 EM algorithm [slides: ipynb, html] HW6 [ipynb, html]
9 5/28 MM algorithm [slides: ipynb, html] 5/30 LP [slides: ipynb, html], QP [slides: ipynb, html]  
10 6/4 SOCP [slides: ipynb, html], SDP [slides: ipynb, html], GP [slides: ipynb, html] 6/6 concluding remarks [slides: ipynb, html]